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Abstract. The objective of this work is to describe a numerical method, based on the rigorous 

mathematical foundation of Asymptotic Homogenization, used to assess the effective properties of 
laminates. Despite being a well-established method, the numerical assessment of the normal-shear 

coupled properties of the fourth-order elasticity matrix is rarely mentioned. At this work, a 

periodically laminated composite is described by a unit cell and the numerical relations of the 
Asymptotic Homogenization method are addressed in order to obtain all the 21 independent 

components of the elasticity matrix. Two main scenarios are considered: the first one comprises a 

stacking of orthotropic plies and the second one considers an isotropic interface in between the 

orthotropic plies. Several angles and stacking sequences are considered The results founded agree 
very well with the analytical results found in the literature. 

 

 

1. INTRODUCTION 

The usage of composites has risen in the past decades and, consequently, the urge of reliable 

methods for the analysis of that kind of material is an important engineering task. An important aspect 

of designing composite structures lies on the determination of the effective mechanical properties of 
the material. Over the past year, several numerical homogenization methods have been used to 

accomplish that task, as seen in [1-4]. 

Here, one can highlight the Asymptotic Expansion Method (AHM) [5-11], which is a rigorous 

mathematical formulation used to assess the behavior of heterogeneous materials. On a linear elasticity 
context, the AHM considers a two-scale asymptotic approach to account for the small variations on the 
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mechanical properties of the heterogeneous media hence obtaining the average or homogenized, 
properties of the media. 

Despite the numerical homogenization methods for obtaining the effective properties of a 

heterogeneous medium are very common in literature, the assessment of the normal-shear coupled 

components of the elasticity is rarely observed. 
Thus, this work focus on the discussion and application of the Asymptotic Homogenization 

Method to obtain all of the 21 independent components of the elasticity tensor of three-dimensional 

media, including the coupled components. A unit cell, under periodicity constraints, is considered in 
order to represent a heterogeneous media. In the present study, a periodically laminated composite is 

considered in two distinct scenarios, one with an isotropic interface between the plies and another with 

no interface. Initially, the main considerations regarding the method, as long as the mathematical 

formulation alongside the numerical solution, are presented. Next, several stacking sequences are 
analyzed considered the two aforementioned scenarios and the numerical results obtained with the 

AHM approach are compared to the analytical solution found in the literature. Finally, the conclusions 

and suggestions for further works are pointed out. 
 

2. MATHEMATICAL BACKGROUND 

The Asymptotic Homogenization Method (AHM) uses the concept of a Unit Cell to describe a 
heterogeneous media, in other words, there is a small portion of the domain that repeats itself in a 

pattern describing the whole domain. The method follows, basically, three assumptions [7]. The first 

one considers that, for the elasticity problem, the displacement field of the media can be written as an 

asymptotic expansion. The second one states that the analysis can be made by using two separate 
scales, one at the microscale (Unit Cell) and another one at the macroscale (Heterogeneous media) and 

that both are related by a small parameter ϵ≪1. The third consideration is that the displacement field 

on opposite sides of the unit cell is the same, thus enforcing the periodicity constraints to the unit cell. 
The mathematical development of the method is well established in the literature and, as 

shown by Hassani and Hinton (1998) [10], states that the homogenized fourth-order elasticity tensor of 

three-dimensional media can be found by 

 

Cijkl
H

=
1

|Y|
∫ (Cijkl-Cijpq

∂χ
p
kl

∂y
q

) dY,
Y

                                                                                                (1) 

 

where Y is the dimension vector of the RVE, y is the coordinate vector and χkl is the periodic solution 

of the equilibrium problem given by 
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where v is a vector of virtual displacements. In order to obtain all of the 21 independent constants of 

the homogenized tensor, the equilibrium problem must be solved for six load cases kl. This method 

considers periodic media, thus not representing correctly a finite laminate.  Equations (1) and (2) can 
be written, in a finite element form, respectively, as [11,12] 
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where B is the strain-displacement matrix, ckl is the column of the elasticity matrix associated with the 

indexes kl and χ̂
kl

 is the nodal solution of the equilibrium. As shown in [13], the right-hand side of Eq. 
(4) can be seen as an initial prescribed strain load case, thus, those force vectors enforce unitary strains 

in the given direction kl. This result is used in order to apply the load cases in the commercial finite 

element package Abaqus by the use of a UEXPAN subroutine, as shown by Yuan and Fish (2008) 
[14]. Additionally, the application of all boundary conditions and periodicity constraints, as well as the 

determination of the effective coefficients, Eq. (3), are made by a Python Script linked to Abaqus. 

