
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-018-3121-0
Commun. Math. Phys. 360, 715–726 (2018) Communications in

Mathematical
Physics

Decay of Complex-Time Determinantal and Pfaffian
Correlation Functionals in Lattices

N. J. B. Aza1, J.-B. Bru2,3,4, W. de Siqueira Pedra1

1 Institute of Physics of the University of São Paulo, Rua do Matão 1371, São Paulo, Brazil.
E-mail: njavierbuitragoa@gmail.com; wpedra@if.usp.br

2 Departamento de Matemáticas, Facultad de Ciencia y Tecnología, Universidad del País Vasco,
Apartado 644, 48080 Bilbao, Spain

3 BCAM - Basque Center for Applied Mathematics, Mazarredo, 14, 48009 Bilbao, Spain
4 IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
E-mail: jb.bru@ikerbasque.org

Received: 7 June 2017 / Accepted: 24 January 2018
Published online: 6 April 2018 – © Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract: We supplement the determinantal and Pfaffian bounds of Sims and Warzel
(Commun Math Phys 347:903–931, 2016) for many-body localization of quasi-free
fermions, by considering the high dimensional case and complex-time correlations. Our
proof uses the analyticity of correlation functions via the Hadamard three-line theorem.
We show that the dynamical localization for the one-particle system yields the dynam-
ical localization for the many-point fermionic correlation functions, with respect to the
Hausdorff distance in the determinantal case. In Sims and Warzel (2016), a stronger
notion of decay for many-particle configurations was used but only at dimension one
and for real times. Considering determinantal and Pfaffian correlation functionals for
complex times is important in the study of weakly interacting fermions.

1. Introduction

For a few years, the problem of (Anderson) localization in many-body systems has been
garnering attention. Themathematical understanding of this phenomenon for interacting
quantum particles, as addressed in 2006 by Basko et al. [1] for weakly interacting
fermions at small densities, is a long-term goal. In 2009, [2,3] contributed first rigorous
results. In 2016, an exponential decay of many-particle correlations was proven for
quasi-free fermions in one-dimensional latticeswith disorder [4]. Via the Jordan–Wigner
transformation, this includes the disordered XY spin chains. This last paper has attracted
much attention and it has already been cited many times in one and a half year. See, e.g.,
[5–13].

As pointed out in [4], it is an interesting open question (a) whether [4, Theorems
1.1 and 1.2] can be generalized to higher dimensions. Another open question (b) is their
generalization for complex-time correlation functions. This last point is relevant because
such correlation functions (of quasi-free fermions) can be useful to study localization of
weakly interacting fermion systems on lattices. In fact, (quasi-free) complex-time cor-

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-018-3121-0&domain=pdf


716 N. J. B. Aza, J.-B. Bru, W. de Siqueira Pedra

relation functions appear in the perturbative expansion of (full) correlations for weakly
interacting systems. See, for instance, [14, Section 5.4.1].

By considering the many-body localization in the sense of the Hausdorff distance,
like in [3], we propose an answer to both questions (a) and (b), using the Hadamard
three-line theorem (Sect. 4). See Corollary 2.3, which, together with Theorem 2.2, is our
main result on determinantal correlation functionals. In a similar way, we also prove the
decay of complex-time Pfaffian correlation functionals with respect to a splitting width
(like [3, Equation (5.9)]) of particle configurations. This is a version of [4, Theorem 1.4]
which holds true at any dimension d ∈ N. See Theorem 3.1.

2. Decay of Determinantal Correlation Functionals

2.1. Setup of the problem and main results.

(i): Let d ∈ N. For a fixed parameter ε ∈ (0, 1], we define

dε(X1,X2)
.= max

{
max
x1∈X1

min
x2∈X2

|x1 − x2|ε , max
x2∈X2

min
x1∈X1

|x1 − x2|ε
}

, X1,X2 ⊂ Z
d ,

(1)
which is the well-known Hausdorff distance between the two sets, associated with the
metric (x1, x2) �→ |x1 − x2|ε on Z

d .
(ii): We consider (non-relativistic) fermions in the lattice Zd with arbitrary finite spin set
S. Thus, we define the one-particle Hilbert space to be h

