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ABSTRACT: Researchers are developing increasingly robust
molecular representations, motivating the need for thorough
methods to stress-test and validate them. Here, we use a variational
auto-encoder (VAE), an unsupervised deep learning model, to
generate anomalous examples of SELF-referencIng Embedded
Strings (SELFIES), a popular molecular string format. These
anomalies defy the assertion that all SELFIES convert into valid
SMILES strings. Interestingly, we find specific regions within the
VAE’s internal landscape (latent space), whose decoding frequently
generates inconvertible SELFIES anomalies. The model’s internal
landscape self-organization helps with exploring factors affecting
molecular representation reliability. We show how VAEs and
similar anomaly generation methods can empirically stress-test
molecular representation robustness. Additionally, we investigate reasons for the invalidity of some discovered SELFIES strings
(version 2.1.1) and suggest changes to improve them, aiming to spark ongoing molecular representation improvement.

■ INTRODUCTION
Anomalous or outlier data contaminate real-world data sets in
domains from telecommunications to health care; these data can
significantly deviate from the norm and require filtering.1−3 This
motivates the development of robust deployable anomaly
detection models for data cleaning or raising alarms in dynamic
information processing systems like browsing, spam, or credit
card fraud detection.4 Conversely, anomalies may be the subject
of interest, pivoting the investigation from anomaly detection
and removal to their active generation and incorporation, as in
“fuzz testing” software. In software fuzz testing, invalid or
anomalous inputs can expose hidden vulnerabilities as
exceptions such as crashes.5,6 Fuzz testing exposes exploits or
limitations in software by intentionally injecting invalid,
unexpected, or random inputs.

In some domains, anomaly detection modeling may suffer
from training data scarcity that limits its predictive potential. In
such cases, generating anomalies to populate synthetic training
data sets may mitigate data scarcity and class imbalance.7 In
other cases, the nature of potentially anomalous data may be
unknown due to the absence of real-world examples or the
ineffectiveness of general formulation or conceptualization
approaches for devising anomalous criteria.8 For instance,
manufacturing processes often progress through filtration steps
to remove anomalous and defective pieces.9 However, this relies
on a definition of anomalous criteria despite the rarity of
defective pieces. Here, machine learning (ML) for anomaly
generation can reveal possible failure modes in the data. By
extension, generative models can enable constructing and

exploring an “anomalous data space” that reveals previously
unknown or nonintuitive but actionable anomaly criteria.
Similarly, generative exploration can reveal failure modes in
data representations as unexpected behaviors that deviate from
the norm in functionality. Such “representational anomalies” do
not indicate semantic anomalies but expose representation
definition or syntax loopholes. Representational anomalies are
specific to their data.

Graphs10 and strings including SMILES,11 SELFIES,12 and
DeepSMILES13 can represent molecular data. However, these
representations may contain edge cases that fail to map the
corresponding molecular data correctly. In addition to synthetic
training set curation by generating (semantic) anomalies, such a
scenario also presents an application domain for generating
(representational) anomalies to support representation develop-
ment efforts. In this work, we investigate the application of ML
for representational anomaly generation to explore failure
modes in a molecular string representation (SELFIES) and,
consequently, test representational robustness. Specifically, we
demonstrate how exploring a variational autoencoder (VAE)
latent space, trained on purely normal (valid) data, can
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effectively fuzz-test representational robustness by anomaly
generation. While generative models have been extensively
explored for de novo molecular design, we present a spatially
aware analysis of their fuzz-testing abilities�which can guide
representation development efforts. We also compare VAE-
based anomaly generation against baseline generative null
models to demonstrate how VAE fuzz-testing maximizes the
number of representational anomalies.

Deep Learning Method: VAE. The VAE is a probabilistic
variant of autoencoder14 proposed by Kingma and Welling.15

Instead of encoding inputs into a point estimate (degenerate
distribution), the VAE encodes inputs into a conditional
probability distribution to form a latent information bottleneck.
This approach to latent space design enforces representational
continuity and a generative interpretation.16 By feed-forward
propagation, the model may be decomposed into three parts
(Figure 1). An encoder network approximates a posterior
distribution over latent variable z conditioned on input data x,
qϕ(z|x). This effectively distinguishes latent space regions by
observation probability as a function of the conditioned data x.
The second is an uninformative prior, p(z), usually the standard
multivariate Gaussian distribution. The third is a decoder that
outputs a likelihood distribution over the data conditioned on
the posterior-sampled latent variable z, pθ(x|z), effectively
generating a reconstruction of the input on sampling. The
training jointly optimizes for encoder and decoder parameters ϕ
and θ by maximizing the (evidence) lower bound (ELBO) on
the log-likelihood of the data distribution.

[ | ] ||p x p x z D q z x p zlog ( ) log ( ) ( ( ) ( )))q z x KL( )

(1)

The two terms in this objective formulation achieve dual
outcomes. The first term maximizes the log-probability of
reconstructing the data x conditioned on the latent variable z, as
expected by the posterior. Simultaneously, the second term
minimizes the Kullback−Leibler (KL) divergence between the
prior and posterior, which acts as a regularizer and minimizes
variance by penalizing the encoder for approximating posteriors
that diverge from the prior.

Given a specific hyperparameter configuration, a strongly
enforced unit Gaussian prior should pull the training data’s
encoded latent embeddings, vectors sampled from approxi-

mated posterior distributions, to agglomerate near the zero
origin. On the other hand, reconstruction optimization
encourages the decoder to regenerate the training data by
forward-propagating the latent embeddings. Effectively, the
objective encourages the training data distribution to be both
“encoded to” and “decoded from” the same latent regions, with
their locality enforced by the prior. Additionally, we expect
reconstruction optimization to encourage clustering over the
input data’s latent embeddings.17,18 Consequently, we expect to
observe latent space regions corresponding to “in-distribution”
data separated from relatively anomalous “out-of-distribution”
data on decoding, where the training data distribution defines
“in-distribution”. Consequently, by performing location-guided
sampling-decoding analysis, we could determine which latent
regions decode in-distribution versus out-of-distribution data.
Given the VAE’s generative property and density learning
objective, this binary clustering and associated boundary
identification should enable us to generate novel examples of
either distribution on targeted decoding. Generative ML
applications usually focus on the “in-distribution” regions to
generate realistic and novel data that resemble training data. On
the contrary, we investigate the VAE for anomalous “out-of-
distribution” molecular strings with the aim of testing
representational robustness.

