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Abstract One of the current challenges in fluid
topology optimization is to address these turbulent
flows such that industrial or more realistic fluid flow
devices can be designed. Therefore, there is a need for
considering turbulence models in more efficient ways
into the topology optimization framework. From the
three possible approaches (DNS, LES and RANS),
the RANS approach is less computationally expen-
sive. However, when considering the RANS models
that have already been considered in fluid topology
optimization (Spalart-Allmaras, k- and k-w models),
they all include the additional complexity of having
at least two more topology optimization coefficients
(normally chosen in a “trial and error” approach).
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Thus, in this work, the topology optimization method
is formulated based on the Wray-Agarwal model
(“WA2018”), which combines modeling advantages of
the k- model (“freestream” modeling) and the k-w
model (“near-wall” modeling), and relies on the solution
of a single equation, also not requiring the computation
of the wall distance. Therefore, this model requires
the selection of less topology optimization parameters,
while also being less computationally demanding in
a topology optimization iterative framework than
previously considered turbulence models. A discrete
design variable configuration from the TOBS approach
is adopted, which enforces a binary variables solution
through a linearization, making it possible to achieve
clearly defined topologies (solid-fluid) (i.e., with clearly
defined boundaries during the topology optimization
iterations) while also lessening the dependency of
the material model penalization in the optimization
process (Souza et al., 2021) and possibly reducing
the number of topology optimization iterations until
convergence. The traditional pseudo-density material
model for topology optimization is adopted with
a nodal (instead of element-wise) design variable,
which enables the use of a PDE-based (Helmholtz)
pseudo-density filter alongside the TOBS approach.
The formulation is presented for axisymmetric flows
with rotation around an axis (“2D swirl flow model”).
Numerical examples are presented for some turbulent
2D swirl flow configurations in order to illustrate the
approach.
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1 Introduction

When there are higher velocities in the fluid flow (i.e.,
higher Reynolds numbers), a turbulent behavior may
be induced. The turbulent behavior is characterized
for being chaotic, diffusive, dissipative and intermit-
tent (Saad, 2007), and is present in most flows in
nature. In order to model the turbulent behavior,
there are essentially three approaches: DNS (Direct
Numeric Simulation) (Orszag, 1970), LES (Large Eddy
Simulation) (Smagorinsky, 1963; Deardorff et al.,
1970), and RANS (Reynolds Averaged Navier-Stokes)
(Reynolds, 1895). The first approach (DNS) consists of
considering the Navier-Stokes equations with a mesh
resolution that is capable of considering the smallest
scale vortices, which poses a high computational cost,
while the second approach (LES) poses a somewhat
smaller computational cost due to it filtering smaller
scale vortices. However, the RANS approach poses a
lower computational cost in relation to DNS and LES,
due to it considering statistical time-averaging, which
leads to the possibility of considering a coarser mesh
in RANS with respect to DNS/LES (Celik, 2003).

The topology optimization method applied for fluid
flow is an optimization method that relies on spa-
tially distributing the design variable that defines the
solid/fluid material throughout a given design domain.
It initially started with simpler flows (Stokes flows)
(Borrvall and Petersson, 2003), but was extended in
the following years to more complex flow physics,
such as Navier-Stokes flows (Evgrafov, 2004; Olesen
et al., 2006), non-Newtonian flows (Pingen and Maute,
2010; Hyun et al., 2014; Romero and Silva, 2017),
thermal-fluid flows (Sato et al., 2018; Ramalingom
et al., 2018), unsteady flows (Ngrgaard et al., 2016),
turbulent flows (Papoutsis-Kiachagias et al., 2011;
Yoon, 2016; Dilgen et al., 2018; Yoon, 2020; Sa et al.,
2021) etc. Specific applications have also been con-
sidered, such as rectifiers (Jensen et al., 2012), valves
(Song et al., 2009), mixers (Andreasen et al., 2009),
and flow machine rotors (Romero and Silva, 2014; Sa
et al., 2018; Alonso et al., 2019; Sa et al., 2021). The
topology optimization method may be implemented in
various forms, such as the “pseudo-density approach”
(Borrvall and Petersson, 2003), the “level-set method”
(Duan et al., 2016; Zhou and Li, 2008) and topological
derivatives (Sokolowski and Zochowski, 1999; S4 et al.,
2016). The “pseudo-density approach” is the one
considered in this work, and is based on the inclusion
of an interpolation function between the solid and fluid
materials. When considering topology optimization
with the “pseudo-density approach”, the design variable
may be considered in different ways by the optimizer:

the continuous approach, which allows the appearance
of intermediary (“gray”) design variable values during
topology optimization (such as MMA (Method of
Moving Asymptotes) (Svanberg, 1987) and IPOPT
(Interior Point Optimization) (Wéchter and Biegler,
2006)), and the discrete approach, which allows the
design variable to assume only one of two states (solid
(0) or fluid (1)) (such as TOBS (Sivapuram and Picelli,
2018; Sivapuram et al., 2018; Souza et al., 2021)).
Using a discrete approach allows the design variable
to be always discrete, meaning that it may become
easier to achieve a discrete optimized topology than
the continuous approach. Therefore, in this work, the
discrete approach is considered, in the form of the
TOBS algorithm.

One of the current challenges in fluid topology op-
timization is to address high Reynolds number flows
(i.e., turbulent flows) such that industrial or more re-
alistic fluid flow devices can be designed. This means
that there is a need for considering turbulence mod-
els in more efficient ways into the topology optimiza-
tion framework. The topology optimization of turbu-
lent flows is mostly centered around RANS models,
due to their reduced computational cost with respect to
DNS/LES. The first turbulence model to be considered
in topology optimization is the one-equation Spalart-
Allmaras model (Spalart and Allmaras, 1994), which
does not require overly high resolution in wall-bounded
flows with respect to two-equation turbulent models
(Bardina et al., 1997) and also shows good convergence
for simple flows (Bardina et al., 1997). In topology opti-
mization, the Spalart-Allmaras equations are changed
in order to take the solid material modeling into ac-
count (Papoutsis-Kiachagias et al., 2011; Kontoleontos
et al., 2013; Papoutsis-Kiachagias and Giannakoglou,
2016; Yoon, 2016). The Spalart-Allmaras equation re-
lies on the computation of the wall distance, which
changes during topology optimization according to the
design variable, meaning that this sensitivity also needs
to be included in the turbulent flow topology optimiza-
tion formulation. The wall distance can be considered
by the solution of a modified Eikonal equation (Yoon,
2016) or a stabilized Eikonal equation (S4 et al., 2021).
Two equation turbulent models (k- and k-w) have also
been considered (Dilgen et al., 2018; Yoon, 2020). One
problem these turbulence models face is the amount
of parameters that have to be adjusted for topology
optimization besides the additional coefficient in the
Navier-Stokes equations: in the case of the Spalart-
Allmaras model, there are two additional coefficients
(in the Spalart-Allmaras equation, and in the wall dis-
tance equation) (Yoon, 2016); in the k- and k-w mod-
els, there are also two additional coefficients (one for the
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equation of each variable, although some authors may
try to simplify by a single additional coefficient) (Dilgen
et al., 2018; Yoon, 2020). From a combinatorial point-
of-view, by considering that each coefficient amounts
for “np,” possible values for topology optimization, the
total amount of coefficients to be considered (in the
three sets of equations: the Navier-Stokes equations,
and the two equations required for the turbulent model)
becomes elevated to the third power (“n? ”). It can be
reminded that, although an empirical rule based on the
Darcy number (Dilgen et al., 2018) can be used for
the coefficient of the Navier-Stokes equations, it is not
definitive, and higher or lower coefficient values may
be necessary depending on the fluid flow problem. This
means that adjusting these coefficients for topology op-
timization would rely on a “trial and error” approach,
and may become a hassle the higher the quantity of ad-
justable topology optimization coefficients. It can also
be mentioned that some topology optimization config-
urations may require finding specific coefficient values
that are able to achieve a feasible and discrete opti-
mized topology, which may not be easy to perform de-
pending on the problem. In order to face this problem, it
would be better for topology optimization if the turbu-
lent model could be as simple as the Spalart-Allmaras
model (i.e., a single-equation model that does not re-
quire the use of a wall function), not require the compu-
tation of the wall distance, and also achieve simulation
results that approach simulations from the k-¢ and k-w
models, which are often considered in the CFD commu-
nity.

The Wray-Agarwal model is a single-equation
turbulence model (similarly to the Spalart-Allmaras
model), which combines the advantages of the k-w
model (“near-wall” modeling) and the k-¢ model
(“freestream” modeling). It is also partly based on
the SST k-w model. According to Wray and Agarwal
(2015), the Wray-Agarwal model can lead to more
accurate boundary layer separation predictions than
the Spalart-Allmaras model, and it is also said to be
competitive with the SST k-w model for wall-bounded
flows. The 2018 version of the Wray-Agarwal model
(“WA2018”) is presented in Han et al. (2018), and its
main advantage is that this variant does not require
the computation of the wall distance. This fact alone
means that less optimization parameters are needed
to be calibrated “by hand” for topology optimization.
Furthermore, since, in topology optimization, it is
required to perform the computation of the forward
model (i.e., the simulation) and the computation of
the adjoint model, the matrix systems of equations
to be solved are, when considering the Wray-Agarwal
model (“WA2018”), less in quantity or smaller than the

other mentioned turbulence models (when considering
the forward and adjoint models), meaning that the
Wray-Agarwal model (“WA2018”) would be less com-
putationally demanding in a topology optimization
iterative framework. Therefore, the Wray-Agarwal
model (“WA2018”) is considered in this work. It can
be highlighted that no previous work has considered
the Wray-Agarwal model in topology optimization. In
addition, the topology optimization implementation
is performed by considering discrete design variable
configurations, based on the TOBS approach. The
TOBS approach enforces a binary variables solution
through a linearization, which makes it possible to
achieve clearly defined topologies (solid-fluid) while
also lessening the dependency of the material model
penalization in the topology optimization iterations
(Souza et al., 2021).

