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Let T = (r, : i E Z) denote i.i.d. positive random variables with common distribution 
F and (conditional on r) let X = (X1 : t ~ 0, Xo = 0), be a. continuous-time simple 
symmetric random walk on Z with inhomogeneous rates (r,-1 : i E Z). When F is in 
the domain of attraction of & stable law of exponent a < l (so that E(r;) = 00 and X 
is subdiffusive), we prove that (X, r), suitably rescaled (in space and time), converges to 
a natural (singular) diffusion Z - (Zt : t ~ 0, Zo = 0) with a random (discrete) speed 
measure p. The convergence is such that the "amount of localization", E E.ezlP(X1 -

ilr)J2 converges as t ➔ oo to E LzealP(Z. = zlp)P > 0, which is independent of s > 0 
because of scaling/self-similarity properties of (Z,p). The scaling properties of (Z,p) 
a.re also cloeely related to the "aging" of (X, r). Our main technical result is a general 
convergence criterion for localization a.nd ~ing functionals of diffusions/walks y(•l with 
(nonrandom) speed measuresµ(•) ➔ µ (in a sufficiently strong sense). 

Mathematics Subject Classification !J00O: Primary-60K37, 82C44, 60Gl8. Secondary--60F17. 
Key words and phraaes: aging, localization, quasidiffusions, disordered systems, sea.ling limits, 
random walks in random environments, self-similarity. 

1 Introduction 
In this paper we continue the study of localization in the one-dimensional Random Walk with 
Random Rates (RWRR), begun in [1] (or equivalently of chaotic time dependence in the related 
Voter Model with Random Rates (VMRR)-ilee below and [1]). We also relate localization to 
"aging", a phenomenon of considerable interest in out-of-equilibrium physical systems, such as 
giaBses (see, e.g., [2] for a review). 

The RWRR is a continuous-time simple symmetric random walk on Z', X = (X1 : t 2: 
0, Xo = 0), where the time spent at site i before ta.Icing a step has an exponential distribution 



of mean r;, and where the r; 's are i.i.d. positive random variables with common distribution F; 
thus it is a random walk in the random environment, r = (r;: i E zm). 

When F has a finite mean, it can be shown (e.g., by the convergence results of (3), as 
discussed below) that (for a.e. r) there is a central limit theorem for Xe, and more generally 
an invariance principle, i.e., that Mt/,2 converges to a Brownian motion as f ➔ 0. On the 
other hand, when F has infinite mean with a power law tail of exponent a < 1, one expects 
power law subdiffusive behavior (with an exponent depending on both a and cl); for reviews of 
the physics literature on subdiffusivity in random environments, see, e.g., [4, 5]. Logarithmic 
subdiffusivity [6], as occurs in other commonly studied random walks in random environments 
[7], would presumably occur in an RWRR if the tail of F were itself logarithmic, but the more 
natural context for an RWRR is a power law tail for F. 

More striking than subdiffusivity, and the main result of [1], is that for a< 1, d = 1, there 
is localization in the sense that (for a.e. r) as t ➔ oo, 

or equivalently 

supP(Xi = ijr) ft 0 
iEZ 

I:!P(Xt = ijr)]2 ft 0. 
iEZ 

(1.1) 

(1.2) 

An essential pllIJ)Olle of this paper is to relate this localization to an appropriate scaling limit 
of X, in which it turns out that Brownian motion is replaced by a singular diffusion Z (in 
a random environment) - singular here meaning that the single time distributions of Z are 
discrete. We remark that there is also localization in the random walks of [7, 6], as shown by 
Golosov [8], but both the localization and scaling limits are of a somewhat different character 
there (as one would expect in cues of logarithmic subdiffusivity). 

Kawazu and Kesten [9] treated the similar problem of finding the scaling limit of a random 
walk with i.i.d. random bond rates .\; (for transitions from i to i + 1 and from i + 1 to i). Their 
random walk is in fact also related to the VMRR and hence to our RWRR, with .\; = 1/(2r;). 
The scaling limit of [9] (see also [10, 11]) for a < 1, obtained by a similar approach based on 
[3] as the one used here, is also a diffusion, but one that is nonsingular in the sense that the 
single time distributions are continuous. Our analysis of the type of localization exhibited in 
(1.1)-(1.2) (i.e., at individual points) requires a stronger type of convergence to the scaling 
limit than was needed in [9], as we explain later. 

A convenient quantity, with which to express the relation between localization and the 
scaling limit, is the "amount of localization" at time t, as measured by 

q, = E:E[P(Xt = ijr)]2, (1.3) 
iEZ 

where the expectation is with respect to r. A main result of this paper (immediate from 
Theorem (3.2)) is that as t ➔ oo, 'lt converges to a (nonrandom) q00 E (0, 1) (depending on 
a E (0, 1)), which can itself be expressed by a formula (see (1.9) below) analogous to {1.3) with 
the singular diffusion Z replacing the random walk X. 

Our analysis of the scaling limit of ( X, r) will also yield results about aging of the RWRR. 
As in the extensive physics literature on the subject (see, e.g., [2] and the references therein), 
we will consider a quantity R(t.., + t, t..,) that measures the behavior of the system at a time 
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t.,,+t, after it has been aged for timet..,. Normal aging corresponds to there being a well-defined 
nontrivial limit function when t and t.., are scaled proportionally: 

(1.4) 

One interesting example of an R for which such a limit follows from our results is R(t.., +t, t) = 
q,(t..,), where 

qt(t..,) = E 1:[P(Xt.+t = ijr,Xt,.)]2. 
iEZ 

(1.5) 

Of course, qt(O) = <Jt, corresponding to the a.mount of localization after time t, starting from 
a fresh ( t.., = 0) system with Xo = 0 that hlUI not been aged. As with q00 , the limit function 
'R.(8) will be given by a formula (see (1.10)) like (1.5), but with X replaced by the diffusion 
Z. It follows from (1.10) that 'R.(9) tends to 1 lUl 9 ➔ 0 and to q00 as 9 ➔ oo. Other 
examples of RWRR quantities that exhibit normal aging are the (unconditional) probabilities 
P(Xt,.+t = X1,.), which we discuss below, and 

P( max rx, > max rx ) 
t <t'<t +t I O<t'<t ,, 1 

· 
"'- - "' - - w 

(1.6) 

which measures the prospects for "novelty" in this aging system. 
Before explaining more about Zand it's random environment, we make a short digression 

to point out that q00 is a natural object of study also for the related VMRR (as. it is for other 
similar ·spin systems with stochastic dynamics). 

