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We present a general study of a large family of exactly integrable quantum chains with multispin interactions.
The exact integrability follows from the algebraic properties of the energy density operators defining the
quantum chains. The Hamiltonians are characterized by a parameter p = 1, 2, . . . related to the number of
interacting spins in the multispin interaction. In the general case, the quantum spins are of infinite dimension.
In special cases, characterized by the parameter N = 2, 3, . . ., the quantum chains describe the dynamics of
Z (N ) quantum spin chains with open boundary conditions. The simplest case p = 1 corresponds to the free
fermionic quantum Ising chain (N = 2) or the Z (N ) free parafermionic quantum chain. The eigenenergies of the
quantum chains are given in terms of the roots of special polynomials, and for general values of p the quantum
chains are characterized by a free fermionic (N = 2) or free parafermionic (N > 2) eigenspectrum. The models
have a special critical point when all coupling constants are equal. At this point, the ground-state energy is
exactly calculated in the bulk limit, and our analytical and numerical analyses indicate that the models belong
to universality classes of critical behavior with dynamical critical exponent z = (p + 1)/N and specific-heat
exponent α = max{0, 1 − (p + 1)/N}.
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I. INTRODUCTION

The study of free fermionic systems like the Ising model
in a transverse field or the quantum XY model has proved to
be an important step towards the understanding of quantum
many-body interacting systems [1,2]. Since the entire spec-
trum of these models is obtained exactly in a finite geometry,
they provide the ideal framework for the study of new math-
ematics and physics in condensed matter, statistical physics,
and quantum information theory.

Extensions of the models with a free eigenspectrum have
been also introduced. One example is the Z (N ) generaliza-
tion of the Ising model in a transverse field introduced by
Baxter [3,4] in which the eigenspectrum is described by free
parafermions [5–11]. More recently, a new free fermionic
Z (2) model characterized by a three-spin interaction was dis-
covered by Fendley [12]. The work [12] motivated us for the
discovery of a large family of exactly integrable quantum spin
chains. In general, the associated quantum spin chains act on
an infinite-dimensional vector space, even in a finite lattice.
However, in special cases the dimension is truncated and the
models turn out describing Z (N ) quantum spin chains with
multispin interactions and open boundary conditions [13].

The eigenspectrum of this new family of models has a free
fermionic (N = 2) or free parafermionic (N > 2) nature. The
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solution of their free-particle eigenspectra cannot be obtained
by the standard Jordan-Wigner transformation. As we show
in this paper, the simplest way to solve their eigenspectra
is by noticing that the general Hamiltonians are based on
representations of a simple exchange algebra. The algebra
defining the Hamiltonians has an integer parameter p � 1
and its representations turn out to be quantum chains with
(p + 1)-multispin interactions.

The exchange algebra allows us to build a set of mutually
commuting charges, including the Hamiltonian. The solution
of the spectral problem, in the Z (N )-truncated cases, is ob-
tained thanks to a product formula (or inversion relation for
N = 2) satisfied by the generating function of the charges.
This relation enables us to express the quasienergies of the
free particles in terms of the roots of a family of polynomials.
The polynomials, and consequently the eigenspectrum of the
quantum chains, follow solely from the algebraic properties
of the energy density operators defining the quantum chain.
This implies that a given set of pseudoenergies describes
the eigenspectrum of distinct quantum chains associated with
different representations of the exchange algebra.

The commutativity of the charges built from the exchange
algebra has been proved for p = 1 and arbitrary N in [5]
and for N = p = 2 in [12]. In the communication [13] we
announced the commutation for the truncated model with
arbitrary values of p and N . In this paper we prove the an-
nounced commutation in the more general case where the
Hilbert space associated to the quantum chain is not neces-
sarily truncated.
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In the Z (N )-truncated models the product formula, or in-
version relation, satisfied by the generating function is similar
to the one satisfied by the transfer matrix of the τ2 model
[14–17], which is associated with the case where p = 1. For
p = N = 2, the inversion relation has been proved in [12].
In [13] we conjectured the inversion relation for general p
and general Z (N )-truncated cases. In this paper we prove this
conjecture for N = 2 and 3, and general values of p. Our
method is solely based on a recurrence relation satisfied by
the generating function and can be extended for N > 3, case
by case.

The polynomials determined by the product formula play a
crucial role in the physical analysis of the Hamiltonians. The
fact that the pseudoenergies of the free particles are related
to the roots of the polynomials allows the evaluation of the
eigenspectrum for quite large system sizes.

The quantum chains for general values of N and p have a
special critical point. The mass gap and specific-heat calcu-
lations, at the critical point, allow us the calculation of the
dynamical critical exponent z analytically and the specific-
heat exponent α numerically.

We finally remark that the diagonalization of the
Hamiltonians are performed independently of the repre-
sentation of the exchange algebra. Nevertheless, once a
representation is chosen, extra degeneracies can appear in the
eigenspectrum.

This paper is organized as follows. In Sec. II we introduce
the general family of integrable quantum Hamiltonians with
the algebraic properties defining the energy density operators.
We also present several representations of these models mak-
ing connections with already known models. In Sec. III we
prove that the Hamiltonians belong to a family of mutually
commuting operators. Next, in Sec. IV we prove the inversion
relation (N = 2) and the product formula (N = 3) for arbitrary
p. The polynomial fixing the quasienergies is considered in
Sec. V. In Sec. VI we study some of the physical properties
of the multispin Hamiltonians. In Sec. VII some additional
charges for specific representations are constructed. Our con-
clusions and further directions of investigation are given in
Sec. VIII. Finally, in Appendices A and B, we present some
technical details for the proof of Sec. V, and an example of
application to a small quantum chain, respectively.

II. INTEGRABLE QUANTUM CHAINS

The integrable models we construct are defined in terms of
M generators hi (i = 1, . . . , M):

H = −
M∑

i=1

hi. (1)

The generators satisfy a simple exchange algebra character-
ized by an integer parameter p = 1, 2, . . . given by

hihi+m = ωhi+mhi for 1 � m � p,

[hi, h j] = 0 for |i − j| > p, (2)

where ω is a general complex c number. As we show in
Sec. III, the relations (2) imply the exact integrability of (1)
since we can construct a set of mutually commuting charges.
This set is infinite in the bulk limit M → ∞.

We define a word in the algebra by an arbitrary product
of letters (generators) hs1

1 hs2
2 . . . hsM

M , where si = 0, 1, 2, . . . .
It is important to stress that the relations (2) do not fix any
power ha

i of the generators and consequently the number of
independent words of the algebra is infinite. In order to obtain
a finite number of words (NM ) we can include aside from (2)
a closure relation as, for example,

hN
i = λN

i , ω = e2iπ/N , (3)

where λN
i is a c number and N = 2, 3, . . . . When (3) is taken

into account together with relations (2), we are going to show
that (1) has a free fermionic (N = 2) or free parafermionic
(N > 2) eigenspectrum, i.e., the eigenenergies E {si} satisfy

−E {si} = ωs1ε1 + ωs2ε2 + · · · + ωsM εM, (4)

where we define

M ≡ int

(
M + p

p + 1

)
=

⌊M + p

p + 1

⌋
(5)

and si ∈ {0, 1, . . . , N − 1}. The pseudoenergies εi (i =
1, . . . , M) are given by the roots of special polynomials, as
we show in Sec. IV.

Let us remark that the algebra (2) and (3) for p = 1 has
been shown to be important in the study of generalized Clif-
ford algebra [18–25]. While the diagonalization of (1) in the
truncated models is performed using only (2) and (3), rep-
resentations of the algebra lead to interesting quantum spin
chains with open boundary conditions (free boundary or with
an impurity at the end of the chain).