When the fluid flow is characterized by an axisym-
metric flow with a rotation around an axis (swirl flow),
the fluid flow may be modeled by a “2D swirl flow
model”, which is capable of modeling, for example, hy-
drocyclones, some pumps and turbines, and fluid sepa-
rators. The main advantage of this type of model is that
it simplifies the complete 3D fluid flow model (which is
more computationally expensive), reducing the compu-
tational cost by using a 2D axisymmetric mesh. It can
be highlighted that topology optimization has still not
been applied to turbulent 2D swirl flow.

Therefore the main objectives of this work are to
include the turbulent flow modeling (Wray-Agarwal
model) in the 2D swirl flow topology optimization
formulation, and also to consider the TOBS approach
(Sivapuram and Picelli, 2018; Sivapuram et al., 2018).
The objective of the optimization is to minimize the
relative energy dissipation considering the viscous,
turbulent, porous and inertial effects (Borrvall and
Petersson, 2003; Yoon, 2016; Alonso et al., 2019).
The traditional material model of fluid topology
optimization (Borrvall and Petersson, 2003) is adopted
by considering nodal design variables, which enables
the use of a PDE-based pseudo-density filter with
the TOBS approach. It can be reminded that an
element-wise design variable would not feature a first
derivative, which is a requirement for considering the
Helmholtz pseudo-density filter formulation.

This paper is organized as follows: in Section 2, the
fluid flow model for the turbulent 2D swirl flow is briefly
derived; in Section 3, the topology optimization prob-
lem is stated by considering the Brinkman model; in
Section 5, the numerical implementation is briefly de-
scribed; in Section 6, some numerical examples are pre-
sented; and in Section 7, some conclusions are inferred.
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2 Equilibrium equations

The fluid flow is modeled from the continuity and linear
momentum (Navier-Stokes) equations, incompressible
fluid, steady-state regime and a turbulent model con-
sidered through a RANS (Reynolds-Averaged Navier-
Stokes) approach.

2.1 2D swirl flow model

When considering a rotating reference frame, the con-
tinuity and Navier-Stokes equations according to the
Brinkman model become (Munson et al., 2009; White,
2011; Romero and Silva, 2014)

Vev =0 (1)

pVoev =Veo(T +Tr) + pf — 2p(wAv) — pwA(WAT)
- K(O‘)'Umat

(2)

where v is the relative statistical time-averaged veloc-
ity of the fluid flow, p is the statistical time-averaged
pressure of the fluid flow, p is the fluid density, p is
the dynamic viscosity of the fluid, pf is the body force
per unit volume acting on the fluid, r is radial posi-
tion in the fluid with respect to the rotation axis (in
2D swirl flow, it is equivalent to use s (position of the
fluid)), A is used to denote cross product, —k(@)Vpmat is
the resistance force of the porous medium considered in
topology optimization (k(«) is called inverse permeabil-
ity (“absorption coefficient”), vy,as is the velocity of the
fluid in relation to the porous material (in 2D swirl flow,
Umat = (Up, Vg — Wmat?, Uz), Where wya is the rotation
of the porous material relative to the reference frame)),
« is the pseudo-density, which may achieve values given
as 0 (solid) or 1 (fluid) (and is the design variable in
topology optimization), T'g is the Reynolds (turbulent)
stress tensor from the RANS model being considered,
and T is the fluid stress tensor given by

T =2ue—pl , e= (Vv + Vol) (3)

The 2D swirl flow model (“2D axisymmetric model
with swirl”) is based on the considerations of axisym-
metrical flow and cylindrical coordinates (see Fig. 1),
which means that the position and velocity are given
by

s=(r, 0, 2) =re. + ze, (4)

v = (v, Vg, V) = Vper + vo€9 + V€, (5)

Cylindrical Z

Za W
T:?{ coordinates

Vv
[] Q| £
: o>V,
~ ', Axisymmetry Vo
r 2] r
X (r, 2)

Fig. 1: Representation of the 2D swirl flow model.

From considering axisymmetry, the derivatives of
the state variables (v and p) in the 6 direction are set

to zero (i.e., %’g = % = 88”; = % = 0). Also, the
definitions of the differential operators (i.e., gradient,

divergent and curl) are given in cylindrical coordinates.

2.2 Wray-Agarwal turbulence model

The Wray-Agarwal turbulence model is a single-
equation turbulence RANS model which consists of
a combination of the advantages of the near-wall
modeling from the k-w model with the freestream
modeling from the k-¢ model (Wray and Agarwal,
2015), being also partly based on the SST k-w model
(Wray and Agarwal, 2015). Wray and Agarwal (2015)
shows that the Wray-Agarwal turbulence model leads
to more accurate boundary layer separation predictions
than the Spalart-Allmaras model, and that it is also
competitive with the SST k-w model for wall-bounded
flows. Throughout the years, several evaluations,
improvements and variations have been developed
(Han et al., 2015; Wray and Agarwal, 2016; Zhang
et al., 2016; Han et al., 2017, 2018). Particularly in this
work, the 2018 version (refered in Han et al. (2018) as
“WA2018”) is considered. The main advantage of the
2018 version is that it does not rely on the computation
of the wall distance. Not needing to compute the wall
distance is advantageous in a topology optimization
point of view, because the wall distance computation
requires an additional penalization term (Yoon, 2016)
in order to account for the modeled solid material,
which needs to be calibrated (i.e., adequately chosen)
for obtaining the optimized topology. An additional
term to account for the attenuation of turbulence
in the porous medium is included in this work by
re-deducing the Wray-Agarwal model equations while
including the attenuation of turbulence in the k-w
model equations (in a similar fashion as Yoon (2016),
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Papoutsis-Kiachagias and Giannakoglou (2016), and
Dilgen et al. (2018)). Therefore, the Wray-Agarwal
model (2018) (Han et al., 2018) modified for topology
optimization becomes:

Tr = pr(Vo+Vo'), pr = pfuRr (6)

pveNVRr = Ve [(crpRT + 1)V RT]

Turbulence transport by
viscous and turbulent stresses

R
+pC1R1S +f1017k_wp?TVRT'VS

Turbulence production Near-wall (“k-w”)

turbulence destruction
VS§eVS

fp(l — fl)min |:Cg7k_5Rr2T <SQ> 3 CmVRTOVRT

Freestream (“k-£”) turbulence destruction

—)\RTIQ(O()RT
N—————

Turbulence attenuation
in the porous medium

(7)

where R is the undamped eddy (turbulent) viscosity,
and Agr, is an adjustable parameter for the intensity of
the attenuation of turbulence inside the modeled solid
material. The other terms of eq. (7) are specified as
follows (Han et al., 2018):

S = %(V’U—I—V’UT), S =V28.8§

1
W:§(VU—V'UT), W = V2W-W
3
X Ry
= ——— = —_— = . 4
fM X3+C§U’X v 7Cw 85
n = S max [1, If[g/H,C'mS.O

0rR = f1(Ok-w — Okee) + Okee, Op-e = 1.0, 04y = 0.72
fi= tanh(arg‘ll)
v+ Rrp >

2 CN kT|10g—1ayer wT|log—layer
Z/TS S

A wT|o-aer:7/’C
Cﬂ 1 gl y CH H

C1 = f1(C1 kow — C1jee) + C1 e

Cl,k—w

K2

arg, =

kT|log-layer = =0.09

C2,k—w =
O e = 0.0829, Cy e = 0.1284

+ 0k Co e =

where k = 0.41 is the von Karman constant, and v = %
is the kinematic viscosity.

It can be noticed that the term that accounts for
the attenuation of turbulence in the porous medium in
eq. (7) assumes that, inside a modeled solid material,
RT =0 m2/s.

With respect to the additional parameter Mg, it
may be noticed that it is similar to the penalization
parameters included in other turbulence models for
topology optimization (Yoon, 2016; Dilgen et al., 2018;
Yoon, 2020). Although some references assume all
additional penalization parameters as being equal to 1,
this may not always be the best choice, since the topol-
ogy optimization may behave better for a higher or a
lower value. In fact, in the present work, the optimized
topologies from the Appendices consider values that
are higher than 1. Also, in the case of two-equation
models, such as the k-w model, it is unknown if the
same coefficient should really be used for the k and w
equations. Experimentally, the turbulence coefficients
of these equations are different, which means that these
two equations should probably be penalized differently.
This effect may be “shadowed” by highly penalizing
both equations, but the problem should still remain
and may possibly affect the topology optimization
iterations. For the case of the Spalart-Allmaras model,
it may be mentioned that the penalization parameter
is chosen differently than 1 in Yoon (2016), and that
the additional penalization parameter of the modified
Eikonal equation has to be calibrated for the given
problem and is normally not set as equal to 1 (Yoon,
2016). In some problems, it may be better to consider
a “stronger” modeled solid material wall, while it may
be better to relax it in other cases. Moreso, depending
on the distribution of the design variable, it may be
necessary to increase the “relaxation term” that is
shown in Yoon (2016), for allowing convergence.