Related Work. Various unsupervised, supervised, and
semisupervised methods employ ML for anomaly detection.
Common shallow methods include z-score and Mahalanobis
distance threshold-based classification, local outlier factor
(LOF), K-nearest neighbors, and support vector machines.19−22

Deep neural networks such as VAEs can detect anomalies by
learning to effectively reconstruct compressed representations of
normal data while achieving only lossy reconstructions of
anomalous data.23−26

Multiple MLmethods can detect anomalies in biological data.
For example, Michael-Pitschaze et al. detected anomalous
proteins through representation learning using protein language
models.27 They extracted the penultimate layer of an encoder
neural network to represent proteins, applied an anomaly
scoring function to identify human prion-like proteins, and
classified viral proteins from the host proteome. Similarly,
Czibula et al. introduced AnomalP, a method to detect
anomalous protein conformations using deep learning.28

Figure 1. SELFIES-VAE workflow and illustration including the approximate posterior (encoder q(z|x)), prior (p(z)), and likelihood (decoder p(x|
z)). Themodel encodes SELFIES strings into approximate posterior distributions in a 196-dimensional latent space. In the generative phase, points are
sampled radially over hyper-sphere surfaces and decoded to SELFIES strings as a function of radius R.
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Analogously, Ferre et al. proposed atyPeak, a stacked convolu-
tional autoencoder, to detect anomalous peaks in genomic
catalogs.29 Similarly, to address experimental problems, Tiwari
et al. applied advanced ML algorithms for anomaly detection in
protein A chromatography column integrity.30

While ML use for anomaly generation is relatively rare in
research settings, it is more common in software testing. In a
research example, Laptev et al. generated synthetic anomalous
time-series data by decoding outlying regions of a VAE’s latent
space.7 In a biological context, Uzolas et al. deployed a
conditional adversarial network to synthesize abnormal banded
chromosome images and propose the method for cytogenetic
data detection, simulation, and augmentation.31 By contrast,
multipleML strategies effectively generate fuzz testing inputs for
software robustness and safety testing. For instance, Godefroid
et al. used LSTMs to generate PDF input grammars to develop
generation-based fuzzers.32,33 In another study, Rajpal et al.
combined deep learning with the American Fuzzy Lop (AFL)
fuzzer to enhance coverage by better choices of input bytes for
mutation.34 Similarly, She et al. proposed NEUZZ, a method for
efficient fuzzing using neural program smoothing.35 They
developed surrogate neural network models capable of learning
smooth approximations of a real-world program’s behaviors.
Proceeding to reinforcement learning, Becker et al. used the
SARSA algorithm to fuzz the IPv6 protocol by introducing
mutations to network packets sent to a host.36−38 More recently,
Deng et al. proposed FuzzGPT, a method to prime Large
Language Models to generate unusual programs for fuzzing.39

FuzzGPT found 76 bugs in the latest versions of PyTorch and
TensorFlow at the time of testing. Analogous to generation-
based software fuzzers, we study the VAE and associated radial
latent exploration approach as a smart generative black-box
fuzzing method for a molecular string representation.

Broadly, VAEs have been used for a variety of purposes and
domains. For example, Sevgen et al. developed a transferable
VAE to conditionally design protein sequences from low-
dimensional latent embeddings.40 Elsewhere, Wu and Xu
proposed an adversarial VAE combined with residual learning
to generate synthetic images of tomato leaf diseases to mitigate
data scarcity.41 In chemistry, Tempke and Musho generated
chemical reactions by sampling the latent space of a VAE trained
on gas-phase reactions data.42

Many molecular representations exist for molecular gen-
eration and de novo design. Lee and Min used graph matrices as
model inputs and a multiobjective optimization process for
molecular generation.43 Jin et al. employed the junction tree
VAE, a two-step process that creates a tree-based framework
representing chemical substructures and then integrates them
using a graphical message-passing neural network.44 Hadipour et
al. combined the SMILES representation and PCA dimension-
ality reduction in a VAE to embedmolecular features and cluster
small-molecule data sets.45

Case Study Molecular Representation: SELFIES. SELF-
referencIng Embedded Strings (SELFIES) is a molecular string
representation developed by Krenn et al.12 to be 100% robust
such that each SELFIES string converts to a valid molecular
SMILES.11 The representation addresses some fragility-
inducing features commonly responsible for SMILES invalidity
by removing them altogether, such as pairwise syntax constraints
indicating ring and branch structures. To address the problem of
bonded atom counts exceeding valences, SELFIES uses special
parenthesized tokens that couple bonds with atoms to form a
single token in a rule-abiding manner instead of treating bonds

as separate tokens. SELFIES become SMILES by processing
tokens through bond-order-correcting “rule vectors” for toke-
nized atoms that obey valence rules and maintain overall
structural compliance. The module deploys a “derivation rule”
table to process SELFIES tokens sequentially into SMILES
tokens, building the corresponding SMILES string in parallel.
Given this sequential processing, the corrective conversion
process for a SELFIES token depends on its preceding and
successive token’s atomic composition and bond order or ring/
branch type�comprising a “token neighborhood”. The
conversion process does not strictly preserve the atomic
composition or empirical formula as the rules can discard
misfitting or irreparable tokens to ensure validity. The authors
demonstrate that SELFIES outperforms SMILES in maximizing
the valid generative chemical space size.

The discovery of a SELFIES string that converts to an invalid
SMILES string would demonstrate a representational anomaly
that challenges nominal assumptions about 100% SELFIES
validity. Such anomalies belong to an out-of-distribution space
of hypothetical invalid SELFIES. Furthermore, these anomaly
criteria focus exclusively on converting a SELFIES string to a
valid SMILES through SELFIES’s underlying mapping mech-
anisms. Therefore, we remove SELFIES token compositions
from consideration and define a “normal versus anomalous”
binary classification solely by the string’s conversion success.
Consequently, we explore SELFIES string anomalies solely at
the representational level and accept chemically valid SMILES as
a proxy for a valid molecule or molecular mixture, regardless of
physicality. We test the hypothesis that SELFIES anomalies exist
by using the generative properties of a VAE, conditioned on a
training set, token set, model architecture choice, and latent
space surveying approach, on the latest available SELFIES
version 2.1.1.46