A simple representation of (2) and (3) with N = 2 and p =
1 for odd values of M is given in terms of the spin- 1

2 Pauli
matrices σ x,z

i :

h2i−1 = λ2i−1σ
x
i for i = 1, . . . ,

M + 1

2
,

h2i = λ2iσ
z
i σ z

i+1 for i = 1, . . . ,
M − 1

2
, (6)

leading to the Hamiltonian

HI = −
L∑

i=1

λ2i−1σ
x
i −

L−1∑
i=1

λ2iσ
z
i σ z

i+1, (7)

also known as the free fermionic quantum Ising chain with
L = M+1

2 sites and coupling constants {λi}.
Similarly, for p = 1, arbitrary N and odd M, a representa-

tion of (2) and (3) is given in terms of the Z (N ) generalizations
of the N × N Pauli matrices satisfying

XZ = ωZX, X N = ZN = 1, Z† = ZN−1, (8)

and

h2i−1 = λ2i−1Xi for i = 1, . . . ,
M + 1

2
,

h2i = λ2iZ
†
i Zi+1 for i = 1, . . . ,

M − 1

2
. (9)

The Hamiltonian (1) in this case,

HB = −
L∑

i=1

λ2i−1Xi −
L−1∑
i=1

λ2iZ
†
i Zi+1, (10)

reproduces the free parafermionic Baxter Z (N ) model with
L = M+1

2 sites, introduced in [3,4].
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In the case where M is even, N = 2 and p = 1, an interest-
ing representation of (1) is given by

h2i−1 = λ2i−1σ
x
i for i = 1, . . . ,

M − 2

2
,

h2i = λ2iσ
z
i σ z

i+1 for i = 1, . . . ,
M − 2

2
,

hM−1 = λM−1σ
x
M/2, hM = λMσ z

M/2, (11)

and

Himp = −
L−1∑
i=1

(
λ2i−1σ

x
i + λ2iσ

z
i σ z

i+1

) − �S0 · �σL, (12)

that represents a quantum Ising chain, with L = M/2 sites,
interacting at one of its ends with a magnetic impurity with
components �S0 = (Sx

0, Sz
0) = (λM−1, λM ).

The simplest representation of (2) and (3) with N = 2
and p = 2 recovers the free fermionic three-spin interaction
Hamiltonian

HF = −
L−2∑
i=1

λiσ
z
i σ x

i+1σ
x
i+2 (13)

introduced in [12]. A general example of a free fermionic
(N = 2) or free parafermionic (N > 2) with arbitrary values
of p = 1, 2, . . . is given by [13]

HP = −
M∑

i=1

hi = −
M∑

i=1

λiZiZi+1 . . . Zi+p−1Xi+p. (14)

A general interesting representation of (2) and (3), that we
call word representation, is the one where the generators act
on a vector space spanned by the basis {|s1, . . . , sM >} with
a biunivocal correspondence with the NM independent words
formed by the normalized product of generators

|s1, . . . , sM〉 >↔ (h1/λ1)s1 . . . (hM/λM )sM , (15)

where si = 0, 1, . . . , N − 1. The action of hi (i > p) in this
basis gives

hi|s1, . . . , sM〉 ↔ 	λi|s1, . . . , si−1, s+
i , si+1, . . . , sM〉,

with 	 = ω
∑p

j=1 si− j and s+
i = si + 1, mod N.

From the properties of the Z (N ) matrices (Zj, Xj) we can
identify

hi =
{

λi
( ∏i−1

j=1 Zj
)
Xi, if 1 � i � p;

λi
(∏i−1

j=i−p Z j
)
Xi, if p + 1 � i � M,

(16)

in the basis |s̃1, . . . , s̃M〉 where the {Zi} are diagonal, i.e.,

Z|s̃i〉 = e2iπ s̃i/N |s̃i〉 , X |s̃i〉 = |s̃i + 1, mod N〉. (17)

The Hamiltonian is then given, in this representation, by
the Z (N ) quantum chain with multispin interactions:

HA = −
p∑

i=1

λi

(
i−1∏
j=1

Zj

)
Xi −

M∑
i=p+1

λi

(
i−1∏

j=i−p

Z j

)
Xi. (18)

In the particular case N = 2 and p = 1 we have the simple
nearest-neighbor interacting Hamiltonian

H(p=1)
A = −λ1σ

x
1 −

M∑
i=2

λiσ
z
i−1σ

x
i . (19)

It is important to observe that the Hamiltonians (10), (14), and
(18) are Hermitian in the fermionic cases (N = 2) and non-
Hermitian in the parafermionic cases (N > 2).

III. EXACT INTEGRABILITY AND CONSERVED
CHARGES

In this section we show that the general Hamiltonian (1)
given in terms of the generators {hi} of the exchange algebra
(2) is part of a set of commuting operators (charges), which
becomes infinite in the bulk limit (M → ∞), being exactly
integrable.

The conserved charges follow directly from the algebraic
rules (2). Indeed, the closure relation (3) is not needed in order
to prove integrability. A given charge 
 (
 = 0, 1, . . . , M) is
obtained by summing all the products of 
 commuting gener-
ators h j1 h j2 . . . h j
 with j1 < j2 < · · · < j
, i.e.,

H (0)
M = 1,

H (1)
M = −H =

M∑
j=1

h j,

H (2)
M =

M∑
j1=1

M∑
j2= j1+p+1

h j1 h j2 ,

...

H (M )
M =

M∑
j1=1

M∑
j2= j1+p+1

· · ·
M∑

jM= jM−1+p+1

h j1 h j2 . . . h jM . (20)

Associated to these charges we define the generating func-
tion

GM (u) =
M∑


=0

(−u)
H (
)
M , (21)

where u ∈ C is a spectral parameter. We will prove that indeed[
H (
)

M , H (
′ )
M

] = 0 ∀ 
, 
′, (22)

and consequently generating functions with distinct spectral
parameters also commute, i.e.,

[G(u), G(u′)] = 0. (23)

The key property to prove (23) follows from the fact that
both the charges (20) and the generating function (21) satisfy
some recurrence relations that we now derive. Rewriting the
last sum in H (
)

M in (20) as

· · ·
M∑

jl = j
−1+p+1

h j1 h j2 . . . h j


= · · ·
M−1∑

j
= j
−1+p+1

h j1 h j2 . . . h j
 + h j1 . . . h j
−1 hM, (24)
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we obtain the recurrence relation

H (
)
M = H (
)

M−1 + hMH (
−1)
M−(p+1), (25)

with the initial conditions H (0)
M = 1, H (
)

M = 0 for 
 < 0 or
M � 0. It follows from (25) and (21) that

GM (u) =
M∑


=0

(−u)
H (
)
M−1 − uhM

M−1∑

=0

(−u)
H (
)
M−(p+1),

where we have used H (−1)
M−(p+1) = 0.

Since, from (5) M − 1 = M − (p + 1), we identify from
(21) the second summation in (26) as GM−(p+1)(u). Writing
M = j(p + 1) + q with j, q ∈ Z and 0 � q � p, we have that
M = M − 1 except for q = 1 where M = M − 1 + 1. Since

for q = 1, M > M − 1 we have that H (M )
M−1 = 0, and conse-

quently we identify, for all M, the first summation in (26)
as GM−1(u). We have then the recurrence relation for the
generating function

GM (u) = GM−1(u) − uhMGM−(p+1)(u), (26)

with GM (u) = 1 for M � 0.
The recurrences (25) and (26) are the basic identities we

use in this paper. It is convenient, for further use, to iterate
(25) and (26),

GM−(p+1)(u) = GM−(p+1)− j (u)

−u
j−1∑
k=0

hM−(p+1)−kGM−2(p+1)−k (u), (27)

H (
)
M−(p+1) = H (
)

M−(p+1)− j

+
j−1∑
k=0

hM−(p+1)−kH (
−1)
M−2(p+1)−k, (28)

for j = 0, 1, 2, . . . , M − (p + 1), and also

GM−1(u) = GM−(p+1)(u) − u
p∑

k=1

hM−kGM−(p+1)−k (u), (29)

H (
)
M−1 = H (
)

M−(p+1) +
p∑

k=1

hM−kH (
−1)
M−(p+1)−k . (30)

In order to demonstrate the involution (23) let us show
initially that an arbitrary charge commutes with the generating
function. For this sake it is convenient to define

β
(
)
M,q ≡ [H (
)

M , GM (u)]q, 
 = 1, . . . , M (31)

where

[X,Y ]q = XY + qY X (32)

is the q commutator. We want to show that β
(
)
M,− = 0, for

any 
. In the remaining of this section, for simplicity, we will
omit the explicit dependence of the generating function in the
variable u.

