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Microbiome and oral squamous cell carcinoma: a possible interplay
on iron metabolism and its impact on tumor microenvironment
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Abstract
There is increasing evidence showing positive association between changes in oral microbiome and the occurrence of oral
squamous cell carcinoma (OSCC). Alcohol- and nicotine-related products can induce microbial changes but are still unknown
if these changes are related to cancerous lesion sites. In an attempt to understand how these changes can influence the OSCC
development and maintenance, the aim of this study was to investigate the oral microbiome linked with OSCC as well as to
identify functional signatures and associate them with healthy or precancerous and cancerous sites. Our group used data of oral
microbiomes available in public repositories. The analysis included data of oral microbiomes from electronic cigarette users,
alcohol consumers, and precancerous and OSCC samples. An R-based pipeline was used for taxonomic and functional prediction
analysis. The Streptococcus spp. genus was the main class identified in the healthy group. Haemophilus spp. predominated in
precancerous lesions. OSCC samples revealed a higher relative abundance compared with the other groups, represented by an
increased proportion of Fusobacterium spp., Prevotella spp.,Haemophilus spp., and Campylobacter spp. Venn diagram analysis
showed 52 genera exclusive of OSCC samples. Both precancerous and OSCC samples seemed to present a specific associated
functional pattern. They were menaquinone-dependent protoporphyrinogen oxidase pattern enhanced in the former and both
3′,5′-cyclic-nucleotide phosphodiesterase (purine metabolism) and iron(III) transport system ATP-binding protein enhanced in
the latter. We conclude that although precancerous and OSCC samples present some differences on microbial profile, both
microbiomes act as “iron chelators-like” potentially contributing to tumor growth.
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Introduction

Cancer has been considered one of the main causes of
premature deaths in adults worldwide affecting more
than 4.5 million persons [1], being head and neck can-
cer the seventh most common one [2]. Approximately
half of the head and neck cancerous lesions diagnosed
in 2018 belonged to oral cavity, with about 350,000
affected individuals [2].
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Consumption of alcoholic beverages, smokeless tobacco,
and tobacco smoking are considered the main agents associ-
ated with the occurrence and development of oral cancer [3].
In this sense, alcohol consumption increases up to 5 times the
risk for oral cavity cancer development [4], and the simulta-
neous consumption of alcohol and smokeless tobacco or to-
bacco smoking increases up to 16 times the chance for oral
cancer development [5]. Around 2.4 million tobacco-related
cancer deaths per year have been reported [6] being smoking-
attributable lip and oral cancer responsible for about one-third
of worldwide cancer deaths during the last 30 years [7].
However, although the carcinogenicity of tobacco has been
well-established, it is still unclear how and whether electronic
cigarettes and/or electronic nicotine delivery systems actually
increase the risk of users developing cancer, which raises the
need for further investigation on this matter [8].

In addition to the abovementioned risk factors, it is well
understood that shifts in the commensal microbiota at specific
sites might be associated with cancer development [9–12].
Studies have suggested that Helicobacter pylori have a direct
effect on stomach cancer [13, 14] and, therefore, this is the
only well-established bacteria considered as carcinogenic to
humans [15]. On the other hand, there is increasing evidence
showing a positive association between the presence of
Fusobacterium spp., Pseudomonas spp., Prevotella spp.,
Campylobacter spp., Rothia spp., Leptotrichia spp., and
others and the occurrence of oral squamous cell carcinoma
(OSCC), suggesting that a microbial signature might also be
associated with oral cancerous lesions, although the causal
effect has not been shown so far [16–19]. Yet, both alcohol
consumption and electronic cigarette use can induce microbial
changes in the oral cavity [20, 21], but it is unknown whether
the microbial profile found under those conditions resembles
the one related to cancerous lesion sites.

Several mechanisms have been proposed to explain the
interplay between host cells and the associated microbiome
and cancerous lesion development. An overrepresentation of
peptidases and the enrichment of the lipopolysaccharide bio-
synthesis pathway have been reported in the microbiome as-
sociated with oral cancerous lesions [17, 22], revealing a
microbiome-derived pro-inflammatory environment correlat-
ed with carcinogenesis. Dysregulation of the host immune
system has also been warranted as a possible direct and end-
effect of tissue-associated microbiota [9]. Moreover, alter-
ations in epithelial barriers and epigenetic modulation have
also been considered as effects of the microbiome over host
cells [12].Whether microbial changes and the associated func-
tional patterns are consequences of cancer development or
whether they both act modifying the lesion behavior and pro-
gression is still under debate. This way, the identification of
potential microbial biomarkers and specific functional pat-
terns related to precancerous or cancerous lesions has been
encouraged as an aid to the development of further clinical

strategies attempting to prevent cancer development and pro-
gression [23, 24]. Hence, the present study aims to investigate
the oral microbiome linked with precancerous lesions and
with oral squamous cell carcinoma. We also intend to identify
functional signatures of oral dysbiosis and associate themwith
healthy or cancerous and precancerous sites. The tested hy-
potheses were that oral microbial dysbiosis is associated with
cancer sites whose microbiomes present specific functional
patterns.