The one-dimensional (linear) VMRR is the continuous-time Markov process Ct with state 
space {u(i): i E Z} = {-1,+l}z in which, at rate 1/r,, site i chooses (with equal probability) 
one of it's two neighbors (say i') and replaces u(i) with u(i'). The initial state u0 is taken 
to be { = ({, : i E Z), with the {;'s i.i.d. and equally likely to be +1 or -1. Chaotic Time 
Dependence (CTD) is said to occur if (conditional on (e, r)) the distribution of u1 has multiple 
subsequence limits as t ➔ oo. (For a discussion of the possible occurence of CTD in other 
more physical spin systems, see [1, 12).) Since the alternative to CTD for this VMRR would be 
for the distribution to converge to the symmetric mixture of the degenerate measures on the 
constant (identically +1 or identically -1) states, CTD is equivalent to the existence of some 
predictability about the state for some arbitrarily large times, based on complete knowledge of 
the inital state (and the environment of rates). In [1], CTD is proved to occur for a fat-tailed 
F (with a< 1) by showing that (for a..e. (!,r) and every k) E[n1(k)le,r] does not converge as 
t ➔ oo, whereas the absence of CTD would require convergence to zero. A natural quantity 
measuring the a.mount of CTD/predicta.bility (see, e.g., (13)) is thus 

(1.7} 

But by the standard fact that a time-reversed voter model corresponds to coalescing random 
walks, it easily follows, by doing the outermost expectation :first over e and then over T' that 

E{E2(u,(0)le,r]} = E(E{E2 (u1(0}lr,e]jr}) = E:l)P(Xt = ilr))2 = q,. (1.8) 
iEZ 

Thus, in the VMRR, the natural dynamical order parameter for CTD is just qoo. 
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Of course, it should be noted, that the existence of the t ➔ oo limit in (1.7) is not at 
all obvious-especially in view of CTD. (The L ➔ oo limit is a consequence of the spatial 
ergodicity of (e, T).) Indeed, we prove its existence by expressing the t ➔ oo limit of (1.8) in 
terms of a scaling limit of (X, T), i.e., by showing that as t ➔ oo, 

q1--+ E :EIP(Z, = zlp)]2 > 0, (1.9) 
•ER 

where (Z,p) is a (singular) one-dimensional diffusion Zin a random environment p. Here 1J > 0 
is arbitrary, and by the singularity of Z, we mean that (conditional on p) the distribution of 
Z, is discrete, even though Z is a bona-fide diffusion with continuous sample paths. We shall 
see why the above expression for qoc,, which describes the amount of localization of (Z,p) at 
times does not in fact depend on 1J (as long as s # 0), a fact that may at first seem surprising 
(since Z, ➔ 0 as s ➔ 0, almost surely). Indeed this lack of dependence follows from the 
ecaling/self-eimilarity properties of (Z, p) which imply that (conditioned on p) the distribution 
of sa/(o+l)z, is a random measure on R whose distribution (arising from its dependence on p) 
does not depend on s > 0. 

Analogously to (1.9), we have 'R.(0) of (1.4)-(1.5) given by 

lim %•(t') = E EfP(Z,+1, = zlp,Z,)]2. 
f'-+co •ER 

(1.10) 

The validity of this limit also follows from the results and techniques of Sections 2 and 3 of 
the paper - see Remark 2.1. Here, the self-similarity properties of (Z,p) imply that the RHS 
of (1.10) depends only on 8 and not on s (for O < s < oo ), explaining the basic signature of 
normal aging - that the asymptotics of q,(t.) depend only on the asymptotic ratio of t/t.,,. 

Another example of an RWRR localization quantity with normal aging behavior is 

(1.11) 

In this case, the asymptotic aging function, 1?.1(8), would have limits of l and O respectively as 
fJ ➔ 0 and oo. Interestingly, a related quantity, 

q;(t,.) = P(Xt.+t' = X,. Vt' E [0,t]), (1.12) 

exhibits what is known as "subaging" (see, e.g., [14], where a one-parameter family of models 
extending the RWRR are studied nonrigorously, for general d). I.e. (assuming, for simplicity, 
that the tail of F satisfies uaP( 'T; > u) ➔ K E (0, oo) ), there is a nontrivial limit when 
t/(t.,,)" ➔ 8 a.at.., ➔ oo, for some O < T/ < l; here T/ = 1/(1 +a) (for O <a< 1). The difference 
in behavior between q' and q* is due to the fact that during the time interval [tw, t.., + 8t,.], 
each visit of the random walk to X,. takes an amount of time of order t!,f<1+a)7 but there are 
of order t::f(i+a) visits. A related fact, in the scaling limit, is that for s, s' > 0, the diffusion 
pr0Ces8 Z has (for a.e. p) 

P(Z.+,. = z. Ip) > 0 but P(Z,+,., = Z, Vs" E [O, s1 Ip) = 0. (1.13) 

This existence of different scaling regimes for different quantities in a single model may be 
compared and contrasted to the search for multiple scaling regimes in the same quantity (see, 
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e.g., [14]), where R(t.,, + 9t:!,, t..,) and R(t,.. + 9't!!'., t,..) with 1/ :/; 11' would both have nontrivial 
limits. (In fact, something weaker than this is claimed in [14] for the q;(tv,) of (1.12).) 

What is this diffusion in a random environment, (Z,p)? The random environment p, the 
spatial scaling limit of the original environment T of rates on Z, is a random discrete measure, 
Li W;§Y;, where the countable collection of (Y;, W,)'s yields an inhomogeneous Poisson point 
process on Rx (0,oo) with density measure dyaw- 1- 0 dw. Note that although pis discrete, 
the set of Y;'s is a.s. dense in R because the density measure is non-integrable at w = Q. 
Conditional on p, z. is a diffusion process (with Z0 = 0) that can be expressed as a time 
change of a standard Brownian motion B(t) with speed measure p, as follows [15]. 

Letting l(t,x) denote the local time at x of B(t), define 

if>::= j l(t,y)dp(y) (1.14) 

and the stopping time ¢: as the first time t when ¢,f = s (so that !{IP is the inverse function of 
¢,P); then z. = B(¢:). For (a deterministic) s > 0, the distribution of Z, is a discrete measure 
whose atoms are precisely those of p; this is essentially because the set of times when Z is 
anywhere else than these atoms has zero Lebesgue measure. 

To see the Jack of dependence of the RHS's of (1.9) and (1.10) on s, we may proceed as 
follows. For ). > 0, consider the rescaled Brownian motion and environment, 

B\t) = >,.-112B(>.t); p>- = 2)>.-112)11"Wid,\-l/2y;­
i 

(1.15) 

Since B.\ and p>. are equidistributed with B and p, it follows that if we define a diffusion z>. as 
the time-changed B>. using speed measure p\ then (Z\p>-) is equidistributed with the original 
diffusion in a random environment (Z,p). On the other hand, on the original probability space 
on which B and p are defined, one has z; = >,.-1/ 2 Z>.ca+il/C•a>., so that the RHS's of (1.9) and 
(1.10) remain the same when s is replaced by A(a+1)/(20>s, and thus cannot depend on s. 

To best understand how ( Z, p) arises as the scaling limit of (X, T ), one should use the fact 
that not only diffusions, but also random walks (or more accurately, birth-death processes) can 
be expressed as time-changed Brownian motions (3, 15]. In particular, if for any E. > 0, we take 
as speed measure 

p<•l := L C.T;6.;, (1.16) 
iEZ 

where the parameter c, > 0 is yet to be determined, and then do the time-change on the 
rescaled Brownian motion B1/<2, the resulting process is a rescaling of the original random 
walk X, namely Z!•l = e.X,/(c.<)· When the distribution F of the r;'s has a finite mean, then 
by the Law of La.rge Numbers, taking c, = f, p<•l converges to (the mean of F times) Lebesgue 
measure and z!•l converges to a Brownian motion as f -+ 0 [3, 16]. On the other hand, 
if 1 - F(u) = L(u)/u0 with a < l and L(u) slowly varying as u -+ oo, then by choosing c. 
appropriately (as fl/a times another slowly varying function as f-+ 0- see (3.8) below) one has 
(from the classical theories of domains of attraction and extreme value statistics) convergence 
(in various senses, to be discussed) of p<•) to the random measure p. 