Inserting (25) and (26) in (31) with q = −1 we obtain

β
(
)
M,− = β

(
)
M−1,− − uh2

Mβ
(
−1)
M−(p+1),− + A + B, (33)

where

A = [
hMH (
−1)

M−(p+1), GM−1
]
−, (34)

B = −u
[
H (
)

M−1, hMGM−(p+1)
]
−. (35)

Using (29) in A and (30) in B, we obtain

A = hMβ
(
−1)
M−(p+1),−−uhM

p∑
j=1

[
H (
−1)

M−(p+1), hM− jGM−(p+1)− j
]
−ω

(36)

and

B = −uhMβ
(
)
M−(p+1),−

−ωuhM

p∑
j=1

[
hM− jH

(
−1)
M−(p+1)− j, GM−(p+1)

]
−ω−1

. (37)

Defining

X (
)
M,q( j) = [

H (
)
M−(p+1), hM− jGM−(p+1)− j

]
q, (38)

Y (
)
M,q( j) = [

hM− jH
(
)
M−(p+1)− j, GM−(p+1)

]
q, (39)

γ
(
)

M,q( j) = X (
)
M,−q( j) + qY (
)

M,−q−1 ( j), (40)

we can write

A + B = hMβ
(
−1)
M−(p+1),− − uhMβ

(
)
M−(p+1),−

−uhM

p∑
j=1

γ
(
−1)

M,ω ( j). (41)

We now obtain a recurrence relation for X (
)
M,q, Y (
)

M,q, and

γ
(
)

M,q. Inserting (28) in (38) and (27) in (39) we obtain, after
straightforward manipulations,

X (
)
M,q( j) = hM− jβ

(
)
M−(p+1)− j,q

+ωhM− j

j−1∑
k=0

Y (
−1)
M− j,qω−1 (p + 1 + k − j), (42)

Y (
)
M,q( j) = hM− jβ

(
)
M−(p+1)− j,q

−uhM− j

j−1∑
k=0

X (
)
M− j,qω(p + 1 + k − j). (43)

Using (43) in (42) and (42) in (43), with q = ω, we obtain

γ
(
)

M,ω( j) = (1 + q)hM− jβ
(
)
M−(p+1)− j,−

+ωhM− j

j−1∑
k=0

hM−(p+1)−k

(
β

(
−1)
M−2(p+1)−k,−

−uβ
(
)
M−2(p+1)−k,−

−u
p+k− j∑
k′=0

γ
(
−1)

M−(p+1)−k,ω
(k′ − k + j)

)
. (44)

235170-4



INTEGRABLE QUANTUM SPIN CHAINS WITH FREE … PHYSICAL REVIEW B 102, 235170 (2020)

We then finally obtain, from (40) and (33),

β
(
)
M,− = β

(
)
M−1,− − uhMβ

(
)
M−(p+1),− − uhM

p∑
j=1

γ
(
−1)

M,ω ( j)

−hMβ
(
−1)
M−(p+1),−(uhM − 1), (45)

with γ
(
)

M,ω( j) given by (44).

We have from (20) that H (l )
M = β

(l )
M,− = [H (l )

M , GM] = 0 for

l � 0, and G(l )
M = 1 for l � 0, therefore, from (44) γ

(l )
M,q = 0

for l � 0.
Inserting these values in (45) we obtain, for l = 1 ,

β
(1)
M,− = β

(1)
M−1,− − uhMβ

(1)
M−(p+1),−. (46)

Since for M = 1, β
(1)
l,− = 0 (l � 0), we obtain β

(1)
1,− = 0 and

by iterating (46) we obtain β
(1)
2 = β

(1)
3 = · · · = β

(1)
M = 0, for

arbitrary M. From (44) γ
(1)

M,ω( j) only depends on β
(0)
M,−, β

(1)
M,−,

and γ
(0)

M,ω. This means that γ (1)
M,ω( j) = 0 for all M and from (45)

with l = 2 we have

β
(2)
M,− = β

(2)
M−1,− − uhMβ

(2)
M−(p+1),−. (47)

Since β
(l )
l,− = 0 for l � 0 we have β

(2)
1,− = β

(2)
2,− = · · · =

β
(2)
M,− = 0, for all M. Similarly as before γ

(2)
M,ω only depends on

products involving β
(1)
M,−, β

(2)
M,−, and γ

(1)
M,ω, therefore, γ

(2)
M,ω = 0

and then, from (44),

β
(3)
M,− = β

(3)
M−1,− − uhMβ

(3)
M−(p+1),−. (48)

Since β
(3)

,− for 
 � 0 we have β

(3)
M,− for all M. This procedure

iterates and we have our proof:

β
(
)
M,− = [

H (
)
M , GM (u)

] = 0 ∀ 
 = 1, . . . , M. (49)

Expanding this result in powers of u we obtain that all the
distinct charges commute among themselves, i.e.,[

H (
)
M , H (
′ )

M

] = 0 ∀ 
, 
′. (50)

The relation (50) also implies that the generating functions
with arbitrary values of the spectral parameter u commute, i.e.,

[GM (u), GM (v)] = 0. (51)

The relations (50) or (51) imply that the Hamiltonian (1) with
generators {hi} satisfying (2) is exactly integrable. The closure
relation (3) is not a necessary condition for ensuring the exact
integrability.

IV. INVERSION RELATION AND PRODUCT FORMULA
FOR THE GENERATING FUNCTION

In this section, we show that when the generators {hi} defin-
ing the Hamiltonian (1) satisfy the closure relation (3) aside
from the relations (2), the generating function (21) satisfies

GM (u)GM (ωu) . . . GM (ωN−1u) = P(p)
M (uN )1, (52)

where P(p)
M (uN ) is a polynomial of degree M in uN . Equation

(52) implies (see Sec. V) that the Hamiltonians have a free
fermion (N = 2) or a free parafermionic eigenspectrum (N >

2).