Materials and methods

Sample description

To assess the differences on the oral microbiome among 4
different conditions (2 related to lifestyle and 2 related to
pathogenic processes), we used public data available in differ-
ent biological databases. First, we performed a search in the
literature and in specialized databases like MGnify [25] and
GenBank [26] to generate concise data. The options selected
in MGnify database was human biome; oral (16S). For the
purpose of this study, only data generated on Illumina plat-
form were selected. In this way, we gathered 41 samples with
a total of 204,380 sequences from 2 different studies divided
into “alcohol consumers” and “electronic cigarette users
(PRJNA413706)” and a group with precancerous and with
OSCC (PRJEB4953) [27, 28]; the number of raw sequence
reads varied by >10-fold across samples, ranging from 1231
to a maximum of 17,682 raw reads.

Bioinformatics pipeline

The FastQC version 0.11.9 [29] was used to verify the quality
of the sequences as well as the number of duplicates, ambig-
uous bases, and bases to be truncated. Subsequently the se-
quences were processed in R script, using the pipeline recom-
mended by the DADA2 package [30]. First, we filtered low-
quality sequences with the following parameters: maximum
number of N allowed was 0 (maxN = 0), the sequences were
truncated at 240 in reads forwards and 160 in reads reverse
(truncLen = 240,160), and maximum number of expected
errors allowed was 2 and 5 forwards and reverse reads, respec-
tively (maxEE = 2,5). After we used amachine learningmodel
to correct error rate, within the use of a parametric error model,
the implemented method learns this error model from the data,
by alternating estimation of the error rates and inference of
sample composition until they converge on a jointly consistent
solution. After this stage, the same/similar sequences were
clustered for later creation of the amplicon sequence variant
table (ASV); after that, the chimera was removed in order to
minimize possible PCR bias. Taxonomic analysis was per-
formed considering SILVA database version 132 [31]
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available online, and the composition table was generated
from this process. Data were also processed by Piphillin [32]
to predict functional analysis of microbiome to a better eluci-
dation of mechanisms by which microbiome perturbation can
cause any change in the patient. To proceed with the Piphillin
output analysis, we used “in-house” R scripts. All diversity
graphics, abundance, and heatmaps were generated in
MicrobiomeAnalyst [33] web server. The statistical methods
used to calculate the alpha diversity were analysis of variance
(ANOVA) and for the beta diversity the analysis of similari-
ties (ANOSIM). Abundance of phyla and genera between T1/
T2 and T3/T4 staging lesions and abundance of the main
bacteria that are involved in the process of regulating mole-
cules between precancerous and cancerous lesions were com-
pared by the Mann-Whitney test; p-values less than 0.05 were
considered statistically significant. The two studies used to
conduct this work are available under the following accession
number: PRJNA413706 (alcohol drinkers and electronic cig-
arette smokers) and PRJEB4953 (precancerous and OSCC) in
MGnify and GenBank databases.

Results

Taxonomic profiles at the phyla and genus level

The analysis of the taxonomic oral microbiota composition of
the four studied groups was explored by comparing the rela-
tive abundance at phyla (Figure S1) and the genera levels (Fig.
1). Firmicutes and Proteobacteria represent around 80% of
identified phyla in cigarette users, alcohol consumers, and
precancerous samples. Furthermore, in precancerous samples,
the proportion of Proteobacteria increased and the proportion
of Firmicutes decreased compared with cigarette users and
alcohol consumers. Interestingly, both phyla accounted for
less than 50% of those associated with OSCC lesions, being
Bacteroidetes the most prevalent one (30% of the total abun-
dance) in cancerous lesions. In contrast, this phylum ranged
from 6 to 8% of total abundance in the microbiome of the
other conditions. The prevalence of Fusobacteria on OSCC
samples was about four times greater than in cigarette users
and alcohol consumers (Figure S1) and two times greater than
in precancerous samples. Taxa belonging to the genus
Streptococcus and Haemophilus occurred at higher relative
abundances in electronic cigarette users (group 1), alcohol
consumers (group 2), and individuals diagnosed with precan-
cerous lesions (group 3), being the relative abundance of
Haemophilus greater in precancerous lesions. Moreover, an
increase in taxonomic diversity, in terms of Fusobacterium,
Prevotella, Haemophilus, Campylobacter, Alloprevotella,
and Corynebacterium, was found associated with OSCC
(group 4) (Fig. 1).

