Riddling: Chimera’s dilemma 0

Cite as: Chaos 28, 081105 (2018); https://doi.org/10.1063/1.5048595
Submitted: 16 July 2018 . Accepted: 07 August 2018 . Published Online: 23 August 2018

' V. Santos, ) J. D. Szezech, A. M. Batista, K. C. larosz, M. S. Baptista, H. P. Ren, C. Grebogi, R. L. Viana, 2L
Caldas, Y. L. Maistrenko, and 12} J. Kurths

COLLECTIONS

o This paper was selected as Featured

AN

) S @

View Online Export Citation CrossMark

ARTICLES YOU MAY BE INTERESTED IN

Recurrence quantification analysis for the identification of burst phase synchronisation

Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 085701 (2018); https://
doi.org/10.1063/1.5024324

Mean field phase synchronization between chimera states

Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 091101 (2018); https://
doi.org/10.1063/1.5049750

Solitary states for coupled oscillators with inertia
Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 011103 (2018); https://
doi.org/10.1063/1.5019792

>z

Sign up for topic alerts
New articles delivered to your inbox

Chaos 28, 081105 (2018); https://doi.org/10.1063/1.5048595 28, 081105

© 2018 Author(s).


https://images.scitation.org/redirect.spark?MID=176720&plid=1167511&setID=405123&channelID=0&CID=390544&banID=519902572&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=a9441bd671bc98189ea3c063ec4e9d14a9b86aef&location=
https://doi.org/10.1063/1.5048595
https://aip.scitation.org/topic/collections/featured?SeriesKey=cha
https://doi.org/10.1063/1.5048595
http://orcid.org/0000-0002-1043-8255
https://aip.scitation.org/author/Santos%2C+V
http://orcid.org/0000-0001-8306-8315
https://aip.scitation.org/author/Szezech%2C+J+D+Jr
https://aip.scitation.org/author/Batista%2C+A+M
https://aip.scitation.org/author/Iarosz%2C+K+C
https://aip.scitation.org/author/Baptista%2C+M+S
https://aip.scitation.org/author/Ren%2C+H+P
https://aip.scitation.org/author/Grebogi%2C+C
https://aip.scitation.org/author/Viana%2C+R+L
http://orcid.org/0000-0002-1748-0106
https://aip.scitation.org/author/Caldas%2C+I+L
https://aip.scitation.org/author/Caldas%2C+I+L
https://aip.scitation.org/author/Maistrenko%2C+Y+L
http://orcid.org/0000-0002-5926-4276
https://aip.scitation.org/author/Kurths%2C+J
https://aip.scitation.org/topic/collections/featured?SeriesKey=cha
https://doi.org/10.1063/1.5048595
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5048595
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5048595&domain=aip.scitation.org&date_stamp=2018-08-23
https://aip.scitation.org/doi/10.1063/1.5024324
https://doi.org/10.1063/1.5024324
https://doi.org/10.1063/1.5024324
https://aip.scitation.org/doi/10.1063/1.5049750
https://doi.org/10.1063/1.5049750
https://doi.org/10.1063/1.5049750
https://aip.scitation.org/doi/10.1063/1.5019792
https://doi.org/10.1063/1.5019792
https://doi.org/10.1063/1.5019792

CHAOS 28, 081105 (2018)

Riddling: Chimera’s dilemma
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We investigate the basin of attraction properties and its boundaries for chimera states in a circulant
network of Hénon maps. It is known that coexisting basins of attraction lead to a hysteretic behaviour
in the diagrams of the density of states as a function of a varying parameter. Chimera states, for which
coherent and incoherent domains occur simultaneously, emerge as a consequence of the coexistence
of basin of attractions for each state. Consequently, the distribution of chimera states can remain
invariant by a parameter change, and it can also suffer subtle changes when one of the basins ceases
to exist. A similar phenomenon is observed when perturbations are applied in the initial conditions.
By means of the uncertainty exponent, we characterise the basin boundaries between the coherent and
chimera states, and between the incoherent and chimera states. This way, we show that the density
of chimera states can be not only moderately sensitive but also highly sensitive to initial conditions.
This chimera’s dilemma is a consequence of the fractal and riddled nature of the basin boundaries.
Published by AIP Publishing. https://doi.org/10.1063/1.5048595