The idea that there should also follow some kind of convergence of (Z<•> ,p<•>) to (Z,p) should 
by now be quite clear. And indeed the basic convergence results of (3] are enough to imply, for 
example, that a functional like 

(1.17) 
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(for deterministic a, b) c.onve~ges to the c.orresponding quantity for (Z, p). But they are not 

sufficient to get localization quantities likeq•/lc.•l == EE.ea[P(Z(<)(a) = zjp<•>)P to converge. 
As mentioned earlier, the work of (9] was also based on the time-changed Brownian motion 
approach of (3, 15], but for their random walk and scaling limit, the c.onvergence results of (3] 
are sufficient. 

The problem in our case is not primarily with the randomness of p<•> (i.e., of T) and p, 

but occurs already when c.onsidering the nature of convergence of a process y(•l(t) that is 

a Brownian motion time-changed with a deterministic speed measure µ<•>. The c.onvergence 

results of [3] imply that ifµ(<) --+ µ vaguely, then (for example) one has weak c.onvergence of 

the distribution p.(•J of y<•>(to) to the corresponding µ. But we need stronger convergence. 

This stronger convergence is the subject of Section 2, which c.ontains the main technical 

result of the paper, in which weak convergence is combined with :roint process" convergence. 
By point process c.onvergence for (say) a. discrete measure E; wi• o,(•l to I:; w;ow; (where we 

have expressed each sum so that the a.toms are not repeated), we 'mean that the subset of 

Rx (0, oo) consisting of all the (y!•>, w!'))'s c.onverges to the set of all (y;, w;)'s - in the sense 

that every open disk ( whose closure is a c.ompa.ct subset of R x ( O, oo)) containing exactly 
m of the (y;, w;) 'a ( m = 0, 1, ... ) with none on its boundary, contains also exactly m of the 

(yf •>, w!'l)'s for all small f. Our technical result is that vague plus point process convergence 

for the speed measuresµ<•> --+ µ implies the same for the distributions at a fixed time t0 ; i.e., 

;:,<•> --+ ;:,. 
Going from thia result for a sequence of deterministic speed measures to our context of 

random speed measures requires a bit more work, which is presented in Section 3 of the paper. 
The way we handle that, which may be of independent interest, is to replace the the random 
measures p<•> which only converge (in our two senses) in distribution, by a different (but also 
natural) coupling for the various f's than that provided by the space of the original -r;'s so that 
convergence becomes almost sure. We note that almost sure convergence was also obtained in 
the scaling limit results of [9] by means of a coupling argument, but there the coupling was 
an abstract one. In our situation, because of the need to handle point process convergence, a 
concrete coupling seems more suitable, in addition to being more natural. 

We close the introduction by noting that we have restricted attention to the scaling limit 
of a single RWRR. In the context of the the VMRR, which originally led to our interest in 
localization, one should c.onsider the scaling limit of coalescing RWRR's. Furthennore, one 
should also study the scaling limit of the VMRR directly. These issues will be taken up in 
future papers. 

2 The continuity theorem 

Let µ, µ<•>, t: > 0, be non-identically-zero, locally finite mea.,ures on R and let µ4, µ~•), t: > 0, 

be their discrete parts. Let Y;, }1•l, t ~ 0, f > 0, Yt> = Yo = x, be the Markov processes in 
one dimension obtained by time changing a standard Brownian motion through µ<•>, i.e., let 

B = B(a), .s ~ 0, be a standard Brownian motion (with 8(0) = 0) and let 

</i.(x) :::: / l(.s,y- x)dµ(y), ¢(x) = ¢,(x) := ef>j"1(.x), Yi= B(¢,(x)) + x; (2.1} 
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cf>~•>(x) := J l(s,y-x)dµC•>(y), v;C•l(x) = T/>!'>(x) := (c/>i•>t1(x), Yi(<}= B(v;}•>(x)) + x, 
(2.2) 

where l is the Brownian local time of B [3, 15]. Notice that, since l(s, y) is nondecreasing in 
s for all y, c/>,(x) and cf>i•>(x) are nondecreasing in s and so their (right-continuous) inverses, 
!J,1(x) and ~t>(x), respectively, are well-defined. Processes described in this way a.re known in 
the literature as quasidiffusions, gap diffusions or generalized diffusions ([18, 20] and references 
therein). They generalize the usual diffusions in that the speed measuresµ can be zero in 
intervals, thus including birth and death and other processes. 

One fact about those proresses we will need below is the following formula from p. 641 of [3]. 
Let Yo= x; for any Borel set A of the reals, 

{ 1{Y, E A}ds = L ly(t,x,y)dµ(y) 

almost surely, where ly(t, x, y) = l(ip1(x ), y - x ). 

(2.3) 

We will use the arrows ➔ and ~ to denote vague and point process convergences, respec­
tively. l.e.1 given a family v, v<•l, t > 0, of locally finite measures on R with their discrete 
parts v0 , vt, t: > O, we will write v(<) ➔ v to indicate vague convergence, i.e., that for all 
continuous real-valued functions f on R with bounded support J f(y) dv<•>(y) ➔ J f(y) dv(y). 
For the same family, we write v~•l ~ v,1 or v<•> ~ v to indicate point process convergence, i.e., 
that if the atoms of v,1, 11~•) are, respectively, at the distinct locations y;, y}•> with weights w;, 
wJ•>, then the subsets v<•J = {(yj•l, wJ•>n of RX (0, 00) converge to V = {(y;, w;)} as c:: ➔ 0 in 
the sense that for any open U whose closure Vis a compact subset of Rx (0, oo) such that its 
boundary contains no points of V, the number of points in v<•> n U (necessarily finite because 
U is bounded and at a finite distance from R x {0}) equals the number of points in Y n U for 
all small enough £. 

We are ready to state the main result of this section; its proof will begin after two corollaries 
are presented. 

Theorem 2.1 Letµ<•>,µ, y(<), Y be as above and fix any deterministic to> 0 and x ER. Let 
µ(<) denote the distribution of y~•) (with y0<•> = x), let p.;> denote its discrete part, and define 
µ, ji.,1 similarly for Yto. Suppose 

(2.4) 

Then, as i ➔ 0, 

(2.5) 

Remark 2.1 To study limits involving two (or more) times (see, e.g., (1.5}, (1.10), {1.11)}, 
some straightforward extensions of Theorem !U are useful. One of these is that (f.5) remains 
valid if Yo<•> = x<•l with x<•l -+ x. Another is that the single-time distribution µ<•l of y~•l can 
be replaced by the multi-time distribution of (}·t>, ... , Yt~l), with point process cxmvergence for 
measures on Rm defined in the obvious way. 
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Corollary 2.1 Under the same hypotheses, the weights of the atoms of µ~•l and fi.tl satisfy 

1:[w;'>j3 ➔ I:[w,]3 as f ➔ 0. (2.6) 
; j 

Remark 2.2 More ezplicitly, (t.6} takes the form 

E[P(vt> = 11)]2-+ E[P(Y1o = 11)P "i ➔ o, (2.7) 
,ea ,ea 

or, equivalently, if v,<•l' (resp. Y,') is an independent copy of Y,(<) (resp. Yi), then 

P(YJ•)t = y~•l)-+ P(Y~ = Y1o) as E ➔ O. (2.8) 

Proof of Corollary 2.1. 
The convergence µ~•l ~ Jltl implies that if we order the (y,, w;)'s (the locations and weights 

of the atoms ofµ") so that w;, ~ w;, 2'. ... , then the following condition holds. 