Alpha- and beta-diversity analyses

In terms of alpha-diversity (number of genera, richness, and
abundance), although slight differences have been found
among the groups, the general diversity pattern was similar
among them (Fig. 2a, b, c, d). In terms of beta-diversity (com-
munity level), a similar pattern is likely to be found on elec-
tronic cigarette users (group 1), alcohol consumers (group 2),
and precancerous samples (group 3). In contrast, a specific
beta-diversity pattern was found on OSCC samples (purple
circle) that was different compared to the other conditions
(Fig. 2e). Moreover, the beta-diversity in OSCC samples is
gender dependent (Figure S2). Overall, the Venn diagram
shows that the greatest genera diversity was found in OSCC
samples (140 identified genera), followed by electronic ciga-
rettes (94 genera), alcohol consumers (78 genera), and precan-
cerous lesions (71 genera) (Fig. 2f). Furthermore, the co-
occurrence of 52 genera was found among the groups, while
OSCC samples harbored 52 exclusive genera not found on the
other conditions (Fig. 2f). Within those OSCC-exclusive gen-
era, 36% and 30% belonged to Firmicutes and Proteobacteria
phyla, while 13.5% and 7.5% belonged to Actinobacteria and
Bacteroidetes, respectively. The reads counts of Bacteroidetes
in OSCC samples were greater than in the electronic cigarette
users and alcohol consumers. Table S1 showed a description
of shared and exclusively found genera among electronic cig-
arette users, alcohol consumers, and precancerous and OSCC
samples.

Staging analysis in OSCC

In the comparison between T1/T2 and T3/T4 staging lesions,
the abundance of Bacteroidetes and Firmicutes was statisti-
cally higher (two times greater; p= 0.00423 and 0.00436, re-
spectively) on T3/T4 lesions, whereas statistically lower abun-
dance ofProteobacteria and Fusobacteria (half-fold and four-
fold, respectively; p= 0.00032 and 0.03237) was found on
more advanced lesions (Figure S3). In terms of abundance at
the genus level, Fusobacterium, Prevotella, Akkermansia,
Actinobacillus, and Corynebacterium comprised about 50%
of genera found in T1/T2 lesions, being the abundance of
Akkermansia (p= 0.02147), Corynebacterium (p= 0.01443),
and Fusobacterium (p= 0.00388) statistically greater in T1/T2
(since they were virtually absent on T3/T4 lesions). Prevotella
and Haemophilus besides comprising up to 50% of the iden-
tified genera in T3/T4 were statistically more abundant in
more advanced lesions (four-fold and three-fold, respectively;
p= 0.003112 and 0.01253) (Fig. 3). The abundance at the
genus level on OSCC samples seems to be affected by tumor
staging, gender, and use/consumption or not of electronic cig-
arettes or alcohol (Fig. 4). Overall, it seems that the abundance
is greater in men than that in women and in the most advanced
stages of the disease, being the abundance also dependent on
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use/consumption or not of electronic cigarettes or alcohol.
Some genera, such as Streptococcus, Rothia, Actinomyces,

Veillonella, Prevotella, Bifidobacterium, Atopobium,
Megasphaera , Haemophilus , Peptostreptococcus ,

Fig. 1 Stacked bar chart showing the relative abundance of the bacterial
taxonomic hits at the genus level in buccal mucosa samples in the
different studied groups: G1, electronic cigarette users; G2, alcohol

consumers; G3, individuals diagnosed with precancerous lesions; and
G4, individuals diagnosed with OSCC obtained by the MiSeq
sequencing pipeline

Fig. 2 Representation of alpha- and beta-diversity on samples and
community levels. a and b Alpha diversity analysis with Chao and
Shannon metrics (Chao1 p=0.15125; Shannon p=0.476094), and
boxplot graph analyzed by the same metrics (c and d); e principal

components analysis (PCA; Bray-Curtis Index) with beta-diversity
metric (PCA p<0.001), revealing an outlier group counting only cancer
samples; f Venn diagram showing the occurrence and co-occurrence of
the genera between the four groups of samples
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Granulicatella, and Solobacterium, were mostly found in
electronic cigarette users who were also alcohol consumers
and presented advanced OSCC lesions, showing a synergistic
effect of such habits on the microbial composition.
Abundance of Streptococcus seems to be greater in men than
that in women.

Functional prediction analysis

The predictive enrichment analysis showed that there is no
difference among the groups in the top ten predicted function-
al patterns (Figure S4). Considering the functional prediction
“metabolism,” we then decided to investigate the seven most
representative molecules regulated by bacteria in four differ-
ent conditions: electronic cigarette users, alcohol consumers,
precancerous lesions, and OSCC samples (Fig. 5). The results
revealed that poly(A) polymerase pathway (involved in RNA
degradation) is likely to be more found in cigarette users and
alcohol consumer individuals (Fig. 5(3)) and succinate
dehydrogenase/fumarate reductase (involved in many path-
ways, such as citrate cycle, oxidative phosphorylation, bio-
synthesis of secondary metabolites, and others) (Fig. 5(2))
and sedoheptulose-bisphosphatase (a hydrolase) (Fig. 5(4))
are prone to be found in both precancerous and OSCC sam-
p l e s . I n t e r e s t i n g l y , m e n a q u i n o n e - d e p e n d e n t
protoporphyrinogen oxidase (involved in the biosynthesis of
secondary metabolites) seems to be an important pathway on
precancerous samples (Fig. 5(1)), whereas 3′,5′-cyclic-

nucleotide phosphodiesterase (purine metabolism) and
iron(III) transport systemATP-binding protein (an ABC trans-
porter) (Fig. 5(5) and 5(7)) are likely to be more found in
OSCC samples . The results also revealed that excluding the
precancerous group, which included pullulanase enzyme (C6.
PulnA; pullulanase [EC: 3.2.1.41]), and cancerous group
which included arylsulfatase enzyme (aslA; arylsulfatase
[EC:3.1.6.1]), all other groups had the same molecules (Fig.
6).