A. N = 2

Let us first consider the free fermion case (N = 2). This
case has been considered for p = 1 in the context of the τ2

model [6,17] and for p = 2 in [12] using a certain factoriza-
tion of the generating function. Here we prove it for any value
of p � 1 by showing that

τ
(2)
M (u) ≡ GM (u)GM (−u) = P(p)

M (u2)1 (53)

satisfies a recurrence relation.
In order to simplify the notation, let us define the algebraic

operation

L(A(u); B(u)) = A(u)B(−u) − B(u)A(−u). (54)

Using the fundamental relation (26) in (53) we obtain

τ
(2)
M (u) = τ

(2)
M−1(u) − u2h2

Mτ
(2)
M−(p+1)(u) + 


(2)
M (u), (55)

where



(2)
M (u) = −uhM

p∑
j=1

LM, j (u), (56)

with

LM, j (u) ≡ L(hM−(p+1)− jGM−2(p+1)+ j (u); GM−(p+1)(u)). (57)

Using (27) for GM−(p+1) in (57) we obtain, for j = 1, . . . , p,

LM, j (u) = LM−1, j+1(u) − uhM−(p+1)+ jLM−(p+1)− j,p+1− j (u),

(58)

with the condition LM,p+1(u) = 0 for all M. Since GM (u) = 1
and hM = 0 for M � 0, we have, from (57),

LM, j (u) = 0 for M � p + 1, j = 1, . . . , p. (59)

The recurrence relation (58) then implies

LM, j (u) = 
M (u) = 0 ∀ M (60)

and

τ
(2)
M (u) = τ

(2)
M−1(u) − u2h2

Mτ
(2)
M−(p+1)(u), (61)

with τ
(2)
M (u) = 1 for M � 0. This last expression gives

τ
(2)
1 (u) = 1 − u2h2

1 and by iterating (61) we obtain that τ
(2)
M (u)

is a polynomial in u2, reproducing (53) for arbitrary values of
p. As a consequence of the recurrence (61) the polynomials
P(p)

M (u2) also satisfy the recurrence

P(p)
M (u2) = P(p)

M−1(u2) − u2λ2
MP(p)

M−(p+1)(u
2), (62)

with the initial condition P(p)
M (u2) = 1 for M � 0.

It is important to notice from (62) that the polynomials
P(p)

M (z) = P(p)
M ({λ2

i }, z) depend on the parameters {λ2
i } defin-

ing the closure relation (3) and the coupling constants of the
Hamiltonian (1).

B. N = 3

We now consider the case N = 3. Extending the definition
(53) for the case N = 2 we now define

τ
(3)
M (u) ≡ GM (u)GM (ωu)GM (ω2u) = P(p)

M (u3)1, (63)
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where ω = e2iπ/3 and, as we shall see, P(p)
M (u3) is related to

the same polynomial of degree M appearing in (53) for the
Z (2) case.

In Appendix A, we show the recurrence relation

τ
(3)
M (u) = τ

(3)
M−1(u) − u3h3

Mτ
(3)
M−(p+1)(u). (64)

Since τ
(3)
1 (u) = 1, we obtain that τ

(3)
M (u) is given by the poly-

nomial P(p)
M (u3) as claimed in (63). Also from (3) h3

M = λ3
M

the polynomial satisfies the recurrence relation

P(p)
M (u3) = P(p)

M−1(u3) − u3λ3
MP(p)

M−(p+1)(u
3), (65)

with P(p)
M ′ = 1 for M ′ � 0. We can see that the polynomials

P(p)
M (z) = P(p)

M ({λ3
i }, z) are the same ones that appeared in the

case N = 2, where we replace the couplings {λ2
i } by {λ3

i }.

C. N > 3

For N > 3, we can proceed in a similar way, and show that

τ
(N )
M (u) = GM (u)GM (ωu) . . . GM (ωN−1u) = P(p)

M (uN )1 (66)

with ω = e2iπ/N , satisfies the recurrence relation

τ
(N )
M (u) = τ

(N )
M−1(u) − uN hN

Mτ
(N )
M−(p+1)(u), (67)

with τ
(N )
M (u) = 1 for M � 0. From (67) we obtain the recur-

rence relation for the polynomials P(p)
M (uN ) = P(p)

M ({λN
i }, uN ):

P(p)
M (uN ) = P(p)

M−1(uN ) − uNλN
MP(p)

M−(p+1)(u
N ), (68)

with P(p)
M ′ = 1 for M ′ � 0. A proof of (67), similar as we have

done for the cases N = 2 and 3 (see Appendix A), for general
N , is straightforward but lengthy. Anyway, we have checked
(67) and hence (66) for several values of N and lattice sizes
M.

Comparing the recurrence relations (67) and (68) we iden-
tify the coefficients C(l,p)

M in the expansion

P(p)
M (z) =

M∑

=0

(−z)
C(
,p)
M (69)

by replacing h j ↔ λN
j in (20), i.e.,

C(
,p)
M =

M∑
j1=1

M∑
j2= j1+p+1

· · ·
M∑

j
= j
−1+p+1

λN
j1λ

N
j2 . . . λN

j
 (70)

for 
 = 0, 1, . . . , M.
In the case where all λN

i = 1, C(
)
M is the number of distinct

ways we can put 
 particles with excluded volume of (p + 1)
lattice units in a lattice with M sites, i.e.,

C(
,p)
M =

(
M − p(
 − 1)




)
= [M − p(
 − 1)]!

[M − p(
 − 1) − 
]!
!
, (71)

and P(p)
M (z) is the generalized hypergeometric polynomial

known as p+1Fp [26]:

P(p)
M (z) = p+1Fp

(−M+p
p+1 − M+p−1

p+1 − M+p−2
p+1 . . . − M

p+1

−M+p
p − M+p−1

p . . . − M+1
p

;
(p + 1)p+1

pp
z

)
=

M∑

=0

(−1)

(

M − p(1 − 
)




)
z
. (72)

In this symmetric case the polynomial P(p)
M (−z̃), as we can

see from (69), is the grand canonical partition function of a
polymer with monomers with size of (p + 1) lattice units and
fugacity z̃ in a lattice of M sites. As we are going to see in the
following sections the roots of P(p)

M (−z̃) for any p and finite
M are real and negative. This means that the grand canonical
partition function is analytic. However, as M → ∞ the largest
root approaches 0 and therefore in the thermodynamic limit
the polymer has a critical fugacity z̃ = z̃c = 0.

V. EIGENSPECTRUM OF THE FREE FERMIONIC
AND FREE PARAFERMIONIC QUANTUM CHAINS

The eigenspectrum of any quantum chain (1) expressed in
terms of the generators {hi} satisfying (2) and (3) are obtained
from the zeros of the fundamental polynomials P(p)

M (z) ≡
P(p)

M ({λi}, uN ) derived in the last section. This means that for
a given parameter p, all the models with arbitrary N are ruled
by the same polynomial.

It is interesting to mention that in the case where p = 1
and λi = 1 (i = 1, . . . , M), that includes the critical quan-
tum Ising chain (7) and the critical Z (N ) free parafermionic
Baxter chain (10), these polynomials are related to the well-
known Chebyshev polynomial of second type, i.e., P(1)

M (z) =

z
M+1

2 UM+1( 1

2z
1
2

). For p = 1 and arbitrary λi, the polynomials

P(1)
M (z) are related to the FST polynomials (see [27,28]). In

order to illustrate we present in Table I some polynomials at
{λi = 1} in the cases p = 1, 2, 3.

Since [GM (u), GM (−u)] = 0 and GM (0) = P(p)
M (0) = 1,

by applying in the product formula (52) to a given eigenfunc-
tion of GM (u), with eigenvalue �M (u), we obtain

�(u) . . . �(ωN−1u) = P(p)
M (uN ) =

M∏
i=1

(
1 − uN

zi

)
, (73)

where zi are the roots of P(p)
M (zi) = 0. Solving (73) in terms of

zi we obtain

�M (u) =
M∏

i=1

(
1 − u

ωsi

z1/N
i

)
=

M∏
i=1

(1 − u ωsiεi ), (74)

where εi = z−1/N
i and si ∈ {0, 1, . . . , N − 1}. In all the cases

that we have considered in this paper, where the couplings are
real, we have verified that the roots zi are real positive and
distinct, implying the existence of NM distinct eigenvalues for
the generating function GM (u). We can also expand (74) in
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TABLE I. Example of polynomials P(p)
M (z), with coupling constants {λi = 1}, for p = 1, 2 and p = 3, and for M = 1, . . . , 11.