■ METHODS
VAE Architecture and Hyperparameters. We train and

analyze a SELFIES-VAE in TensorFlow v. 2.10.047 with an
architecture motivated by Gomez-Bombarelli et al.48 The
encoder consists of an embedding layer that processes SELFIES
tokens represented as integer arrays, three one-dimensional
convolutional layers (filters: 9,9,11; kernel size: 9,9,10), one
flatten layer, and one dense layer that outputs parameters
describing a 196-dimensional approximate posterior latent
distribution. The decoder (Dec) receives a sampled latent
vector z and consists of a dense layer followed by three
sequence-returning GRU (Gated Recurrent Unit) containing
256 hidden units. Finally, a dense layer outputs a 91 × 54
likelihood matrix, Dec(z) = L ×Dec( : )196 91 54 , expressing
model likelihood in the form of discrete unnormalized
distributions (logits) of 54 SELFIES tokens for 91 sequence
positions available in the sequence to be generated. The matrix
element Li,j indicates the probability of observing token tj in the
ith position of the sequence. We employ a greedy decoding
strategy to convert L to a SELFIES sequence by selecting the
most probable token to occupy each position while ignoring the
padding character in the final compilation. This is achieved by a
readout function as follows

=
* *

readout L concat t t

t pad

( ) ( , ..., ) s. t.L Largmax( ) argmax( )1, 91,

(2)
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where concat indicates the string concatenation of tokens to
produce a SELFIES sequence. This decoding process enforces a
one-to-one mapping between latent points and SELFIES. Figure
S1 pseudocode outlines the generation process. We compiled a
SELFIES training set of 400,000 molecules to define encoder
input dimensionality. We filtered sequences by size and
converted from canonical SMILES in ChEMBL v.2949,50 to
obtain a data set token set size of 54, including a special padding
token: ({“pad”: 0, “.”: 1, “[#Branch1]”: 2, “[#Branch2]”: 3, “[#C
− 1]”: 4, ..., “[Si]”: 53}). This procedure yielded SELFIES with a
maximum token count of 91 (Table 1 and Figure S2). Drawing

from the same distribution as the training set, we compiled a
validation set of 30,000 SELFIES strings. Figure S3 shows the
distributions of various molecular properties for the training and
validation sets. We trained the model using a sparse softmax
cross entropy with logits loss (for reconstruction), KL
divergence (for regularization), Adam optimizer,51 and a
learning rate of 0.001. We initialized parameters using a
Glorot-uniform scheme and trained with a batch size of 128.
We annealed the β-VAE’s52 β factor (KL loss weight) using a
linear schedule after three epochs, with the final model trained in
15 epochs over 74 h (wall clock time) on a single NVIDIA RTX
3090 GPU. The annealing process dynamically updates β
throughout training to mitigate KL vanishing and posterior
collapse tendency.53 We used early stopping with a patience of 8,
meaning that training would stop if the best validation loss value
did not decrease by a margin of 2.0 over 8 consecutive epochs, to
determine convergence. We used the RDKit library for
cheminformatics functions (RDKit: Open-source cheminfor-
matics; http://www.rdkit.org).

Setting Null Baselines for Deep Variational Anomaly
Generation. ML methods may not be justified if they do not
outperform simpler conventional algorithms. Therefore, we
investigate and benchmark six null models for their ability to
generate invalid SELFIES. Since SELFIES is a token sequence
and the VAE’s decoder outputs token probability distributions
per sequence position, we analogously explore random position-
wise SELFIES generation for null models using the training data
set. These models test representational robustness because the
authors claim that “each SELFIES corresponds to a valid
molecule, even entirely random strings”.12 We construct six
generative null models that increasingly leverage SELFIES
training distribution information.

Naive Random. To generate SELFIES naively, we randomly
sample a sequence size (token count): size ∼ Uniform({min
tokencount, min tokencount + 1, ..., max tokencount − 1, max
tokencount}), where min tokencount and max tokencount are the
minimum and maximum number of tokens in any training set
SELFIES, respectively. Second, we fill each sequence position by
uniformly sampling a token from our token set with
replacement: SELFIES[idx] ∼ Uniform({[C], [N], ..., [�O]})
(Figure 2A). This naive generator constructs sequences without
prior knowledge of training-set SELFIES token distributions
using randomized sequence size and token positional assign-
ment. Figure S4 pseudocode outlines the naive random
generation algorithm.

Shuffle Random. We second generate SELFIES by drawing
from the training distribution of sequences and shuffling tokens
internally, randomly placing tokens into new sequence positions
(Figure 2B). Since we sample initial SELFIES from the training
set, this generator contains more training distribution
information than naive random because the shuffling process
preserves composition while altering the positional arrangement
of tokens.

Index-Token Distribution Random. As SELFIES strings
essentially describe a distribution of tokens over positions in a
sequence, a SELFIES data set establishes a distribution of tokens
per position over multiple sequences. Within a sequence, the
horizontal arrangement of tokens conveys relational character-
istics about connectivity (bonds) and structure (opening and
closing points for rings and branches). Analogously, a “vertical”
arrangement of tokens would describe a distribution of tokens
for each position over all sequences in a SELFIES data set.
Therefore, each sequence position observes a certain frequency
of tokens, which conveys global properties of the data set. For
instance, a data set could be biased toward SELFIES sequences
featuring long carbon chains in their tails. In this case, token
distributions of the trailing positions would indicate a high
frequency of carbon tokens, expressing a data set property. To
adapt this interpretation for generation, we organize the
SELFIES training set as a matrix with rows indicating sequences
and columns indicating tokens per sequence position. This
defines a multinomial distribution of tokens per position that we
sample to generate SELFIES on a positional basis (Figure 2C).
From thematrix, we generate sequences by uniformly sampling a
token per position (column), ignoring padded characters, to
compile the final sequence (Figure 2C). This generator is also
relatively representative of the training distribution as it directly
samples tokens from the position-wise data set distribution.
Figure S5 pseudocode outlines the index-token distribution
random generation algorithm.

N-Bitflip Random-Mutation. Motivated by the mutation-
based robustness-testing approach by Krenn et al. in the
SELFIES paper,12 we also introduce random mutations in
SELFIES sequences by randomly flipping or replacing
constituent tokens (Figure 2D). As in the shuffle random
approach, we first sample a SELFIES string from the training
data set uniformly at random. Then, we replace n randomly
existing sequence tokens with different random tokens from our
token set. Figure S6 pseudocode outlines the N-bitflip random-
mutation algorithm as a function of the number of bits, n. For
smaller values of n, this generator is highly representative of the
training distribution because it introduces fewer mutations in
strings directly sampled from the training distribution. We use n
= 1 and n = 10 to create two N-bitflip null-generators, varying by
the number of mutations.

Full Random-Mutation. We also implement a full random-
mutation generator that extends the N-bitflip random-mutation
generator. In this approach, n equals the length of the SELFIES
sequence, which replaces all sequence tokens, changing it
entirely to generate a new string. Figure S7 pseudocode outlines
the full random-mutation algorithm.