A heatmap was analyzed considering the four groups to-
gether and individually (Fig. 6). Figure 6a indicates that
Actinobacillus pleuropneumoniae and Actinobacillus equuli
expresses the most significant number of molecules (Fig. 6
and Table 1), followed by bacteria Actinomyces oris with four
molecules and Prevotella melaninogenica and Prevotella
jejuni with three molecules. The majority of the bacteria ex-
press between two and one molecules (Fig. 6 and Table 1).
The bacteria, Leptotrichia sp., Parvimonas micra,
Fusobacterium nucleatum, and Fusobacterium hwasookii,
expressed only the molecule 3′,5′-cyclic-nucleotide phospho-
diesterase. Interestingly and considering all groups,
Fusobacterium hwasookii presented the higher level of ex-
pression of that molecule. Analyzing the precancerous sam-
p l e s , t h e mo l e c u l e s men a q u i n o n e - d e p e n d e n t
protoporphyrinogen oxidase, poly(A) polymerase, 3′,5′-cy-
clic-nucleotide phosphodiesterase, and arylsulfatase were
expressed by Actinobacillus pleuropneumoniae and
Actinobacillus equuli, whereas Haemophilus influenzae,

Fig. 3 Pie chart and statistical analysis at genus level in OSCC samples
according to tumor staging. a Pie chart showing the relative abundance at
genus level in OSCC samples according to tumor staging (Union for
International Cancer Control-American Joint Committee on Cancer—

UICC-AJCC). b Statistical analysis at genus level in OSCC samples
according to tumor staging. *p-value < 0.05, **p-value < 0.01, ***p-
value < 0.0001 by Mann-Whitney test
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Rothia mucilaginosa, Prevotella melaninogenica, and
Prevotella jejuni by two molecules each. Twelve bacteria
expressed only one molecule (Fig. 6b(3)). In OSCC samples,
Prevotella melaninogenica and Aggregatibacter aphrophilus
[NJ8700] accounted for three molecules, whereas Neisseria
weaveri, Prevotella jejuni, Aggregatibacter aphrophilus
[W10433], Haemophilus influenzae, and Limnohabitans sp.
with two molecules. Twelve bacteria expressed only one mol-
ecule (Fig. 6b(4)). For a better understanding of the interac-
tions of bacteria between each other, we perform a network
analysis, thus being able to see how these organisms can reg-
ulate the environment in which they are present, in this case
the oral cavity, in a negative or positive way (Fig. 7a). The
main bacteria that are involved in the process of regulating

molecules are shown in a barplot (Fig. 7b), where we can see a
low difference in abundance for most of the genera found
there. The contributions of Akkermansia, Bacteroides,
Neisseria, and Prevotella were greater on OSCC samples.
The contribution of Veillonella and Rothia was higher on pre-
cancerous samples. Aggregatibacter and Actinobacillus were
similar between OSCC and precancerous samples.

Discussion

The resident oral microbiome is diverse and distinct from any
other part of the human body. The composition of the
microbiome tends to remain stable over time unless external

Fig. 4 Heatmap clustering taxonomy abundance at genus level in OSCC
samples according to gender, use or not of electronic cigarettes,
consumption of alcohol, and cancer staging (T, tumor size according to

the Union for International Cancer Control-American Joint Committee on
Cancer—UICC-AJCC)
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or internal stressors disrupt the microbial homeostasis. In this
context, studies have shown shifts in the oral microbiome of
healthy individuals in comparison to those with chronic peri-
odontitis or dental caries [34–37]. While smoking is consid-
ered as one of the main risk factors for periodontitis develop-
ment [38, 39], carbohydrate intake, specifically through su-
crose ingestion, is considered as the main factor inducing mi-
crobiota dysbiosis [40]. In line with these findings, the role of
oral microbiota on both precancerous and OSCC lesion devel-
opment has also been investigated in an attempt to identify
potential microbial diagnostic markers or targets for cancer
treatment [23, 41].

Our data show some differences among the studied
groups at both phylum and at genus abundance levels.
Firmicutes were the main phylum identified in electronic
cigarette users and in alcohol consumers, which was most-
ly represented by the Streptococcus spp. genus. On the
other hand, Proteobacteria and Haemophilus spp. predom-
inated in precancerous lesions (Figure S1 and Fig. 1).
Greater relative abundance at the genus level was found
in OSCC samples in comparison to the other groups (Fig.
1), which was represented by an increased proportion of
Fusobacterium spp., Prevotella spp., Haemophilus spp.,
Campylobacter spp., and others. Moreover, the cancer-

associated microbiome possesses 140 different genera in
total (Fig. 2f). Abundance at the community level also
tended to be different in OSCC samples (Fig. 2e).
Bacteroidetes predominated in the cancer-associated
microbiome (Figure S1).