2.3 Boundary value problem

A computational domain is illustrated in Fig. 2 for
showing the boundaries that are considered in this
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work. The boundary value problem for the 2D swirl

flow model can then be stated as:

pVoev =Veo(T +Tgr)+ pf — 2p(wAv)—

PWNA(WAT) — K()Vmat in Q
Vev =0 in Q
pveV Rt =V e |[(orpRr + 11)VRT]
R
+pC1R1S + flCl,k_wp?TVRT-VS
. VSeVS
_p(l — fl) min |:C2,k‘—6R’2T (52) 5
CMVR”[WVRT :| - /\RTIQ(()()RT in Q
UV = Vip and RT = RT,in on Fin
v=0and Ry =0 m?/s on I'yn
ov, v, Op ORr
r = d = = a5 = = 1—‘s m
v 0 an ar or or aor Oft Sy
(T+Tg)n =0 and VRren =0 on I'yut

9)

1—|in

T'symi QfTyan

1_|out r

Fig. 2: Example of boundaries for the 2D swirl flow
device, for the case in which the computational domain
features an interface to the symmetry axis.

2.4 Weak formulation

As will be mentioned in Section 5, the finite element
method is needed for the scheme used for the auto-
matic derivation of the adjoint model, which means
that it is necessary to define the weak formulation. The
derivation of the weak form is given by considering the
weighted-residual and Galerkin methods for the mixed
(velocity-pressure) formulation, (Reddy and Gartling,
2010; Alonso et al., 2018)

Rc:/[V-U}WpTdQ (10)

R, = / [pVvev — pf + 2p(wAv)
Q

+ pwA(WAT)] W, rdQ + / (T + Tr)s(Vw,)rdQ2
Q

- %((T#—TR)OWU)-nrdF#—/ K(Q)Umat oWy mdS2
r Q

(11)

RWA2018:/ [pveV Rr|wg,TdQ
Q
+ / [(crpRT + 1)VRT] ¢ VWi, 1d2
Q

- %TL . [(O'R/)RT + ,LL)VRT]WRTT'dF
r

- / pClRTSWRTTdQ
Q

- / flcl,k-wP%VRT'VSWRTTdQ
Q

. VSeVS
—|—/Qp(1 — f1) min [C’g’k_aR% (32) ,

CmVRT‘VRT:| WRt rdS2

+ / )\RTI{(Q)RTWRTTdQ
Q
(12)

where the subscripts “c’, “m” and “WA2018” refer
to the “continuity” equation, the “linear momentum”
(Navier-Stokes) equations, and the “Wray-Agarwal
(2018)” equation, respectively. The test functions of
the state variables (p, v and Ry) are given by wy,
w, and wWg,, respectively. When considering 2D swirl
flow, since the integration domain (277d2) contains a
constant multiplier (27), which does not pose influence
when solving the weak form, egs. (10), (11), and (12)
are given divided by 27 (Alonso et al., 2018, 2019).

From the mutual independence of the test functions,
the three equations of the weak form can be summed
to a single equation:

F=R.+ R,, + Rwa201s =0 (13)

3 Formulation of the Topology optimization
problem

3.1 Material model

The material model is the change in the fluid flow equa-
tions that controls how the design variable (pseudo-
density) influences the fluid flow simulation (a = 0 for
solid, and o = 1 for fluid). In the case of fluid flow
topology optimization, it serves so as to block parts of
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the fluid flow according to the design variable (pseudo-
density), while also helping to guide the optimization
process. Borrvall and Petersson (2003) suggest the fol-
lowing convex interpolation function for the material
model for fluid flow (also known as “inverse permeabil-
ity”):

1+gq
a+q

k(@) = Kmax + (Kmin — Kmax)® (14)

where the inverse permeability (k(«)) is bounded by
Kmax (maximum value) and Kp;, (minimum value). The
penalization parameter, refered as ¢ (¢ > 0), controls
the convexity (relaxation) of the material model. Large
values of ¢ imply a less relaxed material model.

3.2 Topology optimization problem

The topology optimization problem is formulated as fol-
lows.

min (I)rel(p(a)v ’U(O[), RT (Oé), O[)
such that

Fluid volume constraint: /
Qa

a(2mrdQy) < W

Box constraint of a: 0 < a< 1

(15)

where f is the specified volume fraction, Vj =
an 27rdSY,, is the volume of the design domain (£2,),
D, (p(a),v(a), R, ) is the objective function, and
p(a), v(a) and Rr(a) are, respectively, the pressure,
the velocity and the undamped eddy viscosity obtained
from the solution of the boundary value problem
(eq. (9)), which features an indirect dependency with
respect to the design variable a.

3.3 Objective function

The objective function is selected as the relative energy
dissipation (®,e), as defined in Alonso et al. (2018),
which is based on the definition of energy dissipation
from Borrvall and Petersson (2003) and includes iner-
tial effects. In this work, it also includes the turbulence
effect (similarly to Yoon (2016)), defining a “total rel-
ative energy dissipation”. By considering zero external
body forces,

1
Dol = / {Q(M + pr) (Vo + Vol )s(Vo + VoT)| 27rdQ
Q

+ / K(Q)Umatev2mrd)
Q

+/(2P(W/\U) + pwA(WAT))sv27rdQ

(16)

3.4 Sensitivity analysis

The sensitivity is given by the adjoint method as

dq)rel " _ a(bl‘el i _ aj *)\
do T\ da O Prel

__oF Ao, = G (adjoint equation)
a('”va RT) et 8(v,p, RT) ! d
(18)

(17)

where the weak form is given by F' = 0, “ * ” represents
conjugate transpose, and As,, is the adjoint variable
(Lagrange multiplier of the weak form).

3.5 Helmholtz pseudo-density filter

The topology optimization results in this work consider
the use of a Helmholtz pseudo-density filter, which is a
PDE-based topology optimization pseudo-density filter
(Lazarov and Sigmund, 2010), for regularization. This
filter is shown schematically in Fig. 3, where « repre-
sents the original distribution (i.e., before applying the
filter) of the design variable and ay is the filtered dis-
tribution of the design variable (i.e., after applying the
filter).

Original

Helmholtz filter »

Green's function

ilte
par

Solve >
e averaging around
modified each o node
Filtered Helmholtz * P=
(xf a equation
S
V4

0

Fig. 3: Schematic representation of the Helmholtz
pseudo-density filter being used onto «.

As represented in Fig. 3, the Helmholtz pseudo-
density filter is equivalent to weighting each value of
the original design variable («) with a Green’s function,
which is a function that is always positive and whose
integral is equal to 1 (Lazarov and Sigmund, 2010).
If the filter length parameter (ry) is chosen with a
small value, this Green’s function approaches a Dirac’s
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n
delta function (ay LAl a). This Green’s function

averaging is equivalent to the solution of a modified
Helmholtz equation with homogeneous Neumann
boundary conditions, whose boundary value problem is
given by (Lazarov and Sigmund, 2010; Zauderer, 1989)

—ryViayr+ay=a inQ
b 19
%0 onl 1)
on

where « is the original design variable (i.e., before ap-
plying the filter), s is the filtered design variable (i.e.,
after applying the filter), and rpy is the filter length
parameter.

The weak form is obtained by multiplying eq. (19)
by the test function wyr and integrating in the whole
design domain,

2 / (Vag)sVwgprdQ + / Wi prdQ
Q Q
(20)
— / awgrrdl =0
Q

When considering a Helmholtz pseudo-density fil-
ter in topology optimization, « is replaced by oy in
all of the fluid flow equations, including the objective
function (i.e., egs. (10), (11), (12) and (16)), and the
sensitivities include the dependency of o with respect

to a (from the chain rule, % = %dda—f) (Lazarov
(03 Oéf (03

and Sigmund, 2010).

4 TOBS approach

The TOBS (Topology Optimization of Binary

Structures) algorithm (Sivapuram and Picelli, 2018;
Sivapuram et al., 2018) consists of a binary variables’
formulation which is given by sequentially solving lin-
earized integer variable problems (considering oy, = 0
(lower bound) and «,;, = 1 (upper bound)). In order
to present a generic formulation adequate to this work,
the TOBS formulation is rewritten with respect to the
following generic topology optimization problem:

min J(o)
o

such that
Equality constraints: ceq () =0, i =1, 2 ... Negq
Inequality constraints: cipeq,i(®) < 0, i =1, 2 ... Nineq

Box constraint of a: o, < a < ayp

(21)

where J(a) is the objective/multi-objective function,
Ceqi(@) is the definition of the equality constraint i,

Cineq,i (@) is the definition of the inequality constraint
i, Neq i the number of equality constraints, Mineq is
the number of inequality E)nstraints7 Qp 1 the upper
bound of the design variable, and «;, is the lower bound
of the design variable. It can be reminded that, for the
optimizer, eq. (21) consists of a multivariable optimiza-
tion problem, in which the number of variables is given
by the quantity of values of the design variable (n,)
that are distributed over the mesh, obtained by consid-
ering the finite element modeling.