.= �2
(
Z
d ;CS

)
, the canonical

orthonormal basis
{
ex,σ

}
(x,σ )∈Zd×S of which is

ex0,σ0(x, σ )
.= δx,x0δσ,σ0 , x, x0 ∈ Z

d , σ, σ0 ∈ S. (2)

(iii): Let (�,F, a) be a standard1 probability space. As is usual, E[ · ] denotes the
expectation value associated with the probability measure a. We consider F-measurable
families {Hω}ω∈� ⊂ B (h) of bounded one-particle Hamiltonians satisfying the follow-
ing (one-body localization) assumption, at fixed β ∈ R

+:

Condition 2.1. There is a Borel set I ⊂ R as well as constants ε ∈ (0, 1], D andμ ∈ R
+

such that, for all x1 ∈ Z
d and R > 0,

∑
x2∈Zd :|x1−x2|ε≥R

E

[
sup
z∈Sβ

max
σ1,σ2∈S

∣∣∣∣∣
〈
ex1,σ1 ,

ei zHωχI (Hω)

1 + eβHω
ex2,σ2

〉
h

∣∣∣∣∣
]

≤ D e−μR, (3)

where
Sβ

.= R − i [0, β] , β ∈ R
+, (4)

χI is the characteristic function of the set I , and |x1 − x2| the euclidean distance between
the lattice points x1, x2 ∈ Z

d .

This assumption is similar to the so-called strong exponential dynamical localization
in I , see, e.g., [15, Definition 7.1]. Note that, for ε ∈ (0, 1], (x1, x2) �→ |x1 − x2|ε
defines a translation invariant metric on the lattice Zd . Observe also that, for all β ∈ R

+

and z ∈ Sβ , the function λ �→ |ezλ (1 + eβλ
)−1 | on R is bounded by 1. In particular, the

1 I.e., F is the Borel σ -algebra of a Polish space �.
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left-hand side of (3) is bounded by the eigenfunction correlator [15, Eq. (7.1)]. Condition
2.1 replaces [4, Eq. (1.19)], noting that

ρ (s, t) = ei(t−s)Hω

1 + eβHω
, s, t ∈ R, (5)

is the main example they have in mind [4, Eq. (2.37)].
(iv): Let CAR(h) be the CAR C∗-algebra generated by the unit 1 and {a(ϕ)}ϕ∈h. For
any A1, A2 ∈ CAR(h) and any z1, z2 ∈ C, we define

Oz1,z2 (A1, A2)
.=
{

A1A2 if Im (z1) ≤ Im (z2) ,

−A2A1 if Im (z1) > Im (z2) .
(6)

(v): For any β ∈ R
+ and ω ∈ �, we define the (gauge invariant) quasi-free state

ρω ≡ ρβ,ω by the condition

ρω

(
a(ϕ1)

∗a(ϕ2)
) =

〈
ϕ2,

1

1 + eβHω
ϕ1

〉
h

, ϕ1, ϕ2 ∈ h. (7)

This state is the unique KMS state at inverse temperature β ∈ R
+ associated with the

unique strongly continuous group {τ (ω)
t }t∈R of (Bogoliubov) automorphisms of CAR(h)

satisfying
τ

(ω)
t (a (ϕ)) = a(ei t Hωϕ) , t ∈ R, ϕ ∈ h. (8)

Note that, for all ϕ ∈ h, the maps

t �→ τ
(ω)
t (a (ϕ)) and t �→ τ

(ω)
t
(
a (ϕ)∗

)
on R uniquely extend to entire functions: For any z ∈ C and ϕ ∈ h,

τ (ω)
z

(
a (ϕ)∗

) .= a(ei zHωϕ)∗ and τ (ω)
z (a (ϕ))

.= a(ei zHωϕ). (9)

Observe additionally that, for any z1, z2 ∈ C and ϕ1, ϕ2 ∈ h,

ρω

(
Oz1,z2

(
τ (ω)
z1 (a(ϕ1)

∗), τ (ω)
z2 (a(ϕ2))

))

=
⎧⎨
⎩

〈
ϕ2,

ei(z1−z2)Hω

1+eβHω
ϕ1

〉
h

if Im (z1) ≤ Im (z2) ,

−
〈
ϕ2,

e(β+i(z1−z2))Hω

1+eβHω
ϕ1

〉
h
if Im (z1) > Im (z2) .