Condition 1 For each l ~ 1, there uists i1(E) such that 

IJ8 E-+ 0. (2.9) 

Condition 1 implies that 
I, 

liminQ]w~•lp ~ sup E[w,,]2 = E[w,)2
• 

HO j I, l•l i 
(2.10) 

This condition, together with the distinctness of the (ii,, w;)'s, also implies that for any k, the 

indices j 1(t), ... ,j1,(t:) are distinct for small enough f. Furthermore, it implies that if k and 6 

are such that tii;• > J > tii;•+• , then for small enough t, 

(2.11) 

To see this, note that otherwise, along some subsequence E = t:1 ➔ 0, there would be an index 

j*(f) ~ {j1(t:), ... ,j1,(f)} with liminfw!~(•) ~ J and either (i) ii!:I,i ➔ y• E (-oo,+oo) or else 

(ii) lii!~,)l ➔ oo. Case (i) would contradict µ~•) ~ p.,, while case (ii) would imply that the 

family {r,.<•l} is not tight, which would contradict p.C•l ➔ p. since µ<•l and p. a.re all probability 

measures. 
Using the above choice of k and 6, we thus have 

t t 

lim sup I:[ w}'>jl $ 1:[w,,]2 + lim sup :E 6w;•l = :E[w,,]2 + 6. (2.12) 
<➔0 j /aaal <➔0 j laaal 

Letting k ➔ oo and 6 ➔ 0 completes the proof. D 
Before continuing with the proof of Theorem 2.1, let us note that the above arguments yield 

another corollary. To state it, we denote by 'D{v) the mapping from (0, oo) to {O, 1, 2, ... ,oo} 

with 'D(v)(w) the number of z's in R such that v({z}) = w; i.e., V(v) is the set of weights w; 

appearing in V = {y;, w;} counting multiplicity. Of course, when v is a totally finite measure, 

V(v) will not take the value oo. The above arguments show that µ(<) ➔ µ and µ, ~ I'd 
together imply that V(r,.M) ~ V(r,.), where this latter point process convergence is defined in 

the obvious way, taking into account multiplicities. Thus we have 
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Corollary 2.2 Under the same hypotheses, V(µ<•l) ~ V(µ). 

Proof of Theorem 2.1. 
The first assertion in (2.5) is contained in Corollary 1 of [3]. Actually, the latter result 

is stronger. It states that {0,•>, t E [O, Tl} converges in distribution to {Y;, t E (0, Tl} as a 
process (in the Skorohod topology), T > 0 arbitrary. We will indeed use the stronger result 
in the argument for point process convergence later on. The fixed t0 case is a rather simple 
and straightforward consequence of the Brownian representation (2.1)-(2.2), so we next briefly 
indicate an argument. 

Since l(s,y) can be taken continuous in (s,y) and of bounded support in y for each s, 
the first assumption in (2.5) implies that efii•>(x)-+ ef,.(x) as f -t O for alls. It follows that 
1/,}'\i:)-+ '¢1(x) as f ➔ 0 for all t where iJ,(x) is continuous. It suffices now to argue that for any 
deterministict, ip(x) is almost surely continuous at t. For that, notice that iJ,(x) is discontinuous 
at t (if and) only if ef,(x) has a plateau at height t, i.e., only if efi-r+,(x) - efi-r(x) = 0 for some 
s > O, where T = inf{s'? 0: ef,.,(x) = t}. But, from the definition of ef,(x) and monotonicity 
of l, that means that 

l(T + s, y - x) - l(T, y - x) = 0 for µ-almost every y. (2.13) 

Now, the definition of T implies that efi-r-.,(x) < t for all s1 > O. This implies that B(T) = y0 -x 
for some y0 in the support ofµ. But given that, since Tis a stopping time, l(T + s,y0 - x)­
l(T,Yo - x) is distributed like l(s,O) and thus is strictly positive for alls> 0. The continuity 
of l now implies that there exists o > 0 such that l(T + s, y - x) - l(T, y- x) > 0 if /y -Yol < o, 
which contradicts (2.13). This settles the first assertion in (2.5). 

We claim that the second assertion in (2.5) follows from Condition 1 above (which we have 
yet to prove) and the :first assertion in (2.5). Suppose it does not. According to the definitions 
above, that means that there exists an open set U0 whose closure is in Rx (0, oo) and a sequence 
(c,.) tending to O as n ➔ oo such that jV(<n) n Uol f. \V n U0 \ for all n. By Condition l it 
must then be that iv<•n) n Uol > IV n Uol for all large enough n. That means that either 
there exist i, w• > 0 and sequences (C;), (k;) and (k1), with ½ ➔ 0 as j -+ oo and k; f. ~ 
r all . h h <•'·l !•'·) (<'-) d <•'·> . h . 1or J, sue t at ii1c: ,ii1c{ -+ ii;, w,./ -+ w; an wi.;' -+ w* a.s J -+ oo or t ere eXIst a 
point (y*,w*) ER x (O,oo)\V and sequences (s) and (k;), with S ➔ 0 as j-+ oo, such that 
( V> (<'-)) ( ) · In . h adi . iii.;' ,w1,,' -+ y*,w* as J ➔ oo. e1t er case we get a contr ct1on to vague convergence 
ofµ(,) to µ by taking a continuous function j that approximates suffi.<:iently well the indicator 
function of either y; or y*, depending on the case, and showing that J f dµ<•,J is bounded below 
away from J j dµ. 

It only remains to prove that Condition 1 holds. We will need the following three lemmas. 

Lemma 2.1 The set of locations of the atoms ofµ, {ii,}, is contained in that ofµ, {y;,}. 

Proof. 
It is a result from the general theory of quasi diffusions (18, 19] that for a process Y' living on 

a finite interval/ (with appropriate boundary conditions), there exists a symmetric continuous 
transition density ii(t, x, y) which is strictly positive and such that 

P(l';' E dy/Y~ = x) = pHt,x,y)µ(dy) fort> 0, x,y E /. (2.14) 
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This would imply the result immediately if our process Y were such a finite interval process, 
but it is not. However, if we condition on its history being contained within a fixed in_terval, 
then we can use (2.14). The details are as follows. 

Let At,I = {Y, E [-l,l] for s :5 t}, where l > lxl, t ~ 0. Then, on A1,1, {Y,,s :5 t} is 
distributed like {Y;, s :5 t} on the analogous ~.,, where Y' is the diffusion with speed measure 
µ' := P.1(-I-I,l+l) (and boundary conditions at ±(l + 1) as in {18]). More precisely, there is a 
coupling between Y, Y' and a third process Y" with speed measure µ.' and killing boundary 
conditions at ±(l + 1), such that {Y,,s :5 t} = {Y;,s :5 t} on Af.1• Thus 

P(Y, = YolYo = x)- t:1,1 = pj(t,x,yo)µ'(yo)- ~,1, (2.15) 

where I= [-l -1,l + 1] and 0 :5 f:t,hG,1 :5 P((.M,,)c). ff µ(yo)= 0, then P(Y, = YolYo = x) :5 
P((~,1)c) for all l. Then P(Y, = YolYo = x) :5 li:m,➔oo P((~,1)°) = 0. To obtain the vanishing 
of the last limit, we first notice that, for given T > O, P(~,1) ~ P(B. + x E {-l, ij, s :5 
T)- P(tf,1(x) > T), where Bis the standard Brownian motion in (2.1). The latter probability 
is bounded above by P{¢-r{x) :5 t). Thus liminf,➔00 P(A~1) ~ 1 - limsuPT__, P(¢-r(x) :5 t). 
From (2.1) and the known fa.ct that almost surely limr➔oo l(T, x') = oo for all x', the latter lim 
sup is seen to vanish. The proof of the lemma is complete. D 

Lemma 2.2 For all Yo, P(Y, = YolYo = z) is continuous int> O. 

