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ABSTRACT

In this study, different frequentist estimation procedures for the parameters of the
exponential-Poisson distribution are considered, such as the maximum likelihood,
method of moments, ordinary and weighted least-squares, percentile, maximum
product of spacings, Cramr-von Mises and Anderson-Darling maximum goodness-of-
fit estimators. We compare them using extensive numerical simulations, which show
that using a nested expectation-maximization algorithm in the maximum likelihood
estimators with bootstrap bias correction does not require numerical procedures to
solve nonlinear equations and returns accurate parameter estimates. Finally, our pro-
posed methodology is fully illustrated using two real data sets (rainfall and aircraft
data) with the occurrence of zero values.

KEYWORDS
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1. Introduction

Proposed by Kus (2007), a random variable X has an exponential-Poisson (EP) dis-
tribution!, denoted by EP(\, 3), if its probability density function is given by
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f(x|A B) = (1)
for all z > 0, where A > 0 and 8 > 0 are, respectively, the shape and scale parameters.
Note that as A tends to zero, the EP converges to the exponential distribution with
parameter (.

Macera et al. (2015) discussed a new model for recurrent event data character-
ized by a fully parametric baseline rate function, which is based on the EP distri-

*Corresponding author. Email: pedrolramos@usp.br.
1The distribution is obtained by mixing exponential and zero-truncated Poisson distributions; see Kus (2007)
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bution. Barreto-Souza and Cribari-Neto (2009) and Preda et al. (2011) introduced
three-parameter generalizations of the EP distribution. Barreto-Souza and Silva (2015)
pointed out that the EP distribution is a good alternative to the gamma distribution
for modelling lifetime, reliability and time intervals of successive natural disasters, and
proposed a likelihood ratio test based on Cox’s statistic to discriminate between these
distributions.

Common lifetime distributions, such as gamma, Weibull and lognormal just to list
a few, do not allow the occurrence of zero values. Despite the fact that it has been
proposed for situations where x > 0, the EP distribution (1) can take value on 0, i.e.

A

where fx(0|A, 3) > 0 for all A > 0 and 8 > 0. In environmental studies, the occurrence
of zero values is common during the study of precipitation, especially in dry periods.
Such characteristic is also observed in reliability studies, where instantaneous failures
(inliers) may occur due to inferior quality or problems during the construction of the
components. This allows the EP distribution to become a good alternative to be used
in problems with the occurrence of zero value.

Different inferential procedures for the parameters of the EP distribution have been
discussed earlier. Kus (2007) and Karlis (2009) discussed the maximum likelihood esti-
mation (MLE) method via the use of the expectation-maximization (EM) and nested
EM algorithms, respectively. Lupu and Lupu (2010) investigated the mixture model of
two EP distributions. Considering a Bayesian approach, Yan et al. (2012) derived the
Bayes estimators of the parameters in EP model under general entropy, LINEX and
scaled squared loss function based on type-II censoring. Furthermore, Xu et al. (2016)
studied the Bayes estimators under symmetric and asymmetric loss functions based on
general non-information prior distribution. However, the literature offers several clas-
sical methods that can be used for estimating the unknown parameters for parametric
distributions. Besides, in many cases the MLE method does not perform well for small
samples. Therefore, it is of our main interest to compare the MLE method with other
estimation procedures, such as the method of moments, least-squares, weighted least-
squares, percentile, maximum product of spacings, Cramér-von Mises and Anderson-
Darling maximum goodness-of-fit estimators. Similar studies for other distributions
have been carried out (Gupta and Kundu 2001; Mazucheli et al. 2013; Teimouri et al.
2013; Louzada et al. 2016; Dey et al. 2017; Rodrigues et al. 2018). In addition, bias cor-
rection approaches can be considered for the MLEs (see Efron and Tibshirani (1994)
for more details).

In this paper, we compared the different estimation procedures for the EP distribu-
tion parameters. For the different procedures, convergence problems in the numerical
methods to solve the nonlinear equation system are observed. The nested EM algo-
rithm is the only method that achieves the estimates without numerical instability.
However, the obtained estimates are biased for small and moderate sample sizes. There-
fore, we considered the bootstrap resampling method, which can be used to reduce
bias. A numerical simulation is performed to examine the effect of the estimation and
bias correction approaches in the parameter estimates. Additionally, we present some
simple closed-form expressions to be used as initial values in the iterative methods to
increase the convergence speed. Finally, our proposed methodology is fully illustrated
on two new real data sets.