Coupled dynamical systems have been used to describe
the behaviour of real complex systems, such as power
grids, neuronal networks, economics, and chemical reac-
tions. Furthermore, these systems can exhibit various
kinds of interesting nonlinear dynamics, e.g., synchro-
nisation, chaotic oscillations, and chimera states. The
chimera state is a spatiotemporal pattern characterised
by the coexistence of coherent and incoherent dynam-
ics. It has been observed in a great variety of systems,
ranging from theoretical and experimental arrays of oscil-
lators, to in phenomena such as the unihemispheric sleep
of cetaceans. We study the chimera state in a circulant
network of Hénon maps, seeking to determine how the
density of states in the network depends on the system
parameters and the initial conditions. We have found that,
as expected, the density of states might be invariant to
parameter alterations, but it might also tip when a basin
of attraction ceases to exist. When the basin boundary of
the chimera states is fractal, the densities of the states
will depend moderately on the perturbations in the ini-
tial conditions, and they may even remain invariant to
specific perturbations. However, when the basin bound-
ary is riddled, even arbitrarily small perturbations to
the initial conditions can replace the chimera state to
an incoherent state. The existence of basin boundary in
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a network that presents chimera states is a chimera’s
dilemma.

I. INTRODUCTION

Chimera state, in reference to the Greek mythological
creature, is a spatiotemporal pattern observed in coupled
dynamical systems that was first reported by Kuramoto and
Battogtokh in 2002." This pattern is characterised by the
coexistence of coherent and incoherent behaviours.>™ It has
been identified in paradigmatic network models,”*® such as the
Kuramoto model,®'? networks of Hindmarsh-Rose neurons, !!
and coupled van der Pol-Duffing oscillators.'> Chimera states
have also been found in experimental settings.'> Martens
et al'"* showed them in a mechanical experiment com-
posed of coupled metronomes. Kapitaniak et al.'> demon-
strated the formation of chimera in Huygens’s clocks realised
by metronomes. Coupled electronic oscillators can exhibit
chimera with quiescent and synchronous domains. '®

Basins of attraction for chimera states were analysed by
Martens et al.'” They considered two coupled populations of
Kuramoto-Sakaguchi. The chimera states have a coexisting
asynchronous and synchronous population, where their basins
of attraction show a complex twist structure. Rakshit ez al.'®
identified and quantified incoherent, coherent, and chimera

Published by AIP Publishing.
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states in coupled time-delayed Mackey-Glass oscillators by
means of basin stability analysis. The coexisting basins were
found to be roughly robust to the coupling strength and cou-
pling radius alterations in certain network configurations, i.e.,
the density of the chimera states could be preserved by the
coupling strength and the coupling radius alterations for those
configurations. Our interest is to understand this stability of
the density of the states in terms of initial conditions. To
this goal, we analyse a circulant network composed of Hénon
maps and characterise its basin boundaries for chimera states.

The Hénon map was proposed as a simplified model
to study the dynamics of the Lorenz model.'” Networks of
coupled Hénon maps have been considered in studies about
periodic orbits,® chaotic dynamics of spatially extended
systems,”! and unstable dimension variability structure.??
Semenova et al. have recently found chimera states in
ensembles of non-locally coupled Hénon maps.>* They also
explored the effects of noise perturbations on the network.

In this work, we calculate the strength of incoherence
to identify incoherent, coherent, and chimera states. Clearly,
each network state (coherent or incoherent) has its own basin
of attraction. Parameter changes modify the Lebesgue mea-
sure of the basins, which in extreme situations can cease to
exist, leaving a network whose nodes will be in either the
coherent or incoherent states. Our main interest, however, is to
understand how perturbations in the initial conditions change
the density of these states in the network. To this goal, we
study the property of the basins of attraction’s boundaries.
We find that whereas the basin boundary between the incoher-
ent and chimera states is typically riddled, the basin boundary
between the chimera and the coherent state is typically frac-
tal. Thus, small alterations in the initial conditions can always
change the density of the states. However, arbitrarily small
perturbations in the initial conditions can shift a chimera state
to an incoherent one.