(10)

Below, we show that strong one-body localization, in the sense of Condition 2.1,
yields the corresponding many-body localization for the quasi-free state ρω, in the sense
of the Hausdorff distance, as stated in Corollary 2.3. This is achieved by estimating, in
Theorem 4.1, determinants of the form

det [Gω ((ϕk, zk) , (ϕN+l , zN+l))]
N
k,l=1 (11)

in terms of the entries of one single row or column. In (11), β ∈ R
+, N ∈ N,

ϕ1, . . . , ϕ2N ∈ h are normalized vectors, z1, . . . , z2N ∈ Sβ and

Gω ((ϕk, zk) , (ϕN+l , zN+l))
.= ρω

(
Ozk ,zN+l

(
τ (ω)
zk (a(ϕk)

∗), τ (ω)
zN+l

(a(ϕN+l))
))

is the two-point, complex-time-ordered correlation function associated with the quasi-
free state ρω.
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Theorem 2.2. Let {Hω}ω∈� ⊂ B (h) be a family of bounded Hamiltonians. For all
ω ∈ � , β ∈ R

+, N ∈ N, norm-one vectors ϕ1, . . . , ϕ2N ∈ h, and z1, . . . , z2N ∈ Sβ

(see (4)) ∣∣∣det [Gω ((ϕk, zk) , (ϕN+l , zN+l))]
N
k,l=1

∣∣∣
≤ min

{
min

k∈{1,...,N }

N∑
l=1

|Gω ((ϕk, zk) , (ϕN+l , zN+l))| ,

min
l∈{1,...,N }

N∑
k=1

|Gω ((ϕk, zk) , (ϕN+l , zN+l))|
}

.

Proof. Fix all parameters of the theorem. By expanding the determinant along a fixed
row or column, for any m ∈ {1, . . . , N },

det [Gω ((ϕk, zk) , (ϕN+l , zN+l))]
N
k,l=1

=
N∑

n=1

(−1)m+n Gω ((ϕm, zm) , (ϕN+n, zN+n))

× det [Gω ((ϕk, zk) , (ϕN+l , zN+l))]k∈{1,...,N }\{m}
l∈{1,...,N }\{n}

=
N∑

n=1

(−1)m+n Gω ((ϕn, zn) , (ϕN+m, zN+m))

× det [Gω ((ϕk, zk) , (ϕN+l , zN+l))]k∈{1,...,N }\{n}
l∈{1,...,N }\{m}

. (12)

Then, the assertion directly follows from Lemma 2.5. 
�
Corollary 2.3. If Condition 2.1 holds true then, for all β ∈ R

+, N ∈ N, X1 =
{x1, . . . , xN },X2 = {xN+1, . . . , x2N } ⊂ Z

d such that |X1| = |X2| = N,and z1, . . . , z2N
∈ Sβ ,

E

[
max

σ1,...,σ2N

∣∣∣det [Gω

(
(χI (Hω)exk ,σk , zk), (χI (Hω)exN+l ,σN+l , zN+l)

)]N
k,l=1

∣∣∣
]

≤ D e−μdε (X1,X2),

where dε(X1,X2) is the Hausdorff distance (1) between the N-particle configurations
X1 and X2. Recall that χI is the characteristic function of the Borel set I and note that
the constants ε, D and μ are exactly the same as in Condition 2.1.

Proof. Combine Condition 2.1 and Theorem 2.2 with Eqs. (9) and (10). 
�
The analogue of [4, Theorem 1.1], i.e., an estimate like Corollary 2.3 for the many-

point correlation functions at fixed ω ∈ �, instead of an estimate for their expectation
values, easily follows by replacing Condition 2.1 with a similar bound for a fixedω ∈ �.
We omit the details.

The bound of Corollary 2.3 is a version of [4, Theorem 1.2] which holds at any dimen-
sion d ∈ N and for any complex times within the strip Sβ . However, two observations
in relation with [4] are important to mention:
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• Since, for any X1,X2,Y1,Y2 ⊂ Z
d ,

dε(X1 ∪ X2,Y1 ∪ Y2) ≤ max {dε(X1,Y1), dε(X2,Y2)} ,

we have

dε(X ,Y) ≤ d(S)
ε (X ,Y)

.= min
π∈SN

max
j∈{1,...,N }

∣∣x j − yπ( j)
∣∣ε (13)

for any set X = {x1, . . . , xN } ⊂ Z
d and Y = {y1, . . . , yN } ⊂ Z

d of N ∈ N

(different) lattice points. Here, SN is the set of all permutations π of N elements.
The distance we use, i.e., the Hausdorff distance (1), is therefore weaker than the
symmetrized configuration distance d(S)

ε [4, Equation (1.13) and remarks below].
Nevertheless, Corollary 2.3 yields the main features of localization. Whether Corol-
lary 2.3 holds true, at any dimension, when dε is replaced with d

(S)
ε is an open

question. See also discussions of [3, Section 1.3].