Previous studies also found that Streptococcus and
Haemophilus tended to be more abundant in healthy individ-
uals [42, 43]. Moreover, greater abundance of Bacteroidetes
has also been shown to be more associated with cancerous
lesions than to precancerous ones [42, 44], which agrees with
our data (Fig. 1 and Figure S1). It has been reported that the
risk for OSCC development is increased up to two times in the
presence of some periodontopathogens, such as Prevotella
tannerae, Prevotella intermedia, and Fusobacterium
nucleatum, on saliva [19]. This way, it seems that poor oral
hygiene may lead to increased salivary levels of such
periodontopathogens, which in turn may affect the prognosis
of individuals presenting head and neck cancer [19, 45].
Although we cannot make any inference about the oral hy-
giene of our studied individuals, it is important to highlight
that a greater abundance of both Fusobacterium and
Prevotella was also found in our OSCC samples. In line with
this finding, F. nucleatum might be also used as biomarkers
for oral cancer [23].

Fig. 5 Metabolic pathways predicted by the genera counts. The different
pathways are regulated by bacteria in four different conditions, all the four
groups are represented in the graphics in the following order: Cancer,
precancer, alcohol and electronic cigarette users. The different
molecules expressed are represented by the numbers: 1 hemG;
menaquinone-dependent protoporphyrinogen oxidase [EC:1.3.5.3]; 2

sdhB, frdB; succinate dehydrogenase/fumarate reductase, iron-sulfur
subunit [EC:1.3.5.1 1.3.5.4]; 3 pcnB; poly(A) polymerase
[EC:2.7.7.19]; 4 E3.1.3.37; sedoheptulose-bisphosphatase
[EC:3.1.3.37]; 5 cpdP; 3′,5′-cyclic-nucleotide phosphodiesterase
[EC:3.1.4.17]; 6 E3.1.6.1, aslA; arylsulfatase [EC:3.1.6.1]; 7 afuC,
fbpC; iron(III) transport system ATP-binding protein [EC:7.2.2.7]
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By comparing genera abundance among the groups, we
found a commonly shared core comprising 52 genera. At the
community level, it seemed that electronic cigarette users,
alcohol consumers, and precancerous samples presented an
overall pattern that does not resemble the one found in
OSCC samples (Fig. 2e). Other 52 genera were exclusively
found on OSCC samples (Fig. 2f, Table S1). It is important to
highlight those OSCC-related genera do not belong to the
group of microorganisms commonly associated with healthy
oral cavity [46], suggesting that either a microbial dysbiosis
might have led to malignant lesion development or that the
tumor environment induced such changes on microbial com-
position. The cause-effect mechanism is still unclear. Yet, the
role of those exclusively found and OSCC-related genera on
cancer development is inconclusive or even unknown, and it
deserves further investigation. Specifically, Solobacterium

has been considered as a malignant lesion-associated genus
[44]. However, in the present study, this genus was co-shared
among all the studied groups. Although we understand that
oral microbiota is highly diverse which limits the comparison
among different studies, we acknowledge that differences be-
tween our data and those from Hashimoto et al. might be also
related to sampling techniques, since saliva was used as a
biological sample in the former and mucosal swabs were used
to create the microbiome database used in the present study
[27]. Besides, it is not possible to infer from the data from
Schmidt et al. which type of malignant/precancerous lesions
were assessed.

Gender-specific differences in microbiome have been re-
ported. Salivary microbiome is different between male and
female children which could pose girls to an increased risk
for dental caries development [47]. Gut microbiome gender-

Fig. 6 Heatmap indicating the number of molecules expressed per
bacteria on two scenarios. a Shows the number of molecules expressed
per species considering the four groups of samples; b(1) number of
molecules expressed in electronic cigarette users; b(2) number of
molecules expressed in alcohol consumers group; b(3) number of
molecules expressed in precancerous group; b(4) number of molecules
expressed in cancer. The top seven molecules expressed in the functional
prediction more enriched pathways (Figure S4): 1 hemG; menaquinone-
dependent protoporphyrinogen oxidase [EC:1.3.5.3]; 2 sdhB, frdB;
succinate dehydrogenase/fumarate reductase, iron-sulfur subunit
[EC:1.3.5.1 1.3.5.4]; 3 pcnB; poly(A) polymerase [EC:2.7.7.19]; 4
E3.1.3.37; sedoheptulose-bisphosphatase [EC:3.1.3.37]; 5 cpdP; 3′,5′-
cyclic-nucleotide phosphodiesterase [EC:3.1.4.17]; 6 E3.1.6.1, aslA;
arylsulfatase [EC:3.1.6.1]; 7 afuC, fbpC; iron(III) transport system
ATP-binding protein [EC:7.2.2.7]. Molecules expressed exclusively in
the precancerous group: b(3) 6 pulnA; pullulanase [EC:3.2.1.41], and
cancerous group: b(4) 6 E3.1.6.1, aslA; arylsulfatase [EC:3.1.6.1]. Full