The remainder of this study is organized as follows. In Section 2, we present some



properties of the EP distribution. In Section 3, we discuss the estimation methods
considered in this paper. In Section 4, a simulation study is presented in order to
identify the most efficient estimation procedure. In Section 5, we apply our proposed
methodology to rainfall and aircraft data sets, both with zero occurrence. Some final
comments are presented in Section 6.

2. Some Properties of the EP Distribution

Statistical analysis in the presence of competing risks is a modeling concept that
aims to account for situations where the risks are latent, in the sense that there is
no information about which component was responsible for the object failure. Such
issue/problem arises naturally in several areas, like public health, actuarial science,
biomedical studies, demography and industrial reliability. In the classical latent com-
peting risks scenarios, the lifetime associated with a particular risk is not observable,
but rather we observe only the maximum lifetime value among all risks. For instance,
in reliability, we observe only the maximum component lifetime of a parallel system.

Let T; (i = 1,2,...) denote the time-to-event due to the j-th competing risk and N
be a random variable with a zero-truncated Poisson (ZTP) distribution indexed by a
parameter A, hereafter ZTP()\), given by

P(N:n)zi1 for n € N* and A > 0.

Now, let X = min {Tz}f\i 1, where the T}’s are independent of N and assumed to be
independent and identically distributed according to an exponential distribution with
parameter . The conditional cumulative distribution function (c.d.f.) of X is given

by
Fz[N)=1-P(X >z|N)=1-[P(T} > )] =1 - (e—ﬁw)N.

Thus, the unconditional c.d.f. of X is
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If X ~ EP(), 3), then the mean and variance of X are given, respectively, by
E(X|\pB) = #F ([1,1],]2,2],A) and (3)
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Var(X|\, B) = A 2F53([1,1,1],[2,2,2],A) — LF2 ([1,1],[2,2],\)
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where F), ;(a, b, \) is the generalized hypergeometric function, with a = [a1, as, . . ., ap),
p is the number of operands of @, b = [b1,bs, ..., b, and ¢ is the number of operands
of b.



For r € N, the raw moments of X about the origin are
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where I'(-) is the gamma function.
The survival and hazard functions of the EP distribution are given, respectively, by
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The hazard function is decreasing for all A > 0 and g > 0. Figure 1 presents the
density and hazard functions of the EP distribution considering different values of A
and 5.
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Figure 1. Left panel: probability density function of the EP distribution. Right panel: hazard function of the
EP distribution.

3. Classical Inference

In this section we discuss different frequentist estimation methods for the parameters
A and 3 of the EP distribution.

3.1. Maxzimum Likelithood Estimators

The maximum likelihood estimation method is a standard procedure in statistical
inference. It has many desirable properties, including consistency, asymptotic efficiency
and invariance.

Let X1, -+, X, be a random sample of size n from EP(), §). Then, the likelihood



function of (1) is given by

L Blz) = <1_Afx>nexp{n>\ﬁzum+)\ze‘5%}. (4)
i=1 i=1

The log-likelihood function of (4) is given by
£\ Blz) = nlog (A8) — nlog (1 - e™) —nA = BY_ai+AY e (5)
i=1 i=1

The maximum likelihood estimators (MLEs) of A and S, i.e. AL and BMLE, are
obtained by maximizing the log-likelihood function (5) or solving the following two
nonlinear equations:

(N Blx) n n g
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The solution of (7) is given by
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where z = %Z?ﬂ x; is the sample mean. However, to obtain the solution of (6), we
have to consider numerical methods, such as Newton-Raphson (NR). The existence
and uniqueness of the MLE have been discussed by Kus (2007) under some conditions
of the parameters. E.g., for A € (0, €2), the root SyLg of (7) is unique and lies in the
interval ([j(/\ +1)7t ,:E_l).