Proof. 
In view of Lemma 2.1, it suffices to coruider the case where µ(yo) > 0. Lett', t be such that 

It' - ti :5 1. Imitating the argument of the proof of that lemma, 

IP(Y,, = YolYo = z)- P(Y, = YolYo = x)I 
:5 IYJ(t,x,yo)- pHf',x,yo)lµ(yo) + P({M,1)°) + P((.M,,1)c). (2.16) 

Then limc•➔t IP(Y,, = YolYo = x) - P(Y, = YolYo = x)I :5 P((~~,)c) + P((M+1,1)c) for all land 
the result follows as in the proof of Lemma 2.1. D 

Lemma 2.3 The set of locationa of the atoms ofµ., {ii;}, containa that ofµ, {y;,}. 

Proof. This is a corollary to the continuity lemma just given and formula {2.3). From that 
formula, we have 

t P(Y. = 11o!Yo = x)ds = E(ly(t',x,yo)-ly(t,x,11o))µ(y0 ). (2.17) 

We claim that the above expectation is strictly positive for all x, y0 and t' > t, if µ(yo) > 0. 
This is a consequence of the definition (see below {2.3)) of Ly and the fa.ct that there is strictly 
pOBitive probability that between the two stopping times, T/,,(x) and T/,,,( x ), the Brownian motion 
B will pass through Yo - x and hence will strictly increase its local time there. Thus the integral 
on the left hand side of (2.17) is also strictly positive. This implies that for all x, in every open 
interval of the positive reals, there exists an s such that P(Y, = YolYo = x) > O. This and 
the continuity in time of these probabilities imply that, in every interval (0, t) there exists an 
s such that P(Y, = Yo!Yo = x)P(Yi-• = YolYo = Yo) > 0. By the Markov property and time 
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homogeneity of Y, the latter product is a lower bound for P(Yt = Yo\Yo = z). The lemma 
follow,. □ 

We return to the proof of Condition 1. Let i1 be such that y;, = Y,j· Since µ~•l ~ µd, there 

exists j;(f} so that (Y~:/,1, w!;/.1) ➔ (y,1, w,1) as f ➔ 0. Since, by Lemmas 2.1 and 2.3, {17i'>} = 
{y}~>}, we can define j,(!) so that yJ:l,i = ytl,)· We already then have y);l,) ➔ th, (= y,1). To 

obtain Condition 1, we must show that also wJ:[,1 ➔ w,,, i.e., that P(Y~•J = iitl,i) ➔ P(Yt0 = 
y;,). 

Let us simplify the notation a bit by setting to = 1, iitl,) = Y):/.1 = y., y;, = Y,1 = Yo, 
l•l -(•l - d - - Th O h !•l " W;/(•) = w., w,1 = Wo, w;,(,) = w. an w;, = Wo. us, as f ➔ , we ave µ ➔ µ, y, ➔ y0, 

w. = µl•l(y,) ➔ µ(yo) = w0 , a.nd we must show that w, = P(Y;(•l = y,) ➔ P(Y1 = Yo) = Wg. 
We also already know that Yt1 ➔ Yi in distribution (i.e., µC•l ➔ µ). It follows that 

limsup,-+0 P(Yj(,) = y,) :5 P(Yi = y0), since otherwise µC•) ➔ µwould be violated. So we only 
need to prove 

By convergence in distribution, 

P(½ = Yo) = limP(yo - o < Y1 <Yo+ o) &-+O 

< f!Jli1fjnf P(yo - o $ Yj(,) $Yo+ o) 

$ fun [liminfP(Yi"1 = y.)] [limsup P(11o - 0 :5C~C•J $Yo+ o)] . 
&-+0 ,-+0 •-+0 P(Y;.' = y.) 

Hence to prove (2.18), it suffices to show that 

1i I
. P(yo - o < y/•l S Yo+ o) < l m 1msup 

&-+0 <➔D P(};C<J = y,) -

or, equivalently, that 

limliminf P(Yj<•J = y,) > 1. 
&➔D ,-+0 P(yo - o :5 Yj(,) .$ Yo + o) -

(2.18} 

(2.19) 

(2.20) 

Given any small o > O, we want to find a small o' = o'( o) > o with o' ➔ 0 as o ➔ 0 and 
small 7 = 7(o) with O < 7 < 1, such that the following will be valid. 

(I,) f!Jli~tnf P (Yo - o' $ Yj~T :5 Yo+ o' !Yo - o $ Yj(,) $Yo+ o) = 1 

(II,) l~lilfjnf p (110 - 0 s Yi~r s Yo+ 01110 - o' $ Yi~r s Yo+ o') = 1 

(III,) Jim Jim inf p ( inf y;(•l :2: Yo - o'' sup Yi(<) s Yo+ o' IY1~T E [Yo - o, Yo+ o]) = 1 &-+O <-+0 tE[l-T,l] tE[l-T,1] 

(IV,) limliminf P (Y/'> = y. for some t E [l - 7, I] IYi~r E [yo - o,yo + oJ) = I &-+O <➔0 
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H (I.)-(IV.) hold, then (2.20) would be a consequence of 

lim limsupsup P (Y,1•) ,f- y, and 1';(<) E [y0 - o',yo + 61 for all t E [0,s] jYo(<) = y,) = 0. 
,P-+0 •-+0 •>0 

• • (2.21) 
But this follows from the assumptions µC<l ➔ µ and µ(<) ~ µ (so that µM(y,) ➔ µ(yo)) as 
t ➔ 0 and the following lemma. ·· ' 

Lemma 2.4 For any open interval I containing yC<l, ' 

(2.22} 

Proof. 
The first step of the proof is similar to part of the proof of Lemma 2.1, except here we use a 

coupling between the original process Yt> and a different process on the finite interval, namely 
the process Y,, whose speed measure is the finite measure µ<•l • 11. (Basically, Y, has reflecting 
boundary conditions at both endpoints of I.) Let A,,1 denote the event that Y,(•l E / for all. 

t E [0,s]; then we take a coupling in which {)1•>,o :5 t :5 s} equals {Y,,O :5 t $ s} on A.,1. 
Then the probability in (2.22) equals 

P(Y. # y, and A,,1IYo-= y,) $ P(Y. # y.lYo = y,) = 1 - P(Y. = y.jYo = y,). (2.23) 

The proof is completed by applying the following lemma with Y replaced by Y, µ by µl•l • Ir, 
and y by y •. □ 

Lemma 2.5 Let s ~ 0 and y E R; then 

( I 
µ(y) 

P Y. = 11 Yo= 11) ~ µ(R)" (2.24) 

Proof. 
We may assume that µ(y) > 0 and µ(R) < oo, since otherwise the claim is trivially true. 