M P(1)
M (z) P(2)

M (z) P(3)
M (z)

1 1 − z 1 − z 1 − z
2 1 − 2z 1 − 2z 1 − 2z
3 1 − 3z + z2 1 − 3z 1 − 3z
4 1 − 4z + 3z2 1 − 4z + z2 1 − 4z
5 1 − 5z + 6z2 − z3 1 − 5z + 3z2 1 − 5z + z2

6 1 − 6z + 10z2 − 4z3 1 − 6z + 6z2 1 − 6z + 3z2

7 1 − 7z + 15z2 − 10z3 + z4 1 − 7z + 10z2 − z3 1 − 7z + 6z2

8 1 − 8z + 21z2 − 20z3 + 5z4 1 − 8z + 15z2 − 4z3 1 − 8z + 10z2

9 1 − 9z + 28z2 − 35z3 + 15z4 − z5 1 − 9z + 21z2 − 10z3 1 − 9z + 15z2 − z3

10 1 − 10z + 36z2 − 56z3 + 35z4 − 6z5 1 − 10z + 28z2 − 20z3 + z4 1 − 10z + 21z2 − 4z3

11 1 − 11z + 45z2 − 84z3 + 70z4 − 21z5 + z6 1 − 11z + 36z2 − 35z3 + 5z4 1 − 11z + 28z2 − 10z3

powers of u [29]:

�
{si}
M (u) =

M∑

=0

(−1)
e
(ωs1ε1, . . . , ω
sM εM )u
, (75)

where

e
(x1, x2, . . . , xn) =
∑

1� j1< j2<···< j
�n

x j1 x j2 . . . x j
 (76)

for 
 = 0, 1, . . . , n is the 
th elementary symmetric polyno-
mial in the variables x1, x2, . . . , xn.

Applying an eigenfunction of GM (u) with eigenvalue
�

{si}
M (u) in (21), since u is arbitrary, (75) implies that the

eigenfunction is also an eigenfunction of the charges {H (
)
M }

given in (20) with eigenvalues

q(
)
{si} = el (ω

s1ε1, . . . , ω
sM εM ), 
 = 1, . . . , M. (77)

In particular, the Hamiltonian (1) has the free fermionic
(N = 2) of free parafermionic (N > 2) spectrum, with
eigenenergies

−E {si} = q(1)
{si} = ωs1ε1 + ωs2ε2 + · · · + ωsL εM . (78)

This means that not only the eigenspectrum of the general
Hamiltonians (1), but also the ones of the extended Hamil-
tonians {H (
)

M } are given entirely in terms of the roots of the
fundamental polynomials P(p)

M ({λi}, z).

N=2 N=3 N=4

FIG. 1. Schematic representation of the eigenenergies of a quan-
tum chain with M = 3 and N = 2, 3, 4. There are three quasienergies
that fix the radius of the M circles in the complex plane. There is
a “circle exclusion principle” that imposes a single quasienergy in
each circle (filled circles). The figures show for N = 2 and 3 the
ground-state and first-excited-state energies, respectively.

In Fig. 1 we show schematically examples of eigenenergies
for a Z (N ) quantum chain with M = 3 and N = 2, 3, 4. In
Appendix B we consider, as an example, the simple case of
the Z (N ) Hamiltonian with p = 3 and with M = 5.

In the next section, by exploiting the solution for the poly-
nomial roots of P(p)

M (z) we are going to derive the critical
behavior of the Hamiltonian (1) at a special critical point.

VI. GROUND-STATE ENERGY AND CRITICAL
EXPONENTS FOR THE QUANTUM CHAINS

For general values of the couplings {λi} we should expect
a quite rich phase diagram for the Hamiltonians (1) with
p � 2. We restrict ourselves to the quantum chains at their
symmetrical point where all the coupling constants λi = 1
(i = 1, . . . , M) in (3) or any of its representations like (10),
(14), and (18).

For p = 1, where for N = 2 the possible representations
are the free fermionic Ising quantum chain (7) and (12), and
for N > 2 the Z (N ) free parafermionc quantum chain (10),
the models are critical with a dynamical critical exponent z =
2/N and specific-heat exponent α = 1 − 2/N [9]. In [12] it
has been showed that in the particular case p = N = 2 the
symmetrical point is a multicritical point where z = 3

2 .
In [13] we have showed that for general values of p the

polynomial roots {zi} of P(p)
M , that give us the quasiparticle

energies εi = z−1/N
i in (78), for arbitrary M, and lattice sizes

multiples of (p + 1), can be parametrized by trigonometric
functions

εk = sin
p+1
N (pk )

sin
1
N

(
pk

p+1

)
sin

p
N

( ppk

p+1

) , k = 1, . . . , M (79)

where pk is a quantum number. For p = 1, pk = kπ/(M + 1),
for any M, and for p > 1 we have conjectured, and confirmed
numerically, that as M → ∞ the distribution density for
the quantum numbers behaves as �pk/�k = π/M = (p +
1)π/M. Since the ground-state energy is obtained by taking
in (78) the values si = 0 (i = 1, . . . , M), we obtain an exact
expression for the ground-state energy per site:

e(p)
∞ ≡ −E0

M
= − 1

M

M∑
k=1

εk = − 1

(p + 1)π

∫ π

0
ε(p)dp. (80)
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For N = 2 and general values of p, (80) is given in terms of
gamma functions:

e(p)
∞ = −�

(
1
2 + p

2

)
�

(
1 + p

2

) (N = 2). (81)

For general p and N [13], the integral (80) is expressed in
terms of integral representation of the Lauricella hypergeo-
metric series F (p−1)

D [30]. Moreover, in the cases p = 1, 2,
and 3 (80) is given in terms of the gamma, 2F1 and Appel
functions F1, i.e.,

e(1)
∞ = −2

2
N −1�

(
1
N + 1

2

)
√

π
(

1
N + 1

) , (82)

e(2)
∞ = − 3

3
N + 1

2 �
(

3
N + 1

)
2

2
N +2√π�

(
3
N + 3

2

) 2F1

(
1
2

1
N + 1

2
3
N + 3

2

;
3

4

)
, (83)

e(3)
∞ = − 2

8
N − 3

2 �
(

4
N + 1

)
3

3
N
√

π�
(

4
N + 3

2

)
×F1

(
1

2
;

1

2
− 2

N
,

3

N
;

4

N
+ 3

2
;

1

2
,

2

3

)
. (84)

In the case p = 4, we have

e(4)
∞ = −5

5
N sin

(
π
5

)
�

(
5
N + 1

)
2

8
N +1√π�

(
5
N + 3

2

)
×F (3)

D

(
1

2
;

1

2
+ 2

N
,− 5

N
,

4

N
;

5

N
+ 3

2
; x1, x2, x3

)
, (85)

where F (3)
D is the Lauricella function with three variables at

x1 = 1
2+ 2√

5

, x2 = 2
3+√

5
, and x3 = 1

1+ 1√
5

. For a comparison of

(81)–(85) with the numerical results obtained from the direct
solution of the polynomial zeros {zi} we refer to [13].

The dynamical critical exponent is evaluated from the
finite-size behavior of the mass gaps of the quantum Hamil-
tonians. The first-excited energy state is obtained in (78)
by taking the set s1 = s2 = · · · = sM−1 = 0 and sM = 1.
However, εM is the smallest quasienergy, whose associated
quantum number, for M → ∞, behaves as pM = π − a/M,
where a is a harmless constant. Therefore, the real part of the
energy gap (complex for N > 2) has the leading behavior

�
(p)
M = Re(E1 − E0) = Re(1 − ω)ε(pM ) ≈

( a

M

)z
, (86)

where

z = (p + 1)/N (87)

is the dynamical critical exponent.
For the case p = 1 (87) recovers for N = 2 the known

result for the conformally invariant quantum Ising chain (z =
1) and for the Z (N ), the Baxter free parafermionic model
(z = 2/N), as calculated in [9]. The case p = N = 2 recovers
the result z = 3

2 derived in [12]. In summary, all the free in-
teracting quantum chains (1) at their symmetric point {λi = 1}
are critical with the dynamical critical exponent given by (87).
Since z is an increasing function of p, the correlation length of
the critical chains, that goes as Mz, increases for a given lattice
size M, as we increase the parameter p. This is physically

expected since we increase the range of noncommuting oper-
ators in the Hamiltonian, and hence the quantum correlations.