The MLEs are asymptotically normally distributed with a joint bivariate normal
distribution given by

<;\MLE7BMLE) ~No[(ANB), IV (N B)]  as n— o,

where (), () is the Fisher information matrix given by
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3.2. Moments Estimators

Introduced by Karl Pearson in 1894, the method of moments is one of the oldest
procedures used for estimating parameters in statistical models. Considering that

E(X|\B) = AFQﬂﬁ([(léAl]L[?) 1Y)

and
A2(e* = 1)F33([1,1,1],[2,2,2], A) — AF3, ([1,1],[2,2], \)]
B2 (e —1)*

the population coefficient of variation is given by

Var (X|\, ) =
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Note that C'V' does not depend on the scale parameter 3.
The moments estimator (ME) for A, i.e. AMg, can be obtained by solving the non-
linear equation

2(6/\ — 1)F3,3([17 1, 1]7 [27272]7)‘) 1 E -0
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where X = L3 X, and S = /-5 >0 (Xi— X)2 are the sample mean and

standard deviation, respectively.
Further, the ME of 3, i.e. Sug, can be obtained as

. A
Ay = —8
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3.3. Least-Squares Estimators

The ordinary least-squares estimators (OLSEs) and weighted least-squares estimators
(WLSEs) were originally proposed by Swain et al. (1988) to estimate the parameters
of a Beta distribution.

Let X(1) < X(9) < -+ < X() be the order statistics of a random sample of size n

from EP(A, 3). The OLSEs of A and /3, denoted by Aorse and BOLSE, respectively, are
obtained by minimizing

n
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with respect to A and 8, where F (-|\,3) is given by (2). Equivalently, they can be



obtained by solving
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where
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The WLSEs of A and 3, i.e. AwiLsg and BWLSE> can be obtained by minimizing

n

9 .92
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These estimators can also be obtained by solving

L (n+1)?(n+2) ; )
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3.4. Percentile Estimators

Kao (1958; 1959) proposed a statistical method to estimate the parameters of prob-
ability distributions by comparing the sample points with the theoretical ones. This
method has been used in distributions that have the quantile function in a closed-form
expression, such as the Weibull and generalized exponential distributions.

For p € (0,1), the quantile function of the EP distribution is given by

_log ()\_1 log (p(l —eM) + e)‘)) '

Xp=Q(pIA B) = 3

Hence, the percentile estimators (PEs) for A and j, say XPE and BPE, can be obtained
by minimizing

° log ()\_1 log (ﬁi (1 — e’\) + e)‘)) ?
§ X,
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with respect to A and 3, where p; denotes some estimator of F(x(i)\)\, B). The PEs can
also be obtained by solving the following nonlinear equations:

1|, log(Alog (i (1—¢) +¢Y)) Api— 1)
Z[XW E ]Mew —1) = pi) log (i (1 — &) + )

log()\ 1log( (l—e )+e)‘)>:0.

In this paper, we consider p; = 7#17 but several other estimators of F(z;|A, )
could be used instead; see, e.g., Mann et al. (1974).

:O7

iz i [X(i) n log ()\*1 log (ﬁiﬁ(l — e)‘) + e)‘))

3.5. Maximum Product of Spacings Estimators

Cheng and Amin (1983) introduced a powerful alternative to maximum likelihood
method for estimating the unknown parameters of continuous univariate distributions,
named maximum product of spacings method. Such method can also be obtained as an
approximation to the Kullback-Leibler measure of information; see Ranneby (1984).
Let

Dz()\76) =F (x(l)|A7/8) - F (m(lfl)‘)ﬁﬁ) ) 1= 1727 o n + 17
be the uniform spacings of a random sample from the EP distribution, with
F(z o)A\ B) = 0 and F(z(, 1|\, B) = 1. Thus, 04! Di(), B) = 1.

The maximum product of spacings estimators (MPSEs) of the parameters A and £,
denoted by )\MPSE and ,BMPSE, respectively, are obtained by maximizing the geometric

mean of the spacings
n+1 %{»1
i=1

with respect to A and 5, or equivalently, by maximizing the function

1 n+1
H(\B) == > log Di(A,5).
=1

The MPSEs can also be obtained by solving the nonlinear equations:

OH(NB) 1 & 1

N n+1 ; Di(X, B) [T1(zp) A B) — Ti(ze-1)A, B)] = 0,
OH(N,B) 1 &< 1 )
08 n+1&DiAp) [Wa(z@) A B) = Valzip|A B)] = 0,

where Uy (+|A, ) and Wy (-|A, B) are given by (10) and (11), respectively.