 

3. RESULTS AND DISCUSSION 

Two scenarios are considered in this work. The first one consists of a periodically laminated 

composite in which two plies in given angles repeat themselves, stacked in the 𝑥 direction, to assemble 

the laminate. In the second scenario an additional isotropic layer, or an interface, is considered 
between the two plies. The unit cells used to describe both models are shown in Fig 1. 

 

 
(a)                                                        (b) 

 
Figure 1 – Unit cell models for: (a) Stacking sequence of 𝑛 plies; (b) stacking sequence of 𝑛 plies separated by 

an isotropic interface. 

 

The analyses  results show that the homogenized tensor, for a general case with stacking in 𝑥 

direction, is given by 
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in which the coupling between the components is expected. 

The mechanical properties considered for this work are shown in Tab. 1, in which an 

orthotropic material is considered. In Tab. 1, L stands for the longitudinal direction (fiber direction) 

and T stands for the transversal direction (off-plane direction). The mechanical properties of the 

interface are considered as isotropic and are shown in Tab. 2. 
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Table 1 – Mechanical properties of the composite [15]. 

 
ET[GPa] EL[GPa] νLT νTL GLT[GPa] GTL[GPa] 

10.0 127.0 0.306 0.34 3.05 5.4 

 
Table 2 – Mechanical properties of the isotropic interface [16]. 

  
E[GPa] ν 

5.033 0.4 

 

The two first stacking sequences are given by [0/45]
n
 and [0/60]

n
, respectively. For these 

stacking sequences, both models, with and without an interface, are considered. The third and fourth 

stacking sequences are given, respectively, by [45/-45]
n
 and [60/-60]

n
, in which only the case with no 

interface is considered. For all cases, the trilinear isoparametric hexahedral element (C3D8) was 

chosen for the discretization of the domain. Also, a convergence analysis was performed, but no mesh 

dependency was noticed. All numerical results are compared with the analytical solution proposed by 
Brito-Santana et. al. (2018) [6]. 

 The numerical results, as well as the comparison with the analytical solutions [6], for the 

stacking sequences of [0/45]
n
 and [0/60]

n
, with and without an interface, are shown, respectively in 

Tab. 3 and Tab. 4.  All of the components not shown in the tables have zero as value.  
 

Table 3 – Comparison between the numerical results (FEM) and the analytical solution (AHM) proposed by 

Brito-Santana et. al. (2018) [6]. Results for a stacking sequence of [0/45]
n
 with and without an isotropic interface 

between the plies, respectively. 

 
 [0/45]n [0/int/45]n 

 FEM AHM FEM AHM 

C1111[GPa] 
 

11.2272 11.2272 11.204231 11.204231 

C1122[GPa] 4.665885 4.665875 4.7969965 4.7969871 

     

C1133[GPa] 
 

C1123[GPa] 
 

3.935435 

 

0.365226 

3.935425 

 

0.365225 

4.1044887 

 

0.3462549 

4.1044793 

 

0.3462539 

C2222[GPa] 86.862419 86.862544 83.030546 83.030664 

     

C2233[GPa] 
 

C2223[GPa] 
 

18.791236 

 

14.9004382 

18.791256 

 

14.911131 

18.175068 

 

15.36449 

18.175086 

 

14.169626 

C3333[GPa] 
 

C3323[GPa] 

27.265519 

 

14.8980619 

27.265544 

 

14.887369 

26.394939 

 

14.884001 

26.394961 

 

14.148225 

     

C1212[GPa] 
 

C1213[GPa] 
 

4.6189063 

 

0.5638665 

4.6189063 

 

0.6396010 

4.2758872 

 

0.4744482 

4.2758871 

 

0.5377226 

C1313[GPa] 3.4911733 3.4911733 3.3269909 3.3269908 

     

C2323[GPa] 
 

19.136369 19.136394 18.26884 18.268863 
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As one can see, the results for all homogenized components are very close to the analytical solution. 
The numerical results for the normal and shear components of the elasticity tensor, as well as the 

results for the normal coupling components, are exactly as the analytical ones. On the other hand, the 

normal-shear coupling components present a small difference in comparison to the analytical ones. 