The Markov process Y has [µ(R)J-1µ as its unique invariant distribution. Let T, denote the 
transition semigroup acting on L2(R,dµ): 

T, : /(x) i--+ E(/(Yi)IYo = z). (2.25) 

Then T, = e1c is a continuous self-adjoint contraction semigroup, the generator £ has a simple 
eigenvalue 0, with normalized eigenfunction the constant function cJ(x) = [µ(R)J- 112, and the 
rest of its spectrum strictly negative. Let lll(x) be the (normalized in V(R,dµ)) function 
[µ(y)J- 1l21,. Then by the spectral theorem for the generator C, and denoting by(·,•) the inner 
product in L2(R,dµ), 

P(Y, = 11IYo = y) = ([µ(y)J- 11,,T,1,) = (\Jl,e1c\JI) = l(il',~)12 + [~ e"dv(l), (2.26) 

where v ( the spectral measure of Ill restricted to (-oo, 0)) is a totally finite non-negative measure 
on (-oo,0). It follows that P(Y, = 11IYo = y) is non-increasing ins and converges, as~ ➔ oo, 
to l(IP, 4i)ll = µ(y)/µ(R). The proof is complete. □ 

12 



It remains to show that (I,)-(IV,) hold (for some o'(o) and ,(6)). From the convergence 
in distribution (in the Skorohod topology) of the processes ((3]; see the first paragraph of this 
proof, following Corollary 2.2), we have, for example, that 

liminf,-+0 P (11~r E [Yo - 6',Yo + 61) ~ P (Yi-r E (Yo - 6', Yo+ 6')) 
= lim.r11t11 P (Yi-r E [yo - 6", Yo+ 6'1), (2.27) 

lim sup P ( Yj(•l E [Yo - 6, Yo + 6j) ::5 P (Yi E [Yo - 6, Yo + 6]), (2.28) 
•--+<> 

liminf,-+0 P (Yt> E [Yo- 6', Yo+ o'] for all t E (1 - i, 1]) 
~ lim.s"ti' P (Y, E [yo - o", Yo+ 6'1 for all t E [1- i, 11), etc. (2.29) 

Thus, (I,)-(111,) are seen to follow from the corresponding (1)-(III) with y(•l replaced by Y 
(and liminf,-+0 deleted). For (IV,), a different argument is required, because the usual notions 
of convergence in distribution of y(•) to Y will not work directly for (IV,) and the analogous 
(IV). Instead, we replace (IV,) by a stronger condition (IV~), stated in terms of the Brownian 
motion B of (2.1)-(2.2): 

(IV~) ~li~ P (Q,,.,,[1-r,115 Yo- o, Q,,.,,[i-r,iJ ~Yo+ 6jYi~r E [yo- O,Yo +6J) = 1, 

where 

(2.30) 

and q•.s,(o,b] is defined analogously with inf replaced by sup. This condition is stronger because 
µC•l(y,) > 0 and so y(•l cannot skip over y,. Now, as above, by the convergence in distribution 
of y(,) to Y, it suffices to prove the corresponding condition (IV') for Y. 

It remains to show that (1)-(III) and (IV') hold for some 5'(6) and i(o). 
Since the distribution of Y,_, has an atom at Yo, it follows that 

P(Y1o = YolY,., E U/0 - o", Yo+ 5'1) ➔ 1 as o" ➔ 0 (2.31) 

for each t0• From this and Lemma 2.2 (and the vague continuity int of the distribution of Y,, 
from, e.g., [3]), (II) follows (provided 6' ➔ 0 as 6 ➔ 0). 

Similarly, assuming o' ➔ 0 as o ➔ 0, we can replace (I) by 

(I') lim P (Yi-r = YolY1 = Jlo) = 1. i-+0 

But this follows, assuming , ➔ 0 as o ➔ 0, again from the continuity of P(Yt = Yo) in t > 0. 
Let us take (IV') now. The probability there is bounded from below by 

inf P ( inf B(s)+r~Yo-5, sup B(a)+r~Vo+olYol•>=z). 
zeaup,,,.nbii,-6,1111+6) •E[0,"'7{s)) aE(0,"'7{,:)J 

(2.32) 
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Let S6 denote the time it takes for B(s) + y0 - o to first reach Yo+ l, a.nd then come back to 

y0 - l,. Then the expression in (2.32) is bounded from below by 

(2.33) 

Now S& ➔ 0 as l, ➔ 0 almost surely. From the almost sure continuity of l, we have l(S6, y -

(Yo - cS")) ➔ l(O, y - y0) ::: 0 as cS" -+ 0 and from this and the monotonicity of l in t and the 

fact that l( t, •) has compact support almost surely for every t, it follows straightforwardly that 

4>s~(Yo- cS") ➔ 0 as cS"-+ 0 almost surely. That means that the probability in (2.33) would tend 

to 1 as l, ➔ 0 for any fixed r > 0 (i.e., not depending on cS"). But then we can choose a sequence 

T = r(cS"), with T ➔ 0 as l, ➔ 0, such that it still tends to 1 as cS" ➔ 0. This establishes (IV'). 
Finally we need to choose l,' so that (III) is valid. The ai-gument is a.nal.ogous to the a.hove 

one for (IV'). The probability in (III) is bounded from below by 

inf P ( inf Y, ~ Yo - o', sup Y, ~ !lo+ o'I Yo= :i:) . (2.34) 
:i,&upp,.n(..,-S,111>#] IE(0,71 te[o,7'] 

Let Y,' be a copy of Y,, starting at y0 - l, at time O and let Y," be a copy of Y,. starting at 

. Yo+ l, at time 0. Let TJ,, and TJs, denote the time it takes for Y,' a.nd Y," to first reach beyond 

(yo - l,', Yo + l,'), respectively, and let r = T( l,) be a.a chosen in the previous paragraph with 

r ➔ 0 a.so ➔ 0. Then the expression in (2.34) is bounded from below by 

(2.35) 

Let us take the first term of (2.35). Consider S}6,, the quantity corresponding to TJ6, for 

B(s) + Yo - o. Then, if l,' were fixed, we would have that SJ,, ➔ S:.S, as l, ➔ 0 almost surely. 

Now T/6, > T if t/Js-,,,(Yo -l,) > T. By the same reasoning as above, we have, for fixed o', that 

4>.s;,,(Yo - l,) ➔ t/Js~
1
,(yo) as o ➔ 0 almost surely. That means that, as 6 ➔ 0, the first term 

of (2.35) is bounded below by P(<l>s~
1
,(y0 ) > 0) = 1 for any fixed o' > 0, since S{,s, > 0 for 

any o' > 0 and <l>,(y0 ) > 0 for all s > 0 almost surely. That means that P(21,, > T(o)) ➔ 1 

as o ➔ 0 for any fixed o' > 0 and the same can be argued analogously for the second term 

of (2.35). Thus we can choose a sequence l,' = o'(o), with 6' ➔ 0 as o ➔ O, such that (2.35) 

tends to 1 as l, ➔ 0. This establishes (III) and the theorem. O 

3 Scaling limit for a random walk with random rates 

Let X,. t ~ O, Xo = 0, be a continuous time random walk on Z with inhomogeneous rates given 

by .X; = T,-
1

, i E Z, where T;, i E Z, are i.i.d. random variables such that P(To > 0) = 1 and 

P(To > t) = L(t)/ta, where Lis a nonvanishing slowly varying function as t ➔ oo and a< 1. 