Observe that for z(ip) = Zgqr—1) = -+ = T, we have Dijx(N,B) =
Diix—1(N,B) =---= D;(\, B) = 0. Hence, the MPSEs are sensitive to closely-spaced
observations, especially ties (i.e. multiple observations with the same value). In this
case (ties occurrence), D;(A, ) should be replaced by the corresponding likelihood
L ()\,B]x(l)) = f(a:(z)]/\,ﬁ), since 37(1) = 1‘(1;1).

Cheng and Amin (1983) derived some desirable properties of the MPSEs, such
as asymptotic efficiency and invariance. They also showed that the consistency of
MPSEs holds under much more general conditions than for MLEs. Thus, under mild
conditions, the MPSEs are asymptotically normally distributed with a joint bivariate
normal distribution given by

(S\MPSE7BMPSE> ~ Ny [(\,B),I71 (N B)] as n— oo,

where I-1 (), ) is the inverse of the Fisher information matrix given in (9).

3.6. Minimum Distance Estimators

In this subsection we present three minimum distance estimators (also called maxi-
mum goodness-of-fit estimators) for A and 3. This class of estimators is based on the
difference between the estimate of the c.d.f. and the empirical distribution function;
see Luceno (2006).

3.6.1. Cramér-von Mises Estimators

The Cramér-von Mises estimators (CMEs) for the parameters A\ and £, i.e. AemE and
BoME, are obtained by minimizing, with respect to A and /3, the function

1 " 2i —1\?
C(\B) = Ton Z (F (2@ B) — 7 >
=1

These estimators can also be obtained by solving the nonlinear equations:

n

2t —1
> (F ol - 250 ) hg) = o

i=1

n

2i— 1
Z(F (zlAB) = =5, >‘1’2 (z@lAB) = 0,

i=1

where Uy (+|A, ) and Wy (-|A, B) are given by (10) and (11), respectively.

3.6.2. Anderson-Darling and Right-tail Anderson-Darling Estimators

The Anderson-Darling estimators (ADEs) for A and S, i.e. Aapg and BADE, are ob-
tained by minimizing, with respect to A and (3, the function

n

=1



These estimators can also be obtained by solving the nonlinear equations:

Zn: 2 \Ill (x(z)p\’ B) \Ill (x(n-‘rl—i)p\v B) _
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where Uy (-|A, 8) and Wy (-|A, B) are given by (10) and (11), respectively.
On the other hand, the right-tail Anderson-Darling estimators (RTADEs) for A and
B (i.e. ArTapE and Brrapg) are obtained by minimizing

n n

ROV =5 =23 F (ag08) — — D2 (2~ 1)log F (w1-y/.5)

=1 =1

with respect to A and 5. These estimators can also be obtained by solving the following
nonlinear equations:

g v DY
_22‘1’1 (0 B) + 3 @i— 1) =2 Fon-slhF)

ni= F (2ni1-9A 8)
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where Uy (+|A, 3) and ¥y (-|A, 3) are given by (10) and (11), respectively.

3.7. Nested EM Algorithm with Correction Approach

The EM algorithm has been widely used to obtain the MLEs for many distributions.
For the EP distribution, Kus (2007) presented such approach to finding the desirable
estimates. Although it is useful for finding the MLEs, the EM algorithm still uses an
NR step during the M-step of the algorithm, which is undesirable.

Karlis (2009) overcomes this problem by proposing a nested EM algorithm, which
does not depend on numerical methods to achieve the parameter estimates of the EP
distribution. The main idea is to consider another EM algorithm to solve the M-step
of the first EM algorithm. In this case, the second EM algorithm is used to estimate
the expected number of zero observations ng. Although in this procedure we have to
start the algorithm with three initial values X, 8 and ng, such values will always lead
to the estimates of the parameters. Additionally, in Section 5 we will present useful
initial values to decrease the number of steps up to the convergence of the proposed
algorithm. By setting the initial values for the parameters, the nested EM algorithm
is given as follows.

(1) Compute w; = 1 + Ae 5% (E-step);

(2) Compute n2* = (n +ng)e > (E-step);

1

3) Update me¥ — — —
(3) Update 3 ST s

(M-step);

10



(4) Update A" = 2z Wi (M-step);

n + nge”
(5) Repeat the steps (1) - (4) m times (e.g., m = 500).