Riddled basin is a basin of attraction (of an attractor)
such that every point of it has pieces of another attractor’s
basin arbitrarily nearby.?*?® A riddled basin of attraction
has the same fractal dimension of its boundary. Heagy et
al.?” reported experimental and numerical evidence of rid-
dled basins in coupled chaotic systems. They studied chaos
synchronisation in coupled chaotic oscillator circuits. Wolter-
ing and Markus”® identified the existence of riddled basin in a
model for the Belousov-Zabotinsky reaction.

This paper is organised as follows: Section II introduces
the network of coupled maps. In Sec. III, we present the basin
of attraction for chimera states and our results for the basin
boundaries. In the last section, we draw our conclusions.

Il. NETWORK MODEL

Networks of coupled maps have been used to study
the extended dynamical system.”” We consider a network
composed of N coupled Hénon maps written as

i+rN

Z [Fx) —FxH1, (1)

]er

(l)l — F( (l)
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where i = 1,...,N, tis the discrete time, F(x) = [1 — ax? +
y, Bx]T is the two-dimensional Hénon map, o and r are the
coupling intensity and coupling radius, respectively, and

1 0
E:(O 0), ?)

specifies which variables of the Hénon map are coupled here,
namely, x. This system was previously studied by Semenova
et al.** for the parameter set (o, 8) = (1.4,0.3) focusing on
the parameter space o x r. In our network, we use (o, 8) =
(1.44,0.164), because the Hénon map exhibits a period-5
attractor for these parameters. We consider a circulant net-
work of Hénon maps. Figure 1(a) shows the spatiotempo-
ral plot obtained from Eq. (1) for o = 0.30 and r = 0.30,
where the colour bar represents the variable x. We find two
coherent and one incoherent (small region around i = 250)
domains, as shown in Fig. 1(b). The discontinuities in x®7
and x*!? are due to the splitting of the spatial profile into
two branches, while the interval region from approximately
x229 to x280) displays spatial incoherence (irregular spatial
pattern). A chimera state of the form as in Figs. 1(a) and 1(b)
was first reported by Omelchenko et al.?!

Aiming to characterise coherent and incoherent states, we
use a quantitative measure proposed by Gopal et al.>> To do
that, first, we calculate s,, = O[5 — x (m)], where ® is the
Heaviside step function and § is a predetermined threshold.
The local standard deviation x ¥ (m) is given by

1 nm
U} — _
x O (m) = < - )

Jj=n(m—1)+1

[26) — (Z(l)>]2> i 3)

t

where n=N/M, m=1,2,...,M, and zﬁ’) = x,(’) x,(iH)
with 2@ = [z1D, 72D 7@D]T ¢ RY, and d is the dimen-
sion of the dynamical system. In these new variables, two
neighbouring oscillators describing a node of the network i
and i + 1 are oscillating coherently if z(i) ~ 0 and incoher-
ently otherwise. (zV) =1 ) is the average of
( )

(U
] n(m D+1 2

over the partition m for a fixed time, and (. .. ), is the time

(a) 50 — i — 1.2
T
| —
+ 251 -_ O-OSa
———
] — T —
— e —
0 = —— -1.2
0 250 500
i
(b) wm (c) 1.0
=005 & W
-1.0 Ll | 0.0 4 . L b,
250 500 0.0 0.5 1.0
i m/M

FIG. 1. (a) Space-time plot of the dynamics of the network Eq. (1) after the
transient time, where the colour bar gives the value of the x variable of each
map in the network. In (b) and (c), we plot the snapshot and its s,, spectrum,
respectively, for r = 26 of (a). We consider « = 1.44, 8 = 0.164, o = 0.30,
and r = 0.30.
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average. We set § = 1% of |x(/"@) — x(min)| "and the network
size N = 500. Figure 1(c) shows s,, for the network separated
into M = 50 partitions. By means of s,, versus m/M, we can
clearly identify the coherent and incoherent regions.