■ RESULTS
Our primary goal was to test the representational robustness of
SELFIES through variational autoencoding. By seeking to
minimize validity, we test SELFIES’s 100% validity assumption
and its robustness. Moreover, a large pool of invalid SELFIES
strings would yield insights into the representation’s failure

Table 1. Data Set Metrics Before and After Filtering

data set size (K) max token count token vocab (set) size

before filter 1000 1281 205
after filter 400 91 54

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.4c01876
J. Chem. Inf. Model. 2025, 65, 1911−1927

1914



modes and factors contributing to anomalous criteria. Ideally,
we expected to observe a self-organized latent space that
clustered high- and low-validity regions.

We generated invalid SELFIES by radially surveying the VAE
latent space.We randomly sampled points over 196-dimensional
zero-centered hyper-sphere surfaces and decoded them to
SELFIES strings. Figure S8 pseudocode outlines the algorithm
used to perform radial sampling in the latent space. We assessed
fixed-size-generated SELFIES sets for their validity percentage
as a function of their generative (decoding) radius. To assess
their validity, we converted SELFIES to SMILES and tested the

SMILES’s convertibility to molecular graphs or mixtures of
molecular graphs using RDKit. For instance, if the SMILES
violated a valence rule, RDKit raised an error identifying the
atom and count by which the atom’s explicit valence exceeded
maximum permission. To ensure consistency and as a secondary
check, we likewise assessed SELFIES validity using Chem-
Writera and Smivalb (Figure S9) along with manual inspection
for selected strings (Figure 3, “Default Constraints”). This
testing approach abides by the SELFIES definition of validity,
which rests on its modules’ converted SMILES complying with
standard molecular rules.

Figure 2. SELFIES generation process examples via null models. (A) Naive random generator samples a token count (uniformly between 1 and 91)
and then fills each sequence position with a token sampled from the token set. (B) Shuffle random generator samples a SELFIES string from the
training set and shuffles the tokens within the sequence to generate a new SELFIES. (C) Index-token distribution random generator applies a matrix
interpretation to the SELFIES training set to randomly sample tokens from position-wise distributions, where n =max tokencount. Generated SELFIES
discard padding characters. (D) N-Bitflip random-mutation samples SELFIES strings from the training set and then selects n bits (red) to be randomly
replaced with a token from the token set (blue).
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Figure 3. SELFIES validity checking. Example VAE-generated SELFIES string converted to SMILES using SELFIES module’s default and modified
constraints. The string validity is assessed using RDKit.

Figure 4. Evaluating SELFIES validity by token modifications and constraint settings. Default constraints: (A) SELFIES converted to SMILES with
valence errors and (B) the same SELFIES with troublesome tokens manually modified to validate resultant converted SMILES. Modified constraints:
(C) SELFIES converted to SMILES with valence errors and (D) the same SELFIES with troublesome tokens manually modified to validate resultant
converted SMILES. Troublesome tokens and manually modified tokens are highlighted in pink and blue, respectively.
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We identified SELFIES strings that generated atomic valence
errors. Although the SELFIES-to-SMILES conversion module
imposes corrections like atomic valence constraints to ensure
SMILES validity, its default settings nonetheless raised explicit
RDKit valence errors in some cases (Figure 4A). Although
errors, most of these edge cases were easily correctable. We
introduced a “Modified Constraints” correction (described
below) that modifies invalid SELFIES by altering formal charges
for atom tokens that raised errors in RDKit (Figure 4B). For
instance, tokenized atom [Na + 1]’s explicit valence is 2, but
within a generated invalid SELFIES (Figure 4A), the token’s
associated bonds and formal charge required the explicit valence
to be 3, which exceeded maximum permission by 1. To remedy
this, we manually modified [Na + 1]’s formal charge. Similarly,
we neutralized [Cl − 1] to address the valence errors. The
module converted the resultant modified SELFIES to valid
SMILES, with the sodium double-bonded and ionized, the
chlorine correctly bonded, but other tokens discarded, forming a
disconnected structure (Figure 4B). This valence/charge
modification process is consistent with the bond-order
correction process the SELFIES module already employs,
which alters the bond order of tokenized atoms to obey the
valence rules.

By manually inspecting the VAE-generated invalid SELFIES
strings, we identified six “troublesome” atom tokens (three
cations and three anions) that consistently invalidated down-
stream SMILES strings (Table 2). Formal charge and

neighboring atoms enforced valences on them, exceeding
maximum permissions, raising RDKit flags. Conveniently, the
SELFIES module allows users to set customized constraints
using a specific function (set_semantic_constraints()). The
module dynamically builds its derivation rules incorporating
the custom constraints, which set the maximum permissible
number of bonds each atom can form in a molecule.46 We used
this capability to set custom valence constraints for the six
troublesome atom tokens, resolving four cases. However, this
“Modified Constraints” customization failed to solve valence
errors for the remaining two atom tokens, designated as our
filtered troublesome token set (Figures 3 and 4C).

The “troublesome” SELFIES tokens persistently resulted in
silently invalid SMILES despite attempts to correct them using
custom valence constraints, satisfying the definition of
representational anomalies. We could manually correct them
in a context-specific way but not automatically using the
SELFIES representation’s rule set or its module’s capabilities
(Figure 4D).

Invalid SELFIES strings contained at least one troublesome
token, but valid SELFIES may contain them as well (Tables 3

and 4). The troublesome tokens only invalidate a SELFIES
string based on neighboring tokens’ associated valence and
characteristics. Accordingly, editing the token itself or adjusting
neighboring tokens’ valence/charge or atomic composition can
correct an invalid SELFIES string. SELFIES-to-SMILES
conversion successfully corrects some troublesome token
scenarios contingent on neighborhood factors, such as the
arrangement of structural disconnections indicated by periods
(Table 3). We quantified and compared the troublesome token
containment (TTC; one or more present) in the training set and
the VAE-generated set of 1.8 million SELFIES (Table 4). While
less than 1% of the 100% valid training set SELFIES contained
troublesome tokens, almost 59% of the VAE-generated
SELFIES set (decoded in hyper-sphere of radius = 180.0)
contained troublesome tokens.