The most interesting aspect of this algorithm is that its computational cost is very
small in comparison with the other procedures. However, the MLEs that are achieved
by the nested EM algorithm have a significant bias, especially for small and moderate
sample sizes. This problem can be overcome by considering a bias correction approach
using bootstrap (see Ramos et al., 2018). The bootstrap bias-corrected MLEs using
the nested EM algorithm (BNEM) is given by subtraction of the estimated bias from
the original MLEs obtained through the procedure above.

In order to perform the bootstrap, let x = (z1,...,2,) be a sample with n ob-
servations randomly selected from the random variable X with the distribution func-
tion given in (2). The pseudo-samples x* = (z7,...,z}) are obtained from the origi-
nal sample x through resampling with replacement. If we have B bootstrap samples
(x*(l),x*@)7 . ,x*(B)) that are generated independently from the original sample x
and their respective bootstrap estimates (é*(l),é*@), ... ,é*(B)) are calculated using
the nested EM algorithm, then the bootstrap expectations are approximated by

. 1 B
() — 5 Z@*(b)‘ (12)
b=1

From (12), the bootstrap bias estimate is given by Bp(6,0) = *() —0, where 6 is the
MLE obtained from the nested EM algorithm. The bias-corrected estimator obtained
through the bootstrap resampling method is given by

~

08 =0 — Bp(0,0) =20 — 6*).

Here, we have éB denoted by éBNEM = (XBNEMa BBNEM)-

4. Numerical Analysis

A Monte Carlo simulation study was carried out to compare the efficiency of the
different frequentist estimation methods for the parameters of the EP distribution.
The following approach was adopted.

(1) Generate N samples of size n from the EP(A, 8) distribution;

(2) For each generated sample, obtain the estimates of A and £, i.e. A and B , via the
PEs, MLEs, MEs, OLSEs, WLSEs, BNEM, MPSEs, CMEs, ADEs and RTADEs;

(3) Considering 6= (él,é2> = (X,B) and 6 = (61,602) = (\, ), compute the Bias
and Mean Squared Error (MSE) of éj, for j = 1,2, which are given, respectively,
N A~ 2 ~
by % Z]kvzl <9j(-k) - 9j> and % Zévzl (95@ - 9j> . Here, HJ(-k) denotes the estimate
of ; obtained from sample k, for k =1,2,--- , N.

By this approach, it is expected that the most efficient estimation method will have
both Bias and MSE closer to zero.
Our simulations were performed using the R software (2014). The maximization

11



method used is the NR (Henningsen and Toomet, 2011). The pseudo-random samples
were generated using the seed 2017. The chosen values of the simulation parameters
were: N = 10,000 and n = {20,25,30,35,---,160}. Due to lack of space, we will
present the results only for 8 = {(1.5,0.02), (2,0.5)}. However, the following results
are similar for other choices of 6.

Figure 2 presents the proportion of error related to each estimation procedure, i.e.
the frequency of times that each estimation method did not converge to an estimate
of the parameters. We observe from this figure that the PEs, OLSEs, WLSEs, MEs
and CMEs failed in finding the numerical solution for a significant number of samples
(convergence errors). It is worth mentioning that the initial values used were the true
values. However, in real applications, such values are hardly known. Therefore, we
considered the same analysis, but assuming that initial values came from an uniform
distribution on the interval (0,4). Figure 3 shows the proportion of error related to the
estimation procedures using random initial guess. Notice that, in general, the methods
that used numerical techniques were not very efficient in finding the estimates, while
the method using the nested EM algorithm was able to find the solution in all cases,
i.e. for all sample sizes. Since the OLSEs, WLSEs, MEs, CMEs and the PEs returned a
high percentage of errors, these methods were removed in order to avoid the inclusion
of bias in the simulation study. Hereafter, we consider the MLEs, MPSEs, ADEs,
RTADESs and the BNEM.
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Figure 2. Proportion of failures/errors considering 6 = (1.5,0.02) (left panel) and 8 = (2,0.5) (right panel)
under different sample sizes n and the following estimation procedures: 0 - PEs, 1 - MLEs, 2 - MPSEs, 3 -
ADEs, 4 - RTADEs, 5 - BNEM, 6 - OLSEs, 7 - WLSEs, 8 - MEs, 9 - CMEs (N = 10, 000).