• The proofs of [4, Theorems 1.1 and 1.2] use that, for all N ∈ N, x1, . . . , x2N ∈ Z
d ,

σ1, . . . , σ2N ∈ S, and t1, . . . , t2N ∈ R, the N × N matrix

M .=
[〈
exN+l ,σN+l , ρ (tN+l , tk) exk ,σk

〉
h

]N
k,l=1

defines an operator on C
N of norm at most 1. This is true even for complex times,

provided that

z1 = · · · = zN ∈ Sβ, zN+1 = · · · = z2N ∈ Sβ, Im (zN ) ≤ Im (zN+1) . (14)

(cf. [4, Erratum]). However, this is generally not true when z1, . . . , z2N ∈ Sβ are
different from each other. For this reason, instead of a bound on the norm ofM, our
proof uses (in an essential way) the analyticity of correlation functions with respect
to complex times.

The results of this section are also reminiscent of [3, Theorem 1.1] where a bound-
like Corollary 2.3, with the Hausdorff distance but for complex times satisfying (14),
can be found for n-particle correlation functions. Note, additionally, that in [3] a particle
interaction is included, but no particle statistics is taken into account: The n-particle
Hilbert space is the full space �2

(
Z
nd
)
. By contrast, we consider many-fermion systems,

which would correspond in [3, Theorem 1.1] to restrict �2
(
Z
nd
)
to its subspace of

antisymmetric functions. In this situation, the one-particle localization theory cannot be
directly used, even in the quasi-free fermion case. Moreover, we do not fix the particle
number, by using the grand-canonical setting.

Finally, observe thatquasi-free, complex-time-ordered,many-point correlations appear
in the perturbative expansion of interacting correlation functions. See, e.g., [14, Section
5.4.1]. Therefore, as a first step towards the proof of localization in fully interacting
fermion systems, it is important to establish localization for these correlations, as stated
in Corollary 2.3. For instance, by combining Corollary 2.3 with [14, Theorem 5.4.4],
one can show that a local, weak interaction cannot destroy the (static) localization of the
thermal, many-point correlation functions of quasi-free fermions in lattices.
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2.2. Universal bounds on determinants from the Hadamard three-line theorem. For any
permutation π ∈ Sn of n ∈ N elements with sign (−1)π , we define the monomial
Oπ (A1, . . . , An) ∈ CAR(h) in A1, . . . , An ∈ CAR(h) by the product

Oπ (A1, . . . , An)
.= (−1)π Aπ−1(1) · · · Aπ−1(n). (15)

In other words, Oπ places the operator Ak at the π(k)th position in the monomial
(−1)π Aπ−1(1) · · · Aπ−1(n). Further, for all k, l ∈ {1, . . . , n}, k 
= l,

πk,l : {1, 2} → {1, 2} (16)

is the identity function if π(k) < π(l), otherwise πk,l interchanges 1 and 2. (Remark
that Ozk ,zl (6) is equal to Oπk,l for a conveniently chosen permutation π .) Then, the
following identities holds true for quasi-free states:

Lemma 2.4. Let ρ be a quasi-free state on CAR(h). For any N ∈ N, all permutations
π ∈ S2N and ϕ1, . . . , ϕ2N ∈ h,

det
[
ρ
(
Oπk,N+l

(
a(ϕk)

∗, a(ϕN+l)
) )]N

k,l=1

= ρ
(
Oπ

(
a(ϕ1)

∗, . . . , a(ϕN )∗, a(ϕ2N ), . . . , a(ϕN+1)
) )

. (17)

Proof. See [16, Lemma 3.1]. Compare with (28 ). 
�
UsingLemma2.4 and theHadamard three-line theorem (viaCorollary 4.2), we obtain

a universal bound on determinants of the form (11):