Essentially, in the TOBS approach, the optimiza-
tion problem from eq. (21) is successively solved as the
following linearized formulation for the variation of the
design variable (“design variable step”, Aa):

dJ
min — Aa
Ao da a=a
such that
o
Inequality constraints: % Aa < Acineq,i(@),

a=«
i=1, 2 ... (Nineq + 2Neq)
Truncation error constraint: ||Aa|1 < Baip timita

Allowed values of Aa: Aa € {aip — o, ayp — o}

(22)

where « is the value of the design variable in the begin-
ning of the iteration of the optimization, 2Z and

o dala=a
are the sensitivities of the objective func-

tion ang _t%e inequality constraints computed at «, re-
spectively, Baip 1imit is a factor that limits the “number
of flips/jumps” of a from one discrete value to another
(0 or 1), n,, is the quantity of values of the design vari-
able (a) that are distributed over the mesh, ||Aall; is
the one-norm (¢; norm) of Ac, and the next value of the
design variable is given as a+Aa. It can be noticed that
equality constraints (ceq;(cr)) that are computed with
floating point numbers are numerically extremely hard
(if not impossible) to be exactly satisfied, which may
lead to linearized problems with “impossible” integer so-
lutions. In such case, the equality constraints should be
substituted in eq. (21) by inequality constraints with a
given variation around the bounds (i.e., Ceq,i (@) —0eq,i <
0 and —(Ceq,i (@) +deq.i) < 0, where deq ; is a small bound
for the definition of the equality constraints converted
to inequality constraints).7Theref01re7 the number of in-
equality constraints becomes nineq + 27cq-

The truncation error constraint is included in order
to keep the truncation error of the linearization small
(Sivapuram and Picelli, 2018). The linearized inequal-
ity constraint bound (Acipeq,i(e)) is relaxed in order
to guarantee that the integer solution of the linearized
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problem is feasible (Sivapuram and Picelli, 2018). This
relaxation essentially changes the value of Acipeq,i(c)
when Cineq,; is “far” (based on a reference value (cref ;)).
Then, the relaxation presented in Sivapuram and Picelli
(2018) becomes:

—Erelax (Cineq,i (Oé) + Cref i ) )

: €relaxCref,i
if ¢ i\ R D e—
1neq,z( ) > 1—Erelax

Ac: (a) o _cineq,i(a)7
1ineq,? - lf —ErelaxCref,i < e (a) < ErelaxCref,i
Iterelax > med? = 1—érelax

Erelax (Cineq,i (Oé) + cref,i) ’

. . —ErelaxCref,i
f i) < Z5stsss

(23)

where 0 < €relax < 1 is a constraint relaxation pa-
rameter, and crf; # 0 is a reference value for the
constraint 7. The reference value c.ef; is a represen-
tative value for the magnitude of the values that are
achievable in the constraint, in order to define the
size of the linearized interval. The reference value
Cref; Can not be set as 0, otherwise eq. (23) becomes
ACineq,i (@) = —€relax|Cineq,i(@)|, meaning that the lin-
earized interval disappeared from the formulation. Eq.
(23) is illustrated in Fig. 4: when cipeq,i(r) > 222
the constraint bound is “softened”, widening the solu-
tion space; when % < Cineq,i(®) < gfi%,
the linearized value is used for the constraint bound;
and when ¢ineq,i(@) < %, the constraint bound
is “stricter”, decreasing the solution space to enforce a
feasible or near-feasible value. The red-colored vertical
arrows represent the change in the solution space
from the linearized constraint when considering the
relaxation. The solution space is represented in dark

blue color, and represents the possible values for

% - A (from eq. (22)).

Ac, ineq,i
'Cineq,i
N,
N,

'Cref,z * ;
Cineq,i
+Srelax(cmeq,i+Cref,1) : 0 O\
d » : ?\? 'gl‘elax(cineq,i-" Cref,i)
Cineqi Aa -ErelaxCref,i €relaxCref,i
da a=a e . 1. .

1 +Erelax 1'£relax

Stricter Linearized  Softer
constraint constraint constraint

Fig. 4: Relaxation of the linearized inequality constraint
bound (Acineq,:(@))-

The convergence criterion can be analyzed from
successive objective function values (Huang and Xie,
2007) or when there are no more changes in the topol-
ogy (Aa = 0). The solution of the TOBS linearized
problem (eq. (22)) is performed by an integer pro-
gramming optimizer, such as the commercial software
CPLEX® (from IBM), or the open source software
CBC (from the COIN-OR project).

It can be mentioned that the numerical implemen-
tation of the TOBS algorithm includes additional nor-
malizations (from the source code from Sivapuram and
Picelli (2018)), which are: 92| _ Aq is divided by

da la=

dJ : dcineq,’i . . :

max [E a:a], while —pea-t . Aa € Acipeqi(e) is
)

5 Numerical implementation of the
optimization problem

divided by max {%

(6%

The fluid flow simulation is computed in the
OpenFOAM® software (version from “The Open-
FOAM foundation”) (Weller et al., 1998; Chen et al.,
2014), which is able to efficiently compute the turbulent
fluid flow simulation. The other platform that is con-
sidered is FEniCS (Logg et al., 2012), which is a finite
elements software based on automatic differentiation
and relies on a high-level language for representing
the weak form and functionals for later assembling the
finite element matrices. Besides being more compu-
tationally efficient than FEniCS to model turbulent
fluid flow (Mortensen et al., 2011), OpenFOAM® also
avoids the need of including possibly counter-intuitive
modifications to the finite element model just for
trying to achieve the convergence of the simulation
(Mortensen et al., 2011), such as intermediary pro-
jections, derivative approximations, preconditioning
part of the system of equations, pseudo-transient
solution, additional value limiters etc. The SIMPLE
(Semi-Implicit Method for Pressure-Linked Equations)
algorithm (Patankar, 1980; OpenFOAM Wiki, 2014)
is considered for the simulations. The implementation
of the Wray-Agarwal model (2018) in OpenFOAM® is
based on the implementation of its original authors
(CFD group at Washington University in St. Louis,
2020). Thus, on the one hand, the main disadvantage
of OpenFOAM® is that it does not provide an easy
and efficient way to automatically derive the adjoint
model. On the other hand, although FEniCS is not
efficient for turbulent flow simulation, it may be used to
automatically generate an efficient adjoint model with
the dolfin-adjoint library (Farrell et al., 2013; Mitusch
et al., 2019). For the automatic derivation of the ad-
joint model, the primal equations of the finite element
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method must be implemented in FEniCS (Section 2.4).
The automatic differentiation from FEniCS is based on
operator overloading in its high-level language (UFL).
The variables values in OpenFOAM® are mapped
to discrete variables in FEniCS, and then projected
into the state variables in FEniCS, including a small
smoothing (Alonso et al., 2021).

The solution of the TOBS linearized problem (eq.
(22)) is performed by the integer programming opti-
mizer CPLEX® | because it is currently faster than
CBC and provides an academic license.

The implementation of the topology optimization
method is shown in Fig. 5. From the initial guess for
the pseudo-density distribution inside the design do-
main, the adjoint model is “annotated” by dolfin-adjoint
for the automatic derivation of the adjoint model. Then,
the TOBS optimization loop is started. First, the TOBS
linearization is performed (eq. (23)), while communi-
cating with dolfin-adjoint for computing the objective
function, constraints and sensitivities. The sensitivities
are computed from the adjoint model, with the state
variable values coming from the simulation performed
in OpenFOAM® . Continuing the TOBS optimization
loop, the integer programming optimizer (CPLEX® ) is
called, the topology is updated, and the convergence is
verified with a specified tolerance for the change in the
pseudo-density distribution (convergence criterion).

[ Intal guess of the topology
ey R .
opolo O Imization
pology op FEnIiCS

Annotate the
forward model 4—' Forward model
from FENICS

|

Solver
OpenFOAM

TOBS ¢
— s
J iincarization | €=

Fluid flow simulation v

Integer
Programming
Optimizer

Update of the
topology
Automatically derived | @

adjoint model N
0

State variables

dolfin-adjoint

4I<-

I Converged?

*+{ specified
Yes tolerance

Objective function,
constraints, sensitivities I

FEniCSl

Finite Element Method

l Optimized topology l

Fig. 5: Flowchart illustrating the numerical implemen-
tation of the topology optimization problem.

The sensitivities (of the objective function and con-
straint) are adjusted by the volume of each element,
which is similar to considering the use of a Riesz map
in the sensitivity analysis and has the effect of lead-
ing to mesh-independency in the computed sensitivities
(Schwedes et al., 2017). The mesh-independency effect
of the Riesz map is particularly interesting when con-
sidering non-uniform meshes, where the non-adjusted
sensitivity distribution may be a seemingly less-smooth
distribution and may hinder the topology optimization
process. In the case of the 2D swirl flow model, the
elements can be viewed in 3D as “ring-shaped”, which
means that there is a linear non-uniformity in the mesh
when comparing lower and higher radii. In the case of a
nodal design variable, the adjusted sensitivity is given
by:

Z Vnel

nodes

Nnodes (24)

ﬂ 1 dJ
do

Vnel do

adjusted

Average neighbor

elements’ volume
where V1 is the sum of the volumes of the neighbor ele-
ments that touch a node/vertex in the mesh, and nyodes
is the number of nodes/vertices in the mesh. In the 2D
swirl flow model, the volumes are computed by con-
sidering axisymmetry (i.e., “ring-shaped” element vol-
umes).

A comparison of the computed sensitivities from

dolfin-adjoint with respect to finite differences can be
seen in Appendix A.

5.1 Finite element modeling

For the finite elements implementation that is required
for the automatic derivation of the adjoint model
used in this work, it is necessary to define the finite
element modeling. In order to consider a numerically
stable finite elements formulation (Brezzi and Fortin,
1991; Reddy and Gartling, 2010; Langtangen and
Logg, 2016), MINI elements (Arnold et al., 1984; Logg
et al., 2012) are used for coupling the discretizations
of pressure and velocity (see Fig. 6). MINI elements
are composed of 15¢ degree interpolation enriched by
a 3" degree bubble function for the velocity (P;+Bs
element), and 1% degree interpolation for the pressure
(P element). By comparing with the traditional
Taylor-Hood elements (2"¢ degree interpolation for the
velocity), the advantage of considering MINT elements
is their lower computational cost (due to their lower
interpolation degree). The undamped eddy viscosity
(from the Wray-Agarwal model (2018)) is considered
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with a 15' degree interpolation (P; element). The
pseudo-density (design variable) is also considered with
a 15 degree interpolation (P; element).