Gopal et al.’*> developed the measure strength of inco-
herence (SI) to characterise the spatial dynamics of non-
linear coupled networks. It is able to identify coherent and
incoherent states, as well as chimera states.!®2 The SI is
given by

ZZ:I Sm
=

If x®(m) > 8, some of the oscillators in the m-th partition are
incoherent and s,, = 0. When N — o0, SI — 1 (s,, = 0,V m)
for incoherent states, SI — O for coherent and cluster states,
and 0 < SI < 1 for chimera states. In Fig. 2(a), we plot SI
versus the coupling strength o for 400 different initial con-
ditions of the system (1). We consider (xg),yg)) = (0,0) for
i=2,...,N,and (x(l),y(()l)) is homogeneously distributed in
the interval [—3,3] x [—3, 3]. The state variable is iterated
10500 times, with the first 9000 being discarded as transient
state, and the last 1500 are included to calculate SI. The accu-
racy of our results is not improved by doubling the size of
the dataset. The long transient is considered to avoid treating
transient chimera states as an asymptotic state.

Figure 2(a) shows the coexistence of multiple states
with different values of SI for the same o in the interval
[0.08,0.44]. This hysteresis course reflects that the basin of
attraction for the coherent and the incoherent states coexists.
For smaller values of the coupling strength, there is only the
incoherent state (characterised by the red curve for SI = 1),
and its large basin of attraction occupies a large domain of
initial conditions considered (excluding the infinity basin).
About o = 0.08, the coexistence of three basins of attrac-
tions causes the network to behave either in the coherent
state (smaller SI values), in the incoherent state (larger SI
values), or in the chimera (intermediate SI values). Appro-
priately chosen initial conditions may lead a network whose
o is being altered to have states characterised by the red
curve until o = 0.5. For intermediate o values, the network
is characterised by coherent and chimera states with lower
SI values. At o = 0.5, there is only the basin of attraction
for the coherent states. For appropriately chosen initial con-
ditions, as o is varied from 0.5 to zero, the network might
present a distinct route from coherence to incoherence (char-
acterised by the SI for the black curve). This means that
the network has a hysteresis behaviour for its states, typi-
cal to happen in networks that present chimera. Figure 2(b)
exhibits the single node basin stability (BS) as a function
of o for incoherent (black), chimera (red), coherent (gray),
and divergent (white) states. BS is associated with the vol-
ume of the basin of attraction.’*=*> In Figs. 2(c)-2(h), we plot
snapshots of the dynamic behaviour for o = 0.24. Changing
the initial conditions of only one map of the network, we
observe (c) synchronised period-5 dynamics corresponding
to SI = 0.00, (d) period-2 cluster state in which SI = 0.04,
(e) to (g) chimera states for different sizes of incoherent states
with SI = 0.24, SI = 0.42, and SI = 0.76, respectively, and
(h) incoherent state for which ST = 1.00.

SI=1- &)
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0.25
(o}
(c) 10t (d) LO@
=,0.05 =,0.00
-1.0E L1 . SI=0.00 -1.0 ‘ . SI=0.p4
0 250 500 10 30 x
i i
(e) LOW (f) 1.0W
=,0.00 =,0.00
-1.0¢ L1, SI024 -1.0- L1, SIz042
250 500 250 500
1 1
(g) LO?W"IMMMHWW (h)  LOF bl Lo
=,0.05 =,0.0F
-1.00 L1 . SI=0.76 -1.0 L1 . SI=100
0 250 500 250 500
(2 K3

FIG. 2. (a) SI versus o for 400 different initial conditions. The red (black)
line outlines the minimum (maximum) value of SI. (b) BS versus o for inco-
herent (black), chimera (red), coherent (gray) states, and divergent (vertically
dashed). From (c) to (h), we plot some coexistent states for o = 0.24. We
consider « = 1.44, B = 0.164, and r = 0.30.