Lemma 2.5. Fix H = H∗ ∈ B (h). Let the quasi-free state ρ on CAR(h) be the unique
KMS state at inverse temperatureβ ∈ R

+ associatedwith the unique strongly continuous
group {τt }t∈R of auto-morphisms of CAR(h) satisfying (8)–(9) for Hω = H. Then, for
any N ∈ N, ϕ1, . . . , ϕ2N ∈ h and z1, . . . , z2N ∈ Sβ (see (4)),

∣∣∣∣det
[
ρ
(
Ozk ,zN+l

(
τzk (a(ϕk)

∗), τzN+l (a(ϕN+l))
) )]N

k,l=1

∣∣∣∣ ≤
2N∏
k=1

‖ϕk‖h .

Proof. Fix all parameters of the lemma and choose any permutation π ∈ S2N such that,
for all k, l ∈ {1, . . . , N },

Im(zk) ≤ Im(zN+l) ⇔ π (k) < π (N + l) . (18)

Then, by Lemma 2.4,

det
[
ρ
(
Ozk ,zN+l

(
τzk (a(ϕk)

∗), τzN+l (a(ϕN+l))
) )]N

k,l=1

= ρ
(
Oπ

(
τz1(a(ϕ1)

∗), . . . , τzN (a(ϕN )∗), τz2N (a(ϕ2N )), . . . , τzN+1(a(ϕN+1))
) )

.

(19)

Define the entire analytic map ϒ from C
2N to C by

ϒ(ξ1, . . . , ξ2N )
.= ρ
(
Oπ

(
τξ1+···+ξ2N−π(1)+1(a(ϕ1)

∗), . . . , τξ1+···+ξ2N−π(N )+1(a(ϕN )∗),

τξ1+···+ξ2N−π(2N )+1(a(ϕ2N )), . . . , τξ1+···+ξ2N−π(N+1)+1(a(ϕN+1))
))

.

(20)
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Now, impose additionally that the permutation π of 2N elements used in (19)–(20)
satisfies, for any k, l ∈ {1, . . . , N }, k 
= l, the conditions

Im(zk) < Im(zl) ⇔ π (k) < π (l) ; Im(z2N−k)

< Im(z2N−l) ⇔ π (2N − k) < π (2N − l) .

Ergo, by (18),

Im(zπ−1(1)) ≤ · · · ≤ Im(zπ−1(N )) ≤ Im(zπ−1(2N )) ≤ · · · ≤ Im(zπ−1(N+1)) (21)

and, by (19)–(20), the assertion follows if we can bound the function ϒ on the tube T2N
defined below by ( 33) for n = 2N . Since ϒ is uniformally bounded on T2N , it suffices
to bound the function ϒ on the boundary

∂T2N
.=
⎧⎨
⎩ (ξ1, . . . , ξ2N ) ∈ C

2N : ∀ j ∈ {1, . . . , 2N }, Im(ξ j ) ∈ {−β, 0} ,

2N∑
j=1

Im(ξ j ) ∈ {−β, 0}
⎫⎬
⎭ ,

byCorollary 4.2. By theKMSproperty [14, Section 5.3.1], note that, for all t1, . . . , t2N ∈
R and k ∈ {1, . . . , 2N },

ϒ(t1, . . . , tk−1, tk − iβ, tk+1, . . . , t2N ) = ϒ(tk+1, . . . , t2N , t1, . . . , tk)

while

sup
(ξ1,...,ξ2N )∈R2N

|ϒ(ξ1, . . . , ξ2N )| ≤
2N∏
k=1

‖ϕk‖h .

As a consequence,

sup
(ξ1,...,ξ2N )∈T2N

|ϒ(ξ1, . . . , ξ2N )| = sup
(ξ1,...,ξ2N )∈∂T2N

|ϒ(ξ1, . . . , ξ2N )| ≤
2N∏
k=1

‖ϕk‖h
(22)

and the assertion follows from (19), (20) and (33). 
�
Observe that estimates like (22) are related to the generalization of theHölder inequal-

ity to non-commutative L p-spaces. See, e.g., [17].