In order to better characterize the critical universality
classes at this critical point {λi = 1} for the general free in-
teracting models (1), let us perturb the couplings {λi} around
{λi = 1}. To simplify, let us restrict our analysis for the
cases where M is a multiple of (p + 1), i.e., M = (p + 1)M.
We consider perturbed Hamiltonians where all the couplings
are kept at λi = 1, except for the couplings λ(p+1)k = λ,
with k = 1, . . . . For example, for p = 1 the sequence of
couplings are (1, λ, 1, λ, . . . , 1, λ) and for p = 2 we have
(1, 1, λ, 1, 1, λ, . . . , 1, 1, λ).

In general, for anisotropic scaling, the dynamical critical
exponent is given by z = ν⊥/ν‖, where ν⊥ and ν‖ are the
correlation length exponents in the time and space direc-
tions, respectively. The specific heat at the critical point, from
the finite-size scaling theory (FSS) of critical behavior [31],
should have, as M → ∞, the power-law behavior

CM (λ = 1) ≈ Mα/ν‖ , (88)

specified by the critical exponent α. The specific heat is given
by the second derivative of the ground-state energy [32]

C(λ, M ) = −λ2

M

∂2E0(λ, M )

∂λ2
= −λ2

M

M∑
i=1

∂2εi

∂λ2
. (89)

Solving for the zeros {zi} of the polynomials P(p)
M (z) we obtain

the quasienergies εi(λ, M ).
Before considering the cases p > 1, let us consider the

case p = 1. In this case we have verified surprisingly that the
corresponding generalized Chebyshev polynomials have exact
zeros zi, producing quasienergies

ε j = z−1/N
j , z−1

j = 1 + λN + 2λN/2 cos k j, (90)

where k j = 2π j/(M + 2), for finite M and arbitrary λ. We
recall that for N = 2 these are the quasienergies for the
Hamiltonian (12) describing an Ising quantum chain with an
impurity at one of its ends. In the case where M is odd, whose
representation (7) is the standard Ising quantum chain, the
roots {zi} are exactly known only at λ = 1 [9].

The specific heat is obtained from (89) and (91):

C(λ, M ) = −λ2

M

M∑
j=1

{
(1 − N )

(λN−1 + λ
N
2 −1 cos k j )2

(1 + λN + 2λN/2 cos k j )2−1/N

+ (N − 1)λN/2 + (N/2 − 1)λN/2−2 cos k j

(1 + λN + 2λN/2 cos k j )1−1/N

}
. (91)

At λ = 1, since k j = 2π j/(M + 2), all terms in the above
sums are of o(1), except for the ones where j = M − k =
M/2 − k with k of o(1). These last terms will dominate the
sum. Since for these terms 1 + cos k j ∼ o(1/M2), we get for
M → ∞

C(1, M ) ∼ 1

M
(M2)1−1/N ∼ M1−2/N , (92)

giving us the critical exponent

α = 1 − 2/N. (93)
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TABLE II. The specific-heat critical exponents α for the free fermionic (N = 2) and free parafermionic models (N = 3–9),and parameters
p = 2–5. The exact predicted values (95) are shown in brackets. It is shown the extrapolated results of the estimator (94) using sequences of
lattice sizes up to Mmax, shown in the last line of the table.

N p = 2 p = 3 p = 4 p = 5

2 0.000 [0] 0.000 [0] 0.000 [0] 0.000 [0]
3 0.051 [0] 0.001 [0] 0.000 [0] 0.000 [0]
4 0.252 [0.25] 0.092 [0] 0.000 [0] 0.000 [0]
5 0.400 [0.4] 0.206 [0.2] 0.002 [0] 0.000 [0]
6 0.500 [0.5] 0.334 [0.333...] 0.002 [0] 0.000 [0]
7 0.571 [0.571...] 0.428 [0.428...] 0.287 [0.285...] 0.153 [0.142...]
8 0.625 [0.625] 0.500 [0.5] 0.375 [0.375] 0.252 [0.25]
9 0.666 [0.666...] 0.567 [0.555...] 0.444 [0.444...] 0.334 [0.333...]
Mmax 2100 2560 9450 10680

This exponent can also be derived for the case where M is
odd, but the lack of an exact expression for the zeros renders
the derivation lengthy.

In the general cases p > 1 we do not have an analytical
solution for the roots as in (91) and we have to evaluate
them numerically. We also have to calculate numerically the
derivatives of the quasiparticle energies εi at λ = 1. By taking
the specific-heat values at two distinct lattice sizes M1 and M2

we produce the finite-size estimator

αM1,M2 = ln (C(1, M1)/C(1, M2))
ln(M1/M2)

, (94)

that should tend towards α as M1, M2 → ∞. In Table II we
give the results obtained by extrapolating sequences of αM1,M2

for the models with p = 2, . . . , 5 and N = 2, . . . , 9. The re-
sults were obtained by using van den Broeck Schwartz [33]
extrapolants up to lattice sizes Mmax, shown in the last line
of the table. The zeros of P(p)

M (z) were numerically evaluated
with 50 decimal digits by using multiple precision calcula-
tions.

Our results indicate the conjecture

α = max {0, 1 − (p + 1)/N}, (95)

i.e., the models will have a vanishing critical exponent for the
specific heat if N � (p + 1). The conjectured values (95), that
extend (93), are shown in brackets in Table II. We see a quite
good agreement with (95).

In the cases where p = 1 and M odd, like the quantum
Ising chain (7) and the free parafermionic models (10) it
was numerically observed that the specific heat has a peak
in a pseudocritical point λ̃M , that approaches the true critical
point λc = 1 as |λ̃M − λc| ∼ M−ν‖ , with the value ν‖ = 1.
However, when we consider the case p = 1 with M even,
whose quasiparticle energies are given by (91) for N = 2,
we verify that the pseudocritical point approaches the critical
point as |λ̃M − λc| ∼ M−1.94. For other models with p > 1,
the exponents change as we consider different 
 sequences
of lattice sizes M = jM + 
 ( j = 0, 1, . . ., 
 = 0, 1, . . .). In
fact, the finite-size behavior M−ν‖ is not a consequence of the
FSS theory, and it is not generally expected for open chains
[32]. We conjecture that for all the models with any p and N
we have the simple scaling where ν‖ = 1, as verified in the
models with p = 1 and M odd.

VII. ADDITIONAL COMMUTING CHARGES AND
COMPLETE SET OF COMMUTING OBSERVABLES

Distinct representations of the Hamiltonians (1), with M
generators {hi} satisfying (2) and (3), with given values of p
and N , have distinct dimensions. In Sec. III we have showed
the existence of M commuting charges (H (
)

M , 
 = 1, . . . , M),
independently of the representation. The eigenvalues of these
charges are given in terms of the M roots of the polynomials
P(p)

M (z) and by the set of “Z (N ) signals” {s1, . . . , sM} (78).
These are all the possible values of the eigenvalues. In the
generic case the dimensions of the representation of (1) is
bigger than NM , implying degeneracy in energy as well in all
the M commuting charges {H (
)

M }.
Let us consider some free fermionic representations (N =

2) with p = 1. For M odd the representations of the Ising
quantum chain (7) have dimension 2(M+1)/2 and since in this
case M = (M + 1)/2 all the eigenvalues can be indexed by
the roots of P(p)

M (z) and signals {si}. That is, all the 2(M+1)/2

eigenfunctions are distinctly characterized by the complete set
of commuting observables (CSCO) {H (
)

M ; 
 = 1, . . . , (M +
1)/2}.