We investigated the VAE as a representational anomaly
generator (i.e., as a smart generative black-box fuzzer) by
decoding SELFIES strings as a function of the latent generative
radius and assessing the strings for validity. We also mapped
validity vs radius trends evaluated for incompletely trained
models at epochs 0 (untrained VAE initialized using Glorot-
uniform scheme54), 1, 5, and 7 (Figure 5A). These illustrate the
VAE’s growing ability to discriminate and cluster SELFIES by
validity over the course of training. Models at epochs 0 and 1 fall
short of the best null model (full random-mutation) at
minimizing validity, while models at epochs 5, 7, and 15 (final
convergence) outperform the null model at varying radial
domains. The training and validation loss plots for the VAE can
be found in Figure S10. To assess the VAE’s reconstruction
performance on seen and unseen molecules, we also calculate
mean categorical reconstruction accuracy (Figure S11,
pseudocode) for training and validation set SELFIES. We
found the VAE’s mean categorical reconstruction accuracy
equivalent in the training and validation sets. The accuracy value
was 0.921 for the training and 0.920 for the validation set (Table
S1). Figure S12 shows distributions of categorical accuracy
values for the training and validation sets. Encoded-decoded
example pairs of SELFIES molecules reconstructed by the VAE
can be found in Figure S13.

To ensure expansive latent space coverage and a relatively
global trend evaluation, we plot the SELFIES set validity
percentage as a function of generative radius ranging from 0.0 to
1000.0, in the final model (Figure 5B). The “Modified
Constraints” (customized, Figure 5B) procedure slightly
increases validity but does not fully address the representational
anomalies arising from troublesome tokens (Figure 6A,B).

Speaking of latent space organization and validating
clustering, a two-dimensional projection (via principal compo-
nent analysis, PCA) of the 196-dimensional latent space likewise
shows that invalid SELFIES are more likely to arise from points
decoded at high latent-space radii (Figure 5C). The final
converged VAE model comprises several key latent space
regions with consistent properties, as a function of radius R:

1.Normal-anomalous (valid-invalid SELFIES) boundary:
R = 13.0

•R < 13.0 is a purely valid SELFIES zone because
strings decoded from this region demonstrate 100%
validity, while points decoded in domain R > 13.0
generate SELFIES sets with varying validity
percentages.

2.Global minima for validity percentage: R = 61.0

Table 2. Set of Troublesome SELFIES Atom Tokens
Discovered After SELFIES-to-SMILES Conversion Error
Analysis Using Default Constraintsa

aThe red cells indicate tokens that remained troublesome despite
setting custom valence constraints (“Modified Constraints”); the blue
cells indicate tokens whose customization resolved conversion issues.
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•VAE minimizes decoded SELFIES set validity
percentage in the final model to 11.2% at this
radius, with invalidity percentage correspondingly
maximized at 88.8%. Implicitly, this radius indicates
the model’s upper performance bound as a
representational anomaly generator.

3.VAE applicability domain as a representational anomaly
generator relative to the best-performing null generator: R
> 29.0

•In this radial domain, the VAE outperforms the
best null generator (full random-mutation) at
minimizing validity percentage in generated
SELFIES sets. SELFIES sets generated at every
radius greater than 29.0 exhibit (variably) lower
validity percentages than those generated by the full
random-mutation null model, which generates
SELFIES sets at a constant validity percentage of
72.9% (Table 5). Owing to superior performance at
validity minimization, this radial domain effectively

establishes the VAE’s applicability domain as a
representational anomaly generator.

We generated SELFIES via the six null models to benchmark
the VAE model’s anomaly generation performance and
evaluated them for percentage validity. Of the 10,000 strings
generated using the shuffle and index-token distribution random
models, almost 100% are valid, while the 1-bitflip random-
mutation and the 10-bitflip random-mutation methods gen-
erated SELFIES sets with 96.66% and 85.48% validity,
respectively, making them weak robustness testers. In contrast,
the naive randommodel, which contained the least training data
set information in its formulation, resulted in a generated
SELFIES set with no more than 74.35% validity, while the full
random-mutation method generated 72.93% valid SELFIES
strings�comprising a significantly better null test than the other
baseline models for representational robustness (Table 5 and
Figure 6C). Consequently, we chose the full random-mutation
generator as the primary null baseline for representational
anomaly generation. The null and VAE models generated both
valid and invalid SELFIES containing troublesome tokens
(Figures 7 and 8).

We observe that the SELFIES module deals with troublesome
token-containing but valid SELFIES in two ways: (1) It
transforms the string by discarding tokens sequentially until
the troublesome token is correctly accommodated at a
disconnection point in the resultant molecular mixture (Figure
9A); or (2) It discards the troublesome token altogether to
validate the string (Figure 9B). By contrast, the module deals
with out-of-scope SELFIES strings in either of two ways,
depending on the validity of the characters: (1) It returns an
empty string if the SELFIES sequence does not contain any
atom token but only contains branch or ring-indicating tokens;
or (2) It returns a Python None object if the character is an
invalid, unrecognized token (Figure S14).

Table 3. Example SELFIES Strings from the Training and VAE Generated Sets by Validity and Troublesome Token Content
(TTC), with Troublesome Tokens Boldeda

aThe training set SELFIES are 100% valid, regardless of the TTC. Valid and invalid SELFIES are highlighted in blue and red, respectively. The
VAE-generated SELFIES were decoded by sampling within the volume of a hyper-sphere of radius = 180.0.

Table 4. Quantifying and Comparing TTC in Training and
VAE-Generated SELFIES Setsa

SELFIES set validity TTC number of SELFIES

subtotal total

training valid yes 1986 (0.50%) 400,000
no 398,014 (99.50%)

VAE-generated
SELFIES

valid yes 239,656 (13.06%) 1,834,560

no 850,458 (46.36%)
invalid yes 744,446 (40.58%)

aThe training set SELFIES are 100% valid, regardless of the TTC.
The VAE-generated SELFIES were decoded by sampling within the
volume of a hyper-sphere of radius = 180.0.
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■ DISCUSSION
Molecular string representations such as SMILES,11 SELFIES,12

and DeepSMILES13 describe molecules using a linear sequence
of tokens. This approach limits chemical expression given the
inherently graphical nature of molecules, but tokens as building
blocks support dimensionality reduction, memory efficiency,
and readymachine readability. Invalid SMILES or graph outputs
limit generative modeling’s use; generative latent variable
models learn larger useful chemical spaces if the representation
ensures maximal validity. SELFIES is a major landmark in this
effort because it fundamentally addresses common invalidity
sources in the traditional SMILES representation by devising
specialized tokens and corrective mechanisms.12 Given the
importance of SELFIES and progress in molecular representa-
tion development, we emphasize the complementary need for
investigating advanced representational robustness testing
methods.