3. Decay of Pfaffian Correlation Functionals

An estimate similar to Corollary 2.3 can be obtained for Pfaffians of the two-point
correlation functions on the d-dimensional square lattice Z

d , by the same methods,
because they also can be seen, like in the proof of Lemma 2.5, as many-point correlation
functions of quasi-free fermions.
(i): For a fixed parameter ε ∈ (0, 1] and any subset X ⊂ Z

d we define the quantity

�ε(X )
.= max

x∈X
min

y∈X \{x}
|x − y|ε . (23)
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It is a kind of splitting width of the configuration X with respect to the metric (x, y) �→
|x − y|ε : This quantity is large whenever isolated points of X are spread in space, but it
stays small if the points are packed in clusters containing at least two points. It is used
here to quantify the localization of Pfaffian correlation functionals. Observe that �ε is
similar to the splitting width of a configuration defined by [3, Equation (5.9)].
(ii): For any N ∈ N, the Pfaffian of a 2N × 2N skew-symmetric complex matrix M is
defined by

Pf
[
Mk,l

]2N
k,l=1

.= 1

2N N !
∑

π∈S2N

(−1)π
N∏
j=1

Mπ(2 j−1),π(2 j), (24)

where we recall that S2N is the set of all permutations of 2N elements.
(iii): Let the field operators be defined by

B (ϕ)
.= a (ϕ)∗ + a (ϕ) , ϕ ∈ h.

For (x, σ ) ∈ Z
d ×S and ϕ = ex,σ or ϕ = iex,σ , we obtain the on-siteMajorana fermions

of [4, Equation (1.22)].
Below, we show that strong one-body localization, in the sense of Condition 2.1,

yields the localization of many-point correlations of field operators with respect to the
quantity (23). This is achieved by estimating, in Theorem 3.1, Pfaffians of the form

Pf [Gω ((ϕk, zk) , (ϕl , zl))]
2N
k,l=1 (25)

in terms of the entries of one single row. In (25), β ∈ R
+, N ∈ N, ϕ1, . . . , ϕ2N ∈ h are

normalized vectors, z1, . . . , z2N ∈ Sβ and

Gω ((ϕk, zk) , (ϕl , zl))
.= ρω

(
Ozk ,zl

(
τ (ω)
zk (B(ϕk)), τ

(ω)
zl (B(ϕl))

))

is the two-point, complex-time-ordered correlation function of field operators associated
with the quasi-free state ρω. See Sect. 2.1. Observe that the matrix in the Pfaffian of (25)
is skew-symmetric, by construction.

Theorem 3.1. Let {Hω}ω∈� ⊂ B (h) be a F-measurable family {Hω}ω∈� ⊂ B (h) of
bounded (one-particle) Hamiltonians satisfying Condition 2.1. Then, for all ω ∈ �,
β ∈ R

+, N ∈ N, X = {x1, . . . , x2N } ⊂ Z
d such that |X | = 2N, and z1, . . . , z2N ∈ Sβ

(see (4)),

E

⎡
⎣ max

p1,...,p2N∈{0,1}
σ1,...,σ2N∈S

∣∣∣Pf [Gω

((
i pkχI (Hω)exk ,σk , zk

)
,
(
i plχI (Hω)exl ,σl , zl

))]2N
k,l=1

∣∣∣
⎤
⎦

≤ 2D e−μ�ε(X ).

The constants ε, D and μ are exactly the same as in Condition 2.1.

Proof. The proof uses similar arguments as for determinantal correlation functionals.
We present them in four steps:



Decay of Complex-Time Determinantal and Pfaffian Correlation Functionals 723

Step 1: Similar to determinants, Pfaffians have a Laplace expansion with respect to any
row of its matrix:

Pf [Gω ((ϕk, zk) , (ϕl , zl))]
2N
k,l=1 =

2N∑
n=1,n 
=m

(−1)m+n+1+θ(m−n) Gω ((ϕm, zm) , (ϕn, zn))

×Pf [Gω ((ϕk, zk) , (ϕl , zl))]k∈{1,...,2N }\{m}
l∈{1,...,2N }\{n}

(26)

for any β ∈ R
+, N ∈ N, m ∈ {1, . . . , 2N }, ϕ1, . . . , ϕ2N ∈ h and z1, . . . , z2N ∈ Sβ ,

where θ is the Heaviside step function. Compare (26) with (12).
Step 2: Since ρω is, by definition, a quasi-free state, observe that