species name: aap (Aggregatibacter aphrophilus), aaz (Aggregatibacter
aphrophilus), abaa (Acinetobacter baumannii), ack (Acidovorax sp.), acq
(Actinomyces sp.), aeu (Actinobacillus equuli), ajo (Acinetobacter
johnsonii), amu (Akkermansia muciniphila), amy (Schaalia meyeri), aos
(Actinomyces oris), apa (Actinobacillus pleuropneumoniae), blas
(Blastomonas sp.), boa (Bacteroides ovatus), btra (Bibersteinia
trehalosi), bvu (Bacteroides vulgatus), fhw (Fusobacterium hwasookii),
fnc (Fusobacterium nucleatum), hia (Haemophilus influenzae), leo
(Leptotrichia sp.), lim (Limnohabitans sp.), mbl (Moraxella bovoculi),
nwe (Neisseria weaveri), pit (Prevotella intermedia), pje (Prevotella
jejuni), pmic (Parvimonas micra), pmz (Prevotella melaninogenica),
rdn (Rothia dentocariosa), rmu (Rothia mucilaginosa), scf
(Streptococcus parasanguinis), smb (Streptococcus mitis), sor
(Streptococcus oralis), ssa (Streptococcus sanguinis), ssah
(Streptococcus salivarius), tde (Treponema denticola), vpr (Veillonella
parvula)

1294 Braz J Microbiol (2021) 52:1287–1302



Table 1 Number of molecules expressed by bacteria

Bacteria*

Molecules

1 2 3 4 5 6 7

Actinobacillus pleuropneumoniae (apa), Actinobacillus equuli (aeu)

Actinomyces oris (aos)

Aggregatibacter aphrophilus [NJ8700] (aap)

Prevotella melaninogenica (pmz)

Prevotella jejuni (pje)

Haemophilus influenzae (hia)

Aggregatibacter aphrophilus [W10433] (aaz)

Schaalia meyeri (amy), Streptococcus salivarius (ssah), Streptococcus 
mitis (smb), Streptococcus oralis (sor)

Rothia mucilagenosa (rmu), Rothia dentocariosa (rdn), Neisseria 
weaveri (nwe)

Limnohabitans sp. (lim)

Fusobacterium hwasokii (fhw), Leptotrichia sp. [oral taxon 212] (leo), 

Parvimonas micra (pmic), Fusobacterium nucleatum (fnc)

Streptococcus sanguinis (ssa), Actinomyces sp. oral [taxon 414] (acq)

Veillonella parvula (vpr)

Treponema denticola (tde)

Streptococcus parasanguinis (scf), Prevotella intermedia (pit)

Akkermansia muciniphila (amu), Bacteroides ovatus (boa)

Bibersteinia trehalosi (btra), Acidovorax sp. [KKS102] (ack)

Acinetobacter baumannii (abaa)

Moraxella bovoculi (mbl)

Bacteroides vulgatus (bvu)

Blastomonas sp. (blas)

Acinetobacter johnsonii (ajo)

*KEEG bacteria full name. 1 hemG | menaquinone-dependent protoporphyrinogen oxidase [EC:1.3.5.3]; 2 sdhB, frdB | succinate dehydrogenase/
fumarate reductase, iron-sulfur subunit [EC:1.3.5.1 1.3.5.4]; 3 pcnB | poly(A) polymerase [EC:2.7.7.19]; 4 E3.1.3.37 | sedoheptulose-bisphosphatase
[EC:3.1.3.37]; 5 cpdP | 3′,5′-cyclic-nucleotide phosphodiesterase [EC:3.1.4.17]; 6 E3.1.6.1, aslA | arylsulfatase [EC:3.1.6.1; 7) afuC, fbpC | iron(III)
transport system ATP-binding protein [EC:7.2.2.7]
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related differences might also be associated with distinct sus-
ceptibility to neurologic diseases, to arterial hypertension, to
inflammatory bowel disease, and to major depressive disorder
[48–51]. A few studies, though, report gender differences on
microbiome and their role on carcinogenesis. Urinary-
associated microbiome seems also to be gender-specific and
the role of the gender-distinct microbial diversity on bladder
cancer has been discussed [52]. Distinct gut microbiota be-
tween male and female animals also suggest a possible link to
an increased risk for liver cancer [53]. However, it seems this
association has not been reported elsewhere in relation to
OSCC. We found the abundance at both genus and commu-
nity levels is gender dependent (Fig. 4 and Figure S2).
Whether those differences possess any clinical significance
is unclear at the moment. Nevertheless, it is important to em-
phasize that most of T3/T4 staged lesions were found in men
(Fig. 4).