SELFIES addresses the issue of invalid molecular representa-
tions, particularly for outputs of generative models, where
relatively common but grammatically fragile string representa-
tions such as SMILES lead to wasted computational resources
and reduced efficiency.12 Ideally, by eliminating the potential
sources of errors, SELFIES introduces a useful feature into a
latent space: every point would correspond to a valid molecule.
This allows the model to focus on generating molecules with the
desired properties. While SELFIES largely succeeds, we found
edge-case anomalies that suggest room for improvement. These
anomalies can propagate through downstream workflows,
emphasizing the importance of rigorous tests to ensure
reliability.

Developing new molecular representations and methods for
exploring chemical spaces is pivotal in chemical informatics.
Hence, the rigorous evaluation of representations to verify
intended functionality is essential. Indeed, Krenn et al.12

Figure 5.Generated SELFIES sets of size 10,000 for each radius (R) except R < 6.0 (sphere surface area and molecular density are too low to generate
10,000 unique SELFIES strings from this radial domain). (A) Percentage of validity in generated SELFIES sets as a function of radius from R = 0.0 to
180.0 over various stages of training (untrainedmodel to model trained at1st, 5th, 7th, and 15th epochs). The green region indicates the normal purely
valid SELFIES space, while the blue region indicates the anomalous invalid SELFIES space. The magenta dotted line indicates the region where the
VAE begins to outperform the naive randommodel at validity minimization. (B) Percentage of validity by generative (decoding) radius from R = 0.0 to
1000.0 in the final converged model for both default (red) and modified (blue) constraints. The dark cyan dashed line indicates the naive random null
model for both plots. (C) Two-dimensional PCA projection plot of 196-dimensional vectors (sampled within the volume of hyper-sphere of radius =
61.0) decoded to 10,000 SELFIES strings and color-coded by validity. Valid SELFIES are concentrated toward the center, and invalid SELFIES are
scattered to the periphery. Black lines indicate examples of valid and invalid SELFIES (troublesome token highlighted) decoded from high-
dimensional points.
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conducted a series of empirical tests akin to fuzz tests to assess
SELFIES robustness. By reapproaching robustness testing
through the cybersecurity discipline of fuzz testing leveraging
VAEs, we found that SELFIES has edge-case anomalies that can
affect its intended use with generative models. For instance, the
model generates SELFIES strings that map to chemically invalid
SMILES strings without raising error messages. Examples
highlight implausible chemical scenarios, such as a metal and a
nonmetal in the SMILES/molecule forming a covalent bond and
an explicit valence scenario that exceeds chemical acceptability.
This creates inefficiencies in the chemical informatics processes
and downstream molecule generation pipelines that assume,
based on SELFIES’ core claim, that every SELFIES string yields

a valid molecule. Such behavior creates “silent” errors in
calculations or could halt pipelines with RDKit SMILES reading
errors such as “Explicit valence for atom #15 Na, 2, is greater
than permitted”. Subsequent operations on the now-missing
generated string or molecule, such as property calculations,
would fail.

Molecular representations encode molecular structure in
chemical informatics tasks, including molecular generation and
design, molecular property assessment, and computational
chemistry. These numerical and statistical approaches enable
the representation and design of chemical phenomena. Fragile
representations that yield invalid molecules detract from this
use. Verifying representational robustness by explicit, direct, and

Figure 6. Percentage of generated SELFIES strings containing at least one troublesome token as a function of generative radius R and validity status
using (A) default and (B) modified constraints. We generated 10,000 unique SELFIES strings at each radius, except for R < 6.0. (C) Bar chart
summarizing generated SELFIES validity percentage for six models: hatched bars depict various VAE generative radii R, while colored bars represent
the naive randommodel (NR), shuffle randommodel (SR), index-token distribution randommodel (ITDR), 1-bitflip random-mutation (1-RM), 10-
bitflip random-mutations (10-RM), and full random-mutation (F-RM). A lower validity percentage indicates better performance at representational
anomaly generation. Bars under the dashed red line outperform the best null model (F-RM).
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thorough techniques like fuzz testing greatly impacts projects or
processes that hinge on chemical representations. Fragile
representations can directly affect chemical informatics tasks
in several ways, such as

• Inefficiency in chemical library use and design: fragile
representations can create low validity rates, compromis-
ing the effective exploration of chemical space. For
example, the validity percentage of generated molecules,
71.9% with SMILES per Krenn et al.,12 directly reflects
computational resources wasted (28.1%) on invalid
structures. This inefficiency becomes critical when valid
molecules do not necessarily achieve desired properties,

further limiting the discovery of synthesizable, useful
compounds.

• Chemical informatics pipeline error: invalid or edge-case
molecules can break or halt computational pipelines,
causing software packages like RDKit to return Python
errors. These issues can hinder workflows and demand
significant debugging efforts.

• Silent invalidity: in pernicious cases, invalid structures
might not trigger immediate errors but instead be skipped
or misinterpreted, leading to incorrect conclusions about
a model’s distributions or generative-space capabilities.
This “silent failure” can mislead scientific or discovery-
oriented insights, compromising the reliability of one’s
work.

• Model interpretability: fragile representations that result
in invalid generated molecules can negatively affect the
explanation and interpretability of the internal working
process of generative models in chemistry.

By applying fuzz testing techniques to molecular representa-
tions, we aim to uncover weaknesses and systematically make
these representations more robust. Additionally, robust
representations enable closer integration with ML models,
which are often sensitive to the quality of the input data.
Ensuring the reliability of molecular representations (and
chemical representations in general) enhances predictive

Table 5. Generated SELFIES Sets Validity Percentage by
Generator Types for a Sample Size of 10,000a

generator type generator validity (%)

null naive random 74.35
shuffle random 99.74
index-token distribution random 99.88
1-bitflip random-mutation 96.66
10-bitflip random-mutation 85.48
full random-mutation 72.93

deep learning VAE (generative radius = 61.0) 11.24
aThe best validity-minimizing null model type and the VAE’s validity-
minimizing generative radius are bolded.

Figure 7. Examples of generated valid (blue highlight) and invalid (red highlight) SELFIES with converted SMILES containing troublesome tokens,
using three null generators (NR = naive random, SR = shuffle random, ITDR= index-token distribution random). Troublesome SELFIES atom tokens
are bolded. Molecular structures display where valid.
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accuracy, streamlines molecular design workflows, and accel-
erates advancements in computational chemistry.