SN

Velocity V

N

Undamped R.. Pseudo-density &
eddy viscosity ™ T

P,

4

Pressure D

Fig. 6: Finite elements chosen for the state variables
(pressure, velocity and undamped eddy viscosity), and
the design variable (pseudo-density).

6 Numerical results

In the numerical results, the fluid is water, with a dy-
namic viscosity (u) of 0.001 Pa s, and a density (p) of
1000.0 kg/m?3.

The mesh is structured, and the elements inside it
are distributed according to Fig. 7.

Rectangular
partition

@
\.
B

/
\.
4 triangular
elements

Fig. 7: Distribution of triangular elements inside a rect-
angular partition.

In order to scale the equations to increase the
convergence rate of the calculation of the functionals
and sensitivities in FEniCS/dolfin-adjoint, the MMGS
(Millimeters-Grams-Seconds) unit system is used (i.e.,
the length and mass units are multiplied by a 103
factor).

The specified tolerance for the TOBS algorithm is
that the change in the pseudo-density distribution (A«)
is sufficiently small. In this work, the optimization is
progressed until Aa = 0.

External body forces are disregarded in the numer-
ical examples (pf = (0, 0, 0)), and the specified fluid
volume fraction (f) is selected as 30%. The porous
medium is assumed to be under the same rotation of the
reference frame (Viat = v), and Apin = 0 kg/(m? s).
The initial guess for the pseudo-density (design vari-
able) distribution is chosen differently for each numer-
ical example. The plots of the optimized topologies are
given for the values of the pseudo-density (design vari-
able) in the center of each finite element. The letter n
is used for rotation in rpm, and w is used for rotation
in rad/s.

In the TOBS algorithm, the reference value “cyef 1"
(for the volume constraint) is chosen as fVj, as in pre-
vious works that consider the TOBS approach (Sivapu-
ram and Picelli, 2018; Sivapuram et al., 2018).

The pseudo-density (design variable) values in the
optimized topologies are post-processed by smoothing
the resulting contour (Fig. 8). All of the computed val-
ues, with the exception of the convergence curves, are
computed in the post-processed meshes.

Optimized
topology

Post-processed
mesh

|
|
Z.
|
|

4
,I\ i

r i r

Post-processing

Fig. 8: Post-processing used for the optimized topolo-
gies.

For simplicity, the Reynolds number is shown as the
maximum value of the local Reynolds number based on
the external diameter:

M |'vabs | (QText)
P

where the absolute velocity (vaps) varies in each posi-
tion of the computational domain, r.,; is the external
radius of the computational domain (depicted as “R” in
the first two numerical examples, and as “r..;” in the
last numerical example), and p is the density. The maxi-
mum inlet Reynolds number (considering only the inlet
velocity) is also defined from eq. (25) (Reiy max), but
with only the velocity from the inlet profile (vaps,in)-

I%eext7 L= (25)
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Since the objective of the relative energy dissipation
objective function (eq. (16)) is to indirectly maximize
the pressure head (or, equivalently, minimize the head
loss), the definition of the pressure head is shown below:

1 p |'Uabs|2
H=— / — + ven2mrdl,
Q |/r. (pg 29
i (26)
+ / Py sl o
Tow \P9 29
where ¢ is the gravity acceleration (9.8 m/s?).
From eq. (26), the head loss is given as:
H =-H (27)

The isentropic efficiency may be used for pump
devices in order to characterize their efficiency (Rey
Ladino, 2004; Sonntag and Borgnakke, 2013), being
given as:

P’Ldeal _ Ahs _ gH
Preal Ps/mn Pr/m

where Ahs, = gH is the variation of specific enthalpy
(specific work) in the ideal process (Sonntag and
Borgnakke, 2013), 7 = p@ is the mass flow rate, and
Py is the fluid power given by:

Py = ygw-(r A Uabs ) PUabs*N27rd (29)
r

The TOBS approach is considered for eye1ax = 0.2
and Bgip 1imit = 0.01, except if explicitly written other-
wise.

The inlet values for the turbulent variable (Rt ;)
are given from the turbulence intensity (Ir) and the
turbulence length scale (¢7) based on the local absolute
velocity on the inlet (|vabs,in|), as:

n?) PV
RT,in =1/ 7IT€T|vabs,in| (30)

where |Vabs in| is the local absolute velocity on the in-
let, and n, is the number of velocity components (for
2D, n, = 2; for 2D swirl, n, = 3). In this work, {1 is
selected as ¢ = O.O7C,i/4€in (COMSOL, 2018; Online,
2020) where £y is the width (or diameter, in the nozzle
example) of the inlet.

The inlet velocity profiles are considered to be
parabolic for laminar flow, and are considered to be
turbulent for turbulent flow. The turbulent velocity
profiles are implemented according to De Chant (2005),
which is similar to the 1/7*" power law (Munson et al.,
2009), in which the velocity profile is analytically
deduced from a simplified fluid flow model.

In order to accelerate the execution of the optimiza-
tion, the OpenFOAM® simulation for each optimiza-
tion step reuses the simulation result from the immedi-
ately previous optimization step. A maximum number
of SIMPLE iterations per optimization step is also con-
sidered, which is set, in this work, as 2,000.

Three numerical examples are presented, for: eval-
uating the effect of the wall rotation (rotating nozzle),
evaluating the effect of the inlet rotation, and evalu-
ating in a pump device. Additionally, Appendices B
and C present a 2D double pipe design and a 2D U-
bend channel design, respectively, in order to show the
Wray-Agarwal model (2018) being applied for topology
optimization in 2D cases. Appendix B also considers a
topology with some circles as the initial guess for topol-
ogy optimization.

6.1 Rotating nozzle

The first example is the design of a rotating nozzle. A
nozzle is used to control the characteristics of the fluid
flow entering or leaving another fluid device. This type
of design has been previously evaluated for laminar 2D
swirl flow by Alonso et al. (2018). Fig. 9 shows the de-
sign domain that is considered in this case. Since the
nozzle is rotating, the solid material distribution is op-
timized for these rotating walls under the same rotation
of the reference frame (wy).

~*

v=(0, -wyr, v, in)
* Rr=Rtiy

TN

ymmetry axis
¢ emm @

v=0(rotating)
RT=0

S

(T+TR)'H=0 l

|
VRT°H=0 Rou R r'

Fig. 9: Design domain for the rotating nozzle.
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The mesh consists of 19,401 nodes and 38,400
elements (i.e., 80 radial and 120 axial rectangular par-
titions of crossed triangular elements, see Fig. 10). The
input parameters, geometric dimensions and material
model parameters that are considered for the design
are shown in Table 1. In this example, turbulent flow
optimized topologies are compared against optimized
topologies obtained from laminar flow: The inlet flow
rate for laminar flow corresponds to a maximum
inlet Reynolds number of 130, while the inlet flow
rate for turbulent flow corresponds to a maximum
inlet Reynolds number of 1.3 x 10%. Since the TOBS
approach considers binary variables, the initial guess
has to be chosen to be discrete: In this work, in order
to facilitate convergence, a “conical” initial guess is
considered (i.e., directly connecting the inlet (R) of the
design domain (H) to the outlet (Ry,:) with a straight
line — See the leftmost topologies in Fig. 13). It can
be highlighted that, in any fluid topology optimization
problem with TOBS, other discrete initial guesses are
also possible, such as a “fully-fluid” initial guess, but
with care taken in case there is some undesired vortex
generation in the fluid for this initial guess, which may
possibly hinder the topology optimization process. The
specified fluid volume fraction (f) is set as 30%.

Fig. 10: Mesh used in the design of the rotating nozzle.

Table 1: Parameters used for the topology optimization
of the rotating nozzle.

Input parameters (laminar flow)

Inlet flow rate (Q) 0.06 L/min
Wall rotation (ng) 0, 25 and 50 rpm
Inlet velocity profile Parabolic

Input parameters (turbulent flow)

Inlet flow rate (Q) 10 L/min
Wall rotation (ng) 0, 2,500 and 5,000 rpm
Inlet velocity profile Turbulent
Iy 5.0%
lr 0.77 mm
Dimensions
H 15 mm
R 10 mm

Material model parameters (laminar flow)*
103 (for 0 rpm) **
2.5 (for 25 rpm)

5.0 (for 50 rpm)

q 1.0

Material model parameters (turbulent flow)*

K max

(x10%u (kg/(m? s)))

2.5 (for 0 rpm)
5.0 (for 2,500 rpm)
8.0 (for 5,000 rpm)

K?max

(x10%u (kg/(m? 5)))

q 1.0
ARy 1.0

* The optimization considers a Helmholtz pseudo-density fil-
ter (Section 3.5) in order to better stabilize the discrete opti-
mized topologies. The filter length parameter (rg) is chosen
as the value ry = 0.0625 mm for the laminar flow cases, and
as the value rg = 0.25 mm for the turbulent flow cases.

** The value of kmax for laminar flow for 0 rpm was cho-
sen to be higher in order to enforce that the inlet is not
partially blocked by solid material during topology optimiza-
tion, which is due to the smaller influence of lower velocity
zones during topology optimization, and is a problem that
can also be observed in Borrvall and Petersson (2003)’s 2D
laminar Stokes nozzle design.