Figures 4 and 5 show the Bias and MSE of the observed estimates of A and f
obtained using the MLEs, MPSEs, ADEs, RTADEs and the BNEM, with N = 10,000
simulated samples, and different values of n and 6: 8 = (1.5,0.02) (Figure 4) and
0 = (2,0.5) (Figure 5). From these figures, we can see that both Bias and MSE of all
estimators decrease as n increases, i.e. the estimators are asymptotically unbiased and
consistent. The bias-corrected MLEs obtained using the nested EM algorithm returned
better results when compared with the other estimation procedures. The advantage
of this approach is that the asymptotic properties of the MLEs can be used in the
BNEM. Therefore, we can easily build confidence intervals for the proposed estimates.
In summary, we recommend the use of the BNEM for all practical purposes.
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Figure 5. Bias and MSE of different estimators of A = 2 and 8 = 0.5, for each sample size n and using the
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5. Applications

In this section, we illustrate the proposed methodology on rainfall data (Section 5.1),
as well as on aircraft data (Section 5.2), both with zero occurrence.

An important discussion in real applications, specially using iterative methods, is
the selection of good initial values to start the algorithm. A common approach is to
consider some estimator that has closed-form expression. However, for the EP dis-
tribution, we were not able to find any. In order to overcome this problem, we first
consider the MLEs under the assumption that A — 07; in this case, we can compute
the estimate of 8 by the approximation of the exponential distribution. But the ratio
1/z tends to overestimate 5 and will return A = 0; in this case, we consider an ap-
proximation to 1/ (1.5Z). Substituting this result in (8), we can compute the initial
value of A after some algebraic manipulations, i.e.

-1

in which By and A\g should only be used as initial values to increase the convergence
speed of the nested EM algorithm. In the case of ng, a good initial value is the sample
size n.

The results obtained using the EP distribution are now compared to the corre-
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sponding ones achieved with the usage of the Poisson-exponential (PE) distribution
by Cancho et al. (2011). It is important to point out that the results considering the
Weibull, gamma and lognormal distributions will not be presented, since it is not pos-
sible to compute the estimates of these distributions’ parameters in the presence of
zero values.

The goodness-of-fit of the models are checked using the Kolmogorov-Smirnov (KS)
test, which is based on the KS statistic D,, = sup, |F,(xz) — F(x|0)|, where sup,, is
the supremum of the set of distances, F,(x) is the empirical c.d.f. and F(z|0) is the
theoretical c.d.f. In this case, we test if the data come from F(z|@) (null hypothe-
sis) and, with significance level of 5%, such hypothesis is rejected if the p-value is
smaller than 0.05. Note that the KS test should only be used to verify the goodness-
of-fit, and not as a discrimination criterion. Therefore, different discrimination criteria
were considered, such as the AIC (Akaike Information Criterion), AICc (Corrected
Akaike Information Criterion), HQIC (Hannan-Quinn Information Criterion) and
CAIC (Consistent Akaike Information Criterion), which are computed, respectively,

by AIC = —2((8z) + 2¢, AICc = AIC + AH) HQIC = —2((6]x) + 2clog(log(n))

and CAIC = —20(0|z) + clog(n) + 1, where ¢ is the number of parameters to be fitted
and 6 is the estimate of 6. Given a set of candidate models for the data at hand, the
preferred model is the one that provides the minimum values.

5.1. FEnvironmental Data

The study of precipitation, as well as the development of quantitative hydrological
models in general, can be useful to support the adoption of new water resource man-
agement policies and assess water quality issues (Abbaspour et al. 2015; Beven 2011).
However, as pointed out by Koutsoyiannis and Langousis (2011), the classical statis-
tical models and methods may not be appropriate for precipitation, which exhibits
some particular behaviours.

In this section, we consider a real data set (see Table 1) related to the total monthly
precipitation (in millimeters, mm) during June in Sao Carlos city, located in the south-
east region of Brazil, with 243,765 inhabitants. Including a period from 1960-2016, the
data set was obtained from the Department of Water Resources and Power agency
manager of water resources of the State of Sao Paulo.