Consider the Levy process (see, e.g., [21, 22, 231) Va-, :r E R, Vo = 0, with stationary and 
independent increments given by 

E [e1•(Ye+ao-V .. )] = ea,.fo'"'<•;,._1)..,-l-ad.,, 

for any :ro E R and x ~ 0. It satisfies 

lim y0 P(V,, > y) = 1 
~-+co 
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([17], Theorem XVII.5.3). Let p be the (random) Lebesgue-Stieltjes measure on the Borel sets 
of R associated to V, i.e., 

p((a,b]) = V,. - V .. , a,b ER, a< b, (3.3} 

where we have chosen the process V to have sample paths that are right-continuous (with 
left-limits). Then 

dp dV - = - = L w; ~(x - x;), dx dx ; (3.4) 

where the (countable) sum is over the indices of an inhomogeneollB Poisson point process 
{(x;,w;)} on Rx (D,oo) with density dxaw-1-a dw. 

For each f > D, we want to define, in the fixed probability space on which V and p are 
defined, a sequence rt>, i E Z, of independent random variables such that 

T;(,) ~ To for every i E Z (3.5) 

(where~ denotes equidistribution and To is as above) and with the following property: For a 
given family of constants c,, ( > D, let 

(3.6) 
1=-oo 

we demand that 
p<•> ➔ p and p(•) ~ p as f ➔ D almost surely. (3.7) 

The next proposition states that (3.5) and (3.7) hold for the following c, and T;<•>•s: 

c, = (inf{t ~ 0: P(ro > t) $ f})-1 
(3.8) 

rl'1 = ~ g,(V.(i+l) - V,;), (3.9) c, 

where g, is defined as follows. Let G : [O, co) ➔ [O, oo) satisfy 

P(Vi > G(x)) = P(ro > x) for all x ~ O. (3.10} 

G is well-defined since Vi has a continuollB distribution. Notice that that G is nondecreasing 
and right-continuo11B and thus has a. nondecreasing and right-continuous generalized invene a-1

• Let g, : [O, oo) ➔ [O, oo) be defined as 

g,(x) = c,,G-1(f-l/ax) for a.ll z ~ 0. (3.11) 

Proposition 3.1 {9.5} and (9. 7) hold for c,, and rl•l as in (9.8)-(9.11}. 

Proof. We will prove (3.5) now and postpone (3.7} until later in this section (following Theo­
rems 3.1 and 3.2). 
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To establish (3.5), by the stationarity of the increments of V, it suffices to take i = O. Then, 
forf>O 

P(r~•l > t) = P(g,(V,) > c,t) = P(V, > g;1(c,t)) = P(V, > f1l0 G(t)), (3.12) 

where g;1 is the right-continuous inverse of g., and we have used the easily checked fact that 
g;1(-) = f 1l0 G(·/c;). The desired result (3.5) now follows by the scaling relation V, ~ e:1l 0 Vi_ 
(see (3.1)) and (3.10). □ 

We consider next the scaling limit of the random walk X,. Let 

zf •l = ,Xt/(c.•l• t 2: O. (3.13) 

To study the limit of z(•I, in the presence of the random rates, which themselves converge 
vaguely and in the point process sense, but only in distribution, we will need a weak notion of 
vague and point process convergence, M follows. Let Cb be the class of bounded real functions 
/ on the space M of locally finite measures (on R) that are weakly continuous in the sense 

that /(µn) ➔ /(µ) as n ➔ oo for allµ, µn, n 2: 1, in M such that bothµ., ➔ µ andµ.,~µ 
as n ➔ oo. 

Definition 3.1 Let P, P., e: > 0 be probability measures on M. We say that P, converges 

doubly weakly to P, denoted P, ~ P, if, as t ➔ 0, 

ff dP, ➔ ff dP for all f E C.. (3.14) 

We also use the notation ,rC•I ~ ,r for random measures ,rC•I and 1r, whose distributions are P, 
and P respectively. 

Let z, be the (random) quasidiffusion }'j as in (2.1)-(2.2) above, but with speed measure 
µ taken to be (random) discrete measure p of (3.3)-(3.4) associated with the Levy process 

V. For t0 > 0 fixed, let p and ;;(•I be the (random) probability distributions of Zt,, and zt>, 
respectively. We can now state the following corollaries to Proposition 3.1, Theorem 2.1 and 
Corollary 2.1. 

Theorem 3.1 As , ➔ D, 
(3.15) 

Theorem 3.2 As t ➔ 0, 

(3.16) 

Proof of Theorem 3.1 
z,(•> is distributed as a standard Brownian motion time changed through the speed measure 

pl•) (see (1.16) and the surrounding discussion in the Introduction). Let p and p<•> be as 
in (3.3) a.nd (3.6) and let z<•l be a standard Brownian motion time changed through p<•l. By 
Proposition 3.1, 

(3.17) 
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To obtain (3.15), it is thus enough, by (3.17) and dominated convergence to show that p(,), the 
probability distribution of zt>, (which is random beca.UBe of its dependence on p<•> and hence 
on the Levy process V) satisfies: p<•) ➔ p and p<c> ~ p almost surely. But that follows from 
Proposition 3.1 and Theorem 2.1. □ 
Proof of Theorem 3.2 

Similarly, it suffices to prove that almost surely 

L [P<•>({x}f ➔ L [p({z}t 
:,;ER :,;ER 

(3.18) 

and that follows from Proposition 3.1 and Corollary 2.1. D 
It remains to derive (3.7) and thus finish the proof of Proposition 3.1. For that we will need 

two main lemmas, as follows. 

Lemma 3.1 For any fixed y > 0, g<•>(y) ➔ y as f ➔ 0. 

Lemma 3.2 For any 8' > 0, there exist constants C' and C" in (0,oo) such that 

g,(x) $ C'x1
-

61 for fl/a$ x $ I and f $ C". 

The proofs of these two main lemmas are based on the following four subsidiary lemmas, 
whose proofs a.re given later. 

Lemma 3.3 ! P (To > ..!..) ➔ 1 as £ ➔ 0. 
f c. 

1 ( ") 1 Lemma 3.4 For y > O, - P To > - ➔ - as t: ➔ 0. 
f C. ya 

Lemma 3.5 For any A> O, ~ ➔ A-l/a as f ➔ 0 and thus (by standard results, as in {17}) 
C>., 

c, = t:1/a i( c 1 ), where L is a positive slowly varying function at infinity. 

Lemma 3.6 There ezists A > 0 sufficiently small such that a-1(y) $ l/c:i.1.,-. for y ~ 1 or, 
equivalently, g.(x) $ c,./c>.</z<> for x ~ t 1la. 