A series of topology optimizations is performed for
different rotations, whose results are shown in Fig. 11.
The maximum local Reynolds numbers are computed
as: 479, 526 and 1060 (for the laminar optimized topolo-
gies); and 5.9 x 10%, 6.5 x 10%, and 1.0 x 10° (for the tur-
bulent optimized topologies). In Fig. 11a, it can be no-
ticed that the presence of higher fluid flow velocities un-
der laminar flow tends to increase an “inlet zone”. This
inlet zone seems to help the fluid to make a smoother
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change in flow direction towards the middle of the noz-
zle. Fig. 11b shows the optimized topologies for tur-
bulent flow. As can be seen, a similar effect to that of
laminar flow (Fig. 11a) is observed. However, the 0 rpm
optimized topology of turbulent flow features a concave
transition near the inlet whilst the 0 rpm optimized
topology of laminar flow features a more linear transi-
tion. This can be seen as a consequence of the different
velocity profiles in both cases (turbulent and laminar
velocity profiles), since a turbulent velocity profile fea-
tures somewhat higher velocities when farther from the
symmetry axis, with respect to a laminar velocity pro-
file. It can also be noticed that the “outlet zone” of the
turbulent nozzle is straighter than the laminar nozzle
when under rotation, in which a “divergent shape” can
be noticed. This “divergent shape” creates a small effect
of reducing the fluid pressure and increasing the fluid
velocity, which may help reducing the dissipated energy
due to the fluid acceleration from the rotation effect.
However, in the turbulent flow case, the effect of the
rotating wall on the velocity seems to be more proemi-
nent, leading to a straighter outlet channel shape.
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(a) Laminar flow results (0.06 L/min).
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(b) Turbulent flow results (10 L/min).

Fig. 11: Topology optimization results for the rotating
nozzle under different wall rotations, for laminar and
turbulent flows.

In order to show the effect of considering the opti-
mized topologies for laminar flow operating under tur-
bulent flow and vice-versa, additional simulations are
performed and shown in Fig. 12. In Fig. 12, the “rela-
tive differences” are shown, which correspond to r, =
W, where oy is the function being com-
puted in the flow that generated the optimized topol-
ogy, while Zother fiow 18 the function being computed in
the topology that was optimized for the other type of
flow. Thus, a positive ‘“relative difference” means that
the optimized topology operates better at the flow it
was optimized for. It can be noticed that almost all op-
timized function values are better at the flow that gen-
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erated the optimized topology, with the exception of
the head loss for 5,000 rpm (Fig. 12b). This may possi-
bly mean the induction of a local minimum, but, since
the relative energy dissipation (objective function) is
smaller in the flow that generated the optimized topol-
ogy, this does not pose an issue for optimization, but
may mean that the viscous effects become more appar-
ent in the relative energy dissipation than in the head
loss when under higher rotations in turbulent flow (tur-
bulent viscosity).

4 4
5 ° s
3\; 2 2 &
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(a) Turbulent flow optimized topologies operating under
laminar flow (0.06 L/min).
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(b) Laminar flow optimized topologies operating under
turbulent flow (10 L/min).

Fig. 12: Laminar and turbulent flow optimized topolo-
gies operating under the flow configurations of each
other.

The convergence curves for the laminar and turbu-
lent rotating nozzles are shown in Fig. 13. From this
figure, it can be promptly noticed that including an
island to split the inflow dissipates more energy, such

that it disappeared during the optimization iterations.
It can also be noticed that the relative energy dissipa-
tion values for the turbulent case are lower in the first
iterations. This is due to the fact that a limited num-
ber of simulation (SIMPLE) iterations is run at each
optimization step in order to reduce the computational
cost, and the volume constraint is not satisfied at the
initial guess.
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Fig. 13: Convergence curve of the topology optimization
of the rotating nozzle for laminar (50 rpm wall rotation)
and turbulent flows (5,000 rpm wall rotation).

The simulation results for the post-processed
meshes for the optimized topologies for their respective
flow regimes are shown in Fig. 14. As can be noticed
in Fig. 14b, the turbulent effect (i.e., the turbulent
viscosity) causes a higher radial-axial flow acceleration
near the rotating wall, which is the opposite from the
laminar flow case (Fig. 14a), where the radial-axial
flow is mainly concentrated in the middle of the nozzle.
This may explain the fact that the “outlet zone” is
straighter in the turbulent flow optimized topology
than in the laminar flow optimized topology.
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(b) Simulation for turbulent flow (10 L/min, 5,000 rpm wall
rotation).

Fig. 14: Optimized topologies and variables for opti-
mized rotating nozzles.

6.2 Hydrocyclone-type device

The second example is of a hydrocyclone-type device.
With respect to a “real” hydrocyclone device, it differs
from the fact that it considers a single-phase flow (in-

stead of a two-phase flow), which enters the fluid flow
device from a single inlet under rotation (wiy,), and ex-
its it through a single outlet. This type of design has
been previously evaluated for laminar 2D swirl flow by
Alonso et al. (2018). Fig. 15 shows the design domain
that is considered in this case. Since the hydrocyclone-
type device is static, the solid material distribution is
optimized for these static walls (wo = 0 rad/s).

=0 (StatIC) v=(vrljnl winr' 0)

H‘?’L = Rr=Rtin
(V)]
= h,
2|
=
(0]
)

| |
TRout R r'
(T+TR)*n=0

VRT.H=O

Fig. 15: Design domain for the hydrocyclone-type de-
vice.

The mesh is considered as the same from Fig. 10.
The input parameters, geometric dimensions and mate-
rial model parameters that are considered for the design
are shown in Table 2. The inlet flow rates correspond to
maximum inlet Reynolds numbers 4.0 x 10%, 4.5 x 10*
and 5.8 x 10%. Since the TOBS approach considers bi-
nary variables, the initial guess has to be chosen to be
discrete: In this work, in order to facilitate convergence,
an initial guess featuring a “straight connection between
inlet and outlet” is considered. The specified fluid vol-
ume fraction (f) is set as 30%. In this case, since the
reference frame is stationary, it can be reminded that
the inertial effect terms from the relative energy dissi-
pation (eq. (16)) are zero.
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Table 2: Parameters used for the topology optimization

of the hydrocyclone-type device.

Input parameters

Inlet flow rate (Q) 20 L/min

Wall rotation (ng) 0 rpm

Inlet rotation (ny) 0, 1,000 and 2,000 rpm

Inlet velocity profile Turbulent

Ir 5.0%

by 0.12 mm
Dimensions

H 15 mm

R 10 mm

h1 11 mm

ha 3 mm

Material model parameters™®

5.0 (for 0 rpm)
5.0 (for 1,000 rpm)
50.0 (for 2,000 rpm)

q 1.0
ARy 1.0

KJmax

(x10%p (kg/(m? 5)))

* The optimization considers a Helmholtz pseudo-density fil-
ter (Section 3.5) in order to better stabilize the discrete opti-
mized topologies. The filter length parameter (rzr) is chosen
as the value ry = 0.25 mm.

A series of topology optimizations is performed for
different inlet rotations, whose results are shown in Fig.
16. The maximum local Reynolds numbers are com-
puted as: 4.18 x 10, 4.42 x 10° and 5.24 x 10°. In Fig.
16, it can be noticed that the channel slightly raises in
position when under higher inlet rotations. This effect
can be mostly attributed to the increased flow inertia
when under higher inlet rotations, which tends to hin-
der the change in flow direction to the outlet. It can
also be noticed that, as in the turbulent nozzles of Sec-
tion 6.1, the downmost part of the channel is straight
for less relative energy dissipation.

S 10 215
o 8 1.6 /é\
S Z {1105 =
5 los =
& + i
2] . +—1.0.05
0 1000 2000
n (rpm)

r

- Relative energy dissipation
+—Head loss

Fig. 16: Topology optimization results for the
hydrocyclone-type device under different inlet rota-
tions.

The convergence curve for the hydrocyclone-type
device (1,000 rpm inlet rotation) is shown in Fig. 17.
From there, it can be noticed that the optimized chan-
nel slowly “rises” to its optimized positioning during
topology optimization.

q)re] (X103 W)
OFR NWPRAO

0 40 80 120 160 200

vie

Fig. 17: Convergence curve of the topology optimiza-
tion of the hydrocyclone-type device (1,000 rpm inlet
rotation).

The simulation results for the post-processed mesh
for the optimized topology for the hydrocyclone-type
device (1,000 rpm inlet rotation) are shown in Fig. 18.
As can be noticed in Fig. 18, there is a flow acceler-
ation from the inlet towards the outlet, which mostly
happens when the fluid reaches the “straight” part of
the channel, which is closer to the outlet. This is prob-
ably due to the sudden decrease in cross-sectional area
near the middle of the channel, which changes it from
a “cylinder-like” cross-section (“27rAz”) to a “disk-like”
cross-section (“7r?”).
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Fig. 18: Optimized topologies and variables for the op-
timized hydrocyclone-type device (1,000 rpm inlet ro-
tation).

6.3 Tesla-type pump device

A Tesla-type pump device is a fluid flow device that
aims to pump fluid without the use of any blades,
propelling the fluid by rotation combined with the
boundary layer effect (referred, for simplicity, as
“Tesla principle”). The Tesla principle has a variety
of applications, such as pumps (Tesla, 1913a), fans
(Engin et al., 2009), compressors (Rice, 1991), turbines
(Tesla, 1913b), VADs (Ventricular Assist Devices)
(Yu, 2015) and even vacuum generation (Tesla, 1921).
For simplicity, the term “Tesla-type pump device”
is abbreviated to simply “Tesla pump” in this work.
This type of design has been previously evaluated for
laminar 2D swirl flow (Alonso et al., 2018). The design
domain considered in this work is shown in Fig. 19.