Table 1. Data set related to total monthly precipitation (mm) during June (1960-2016) in S&o Carlos, Brazil.
456 0.0 820 00 189 712 0.0 2018 0.0 355

55.7 1131 25 189 1235 0.7 626 41.7 29.6 0.0
90.1 784 427 828 0.0 6.0 0.1 219 365 220
4.2 4.0 0.9 622 255 183 180 46 334 5.1
6.8 0.0 7.8 3718 74 13.7 3.1 202 36.2 248
28.7 126.6 619 5.5 231 109.8

Figure 6 shows the fitted survival functions superimposed to the empirical survival
function (Kaplan-Meier estimate), from which it can be observed that the EP distri-
bution gives a better fit to the rainfall data.

The initial values obtained from (13) are: Sy = 0.0189, Ao = 1.6293 and ny =
56. Table 2 displays the BNEM, standard errors (SE) and 95% bootstrap confidence
intervals (CI) for A and . The computational time required to obtain the BNEM
estimates is 3.040 seconds.
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Figure 6. Fitted survival functions superimposed to the empirical survival function, considering the data set
related to monthly total precipitation during June (1960-2016) in Sao Carlos, Brazil.

Table 2. MLEs using the nested EM algorithm, SE and 95% CI for the parameters of the EP distribution,
considering the proposed data set.

Parameter | Estimate SE 95% CI
A 1.7202 0.0896 (1.5445 ; 1.8959)
I3 0.0177 0.0122 (0.0028 ; 0.0232)

Table 3 presents the results from different model discrimination/selection criteria,
such as the AIC, AICc, HQIC and CAIC, as well as the KS test, for the two considered
probability distributions. From Table 3, we observe that the PE distribution has the
KS test’s p-value smaller than 0.10, so it is not a good candidate distribution for
modeling the rainfall data.

Table 3. The AIC, AICc, HQIC and CAIC values, and the p-value from the KS goodness-of-fit test, for the
fitted distributions, considering the data set related to total monthly precipitation during June (1960-2016) in
Sao Carlos, Brazil.

EP PE
AIC | 511.6077 | 514.9621
AlCc | 511.8342 | 515.1885
HQIC | 513.1782 | 516.5325
CAIC | 517.6585 | 521.0128
KS 0.1839 | 0.0613

According to the AIC, AICc, HQIC and CAIC values, the EP distribution provides
a better fit to these data than the PE distribution, since the former has the minimum
values in all criteria. Through the proposed methodology, the data related to the total
monthly precipitation during June (1960-2016) in Sao Carlos, Brazil, can be well-
described by the EP distribution considering the BNEM for A and 3. This distribution
also allows us to obtain easily the Precipitation Return Level (PRL) from the closed-
form expression

. 1 1 5
R, = —E log (5\ log (1 —p(1— e’\))> ,
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where p is the return period. Table 4 shows the distribution return periods to predict
the total monthly precipitation during June, 2017, in Sdo Carlos, Brazil.

Table 4. PRL of the total monthly precipitation during June in Sao Carlos, Brazil, using the EP distribution.
1% 2.5% 5% 10% | 50% | 90% | 95% | 97.5% | 99%
205.88 | 155.95 | 119.64 | 85.57 | 20.70 | 2.88 | 1.39 | 0.68 | 0.27

Using the expression (3) as predict value, we expect 35.27 mm of total monthly
precipitation during June, 2017, in Sao Carlos city. Moreover, from Table 4 we may
expect once every hundred years a total precipitation in this period of 205.88 mm.

The PRL of the total monthly precipitation can be used to plan maintenance poli-
cies in water streams. For instance, a recent flood in Sao Carlos led more than 100
local merchants to suffer great losses, as well as the destruction of public properties.
Therefore, these results have important applications.

5.2. Mechanical Components in an Aircraft

In this section, we consider a real data set related to failure time of devices of an
airline company. Such study is important in order to prevent customer dissatisfaction
and customer attrition, and, consequently, to avoid customer loss. In this context, the
choice of the distribution that better fits these data is fundamental for the company
to reduce its costs. Table 5 presents the data related to failure time (in days) of 142
devices in an aircraft.

Table 5. Data set related to the failure time (in days) of 142 devices in an aircraft.