We used generative approaches of varying complexity to
permute tokens within SELFIES sequences to stress string
representation robustness by finding failure modes when
converting to SMILES. Divergence from the purely valid
training set imposed stressors on SELFIES’s corrective

conversion mechanisms. Real-world molecules range from
complex natural products to synthetically accessible small
molecule drugs, whose string representations explore token
sequence permutations48,55 in a space of 5491 strings at our token
set size and maximum SELFIES length. Variational autoencod-
ing converts inherently discrete chemical strings into continuous
latent representations that capture salience and minimize

Figure 8. Examples of generated valid (blue highlight) and invalid (red highlight) SELFIES with converted SMILES containing troublesome tokens,
using three null generators (1-RM = 1-bitflip random-mutation, 10-RM = 10-bitflip random-mutation, F-RM = full random-mutation), and the VAE.
Troublesome SELFIES atom tokens are bolded. Molecular structures display where valid.

Figure 9. Two cases of valid SELFIES containing troublesome tokens. (A) VAE generated SELFIES (generative radius R = 98.0) with troublesome
token preserved (in blue) on converting the SELFIES to SMILES. (B) VAE generated SELFIES (generative radius R = 98.0) with troublesome token
discarded (in red) on converting the SELFIES to SMILES, displayed along with the molecular structure.
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complexity for varied novel sequences. By sampling and
decoding across hyper-spheres in the VAE’s latent space, we
discovered a radial domain (>29.0) that consistently out-
performed the best null generator (full random-mutation) at
minimizing validity in generated SELFIES sets of fixed size
(10,000). The lowest validity percentage we found was 11.24%
at a generative radius of 61.0. We infer the VAE distributes
SELFIES validity unimodally over radius by concentrating
training (of normal valid strings) within the unimodal unit
Gaussian prior. This organized two key latent radial domains: (i)
purely valid SELFIES in R < 13.0 and (ii) validity decreasing
monotonically in 13.0 < R < 61.0. Since the training objective’s
KL loss component pulled the training set’s latent embeddings
toward the origin and the training set was purely valid, observing
pure validity in regions centered closely around the origin (R <
13.0) was sensible. Moreover, only 0.5% of the training set
SELFIES contained troublesome tokens and the VAE only
began to introduce troublesome tokens into SELFIES sets
generated at radii greater than 13.0, with radius 61.0 decoding to
the highest percentage of strings containing troublesome tokens
(88.8%). Property distribution plots of generated SELFIES can
be found in Figures S15 and S16 for a set of profile-
representative generative radii. Additionally, Figure S17 presents
a stacked plot showing the percentage distribution of valid and
invalid SELFIES for 10,000 sets across different generative radii,
with valid SELFIES further categorized into mixtures and
nonmixtures. This highlights how radial sampling influences,
besides validity, the proportion of mixtures versus nonmixtures
on the latent space hyper-spheres. Figure S18 extends the
property distribution analysis to 1 million decoded SELFIES for
the set of profile-representative generative radii.

Naive random-mutation and full random-mutation signifi-
cantly outperformed the other four null-generators at minimiz-
ing the validity percentage in generated SELFIES sets. This may
be because the naively generated SELFIES were the least
informative of the training distribution of purely valid SELFIES.
Naive sampling lacked prior knowledge of the training set’s
position- and sequence-wise token distributions. Unlike the
other two null generators, it randomly sampled from the token
set, with the sequence token count selected uniformly randomly
from the training strings’ token count range. Given its degree of
randomness, the naive random model maximally explored the
space of possible sequences. The full random-mutation method
performed only marginally better than the naive random
method. While both methods followed identical procedures
for inserting tokens into SELFIES sequences via random
sampling from the token set, the full random-mutation method
generated longer sequences. Unlike strings generated by naive-
random, full random-mutation strings followed the distribution
of the training string length. Consequently, the longer strings
were more likely to include a troublesome token, which made
them slightly more susceptible to invalidity (Figure S19).
Furthermore, the 10-bitflip random-mutationmethod generated
more invalid strings than its 1-bitflip counterpart, consistent
with expectations. Unlike the VAE, there was no apparent
advantage in incorporating nuanced token distribution
information into the null models.

On tracing sources of error in invalid SELFIES, we identified
two “troublesome” atom tokens ([Na + 1] and [K + 1]) that
were consistently bonded beyond their valid valences and
consequently yielded invalid SMILES. However, the errors were
fixable using manual valence correction consistent with the
module’s otherwise automatic bond-correcting approach. TTC

was one of the two prerequisites for string invalidity. Each invalid
SELFIES contained at least one troublesome token whose bond
count exceeded the valid valence in the converted SMILES.
Hence, troublesome tokens alone were insufficient; their atomic
neighborhood also contributed. Indeed, 13.1% of the VAE’s
valid SELFIES contained at least one troublesome token.
Examples of SELFIES strings that are valid despite containing at
least one troublesome token, along with at least one mixture-
indicating disconnection point, can be found in Table S2. By
tracing conversion logic, we observed that the SELFIES module
successfully discarded troublesome tokens or their neighboring
tokens to introduce a disconnection point in the valid SMILES.
However, the conversion module could not universally correct
the valences/charges associated with the two troublesome atom
tokens. By contrast, SELFIES demonstrated 100% robustness
for generated strings without troublesome tokens. We also
observed the same errors in the module’s earlier version, 2.1.0.

These identified behaviors suggest that the SELFIESmodule’s
derivation table and self-correcting features, while efficient, lack
a comprehensive set of chemical rules that ensure accurate 100%
valid molecule generation. For instance, the VAE identified a set
of troublesome tokens that reflect violations of chemical
principles. This highlights areas where the SELFIES’ under-
standing of molecular rules requires further refinement. For
example, the model generated the SELFIES string [Na +
1][Branch1][Branch1][C][Ring1], which decodes to the
SMILES string [Na + 1]�C. Sodium does not form covalent
double bonds with carbon, representing a chemically implau-
sible bonding scenario. Furthermore, this construction assigns
sodium an explicit valence of 3, which exceeds its chemically
acceptable range. Similarly, the same issue arises in other
generated SELFIES strings such as “[C][C][S][�Branch1]-
[C][O−].[K + 1].[O][�C][Branch1][C][�C][C]-
[Branch1][�Branch1][C][#N][O][C][Ring1][�Branch1]-
[C][K + 1]” or “[O][�C][Branch1][C][C][C][C][�C]-
[NH1][C][�Ring1][Branch1][�C][�C][�Branch2]-
[Ring1][Branch1][Cl].[C][�N + 1][Ring1][Ring1][N][C].
[Na + 1][O][Ring1][Ring1]”, decoding to the SMILES strings
“CCS[O − 1].[K + 1].O�C(C)C(C#N)[K + 1]” and “O�
C(C)C�1C�C[NH1]C�1C�CCl.C�[N + 1]NC2.[Na +
1]O2”, respectively. These cases involve chemically implausible
bonding scenarios as neither sodium nor potassium forms
covalent bonds with carbon or oxygen. Furthermore, in both
cases, the explicit valence of 2 exceeds the chemical acceptability.
The fact that these SELFIES strings decode to SMILES strings
without returning errors or warning messages reveals failures in
the SELFIES module’s derivation table and self-correcting
features, which challenges its core claim that “every SELFIES
string corresponds to a valid molecule”.12 Therefore, updating
SELFIES to comprise a broader and more chemically accurate
chemical space would benefit both its molecular representation
framework and researchers relying on it.