2>
r
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i L] =
o ol
-RT=® VRT°H—0
i N
1 v=0 '
rshaft RT=0 Text

Fig. 19: Design domain for the Tesla pump.

The mesh consists of 10,277 nodes and 20,240 ele-
ments (i.e., 110 radial and 46 axial rectangular parti-
tions of crossed triangular elements, see Fig. 20). The
input parameters, geometric dimensions and material
model parameters that are considered for the design are
shown in Table 3. In this example, the maximum inlet
Reynolds number is given as 4.92 x 10*. In this work,
in order to facilitate convergence, a “straight disks” ini-
tial guess is considered (see Fig. 21). The specified fluid
volume fraction (f) is set as 30%.

0O 26 5 10 15

' (mm)

Fig. 20: Mesh used in the design of the Tesla pump.

—~ 5
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Fig. 21: Straight disks reference design for the Tesla
pump.
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Table 3: Parameters used for the topology optimization
of the Tesla pump.

Input parameters

Inlet flow rate (Q) 5.0 L/min

Wall rotation (ng) 50,000 rpm

Inlet rotation (ny) 0 rpm

Inlet velocity profile Turbulent

It 5.0%

{1 0.092 mm
Dimensions

Tshaft 2.6 mm

Tint 5 mm

Cout 5 mm

Text 15 mm

Material model parameters™®

Kmax 2.5

(x10%p (kg/(m* 5)))

q 1.0

At 1.0

* The optimization considers a Helmholtz pseudo-density fil-
ter (Section 3.5) in order to better stabilize the discrete opti-
mized topologies. The filter length parameter (rgr) is chosen
as the value ry = 0.22 mm.

The optimized topology is shown in Fig. 22, where
the maximum local Reynolds number is given as 1.96 x
108. As can be noticed, when under a high flow rate and
rotation, the optimized channel tends to attach itself
to the upper surface of the design domain, which, in
fact, corresponds to the least distance from the inlet
to the outlet. Table 4 shows the computed values for
the reference (Fig. 21) and optimized (Fig. 22) designs.
As can be noticed, the computed values show that the
optimized design is an improvement in relation to the
reference design, with the relative energy dissipation
(®re1) being slightly smaller (-0.53%), the pressure head
(H) being slightly higher (+1.21%) and the isentropic
efficiency (ns) also being slightly higher (+1.57%). It
can be noticed that the relative differences are not high,
because, when considering a fluid flow problem that
includes a high rotational effect, the rotation itself poses
a high influence in all computed functions. This leads to
the effect that, if the reference topology is not chosen as
a “poor-performing” topology, the computed functions
should be mainly guided by the rotation, meaning that
the relative performance improvement from topology
optimization may not be so high.

—_ 5|
& }
€25
N
0 26 5 10 15

' (mm)

Fig. 22: Optimized topology for the Tesla pump.

Table 4: Computed values for the reference and opti-
mized topologies for the Tesla pump device.

Designs P (x10% W) H (m) s (%)
Reference 1.88 57.7 254
Optimized 1.87 58.4 25.8

The convergence curve is shown in Fig. 23.

1 1 1

0 40 80 120 160 200

t ot 1t

Fig. 23: Convergence curve of the topology optimization
of the Tesla pump.
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The simulation of the optimized design is shown in
Fig. 24. From it, it can be noticed that the pressure in-
creases more at higher radii, due to the fluid pumping.
From the high rotation, the Tesla principle “dampens”
a “possible collision-like” behavior of the inlet flow to-
wards the “horizontal disk-surface”, leading the fluid to
accelerate towards the outlet near the walls. This be-
havior seems to justify the optimized design in relation
to the reference (Fig. 21), due to the fact that the main
difference between the two designs would be that the
reference design allows an additional axial rotational
acceleration which increases the relative energy dissi-
pation. It can also be noticed that higher velocities are
achieved near the walls, due to the higher rotational ef-
fect (Tesla principle). The turbulent viscosity increases
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when the fluid reaches the “outlet channel”, where the
fluid is more intensely rotationally accelerated.
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Fig. 24: Optimized topology and variables for the opti-
mized Tesla pump.

7 Conclusions

In this work, the topology optimization method is
applied to the design of turbulent 2D swirl flow devices
considering the TOBS approach and the Wray-Agarwal
turbulence model (“WA2018”). Therefore, one of the
main aspects that have been considered in this work
is the Wray-Agarwal turbulence model (“WA2018”),
which reduces the number of coefficients that need to
be adjusted in topology optimization and does not
require the computation of the wall distance, making
it easier to perform/calibrate topology optimization.
Also, the smaller number of additional equations when
using this model (i.e., only one instead of two, with
respect to other turbulence models) makes it simpler
to implement topology optimization. Another relevant
aspect is the TOBS approach, which allows the use of
binary variables, eliminating the problem of appearing
a “gray” medium in the optimized results.

The numerical results illustrate the use of the pro-
posed approach. In the overall, the Wray-Agarwal tur-
bulence model (“WA2018”) and the TOBS approach are
shown to be capable of performing turbulent flow topol-
ogy optimization. More specifically in terms of the nu-
merical examples: First, turbulent flow nozzle designs
are shown to perform better than laminar flow nozzle
designs when operating under turbulent flow, and vice-
versa. Then, the effect of the wall rotation is illustrated
for the same nozzle design, showing that the “inlet zone”
tends to be enlarged for higher rotations. Following, a

hydrocylone-type device is considered for different inlet
rotations, showing that higher inlet rotations slightly
raise the “inlet channel”. To finalize, an example of a
Tesla pump is considered, showing the applicability to
rotation-driven flows.

As future work, it is suggested that compressible
fluid flow models be considered, as well as heat transfer
and flow machine design.

8 Replication of results

The descriptions of the formulation, the numerical im-
plementation and the numerical results contain all nec-
essary information for reproducing the results of this
article.
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Appendix A Comparison of sensitivities with
finite differences

A comparison of the computed sensitivities (using
dolfin-adjoint) with finite differences is presented
in this appendix. The comparison is performed for
the optimized topology for the rotating nozzle for
turbulent flow under 10 L/min and 2,500 rpm (Sec-
tion 6.1), by considering the simulations for laminar
(0.06 L/min and 25 rpm) and turbulent (10 L/min
and 2,500 rpm) flows. The set of points selected for
comparison with finite differences in the computa-
tional domain is shown in Fig. 25. The comparison
is performed for the same configurations considered
for laminar and turbulent flows in Section 6.1. For
a = 1 (fluid), the finite difference approximation is
considered through the backward difference approx-
imation: % = W, where J = ®,,. For
a = 0 (solid), the finite difference approximation is
considered through forward difference approximation:
% = %{w. The computed sensitivities are
shown in Fig. 26, for a step size of 1073, As can be
seen, the computed sensitivities for this work (by using
dolfin-adjoint) and finite differences are close to each
other. For a better insight about the differences be-
tween the two sensitivities, Fig. 27 depicts the relative
differences as defined below, which resulted small. The
computed relative difference values may be viewed in
sight of the fact that smaller objective function values
may hinder the computation of finite differences due
to computational errors, as observed in Yoon (2020)
and Haftka and Giirdal (1991). Furthermore, since a
discrete algorithm (not continuous) is being considered
in this work, this amount of difference does not seem
to pose a problem.

ﬂ‘ _ dJ
da |[FD do Ip
Td|laminar = max |ﬂ| (31)
dalp, all points ||aminar
4| dl|
da |[FD do Ip
Td|turbulent — max |ﬂ (32)
dalp, all points [{yrbulent

where the subscript “p” indicates the “present work”
approach (by using dolfin-adjoint) and “FD” indicates
“Finite Differences”. The relative differences values are
higher in the turbulent case due to the higher non-
linearity of the fluid flow problem.
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Fig. 25: Topology considered for the finite differences
comparison.

s =
T A%
% 4 X Sl o X
Ra} X\ ) 4 -
o ‘\‘ 'l’l g
g 8t \ // 1-6 g
é‘ \;O 'g
kel 12 I 1 1 1 -10 3
1 2 3 4 5
SIES SIES

Number of the point

- - @8- - Finite differences (laminar flow)
Present work (laminar flow)

= = #= = Finite differences (turbulent flow)
Present work (turbulent flow)

Fig. 26: Sensitivity values computed with the approach
of the present work (from FEniCS/dolfin-adjoint) and
from finite differences, for laminar and turbulent flows.
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Fig. 27: Relative differences for the cases shown in Fig.
26.

Appendix B 2D double pipe

The design of a 2D double pipe is performed in this
Appendix, in order to show the Wray-Agarwal model
(2018) being considered for topology optimization in a
2D case for a different initial guess configuration for the
design variable. The topology optimization for this type
of problem has been previously evaluated by Borrvall
and Petersson (2003), for laminar Stokes flow. In this
work, the inlets are set to be larger, which is reflected in
setting the specified fluid volume fraction (f) as 50%, in
order to make possible the formation of straight chan-
nels connecting the inlets to the outlets. Also, the outlet
flow boundary condition is set as “stress free”, which is
more generic (Hasund, 2017) with respect to imposing
fixed outlet velocity profiles as Borrvall and Petersson
(2003). The design domain is shown in Fig. 28.

h
KR V=( i 0) (T+Tg)sn=0
" h’” =) Rr=Rt;, VRten=0
in
h ) V=(Vx,in' O) (T+TR).H=O
mn :: RTzRT,in VRT.n=0
: >

lg N| X
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Fig. 28: Design domain for the 2D double pipe.