ρω (B (ϕ1) · · ·B (ϕ2N )) = Pf
[
ρω

(
Oidk,l (B(ϕk),B(ϕl))

)]2N
k,l=1 , (27)

for all N ∈ N and ϕ1, . . . , ϕ2N ∈ h, where idk,l is defined by (16), π being the neutral
element id of the permutation group S2N . See, e.g., [18, Equations (6.6.9) and (6.6.10)].
For any permutation π ∈ S2N (N ∈ N), Eq. (27) can be written as

ρω

(
Oπ (B (ϕ1) , . . . ,B (ϕ2N ))

)
= Pf

[
ρω

(
Oπk,l (B(ϕk),B(ϕl))

)]2N
k,l=1 , (28)

whereOπ and the permutation πk,l are defined by ( 15) and (16), respectively. See, e.g.,
[19, Proposition B.2]. Compare (28) with Lemma 2.4.
Step 3: Then, given 2N ∈ N complex numbers z1, . . . , z2N ∈ Sβ (β ∈ R

+), similar to
(21), we choose a permutation π ∈ S2N such that, for any k, l ∈ {1, . . . , 2N }, k 
= l,

π (k) < π (l) ⇔ [Im(zk) < Im(zl)] ∨ [(Im(zk) = Im(zl)) ∧ (k < l)] .

Using the Hadamard three-line theorem (via Corollary 4.2), we thus obtain a universal
bound on Pfaffians of the form

∣∣∣∣Pf
[
ρω

(
Ozk ,zl

(
τzk (B(ϕk)) , τzl (B(ϕl))

))2N
k,l=1

]N
k,l=1

∣∣∣∣ ≤
2N∏
k=1

‖ϕk‖h (29)

for any N ∈ N, ϕ1, . . . , ϕ2N ∈ h and z1, . . . , z2N ∈ Sβ . To get this inequality, we have
used that

‖B(ϕ)‖CAR(h) = ‖ϕ‖h , ϕ ∈ h.

Compare (29) with Lemma 2.5.
Step 4: We infer from (26) and (29) that

∣∣∣Pf [Gω ((ϕk, zk) , (ϕl , zl))]
2N
k,l=1

∣∣∣ ≤
2N∑

n=1,n 
=m

|Gω ((ϕm, zm) , (ϕn, zn))| (30)

for any β ∈ R
+, N ∈ N, m ∈ {1, . . . , 2N }, ϕ1, . . . , ϕ2N ∈ h and z1, . . . , z2N ∈ Sβ . By

gauge invariance, Condition 2.1 yields the inequality

∑
x2∈Zd :|x1−x2|ε≥R

E

⎡
⎣ sup
z1z2∈Sβ

max
p1,p2∈{0,1}

σ1,σ2∈S

∣∣Gω

((
i p1ex1,σ1 , z1

)
,
(
i p2ex2,σ2 , z2

))∣∣
⎤
⎦≤2D e−μR .

(31)
Therefore, the assertion is a direct consequence of Inequalities (30) and (31). 
�
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Theorem 3.1 is a version of [4, Theorem 1.4] which holds true at any dimension
d ∈ N and for any complex times within the strip Sβ . A result similar to [4, Theorem
1.3] for the many-point correlation functions of field operators at fixed ω ∈ �, instead
of an estimate for their expectation values, easily follows by replacing Condition 2.1
with a similar bound for a fixed ω ∈ �. We again omit the details.

One observation in relation with [4, Theorems 1.3 and 1.4] is important to mention:
For any disjoint partition X1,X2 of X ⊂ Z

d , we deduce from (1 ) and (23) that

�ε(X ) ≤ dε(X1,X2). (32)

By (13) it follows that, for any disjoint partitionX1,X2 ofX ⊂ Z
d such that |X1| = |X2|,

�ε(X ) ≤ d(S)
ε (X1,X2).