Microbiome and metabolome shifts have been found in
more advanced and aggressive malignant lesions, such as in
colorectal and in breast cancerous lesions [54, 55], being the
abundance of F. nucleatum increased in advanced lesions
[55]. Higher abundance of Streptococcus and Prevotella in
T3/T4 staged esophageal squamous cell carcinoma was asso-
ciated with an increased hazard ratio and with a worse prog-
nosis [56]. Concerning to OSCC and by assessing samples
from individual’s oral rinse, the abundance of Fusobacteria
increased from T1 to T4 staged lesions, but Streptococcus,
Haemophilus, Porphyromonas, and Actinomyces decreased
in more advanced lesions [57]. Acinetobacter and
Fusobacterium abundance increased in mucosal samples of
more advanced OSCC lesions [41]. Our results show an

increase in Bacteroidetes and Firmicutes abundance and a
decrease in the abundance of Proteobacteria and
Fusobacteria in T3/T4 staged lesions.Moreover, we observed
an increase in the abundance of Prevotella and Haemophilus
in more advanced OSCC lesions (Fig. 3 and Figure S3).
Indeed, microbiome composition is different among saliva,
oral rinse, and mucosal sites samples, being mucosal sites
showing less diverse microbial communities [41].
Nevertheless, there is a consistency among different studies
that a microbial signature might be associated with malignant
mucosal lesions. The bulk of evidence also suggests the im-
portance of microbial dysbiosis in malignant lesion develop-
ment, which is in agreement with the data shown in the present
study (Fig. 1, Figure S1, Fig. 2e and f).

Many hypotheses have encouraged discussions to under-
stand the relationship between bacterial dysbiosis and tumor-
igenesis. It has been discussed that oral microbiota may either
act inducing a chronic tissue inflammation or producing del-
eterious metabolites, interfering on cell signaling triggering
intracellular pathways potentially harmful for the cell func-
tionality [58–60]. Alternatively, some other evidence might
support the concept that the development of malignant lesions
may create a different environment that, in turn, affects the
microbial composition of its surrounding [11]. It was also
suggested that mucosal cell surface receptors’ expression
changes during the development of malignant lesions [61],
which could affect the microbiome by a direct effect on mi-
croorganism adherence [43]. The exact causality, however,
remains inconclusive at the moment. It is essential to elucidate
the shifts on themicrobiome associated with precancerous and
malignant lesions as potential biological indicators of worse

Fig. 7 Correlation analysis between the bacterial community and the
main bacteria that regulate the predicted molecules. a Network
demonstrating positive and negative regulations between the different
bacteria that make up the oral microbiome, b barplot showing different

abundances taxa between the main bacteria that regulate molecules in
cancerous and precancerous samples. *p-value < 0.05, **p-value <
0.01, ***p-value < 0.0001 by Mann-Whitney test
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prognosis. Nevertheless, those data may contribute to the dis-
cussion of preventive strategies for oral cancer therapies, as
well as to facilitate cancerous lesion diagnosis at early stages.
Ultimately, the knowledge about cancer-specific–associated
microbiota might also be used as potential indicators for
predicting prognosis.

An enrichment of metabolic pathways associated with
bacterial motility, flagellar assembly, bacterial chemotax-
is, and LPS synthesis has been found in the microbiome
associated with malignant lesions [17, 41, 62]. Other stud-
ies have discussed that acetaldehyde might induce dam-
ages to cell DNA, and, therefore, an enrichment of meta-
bolic pathways related to acetaldehyde production might
be associated to carcinogenesis [63], being this production
enhanced by smoking and alcohol consumption [64, 65].
Interestingly, Rothia and Prevotella are microorganisms
able to produce acetaldehyde [66]. Moreover, Rothia has
also been found in the microbiome of precancerous le-
sions [18, 43] which could also indicate a potential
acetaldehyde-driven malignant lesion development.

Our data suggest that a distinct microbial profile is associ-
ated with OSCC lesions. A greater abundances of
Bacteroidetes, Fusobacterium, Prevotella, and others are like-
ly to be found in cancer-related microbiomes. Moreover, gen-
era abundance varies according to cancerous lesion staging.
Furthermore, vitamin K2 and iron-related metabolic pathways
seem to be enhanced in OSCC lesions. Microbial abundance
was similar among electronic cigarette users, alcohol con-
sumers, and precancerous lesions, being the latter presenting
some distinct functional patterns in comparison to the former
ones. In addition to the qualitative and quantitative changes on
microbial abundance among electronic cigarette users, alcohol
consumers, and precancerous and OSCC samples, the predic-
tive metabolic analysis of such microbiomes also suggests
differences in metabolic patterns (Fig. 5). It is important to
emphasize that both precancerous and OSCC samples seemed
to present a specific associated functional pattern, being
menaquinone-dependent protoporphyrinogen oxidase pattern
enhanced in the former and both 3′,5′-cyclic-nucleotide phos-
phodiesterase (purine metabolism) and iron(III) transport sys-
tem ATP-binding protein enhanced in the lat ter .
Actinobacillus spp. was the main one responsible for precan-
cerous functional patterns, while in OSCC lesion was the
Prevotella spp. This demonstrates a change in the patterns of
both diversity and the phylum that regulate these pathways. So
we can also observe that even high levels of a phylum (in the
case of Fusobacterium highly found in OSCC) may not be the
main component of molecule regulation. Besides, as reported
above, in addition to the distinct predictive metabolic path-
ways found among electronic cigarette users, alcohol con-
sumers, and precancerous lesion and malignant lesion individ-
uals, the microbial contribution to each of the identified path-
ways was also different (Fig. 6).