The mesh consists of 16,181 nodes and 32,000
elements (i.e., 100 horizontal and 80 vertical rectan-
gular partitions of crossed triangular elements, see
Fig. 29). The input parameters, geometric dimensions
and material model parameters that are considered
for the design are shown in Table 5. The maximum
inlet Reynolds number is 0.375 (laminar flow case) and
2.8x10% (turbulent flow case). In order to consider
a different configuration for the initial guess with
respect to the other examples, the initial guess is
chosen as shown in Fig. 30, where d = 37.5 mm and
r. = 3.75 mm. The TOBS approach is considered for
€relax = 0.1 and Baip 1imit = 0.1 (laminar flow case),
and for erelax = 0.05 and Bip 1imit = 0.05 (turbulent
flow case).
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Fig. 29: Mesh used in the design of the 2D double pipe.
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Fig. 30: Initial guess used in the design of the 2D double
pipe.

Table 5: Parameters used for the topology optimization
of the 2D double pipe.

Input parameters (laminar flow)
Inlet flow rate (Q) 2x0.45 mL/min *
Inlet velocity profile Parabolic

Input parameters (turbulent flow)
Inlet flow rate (Q) 2x55.4 L/min *

Inlet velocity profile Turbulent
I 5.0%
by 0.96 mm
Dimensions
hin 25 mm
100 mm
4 150 mm
Material model parameters (laminar flow)**
Kmax 2.5
(x10%u (kg/(m? 5)))
q 1.0
Material model parameters (turbulent flow)**
Kmax 2.5
(x107u (kg/(m? s)))
q 1.0
ARy 10¢

* The inlet flow rate is computed assuming that the width
of the inlet (h;n) corresponds to an “inlet diameter” (in 3D).
The fact that there are two inlets in indicated by “2x”, which
means that the value to the right of “2x” corresponds to the
flow rate for a single inlet.

** The optimization considers a Helmholtz pseudo-density
filter (Section 3.5) in order to better stabilize the discrete op-
timized topologies. The filter length parameter (rg) is chosen
as the value rg = 0.625 mm for the laminar flow case, and
as rg = 1.25 mm for the turbulent flow case.

The optimized topologies are shown in Fig. 31,
where the maximum local Reynolds number is given as
0.46 (laminar flow case) and 2.9x10% (turbulent flow
case). As can be noticed, both optimized topologies
are essentially different, where both channels join in
the middle of the design domain for the laminar flow
(similarly to the optimized results obtained by Borrvall
and Petersson (2003)), but are kept separated for
the turbulent flow. This difference in the optimized
topologies shown in Fig. 31 can be viewed from the
fact that the high inlet fluid flow velocity from the
turbulent flow case does not allow creating a bend
in the channel without dissipating significantly more



Topology optimization method based on the Wray-Agarwal turbulence model 27

energy, while the energy expent for that in the laminar
flow case is minimal. This is also shown in the energy
dissipation values from Table 6, where it can be seen
that the optimized topologies perform better for their
respective fluid flow regimes (43% better in the laminar
flow case, and 46% better in the turbulent flow case).

100
€ 75
£ 50
= 25
0
0 50 100 150
X (mm)
(a) Optimized topology for laminar flow (2x0.45
mL/min).
100
= 75
£ 50
= 25
0
0 50 100 150
X (mm)

(b) Optimized topology for turbulent flow
(2x55.4 L/min).

Fig. 31: Optimized topologies for the 2D double pipes
(f = 50%).

Table 6: Energy dissipation computed for the laminar
and turbulent flow optimized topologies operating un-
der each others’ flow configurations for the 2D double
pipes. The underlines indicate the values for the fluid
flow regime that is considered in the designs.

Designs Laminar flow Turbulent flow
Dral (xlO*” W) Dral (X102 W)

Optimized 0.97 1.97

for laminar

flow

Optimized 1.71 1.07

for turbulent

flow

Appendix C 2D U-bend channel

The design of a 2D U-bend channel is performed in this
Appendix, in order to show the Wray-Agarwal model
(2018) being considered for topology optimization in a
2D case. This topology optimization problem has been
previously evaluated by Dilgen et al. (2018), for the
Spalart-Allmaras and k-w models considering the MMA
(Method of Moving Asymptotes) algorithm. The 2D U-
bend channel consists of an inlet and an outlet next
to each other, with a “rod”-like structure in the mid-
dle of the channel that forces the optimized channel to
go around it (see Fig. 32). The inlet and outlet zones,
as well as the “rod”™-like structure are kept as ‘“non-
optimizable”.

Design
domain
(Qq)
v=(Vy in, 0) y
Rr=Rt;p, 4
1 ¥ | v=0 |51
2 L RT:()
%L S 4
< = » X
(T+Tgr)en=0 jL
vRT.nzo W 6L Ll

Fig. 32: Design domain for the 2D U-bend channel.

Since there is a ‘“non-optimizable” zone inside the
computational domain (see Fig. 32), when considering
the Helmholtz pseudo-density filter, the filter is applied
over the whole computational domain (€2); however, the
design variable value outside the design domain (2\2,)
is enforced as the previous value (a). Therefore, the
variable o new is used in the equations in function of
the position (s):

0 now(8) = ay, if s € Q4
Frevi® T L, ifs€Q)\ Qg

The local Reynolds number from eq. (25) is rede-
fined for this case, where the characteristic length is set
as the width of the inlet (L, from Fig. 32) in the place of
the external diameter (“2r.;”). As in the other numer-
ical examples, the fluid is being considered as water.

The mesh consists of 92,431 nodes and 184,000 ele-
ments (i.e., 230 horizontal and 200 vertical rectangular
partitions of crossed triangular elements, see Fig. 33).

(33)
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The input parameters, geometric dimensions and ma-
terial model parameters that are considered for the de-
sign are shown in Table 7. The maximum inlet Reynolds
number is 5.4x10%. In this work, in order to facilitate
convergence, the initial guess is given from the refer-
ence topology from Fig. 34. The specified fluid volume
fraction (f) is set as 30%. The TOBS approach is con-
sidered for erelax = 0.2 and SBaip 1imit = 0.001.

Fig. 33: Mesh used in the design of the 2D U-bend chan-
nel.
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Fig. 34: Reference topology for the 2D U-bend channel.

Table 7: Parameters used for the topology optimization
of the 2D U-bend channel.

Input parameters
Inlet flow rate (Q) 21.3 L/min *

Inlet velocity profile Turbulent

It 5.0%

b 0.77 mm
Dimensions

L 20 mm

Material model parameters**

Kmax 2.5

(x10"u (kg/(m? 5)))

q 1.0

ARy 103

* The inlet flow rate is computed assuming that the width of
the inlet (L) corresponds to an “inlet diameter” (in 3D).

** The optimization considers a Helmholtz pseudo-density
filter (Section 3.5) in order to better stabilize the discrete op-
timized topologies. The filter length parameter (rg ) is chosen
as the value ry = 1.0 mm.

The optimized topology is shown in Fig. 35, with
the corresponding sensitivities’ distribution shown in
Fig. 36, where the maximum local Reynolds number
is given as 2.7x10%. As can be noticed, the optimized
channel is expanded outwards with respect to the “rod”-
like structure. Also, the optimized topology features a
wider curve than the reference topology (Fig. 34). As
a comparison, the optimized topology resulted in 35%
less energy dissipation (1.10x10%2 W/m vs. 1.70x10?
W/m), and 11% (2.72x1072 m vs. 3.04x1072 m) less
head loss than the reference topology.

é 50
> 25
% 60 120
X (mm)

Fig. 35: Optimized topology for the 2D U-bend channel.
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Fig. 36: Sensitivities in the last optimization iteration,
for the optimized 2D U-bend channel.

The simulation of the optimized design is shown
in Fig. 37. From it, it can be noticed that the small
“bumps” of the optimized topology near the inlet and
outlet of the design domain do not significantly change
the velocity field of the fluid flow simulation, meaning
that their contribution to the energy dissipation should
be small. Also, the curve in the optimized channel re-
duces the bending necessary for the fluid to head to-
wards the outlet, reducing energy dissipation and head
loss.
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—— - T .
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Fig. 37: Optimized topology and variables for the opti-
mized 2D U-bend channel.

Fig. 38 shows a comparison of streamlines between
the simulations for the modeled solid material, for
the Helmholtz filter (ry = 1.0 mm) and for the
post-processed topology. As can be noticed, some
differences arise between the simulations. First, the
streamlines for the modeled solid simulation show an
acceleration of the fluid flow after the curve, which
is not present in the simulation of the post-processed
topology. This effect can also be observed in Dilgen
et al. (2018) (Figs. 10c and 14b of Dilgen et al.
(2018)). This seems to be a drawback of the modeled
material used in fluid topology optimization (inverse
permeability), since this modeled material intrinsically
implies that there will be fluid flow inside the solid
material, even at extremely small values, which may
possibly lead to small changes in the characteristics
of the solid boundaries and may affect the turbulent
flow modeling. When considering the Helmholtz filter,
the boundaries are blurred, which has the effect of
leading the topology optimization to focus on the
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main flow, giving less emphasis to local effects that
may possibly destabilize the fluid flow (such as some
specific inclusions in the middle of the channel) or lead
the topology optimization to a relatively worse local
minimum.

Filtered

Modeled solid ﬂ g
: Post-processed
- | -

0 1 2 3 C

(Vy, vy) (m/s)

Fig. 38: Streamlines in the 2D U-bend channel opti-
mized topology, by considering the simulation for the
modeled solid material, the simulation when including
the Helmholtz filter (ry = 1.0 mm) and the simulation
when considering the post-processed topology.