lll. BASIN OF ATTRACTION FOR CHIMERA STATES

In our network, for some values of o, a great variety of
dynamical states can be found by only changing the initial
conditions. With this in mind, we investigate this phenomenon
by means of the basin of attraction. To do that, we construct a

3.0 1.0
=0.01 -00.57
B0 30 20

7

FIG. 3. Basin of attraction of only 1 Hénon map in the network with o =
0.18, = 1.44, B = 0.164, and r = 0.30, where the colour bar represents the
SI values. The black points correspond to incoherent states, the grey points
denote the synchronised cluster states, from blue to red points represent the
chimera states. The initial conditions in the white region diverge to infinity.
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34

(¢) 3.0

=£0.01

30y

grid and vary the initial values of the variables of one map of
the network, while the others are kept equal to 0.

In Fig. 3, we plot the basin of attraction for o = 0.18 with
the SI values being represented by a colour scale. It displays
the same overall shape of the basin of one individual Hénon
map. From Fig. 3, it can be noted that the density of each
state varies depending on the region where we sort the initial
conditions; also, in some regions, the boundaries between the
basins may be very complex.

In order to analyse the basin boundaries, we define SI <
0.04 as coherent state, SI > 0.90 as incoherent state, and
intermediate values as chimera states. Applying these thresh-
olds, we plot the basin for o = 0.12,0.18,0.24, and 0.30, as
shown in Fig. 4, with gray standing for coherent (CO), red for
chimera (CH), and black for incoherent (IN) states. When o
is small, there is a predominance of incoherent and chimera
states in the basins. Increasing the value of o, we find a

(a) 1()0 (b)0.002

FIG. 4. Basins of attraction of the network of coupled
Hénon maps for coherent (CO), chimera (CH), and incoher-
ent (IN) states. We consider o equal to (a) 0.12, (b) 0.18, (c)
0.24, and (d) 0.30.

decrease in the size of the basin for incoherent states and an
increase in that for coherent states. The basins are arranged
in a complicated way with some regions exhibiting an appar-
ent fractal structure. It was demonstrated that fractality in the
basin boundary can strongly affect the predictability of final
states in dynamical systems.*®

The characterisation of basin boundaries can be made
using the initial condition uncertainty fraction, as introduced
by McDonald et al.® The method consists of calculating the
final state of a number N, of random initial conditions in a
region of the basin. If the final state from a point in the center
of a neighbourhood of radius ¢ is different from at least one
of its neighbours, then such an initial condition is g-uncertain.
The fraction of uncertain points f(¢) as a function of ¢, for
small ¢, is expected to scale according to f'(¢) ~ ¢V, where y
is the uncertainty exponent.3”-3 The y is related to the bound-
ary of the sets being considered (here they are the basin of

FIG. 5. (a) Uncertainty fraction f (¢) versus the uncertainty
radius ¢ for the boundary between the chimera and the coher-
ent basins. Magnification of the basin of attraction for (b)
o =0.18, (¢c) 0 = 0.24, and (d) o = 0.30.
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attractions) by d = D — y, where d is the dimension of the
basin boundary and D = 2 is the phase space dimension of
the boxes used to calculate y.

Firstly, we calculate f(¢) for the boundary between the
chimera and coherent state basins, as shown in Fig. 5(a).
Figures 5(b)-5(d) show magnifications of Figs. 4(b)—4(d) that
allow one to see the complexity of the boundaries. We use
the interval of the magnifications to estimate f (&) versus €.
For o0 = 0.12, the basin of the coherent states is very small;
therefore, it can be neglected. From the fitting of the points
of Fig. 5(a), we obtain y = 0.30 (red dots) y = 0.15 (blue
dots), and y = 0.02 (green dots) for o = 0.18,0.24, and 0.30,
respectively. As a result, the boundaries between the chimera
and coherent state basins are fractal. A positive and constant
uncertainty coefficient means that the closer you are to an ini-
tial condition, the more likely you are of generating the same
final state of the one generated by that initial condition. The
further you go, the more likely you are changing states by a
perturbation in the initial condition. One consequence of this
observation is that there is a positive probability of a network
in the coherent state to transit to the chimera state if an initial
condition used is perturbed. Since a coherent state can be set
by placing all the initial conditions as equal, it is reasonable
to expect that by changing the initial condition of one node
of the network (as we have actually done), one can reach the
chimera state. Another consequence is that the chimera state
can be replaced by the coherent state by a perturbation in the
initial conditions as well. This is a consequence of the fact that
the uncertainty coefficient is positive, and therefore, no matter
the precision one alters the initial conditions, there is always
a positive probability for the state to change. However, since
the basin has a fractal boundary, there exist particular direc-
tions to change the initial conditions such that the chimera
can be preserved. This direction is the one associated with the
direction where the dimension is not fractal. All in all, the
point is that the chimera state in the observed network can be
found, preserved, or altered by design, if one wishes so, as
long as the initial conditions are set about the boundary of the