Within the specific enriched molecules, the presence of
pullulanase restricted to the precancerous group may indicate
an advanced stage of the malignant process of tumor cells.
Zhang et al. demonstrated that the combined use of pullulan
with ovalbumin inhibited tumor growth and liver metastasis
[67]. Pullulanase is an enzyme that degrades pullulan, a puri-
fied polysaccharide from Aureobasidium pullulans that has a
pro-inflammatory effect on tumor cells and can be an excellent
adjunct to anticancer therapies. We envisage the presence of
pullulanase in the context of the tumor microenvironment
might promote the activation of biological processes involved
in tumorigenesis of precancer to cancer status

Iron is a nutrient needed for many metabolic processes of
both eukaryotic and prokaryotic cells. Specifically, a perfect
equilibrium is needed for iron metabolism in terms of its ab-
sorption, transportation, uptake, and storage by eukaryotic
cells [68]. Any dysregulation of those pathways may increase
the risk for cancer development, being the growth of some
tumors directly dependent on iron availability [68].
However, elevated levels of iron may induce cell death by
ferroptosis that is an iron-triggered programmed cell death.
The mechanisms involved in ferroptosis are still not very
clear, but there is evidence to show that ferroptosis occurs with
an adaptive response important for the removal of cancerous
cells, and it can also act as an important factor in excessive
levels of free iron [69]. It is clear then a balanced iron metab-
olism is essential for tumor growth. Cancer cells have a strong
capacity to proliferate and metastasize since proliferation is
closely associated with the vast biosynthesis of nucleic acids
and proteins; the acquisition of energy is vital. Mitochondria
generate energy and contain diverse enzymes involved in the
synthesis. Iron is a crucial element of biosynthesis of these
enzymes, and one of the most important pathways of mito-
chondrial iron is the iron-sulfur cluster (Fe-S cluster) biogen-
esis [70, 71]. The Fe-S cluster contains multiple enzymes,
including NADH-ubiquinone oxidoreductase, one of the most
substantial membrane-bound enzymes in the cell and is the
largest complex of the mitochondrial respiratory chain. This
enzyme’s primary function is ATP production; in total,
NADH-ubiquinone oxidoreductase is responsible for ~40%
of ATP synthesis [72, 73]. In cancer cells, a high concentra-
tion of iron and these enzymes, such as NADH-ubiquinone
oxidoreductase, which promote cellular growth, both labor a
critical role in proliferation [74]. Small molecular NADH-
ubiquinone oxidoreductase inhibitors have been identified as
anticancer agents. For example, rotenoids, polyphenols
AG311, metformin, BAY 87-2243, fenofibrate, canagliflozin,
and kalkitoxin offer potential anticancer treatment [75, 76].

In both microbiomes associated with precancerous and
OSCC samples, an enhanced predictive functional pattern re-
lated to uptake of iron was found (Fig. 5). Menaquinone-
dependent protoporphyrinogen oxidase (hemG) predictive pat-
tern is enhanced in microbiomes associated with precancerous
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lesions. This pattern is related to heme synthesis in both aerobic
and anaerobic conditions. Heme is an iron-rich prosthetic group
considered an iron source for bacterial metabolism [77].
Moreover, ABC-type iron(III) transporter is a predictive pattern
enhanced in microbiomes associated with OSCC samples. This
transporter is responsible for interacting with a periplasmic
iron-binding protein to import iron(III) ions into the cytoplasm.
This finding agrees with a recent study that showed an en-
hanced pattern for iron transport in microbiomes associated
with OSCC [78]. It is interesting to observe that, in addition
to the protoporphyrinogen oxidase (hemG) mentioned above,
the succinate dehydrogenase/fumarate reductase (sdhB/frdB)
patterns were also enhanced in both precancerous and OSCC
associated microbiome. Those pathways are menaquinone (vi-
tamin K2) dependent. It has been discussed that menaquinone
inhibits proliferation and invasiveness of cancer cells and also
induces apoptosis and autophagy [20]. Some evidence also
suggests vitamin K2 may exert an anticancer activity over the
liver, bladder, and prostate tumor cells [79–83]. Altogether, our
results indicate that microbiomes of precancerous and OSCC
samples are acquiring extracellular iron and vitamin K2, reduc-
ing their availability to tumor cells. Considering the excess of
iron is toxic to tumor cells [69] and that vitamin K2 may exert
an anticancer effect, we hypothesized the metabolism of the
precancerous and OSCC associated microbiomes is somehow
creating ideal iron/vitamin K2 concentrations for both precan-
cerous and cancer cell growth, which means the microbiome
might be contributing to tumor growth.

Some studies have already demonstrated the importance of
iron for both bacteria and for the growth of tumor cells, but
this correlation between microbiome and tumor environment
and how iron regulates them is an original observation.
Therefore, we conclude that although precancerous and
OSCC samples present some differences in microbial profile,
both microbiomes present a common microbial functional
signature that is potentially contributing to tumor growth.
Further studies are necessary to further infer how these mech-
anisms work more clearly, which may arouse interest in in-
vestigating whether this pattern is reproducible in other types
of cancer and even if it can be inferred in its aggressiveness or
treatment.
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material available at https://doi.org/10.1007/s42770-021-00491-6.
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