In the case where M is even, as in (12), the dimension of
the Hilbert space is 2M/2 and since M = M/2 the charges (20)
form again a CSCO. This construction is an interesting way to
see the fully exact integrability of the Ising quantum chains in
a finite lattice.

In the case where the free fermionic models are in the
representation (19) with dimension 2M the situation is distinct
since the number of conserved charges {H (
)

M } is (M + 1)/2
or M/2 if M is odd or even, respectively. However, we can
identify an extra set of Z (2) gauge operators {g(i)

M }:

σ x
1 σ z

2 , σ x
3 σ z

4 , . . . , σ x
M−1σ

z
M , σ x

M (M even);

σ x
1 σ z

2 , σ x
3 σ z

4 , . . . , σ x
M−1σ

z
M (M odd), (96)

that aside from commuting among themselves and with {H (
)
M }

are independent. Since this extra set (96) has (M − 1)/2 or
M/2 charges, for M odd or even, respectively, we have a
total of M commuting charges forming again a CSCO. Differ-
ently from the charges {H (
)

M } whose eigenvalues are obtained
from the roots of the polynomials P(p)

M (z), the gauge charges
{g(i)

M } have eigenvalues ±1 since (g(i)
M )2 = 1. The commutation
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[g(i)
M , H (
)

M ] = 0 implies that all the eigenvalues of the Hamil-
tonian (19), as well as all the charges {H (
)

M } will have, apart
from accidental degeneracies, a degeneracy 2(M−1)/2 or 2M for
M odd or even, respectively.

The preceding discussion for p = 1 and N = 2 is easily
generalized for the free parafermionic cases where N > 2.
However, this is not the case for p > 1. In fact, let us consider
the fermionic models (N = 2) with p = 2 and let us restrict
ourselves to the representation (18):

HA = −λ1σ
x
1 − λ2σ

z
1σ x

2 − λ3σ
z
1σ z

2σ x
3 − λ4σ

z
2σ z

3σ x
4

− · · · − λMσ z
M−2σ

z
M−1σ

x
M . (97)

The number of commuting charges {H (
)
M }, whose eigenvalues

are given in terms of the roots of the polynomial P(2)
M (z) is 2M ,

while the dimension of the representation is 2M . We verified
by direct diagonalizations that for small values of M all the
eigenvalues of (97) have the same degeneracy 2M/2M . As in
the case p = 1 we can also identify an extra set {g(i)

M } of Z (2)
gauge operators:

σ x
1 σ z

2σ z
3 , σ x

4 σ z
5σ z

6 , . . . (98)

forming the commuting set {g(i)
M , H (
)

M }. Since there are =
�M/3� gauge operators and (g(i)

M )2 = 1, we can explain 2M̃ of
this degeneracy. Although we believe in their existence we
have not found the extra charges that will complete the CSCO
of (97).

The previous discussions can be easily extended for N > 2
and p > 2, and again we can explain part of the degeneracies
of the Hamiltonian in their word representation. We remark
that for p = 2 and N = 2 the observed degeneracies in the
spectrum have been explained using an underlying extended
supersymmetry of the model [12]. It would be interesting to
see if this construction can be extended to other values of p
and N .

VIII. CONCLUSIONS

We have demonstrated that the general quantum spin
chains (1) with M density operators {hi} satisfying the p-
exchange algebra (2) and (3) are exactly integrable. In the
bulk limit M → ∞ the Hamiltonians belong to an infinite set
of conserved charges. In the generic case the number of inde-
pendent words we can form in the algebra is infinite, even for
finite M. However, by including the closure relation (3) in the
algebra, the number of independent words, or the dimension
of the Hilbert space associated to the Hamiltonian (1), is finite
for finite M. We can have then several possible Hamiltonians
described for the case N = 2 in terms of spin- 1

2 Pauli matrices
and for N > 2 by the generalized Z (N ) Pauli matrices (8). In
these cases we show that for arbitrary values of the param-
eter p, all the models have a free fermionic (N = 2) or free
parafermionic (N > 2) eigenspectrum. The eigenenergies are
given in terms of the zeros of the polynomials P(p)

M (z). In the
case p = 1 and {λi} = 1, where the corresponding Hamiltoni-
ans are the quantum Ising chain (N = 2) or the Z (N ) Baxter
parafermionic chain (N > 2), at their critical point, P(p)

M (z)
is related to the Chebyshev polynomial of second type. We
presented several representations of the algebraic Hamilto-

nian (1), for several values of p. In particular, we have also
constructed the Hamiltonian (1) on its word representation, a
representation with a one-to-one equivalence among the inde-
pendent words in the algebra and the basis vectors spanning
the associated Hilbert space.

Although the models, for arbitrary N and p, have a quite
rich phase diagram we only consider, in this paper, the
isotropic point where all the couplings {λi = 1} [see (3)].
We have showed that the models are critical at this point
for any p and N . We calculated at this critical point the
exact ground-state energy for general p and N , and it turns
out to be expressed in terms of integral representations of
Lauricella series. From our extensive numerical studies we
have conjectured that at this isotropic point the dynamical crit-
ical exponent is given by z = (p + 1)/N and the specific-heat
exponent by α = max{0, 1 − (p + 1)/N}. This is interesting
since most of the known critical chains are conformally in-
variant (z = 1), and therefore the multispin quantum chains
provide an excellent laboratory to understand the universal
behavior of the shared quantum information measures, like
the von Neumann or Rényi entanglement entropies, in critical
quantum chains without an underlying conformal symmetry.
The polynomials P(p)

M (z) may also play an important role in
the study of the entanglement entropy (see [34]).

An interesting direction of investigation is to consider ex-
tensions of the algebra (2) and (3) to include models with
periodic boundary conditions. See, for example, the inter-
esting recent paper [35]. In this case, for p = 1 and N = 2
the algebra (2) and (3) are related to the Temperley-Lieb
and Onsager algebras. For periodic boundary conditions, the
eigenspectrum seems to be not a simple free particle one, but
probably a composition of free particle spectra. As observed
in [10] the Z (N ) Baxter free parafermionic quantum chain,
that corresponds to the case p = 1, has an anomalous behavior
for the ground-state energy per site for N > 2, where the
models are non-Hermitian. It should be also interesting to
prove if this anomaly happens for general values of p.

Another interesting point for further investigation is the
construction of the integrable quantum chains within the
quantum inverse scattering method. For p = 1 and arbitrary
N , the generating function (21) corresponds to the transfer
matrix of the τ2 model (see [7]). For p = N = 2, a solution
of the Yang-Baxter equation with a 9 × 9 R-matrix has been
given in [12]. It would be important to generalize this ap-
proach to arbitrary p and N . In addition, let us mention that the
algebra (2) and (3) can be Baxterized. In this case, it would be
nice to see if the generating function can be written directly in
terms of Ř matrices.