Proof of Lemma 3.1 
Let g-;1 be the right-continuous generalized inverse of g,. To prove g,(y) ➔ Y, it suffices to 

prove that g-;1 (y) ➔ y. 
Now G-1(½) ~ To, SO g.(t:11"'½) = c.G-1(c1/afl/a½) ~ C.To, and thus P(To > y/c.) equals 

P(C.To > y) = P(g,(t:lfa½) > y) = P(t:1/"'½ > g;1 (y)) = P(½ > f-l/ag;1 (y)). (3.19) 

By (3.2), 
(3.20) 

as E ➔ O. By (3.19) and Lemma 3.4, 

f-lP(Vi > f-1/ag;l(y)) = f-lp(To > y/c,) ➔ I/ya (3.21) 
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as f ➔ 0. This implies that P(½ > c 1l 0 g;1(y))/P(Vj > c 1/ay) ➔ 1 as f ➔ 0 and this 
plus (3.20) implies that limsup.-+0g;1(y) :5 y and liminf.-+0g;1(y) ~ y, completing the proof 
of Lemma. 3.1. D 

Proof of Lemma 3.2 
By Lemmas 3.5 and 3.6, for x 2: ft/a, 

- 1 

( ) < >.-1/a L(c ) 
g. x - x L((xa/>.)cl) 

(3.22) 

for>.> O small enough; the value of>. will be chosen later. We now use a. result from p. 274 of [17] 

a.bout slowly varying functions, stating that L(x) = a(x)eh ¥ 411
, where a(x)-+ c E (0, oo) a.s 

x-+ oo and .6.(y) ➔ 0 a.s y-+ oo. The quotient in the right hand side of (3.22) then becomes 

(3.23) 

If f :5 .\ so that ( x 0 
/ .\ )c1 2: 1 / .\ 2: c 1

, then the absolute value of the latter integral is bounded 
a.hove by 

(3.24) 

where 6 = 6(.\) = sup{j.6.(y)j,y > 1/>.}, and thus the exponential in (3.23) is bounded above 
(for.\ :5 1, x :5 1) by 

>.-6x-a6. (3.25) 

Thus, given 6' > 0, we choose .\ E (0, 1) such that a6(.\) :5 6' and such that a(y) E [c/2, c] for 
y 2: >.-1 • The lemma. now follows from (3.22)-(3.25) with C' = 4>.-(1+6')/a and C" = .\. □ 

To complete the proof of our two ma.in lemmas, it remains to prove the subsidiary Lemmas 
3.3, 3.4, 3.5 and 3.6. 

Proof of Lemma 3.3 
By the definition (3.8) of c,, P( To > c;-1) :5 E and P( To > x) > f for all x < c;-1• Thus, if 

the statement of the lemma. is not true, then there must exist 6 E (0, 1) and a sequence (Ei) 
with f; > 0 for all i and f; -+ 0 as i ➔ oo such that P( r0 > c;;1

) :5 Of; for all i. But then, given 
01 such that Jl/a < 6' < 1, we have that P(r0 > 6'c;;1) > t:; and so 

P(r0 > 6'c;;1) > 
0
_1 

P(To > c;;1) - (3.26) 

for all i. Since c;;1 -too and P(ro >·)is regularly varying a.t infinity (with exponent -a), it 
follows that for any .\ > 0, 

lim P(ro > .\t) = >.-a 
Hoo P('l"o > t) ' 

which contra.diets (3.26) since (6')0 > 6. □ 
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Proof of Lemma 3.4 
This is a. consequence of Lemma. 3.3, the fact that c;-1 ➔ oo as t: ➔ 0, and (3.27), from 

which it follows tha.t 
P( To > y/c,) 1 
,.......,.-~.,.......,.. ➔-

P(To>l/c,) y0
' 

Proof of Lemma 3.5 
By Lemma. 3.3, {).t:}-1P(To > 1/c>.,) ➔ 1 or equivalently c 1P(To > 1/c,.,) ➔ >.a.sf ➔ 0 

while, by Lemma. 3.4, C 1P(ro > y/c,) ➔ l/y0
• This implies that taking y0 = >.-1 that 

c,>.11°/c>., ➔ 1 or c,/c>., ➔ >,-l/a as t: ➔ 0. 

Proof of Lemma 3.6 
To show that G-1(y) :5 z, it is enough to show that G(z) > y. Thus we want to prove 

that G(l/c>./y>) > y for y ? 1 and some>. > 0. By the definition (3.10) of G, G(x) > y 
would be a. consequence of P(½ > y) > P(ro > x), where we take x = 1/c>.J,a, Now there 
exists K > 0 such that P(Vi > y) > K/y0 for y ? I (by (3.2)), so it suffices to show that 
P( r0 > l/c>.1,a) :5 K/y0 for y ~ I and some,\ > O; or, equivalently, taking f = ')../y", it suffices 
to show that for some A> 0 and all t: :5 >., P(To > 1/c,) :5 Kt:/A, or P(r0 > 1/c,)/t: :5 K/>.. 
By Lemma. 3.3, we may choose>. small enough so that for c :5 A, P(To > 1/c,)/t: :5 2 and also 
small enough that K / A ? 2. 

Completion of Proof of Proposition 3.1. We still have to prove (3.7). This will be done 
using our two main lemmas 3.1 and 3.2. The point process convergence of (3.7) would follow 
straightforwardly ifwe knew that g,(x,) ➔ x0 a.st: ➔ 0 whenever x, ➔ xo > 0. To obtain that, 
due to the monotonicity and right continuity of g,(·), it suffices that g,(y) ➔ II as c ➔ 0 for 
a.ny fixed y > O, a.nd that is given by Lemma. 3.1. 

We argue next why the vague convergence of (3.7) follows by using both Lemma. 3.1 and 
Lemma 3.2. Let f be a. continuous function with bounded support I. Then 

ff dr,(•) = L f(t:i)g,(V.(i+I) - V.;). 
;e.-1 1 

(3.28) 

For y > 0, let J, = { i E c 1 I : V.c,+i) - V,; ? y }. To estimate (3.28), we treat sepa.ra.tely the 
sums over J5, J,,,. \Ji and c 1 I\J,,,., with 6 > £

1/m. From Lemma. 3.1, it follows that a.st: ➔ 0, 

L f(t:i)g,(V.(;+1) - V.;) ➔ L f(x;)w;, (3.29) 
iEJ, j:w;~• 

where {(x;, w;)} is the Poisson point process of (3.4). 
By Lemma. 3.2, we have that, given 6' > 0 small enough (to be chOBen shortly), for some 

finite constant C, 

L f(ci)g,(V.(i+l) - V.,) ~ C L (V.(i+l) - Va)1-•'. (3.30) 
iEJcl/• \J, iEJ41/a \J, 

The latter sum is bounded above by 

W5:= L wJ-6
'. (3.31) 

j:s;El,w;~6 
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With 5' > 0 chosen small enough so that 5' + a < 1, we claim that W := lim.1-+0 W1 = 0 
almost surely. Indeed, note that W is well defined in any case by monotonicity and is of course 
non-negative. We also have, by a standard Poisson process calculation, that 

E(Ws) = III t w1- 1' w-i-a dw < oo (3.32) 

for all o > 0 and E(W6) ➔ 0 as o ➔ 0. By dominated convergence, E(W) = 0 and the claim 
follows. 

Finally, by the definition (3.11) of g, and its monotonicity, we have that g,(:r) ~ g.(£11°) = 
Cc,_ for :i: ~ fl/a, where C is some finite constant. It then follows that 

L f(a)g,(V.(i+l} - V.;) ~ C'c,_ L ~ C"c,f-l ➔ 0 (3.33) 
;e,-11\J,11• ie,-11 

as f ➔ 0, by Lemma 3.5, since a < 1. 
Combining the above estimates, we get that J f dp(<) converges to 

lim L f(fi)g,(V,c;+1) - V.;) = lim L f(:i:;)w; = Lf(:i:;)w; = j f dp. □ 
<➔O ie,-1 J l➔O j:w; ~• ; 

(3.34) 
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