Note that the right hand side of the above inequality corresponds to [4, Equation (1.27)]
when X1 = {x1, x3, . . . , x2N−1} ⊂ Z

d=1 and X2 = {x2, x4, . . . , x2N } ⊂ Z
d=1 for

2N ∈ N (different) lattice points. Therefore, our notion of localization for Pfaffian
correlation functionals is weaker than the one used in [4, Theorems 1.3 and 1.4]. Note,
however, that, like �ε(X ), the quantity [4, Equation (1.27)] stays small if the points of
X are packed in clusters containing exactly two points {xk, xk+1}, k = 1, 3, . . . , 2N ,
independently of how far-apart from each other the clusters are. Therefore, our notion
of localization captures qualitatively the behavior of the one used in [4, Theorems 1.3
and 1.4].
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4. Appendix: Log convexity of Multivariable Analytic Functions on Tubes

Fix β ∈ R
+. Let

T1
.= {ξ ∈ C : Im {ξ} ∈ [−β, 0]} = Sβ,

(see (4)) and f : T1 → C be a bounded continuous function. Define the map B(1)
f :

[−β, 0] → [−∞,∞) by

B(1)
f (s)

.= ln

(
sup
t∈R

| f (t + is)|
)

.

We use the convention ln 0
.= −∞ and 0 ·(−∞)

.= −∞. Then, the Hadamard three-line
theorem [20, Theorem 12.3] states:

Theorem 4.1. Let β ∈ R
+ and f : T1 → C be a bounded continuous function. If f is

holomorphic in the interior of T1 then B(1)
f is a convex function.

This theorem has the following generalization to holomorphic functions in several vari-
ables: For all n ∈ N, let Kn ⊂ R

n be the simplex

Kn
.= {(s1, . . . , sn) : s1, . . . , sn ∈ [−β, 0] , s1 + · · · + sn ≥ −β}
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and define, for all n ∈ N, the “tube”

Tn
.= {(ξ1, . . . , ξn) ∈ C

n : (Im {ξ1} , . . . , Im {ξn}) ∈ Kn
}
. (33)

Define further the map B(n)
f : Kn → [−∞,∞) by

B(n)
f (s1, . . . , sn)

.= ln

(
sup

(t1,...,tn)∈Rn
| f (t1 + is1, . . . , tn + isn)|

)

with f : Tn → C being a bounded continuous function. Then, we obtain the following
corollary:

Corollary 4.2. Let β ∈ R
+, n ∈ N and f : Tn → C be a bounded continuous function.

If f is holomorphic in the interior of Tn then B(n)
f is a convex function.

Proof. Fix all parameters of the corollary and assume that f is holomorphic in the
interior of Tn . Take (s1, . . . , sn) ∈ Kn and (s′

1, . . . , s
′
n) ∈ Kn . For all (t1, . . . , tn) ∈ R

n ,
define the function F(t1,...,tn) : T1 → C by

F(t1,...,tn) (ξ)
.= f
(
t1+i(s1(1+ξβ−1) − s′

1ξβ
−1), . . . , tn+i(sn(1+ξβ−1) − s′

nξβ
−1)
)

.

For all ξ ∈ T1, note that(
t1 + i(s1(1 + ξβ−1) − s′

1ξβ
−1), . . . , tn + i(sn(1 + ξβ−1) − s′

nξβ
−1)
)

∈ Tn,

by convexity of Kn . This function is bounded and continuous on T1, and holomorphic
in the interior of T1. Hence, by Theorem 4.1, for all α ∈ [0, 1],

ln

(
sup
t∈R

∣∣F(t1,...,tn) (t − iαβ)
∣∣) ≤ α ln

(
sup
t∈R

∣∣F(t1,...,tn) (t − iβ)
∣∣)

+ (1 − α) ln

(
sup
t∈R

∣∣F(t1,...,tn) (t)
∣∣) . (34)

Since ln is a monotonically increasing, continuous function, for all α ∈ [0, 1],
B(n)

f

(
αs′

1 + (1 − α)s1, . . . , αs
′
n + (1 − α)sn

)

= ln

(
sup

(t1,...,tn)∈Rn
sup
t∈R

∣∣F(t1,...,tn) (t − iαβ)
∣∣
)

= sup
(t1,...,tn)∈Rn

ln

(
sup
t∈R

∣∣F(t1,...,tn) (t − iαβ)
∣∣) ,

which, by (34), in turn implies that

B(n)
f

(
αs′

1 + (1 − α)s1, . . . , αs
′
n + (1 − α)sn

) ≤ (1 − α) B(n)
f (s1, . . . , sn)

+αB(n)
f

(
s′
1, . . . , s

′
n

)
for all α ∈ [0, 1]. 
�
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