2 2 2
2 2 3 3 3
3 4 ) ) )
6 6 6 7 7 8 8 8 8 8 8 9 9
9 9 10 10 10 10 11 11 11 11 11 11
12 13 13 14 14 15 15 15 16 16 16 16 16 17
17 18 19 21 21 21 22 23 23 23 23 24 26 26
2r 29 29 29 30 30 31 32 32 33 35 36 38 38
41 43 44 45 45 46 47 47 49 54 54 54 55 BT
59 60 61 63 63 73 74 80 83 86 108 118 125 126
132 144

(G20 NG RN
Ot W =
Tl W =
Ot W
Tt W N
Tt W N

The initial values obtained from (13) are: A\g = 1.5824, 5y = 0.0273 and ny = 142.
Table 6 displays the BNEM, SE and 95% CI for A and 3. The computational time
required to obtain the BNEM estimates is 6.558 seconds. Table 7 presents the results
of AIC, AICc, HQIC and CAIC criteria, as well as the KS test’s p-value, for different
probability distributions (EP and PE models).

Table 6. BNEM estimates, SE and 95% CI for the parameters of the EP distribution, considering the aircraft
data.

Parameter | Estimate SE 95% CI
A 1.9553 0.0452 (1.8666 ; 2.0439)
3 0.0242 | 0.0194 | (0.0024 ; 0.0289)
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Table 7. The AIC, AICc, HQIC and CAIC values, and the p-value from the KS test, for the fitted distribu-
tions, considering the data set related to the failure time of 142 devices in an aircraft.

EP PE
AIC | 1186.084 | 1194.868
AICc | 1186.171 | 1194.954
HQIC | 1188.487 | 1197.270
CAIC | 1193.996 | 1202.780
KS 0.5641 0.0169

Finally, Figure 7 presents the survival function adjusted by different distributions
and the Kaplan-Meier estimate.

—— Kaplan-Meier
—— Exponential-Poisson
e Weibull
————— Gamma
Lognormal
i Poisson—-Exponential

0.8 1.0

Survival
0.6

0.4

0.2

0.0
1

days

Figure 7. Survival function adjusted by different probability distributions and the Kaplan-Meier estimate,
considering the data set related to the failure time of 142 devices in an aircraft.

Therefore, from the proposed methodology, the data related to the failure time of
142 devices in an aircraft can be well-described by the EP distribution. Using the
adjusted parameters, we can easily propose an preventive approach for mechanical
components (see Ramos et al. 2018). From the quantile function, we can obtain the
number of days that are expected to have a certain percentage of failures. Table 8
presents different times of failure assuming different percentages.

Table 8. Days to perform preventive maintenance assuming different percentages of failures, based on the

EP distribution.
5% | 10% | 15% | 20% | 25% | 30% | 50%
094|194 | 3.02 | 419 | 545 | 6.83 | 13.97

The results obtained from Table 8 shows that the preventive maintenance can be
performed assuming different percentages of failures. In the case of the proposed data
set, the airline assumed that 25% of failures would be the limit and, therefore, they
will consider 5 days after the last failure to perform maintenance in the proposed
component.
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6. Final Comments

In this paper, we derived and compared, via an extensive simulation study, different
frequentist estimation methods for the parameters of the EP distribution. The simu-
lations showed that the corrected MLEs obtained from the nested EM algorithm give
accurate estimates for both EP parameters, even for small sample sizes. Thus, the
proposed estimator is the most efficient estimation procedure among the ones con-
sidered in this study, and should be used for all practical purposes. Moreover, from
our simulations, we noticed that the estimation procedures that depend on numerical
methods to find the solution of nonlinear equations failed in finding the parameter
estimates for a significant number of samples. On the other hand, the nested EM al-
gorithm estimators converge in all situations. In this case, we need good initial values
to increase the convergence speed, therefore, we provided useful closed-form equations
that can be used to initiate the nested EM algorithm.

Our research has also shown that the EP model can be used to describe data with
the occurrence of zero values. Such characteristic is not observed in common models,
like gamma, Weibull and lognormal distributions. In order to illustrate our proposed
methodology, two real data sets were considered. The first is related to total monthly
precipitation during June in Sao Carlos city, Brazil, demonstrating that the EP dis-
tribution is a simple alternative to be used in meteorological applications. The second
is related to failure time of devices in an aircraft, whose estimation results revealed
that such data can also be well-described by the considered distribution.
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