The results for the stacking sequences of [45/-45]
n
 and [60/-60]

n
 alongside the comparison 

with the analytical solution are shown in Tab. 5, in which the components with value zero are not 

shown. It can be noticed that, for these stacking sequences, no coupling between components was 

noticed. That behavior is expected since an angle-ply composite with a stacking of n plies is here 

considered. Also, one can notice that the numerical matches the analytical results. 
 

Table 4 – Comparison between the numerical results (FEM) and the analytical solution (AHM) proposed by 

Brito-Santana et. al. (2018) [6]. Results for a stacking sequence of [0/60]
n
 with and without an isotropic interface 

between the plies, respectively. 

 
 [0/60]n [0/int/60]n 

 FEM AHM FEM AHM 

C1111[GPa] 
 

11.2272 11.2272 11.204231 11.204231 

C1122[GPa] 4.48327 4.4832625 4.6238672 4.6238601 

     

C1133[GPa] 
 

C1123[GPa] 
 

4.118045 

 

0.316295 

4.1180375 

 

0.316294 

4.2776133 

 

0.2998655 

4.2776062 

 

0.2998646 

C2222[GPa] 75.385418 75.385512 72.123195 72.123285 

     

C2233[GPa] 
 

C2223[GPa] 
 

15.369037 

 

7.5100339 

15.369038 

 

6.965385 

14.923539 

 

7.1382954 

14.92354 

 

6.6208787 

C3333[GPa] 
 

C3323[GPa] 

45.587018 

 

19.176216 

45.587012 

 

18.840873 

43.805442 

 

18.221677 

43.805433 

 

17.9031 

     

C1212[GPa] 
 

C1213[GPa] 
 

4.2514607 

 

0.4786945 

4.2514607 

 

0.552791 

15.006611 

 

0.4043827 

3.9747577 

 

0.4669028 

C1313[GPa] 3.698712 3.698712 3.507817 3.5078169 

     

C2323[GPa] 
 

15.702289 15.702296 15.006611 15.006616 
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Table 5 – Comparison between the numerical results (FEM) and the analytical solution (AHM) proposed by 

Brito-Santana et. al. (2018) [6]. Results for a stacking sequence of [45/-45]
n
 with and [60/-60]

n
, respectively. 

 
 [45/-45]n [60/-60]n 

 FEM AHM FEM AHM 

C1111[GPa] 
 

11.2272 11.2272 11.2272 11.2272 

C1122[GPa] 4.30066002 4.30065 3.93543 3.935425 

     

C1133[GPa] 
 

C1123[GPa] 
 

4.30066002 

 

0 

4.30065 

 

0 

4.66588 

 

0 

4.665875 

 

0 

C2222[GPa] 43.3276002 43.32765 20.4033 20.403287 

     

C2233[GPa] 
 

C2223[GPa] 
 

32.5276001 

 

0 

32.52765 

 

0 

25.6535 

 

0 

25.653512 

 

0 

C3333[GPa] 
 

C3323[GPa] 

43.3276002 

 

0 

43.32765 

 

0 

80.0003 

 

0 

80.000288 

 

0 

     

C1212[GPa] 
 

C1213[GPa] 
 

3.8982249 

 

0 

3.8982249 

 

0 

3.4223376 

 

0 

3.4223377 

 

0 

C1313[GPa] 3.8982249 3.8982249 4.527835 4.5278351 

     

C2323[GPa] 
 

32.8489763 

 

32.849026 

 

25.986757 25.98677 

 

4. CONCLUSIONS 

This work addresses the numerical determination of the elasticity tensor of a composite 
laminate. The numerical solution for the Asymptotic Homogenization Method is implemented in the 

finite element package software Abaqus and all the 21 components of the elasticity matrix are 

obtained. The results show that is possible to obtain the normal-shear coupled components of the 
elasticity tensor via the numerical solution of the AHM, which is rarely observed in the literature. 

Also, the results show a good concordance with analytical solutions. 

For future works, the approach can be extended in order to considered finite laminates. That can 
be achieved by relieving the periodicity constraints on the off-plane direction, in other words, a 

theoretical infinite laminate no longer needs to be used thus enabling the method to be used in a wider 

range of composites. 
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