In our findings, the full random-mutation and VAE-generated
SELFIES sets both uncovered the troublesome token set,
effectively stress-testing representational robustness and reveal-
ing the root cause of string invalidity. However, the VAE (R =
61.0) generated far more (88.76%) invalid SELFIES strings than
the full random-mutation model (27.07%) and outperformed
the full random-mutation model in an applicability domain of R
> 29.0 onward. Since invalidity was doubly conditioned on TTC
and local token neighborhood, the VAE generated more
SELFIES-invalidating possibilities for regular tokens in the
neighborhood of troublesome tokens. Furthermore, its radial
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latent space organization enables tunable SELFIES set
generation by the desired validity percentage along a continuum.
The VAE can be interpreted as a collection of generators, each
with its own generative property defined in terms of validity. The
latent space exhibited radial organization partly because the KL
loss component of the training objective operates radially by
minimizing the magnitude of the encoded latent vectors.

Although the VAEwas the most effective approach for validity
minimization and offered advantages such as continuous radial
organization, it has limitations. The generation process is
computationally expensive, requiring inference via a million
parameters in the decoder. In time complexity, random vector
sampling and decoding are approximately 360 times slower than
the fastest null generator, shuffle random. In space complexity,
the decoder consumes approximately 5000 times the memory of
the cheapest null generator, the index-token distribution
random method (Table S3). Additionally, deep learning models
require large amounts of training data to uncover meaningful
patterns.56 Hence, data availability can be a major obstacle to
successfully adopting a VAE, and deep learning methods in
general, to fuzz-test molecular representational robustness.57 By
contrast, null generators such as the naive-random method only
require a token set and two parameters for the range (min−max)
of sequence lengths to generate SELFIES strings for effective
fuzz-testing. Moreover, deep learning models lack ready
interpretability and transparency due to their black-box
nature,58 requiring substantial explainable AI analyses to
interpret. Similarly, VAE models require effort to tune. For
instance, an effective way to further leverage the VAE’s fuzz-
testing abilities might be to disentangle the conditioning of the
latent space such that troublesome token composition in
generated strings can be altered along specific latent
dimensions59 or to bias the validity-minimizing radius toward
certain values. Furthermore, gradients dictate the generative
potential of deep learning models. We generated SELFIES sets
of size 10,000 at 994 evenly spaced radii from 6.0 to 1000.0 with
a uniqueness of 1.0 (fraction of generated unique strings).
However, we expect the model to approach saturation by
degeneracy at higher radii, decreasing the uniqueness. This is
because geometry (volume and surface area) and gradients
(decoder output sensitivity to perturbations in decoded vector)
limit the number of unique strings generated by sampling within
or over hyper-spheres. We observe lower uniqueness at small
radii (R < 6.0) and latent regions with small gradients, such as
those at dramatically high radii. Although we can permutation-
ally estimate the total string count (normal and anomalous)
produced by the null generators, precisely estimating it for the
VAE would require infinite sampling. Therefore, we compared
anomaly generation methods by the percentage invalidity within
a predefined sample size applied uniformly across the four
approaches.

These results depended on our training set (ChEMBL v.29
subset), model hyperparameters, and the latent space surveying
strategy. In the SELFIES paper,12 the authors trained a
SELFIES-VAE to demonstrate a 100% valid chemical latent
space. They trained on the QM9 benchmark data set60,61 and
decoded molecules by hyperplanes in a 241-dimensional latent
space. They tested the robustness by introducing random
mutations locally at select positions. We offer an alternative case
of a VAE that learns a latent space revealing representational
failure modes by generating anomalous SELFIES strings on
hyper-spherical decoding.

Future work could explore ways to optimize VAEs for
anomaly generation. Exhaustive search is rarely feasible, but
tools like Optuna could empirically tune model architecture and
hyperparameter choices to minimize decoding validity.62 This
may be relatively straightforward, as validity decreased with
model training (Figure 5A)�a counterintuitive result that may
arise because the training solely focused on valid SELFIES, with
no explicit feedback regarding invalidity. Furthermore, the
validity-minimizing radius, and hence the VAE’s applicability
domain, also depends on hyperparameter choice. We hypothe-
size that increasing the beta factor would reduce the validity-
minimizing radius due to the latent compression effects induced
by the KL loss component.52 Furthermore, if known beforehand,
a conditional VAE could leverage normal and anomalous binary
labels to generate data biased by class.63 Alternatively, a triplet-
VAE combines metric learning loss with VAE loss to cluster
latent embeddings by labeled properties.64 Finally, other
generative latent variable models, like generative adversarial
networks (GANs),65 normalizing flow models, or latent
diffusion models66 could learn latent spaces over discrete
sequences like SELFIES.67

■ CONCLUSIONS
This study applies seven generative models to search for
anomalies in a popular string-based molecular representation,
SELFIES, which is thought to be representationally incapable of
encoding invalid molecular structures. We employed six null
model types: naive, shuffle, index-token distribution random, 1-
bitflip random-mutation, 10-bitflip random-mutation, full
random-mutation, and one unsupervised deep learning type: a
VAE. Leveraging a training data set of 400 K SELFIES strings,
the VAE outperformed the null models and demonstrated radial
organization in its latent space, defining a clear applicability
domain in which it effectively functions as an efficient
representational anomaly generator. Accordingly, we propose
deep variational anomaly generation as an effective means to test
molecular representational robustness, including anomalies with
previously unknown criteria.
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■ ABBREVIATIONS
ML machine learning
DL deep learning

VAE variational autoencoder
NR null random
SR shuffle random
ITDR index token distribution random
1-RM 1-bitflip random-mutation
10-RM 10-bitflip random-mutation
F-RM full random-mutation
TTC troublesome token content
SELFIES SELF-referencIng Embedded Strings
ELBO evidence lower bound
SMILES simplified molecular-input line-entry system
KL Kullback−Leibler
GRU gated recurrent unit
RNN recurrent neural network
PC principal component
PCA principal component analysis

■ ADDITIONAL NOTES
ahttps://chemwriter.com/smiles/.
bhttps://depth-first.com/images/posts/20200824/demo/.
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