Chaos 28, 081105 (2018)

FIG. 6. (a) Uncertainty fraction f(¢) versus the uncer-
tainty radius ¢ for the boundary between the incoherent and
chimera state basins. Magnification of the basin of attraction
for (b) 0 = 0.12, (c) 0 = 0.18, and (d) o = 0.24.

coherent and the chimera states. The same does not happen
with respect to the incoherent state.

Secondly, we compute f (¢) for the boundary between the
chimera and incoherent state basins, as shown in Fig. 6(a).
In Figs. 6(b)-6(d), we plot magnifications of Figs. 4(a)—4(c)
emphasising the boundary between incoherent and chimera
state basins. The incoherent state basin has a very small size
for o = 0.30. Our results show that f(¢) remains approxi-
mately constant for different o values, and as a consequence
y ~ 0, indicating the existence of a riddled basin. A zero
uncertainty coefficient means that the probability of finding an
uncertain box, regardless of the resolution of the boxes used
(with sides ¢), is constant. No matter how small or large is the
perturbation applied to an initial condition, the change that the
system will take place is the same. This is so because of the
riddled basin for which the dimension of the boundary of the
basins of attraction is the dimension of the basin itself. Thus,
in such a situation, a special direction does not exist for initial
conditions to be perturbed in order to maintain the incoherent
state. In contrast to what was reported before, the preserva-
tion or alteration of the chimera state by a modification in the
initial conditions cannot be done by design but only in a sta-
tistical sense. Therefore, these facts lead us to conclude that
the existence of a riddled basin boundary in a network that
presents chimera is a chimera’s dilemma. It makes the state to
be fragile by arbitrarily small changes in the initial conditions.

IV. CONCLUSIONS

We have analysed a network of circulant coupled Hénon
maps. This network is a discrete time dynamical system that
exhibits coherent and incoherent behaviours. We consider
parameter values where coherent and incoherent domains,
named chimera state, coexist.

The chimera state coexists with the other two states,
namely, the coherent and the incoherent states. All these
states have their attraction basin boundaries. It is known that
due to this coexistence, the network may present hysteretic
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behaviour as parameters are increased or decreased. The
hysteresis character of the chimera and its coexisting states,
where attractors and their basins can disappear or bifurcate,
can potentially provide clarifications about the emergence
of tipping points in nature.>® Typically, tipping points are
explained in terms of lower dimensional systems with the
coexistence of states such as equilibrium points or limit
cycles. The chimera state could itself be considered as a pos-
sible reason for tipping points emerging in large dimensional
networked systems. Our main interest in this work is to study
properties of the boundary between two of these states, the
incoherent and chimera, and the chimera and coherent states.
Through the uncertainty exponent, we uncover that the basin
boundaries between the coherent and chimera states are frac-
tal, while the basin boundary of incoherent and chimera states
are riddled. Consequently, the first case is more robust to
perturbations in the initial conditions than the second one.
Whereas one is likely to obtain a chimera state by a perturba-
tion of initial conditions leading to the coherent state (which
can be set by having all nodes with the same or roughly the
same initial condition), it is unlikely to appear a chimera state
by a perturbation of initial conditions leading to the incoherent
state.
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