We conclude mentioning that although we have not con-
structed the general raising and lowering fermionic and
parafermionic operators, related to the quantum chains (1), we
believe that this construction should follow the one introduced
by Fendley [12] for p = N = 2 exploiting the general product
formula (52).
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APPENDIX A: DERIVATION OF THE RECURRENCE
RELATION FOR τ

(3)
M (u)

In this Appendix we derive the recurrence relation (64) of
Sec. IV. To simplify the notation, let us denote

G(i)
M ≡ G(i)

M (u) = GM (ωiu), i = 0, 1, 2 (A1)

so that

τ (3)(u) = G(0)
M G(1)

M G(2)
M . (A2)

Using the fundamental relation (26) in G(i)
M (i = 0, 1, 2) we

obtain

τ
(3)
M (u) = τ

(3)
M−1(u) − u3h3

Mτ
(3)
M−(p+1)(u) + 
(3)

p (u), (A3)

where


(3)
p (u) = A1(M )u + A2(M )u2 (A4)

and

A2(M ) = −L(GM−1; GM−(p+1)hM ; GM−(p+1)hM )ω2 ,

A1(M ) = −L(GM−(p+1)hM ; GM−1; GM−1)ω, (A5)

where we have introduced the Z (3) cyclic commutator, de-
fined as

L(A(u); B(u);C(u))	

= A(u)B(ωu)C(ω2u) + 	C(u)A(ωu)B(ω2u)

+	2B(u)C(ωu)A(ω2u). (A6)

To proceed, it is interesting to define the generalized operators

A( j)
1 (M ) = −L(GM−(p+1)hM ; GM− j ; GM− j )ω (A7)

and

A( j,k)
2 (M ) = −L(GM−(p+1);

×hM− jGM−(p+1)− j ; hM−kGM−(p+1)−k )ω2 . (A8)

We see that A1 = A(1)
1 .

Recurrence relation for A( j)
1 (M ). Using (26) in both the

GM− j of A( j)
1 (M ) we obtain

A( j)
1 (M ) =

p∑
l= j

(
γ

(l )
1 + γ

(l )
2

) −
p∑

l= j

p∑
k= j

γ
(l,k)

3 , (A9)

where

γ
(l )

1 = uL(GM−(p+1)hM ; hM− jGM−(p+1)− j ; GM−(p+1))ω,

γ
(l )

2 = uL(GM−(p+1)hM ; GM−(p+1); hM− jGM−(p+1)− j )ω,

and

γ
(l,k)

3 = u2L(GM−(p+1)hM ;

×hM−l GM−(p+1)−l ; hM−kGM−(p+1)−k )ω . (A10)

Expanding γ
(l )

1 and γ
(l )

2 we obtain

γ
(l )

1 + γ
(l )

2 = −uhMω2A(p+1−l )
1 (M − l ), (A11)

where l = 1, 2, . . . , p, and identify

γ
(l,k)

3 = u2hMA(l,k)
2 (M ). (A12)

Using (27) in (A8) we obtain

A( j, j)
2 (M ) = −uh2

M− jω

j−1∑
l=0

A( j−l )
1 [M − (p + 1) − l].

Using this last expression with (A11) and (A12) in (A9) we
get

A( j)
1 (M )=−uhMω2

p∑
l= j

A(p+1−l )
1 (M− l )−u3hMω

p∑
l= j

h2
M−l

l−1∑
l ′=0

A(l−l ′ )
1 [M − (p + 1) − l ′]−u2hM

p∑
k= j

k−1∑
l= j+1

(
A(l,k)

2 (M )+A(k,l )
2 (M )

)
.

(A13)

Also using (26) in (A8) we obtain, for j �= k,

A( j,k)
2 (M ) = α

( j,k)
1 (M ) + α

( j,k)
2 (M ),

where

α
( j,k)
1 (M ) = L(GM−(p+1)− j ; hM− jGM−(p+1)− j ;

×hM−kGM−(p+1)−k )ω2 , (A14)

and for ( j < k)

α
( j,k)
2 (M ) = −uhM− j

j−1∑
l=0

A(k− j,p+1+l− j)
2 (M − j),

α
(k, j)
2 (M ) = −uhM− j

j−1∑
l=0

A(p+1+l− j,k− j)
2 (M − j).

Combining α
( j,k)
1 (M ) + α

(k, j)
1 (M ) ( j �= k) we obtain, for j <

k,

α
( j,k)
1 (M ) + α

(k, j)
1 (M ) = −ω2hM− jA

(p+1+ j−k)
1 (M − k).

Then, for j < k,

A( j,k)
2 (M ) + A(k, j)

2 (M ) = −ω2hM− jA
(p+1+ j−k)
1 (M − k)

−uhM− j

j−1∑
l=0

(
A(p+1+l− j,k− j)

2 (M − j)

+A(k− j,p+1+l− j)
2 (M − j)

)
. (A15)
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Recurrence relation for A2(M ). Using the relation (29) in
A2(M ), given in (A15), we obtain

A2(M ) = −uh2
M

p∑
j=1

×L(GM−(p+1); GM−(p+1); hM− jGM−(p+1)− j )ω,

(A16)

giving us, from (A5),

A2(M ) = −uh2
Mω

p∑
j=1

A(p+1− j)
1 (M − j). (A17)

Equation (A14), with the recurrences (A15) and (A17), im-
plies that A1(M ) = A(1)

1 , A(l )
1 (M ) (l = 1, . . . , M) and A2(M )

depend only on the values of A(k′ )
1 (M − j′), j′ > 1, k′ � p,

and on A(l,l ′ )
2 (M − j′) + A(l ′,l )

2 (M − j), j′ > 1, 1 � l �= l ′ �
p, i.e., it depends only on the values of A(l )

1 (M ′), A( j,k)
2 (M ′),

evaluated for smaller lattices.
Since hM = 0 (M � 0), GM = 1 (M � 1) it is simple to

verify from (A15) that A(0)
1 (M ) = A( j,k)

2 (M ) = 0 for M �
1. For M = 2 we see that A( j)

1 (2) = 0 ( j = 1, . . . , p) and
A( j,k)

2 (2) + A(k, j)
2 (2) = 0 (k �= j = 1, . . . , p). From (A15) we

also see that A( j,k)
2 (3) + A(k, j)

2 (3) = 0 (k �= j = 1, . . . , p), and
from (A14) we get A(l )

1 (l = 1, . . . , p). Finally, iterating we
obtain for (A5), (A15), and (A4)

A1(M ) = A2(M ) = 
(3)
p (u) = 0 (A18)

for any M and p. This implies that

τ
(3)
M (u) = τ

(3)
M−1(u) − u3h3

Mτ
(3)
M−(p+1)(u). (A19)

APPENDIX B: EIGENSPECTRUM OF A QUANTUM CHAIN
WITH M = 5 SITES AND PARAMETER p = 3

In this Appendix, for the sake of illustration, we give a
simple example for the quantum chain (1) with M = 5 gen-
erators, parameter p = 3 and N arbitrary. In this case, M =
�(5 + 3)/4� = 2.

The general Hamiltonian satisfying the algebra (2) and (3)
is given by

H = −(h1 + h2 + h3 + h4 + h5). (B1)

There are two conserved charges, i.e.,

H (1)
5 = −H, H (2)

5 = h1h5.

One of the representations of the conserved charges is the
word representation (16) where

H = −λ1X1 − λ2Z1X2 − λ3Z1Z2X3 − λ4Z1Z2Z3X4

−λ5Z2Z3Z4X5,

H (2)
5 = λ1λ5X1Z2Z3Z4X5, (B2)

where Xi, Zi are the Z (N ) matrices (17) and the coupling
constants {λi} are defined by (3).

The fundamental polynomial is obtained by iterating (68)
or by (69) (compare with Table I, for the case λ1 = λ2 = 1):

P(3)
5 (z) = 1 − (λN

1 + · · · + λN
5 )z + λN

1 λN
5 z2, (B3)

whose roots z1 and z2 give us the quasienergies ε1 = z−1/N
1 and

ε2 = z−1/N
2 . The predicted N2 eigenvalues of the Hamiltonian

and second charge are obtained from (78) and (77):

E {s1,s2} = −ei 2π
N s1ε1 − ei 2π

N s2ε2, E {s1,s2}
2 = ei 2π

N (s1+s2 )ε1ε2,

where s1, s2 = 0, 1, . . . , N − 1. In the word representation
(B2) the Hamiltonian has N5 eigenvalues. A direct diago-
nalization of (B2) shows us that all levels have the same
degeneracy N3. The ground-state energy (real for all N) is
given by E {0,0} = −ε1 − ε2, while the excited states have
complex eigenvalues.
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