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1. Introduction

In this article, we show existence and regularity of global attractors as well as convergence results for 
the Cahn-Hilliard equation considered on manifolds with conical singularities. We model such a manifold 
as a (n + 1)-dimensional compact manifold B with closed boundary ∂B, n ≥ 1, which is endowed with a 
degenerated Riemannian metric g that, in local coordinates (x, y) ∈ [0, 1) × ∂B on a collar neighborhood of 
the boundary, has the following expression

g = dx2 + x2h(x),

where [0, 1) � x �→ h(x) is a smooth family of Riemannian metrics on ∂B. We denote B = (B, g) and 
∂B = (∂B, h(0)). The Laplacian on B, in local coordinates (x, y) ∈ [0, 1) × ∂B on the collar part, admits the 
following degenerate expression
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Δ = 1
x2

(
(x∂x)2 + (n− 1 + x∂x det(h(x))

2 det(h(x)) )(x∂x) + Δh(x)

)
,

where Δh(x) is the Laplacian on (∂B, h(x)). The operator Δ belongs to the class of cone differential operators
or Fuchs type operators, see Section 3 for more details.

On B we consider the following problem

u′(t) + Δ2u(t) = Δ(u3(t) − u(t)), t ∈ (0, T ),

u(0) = u0,
(1.1)

which is known as Cahn-Hilliard equation (CH for short); it is a diffusion interface equation that models 
phase separation of a binary mixture. On classical domains, (1.1) has been generalized and extensively 
studied in many directions and aspects, such as existence, regularity and convergence of solutions, existence 
of global attractors, etc. A sufficient number of related results can be found in [13].

However, on singular domains much less is known. Using the theory of cone differential operators, in [16]
it was first shown short-time existence of CH on B for the case where h(·) is constant, by employing Lp-
maximal regularity techniques. Those results were extended to arbitrary B and improved to higher regularity 
in [17]. Finally, global solutions and smoothing results were proved in [11]. Summarizing those results, let 
us assume that dim(B) = n + 1 ∈ {2, 3}, choose s ≥ 0 and let the exponent γ be as follows

dim(B) − 4
2 < γ < min

{
− 1 +

√(dim(B) − 2
2

)2
− λ1,

dim(B) − 4
4

}
, (1.2)

where 0 = λ0 > λ1 > · · · are the eigenvalues of the boundary Laplacian Δh(0) on ∂B. Denote by Hη,ρ(B), 
η, ρ ∈ R, the Mellin-Sobolev space, see Definition 2. Moreover, let Rω and Cω be the finite dimensional 
spaces of smooth functions on B that are locally constant close to the singularities, with values in R and 
C respectively, see Section 3 for details. Then, for any real-valued u0 ∈ Hs+2,γ+2(B) ⊕ Rω, there exists a 
unique global solution in the following sense: for any T > 0 there exists a unique u ∈ H1(0, T ; Hs,γ(B)) ∩
L2(0, T ; D(Δ2

s)) solving (1.1) on [0, T ] × B. Furthermore, the solution u satisfies the regularity

u ∈
⋂
s≥0

C∞((0,∞);D(Δ2
s)) (1.3)

and

u ∈ C([0,∞);Hs+2,γ+2(B) ⊕Rω) ↪→ C([0,∞);C(B)). (1.4)

The bi-Laplacian domain we choose is

D(Δ2
s) = {u ∈ Hs+2,γ+2(B) ⊕Cω : Δu ∈ Hs+2,γ+2(B) ⊕Cω}, (1.5)

where γ is always as (1.2). It satisfies

D(Δ2
s) = D(Δ2

s,min) ⊕Cω ⊕ EΔ2,γ . (1.6)

Here EΔ2,γ is an s-independent finite dimensional space consisting of C∞(B◦)-functions, that in local coor-
dinates (x, y) ∈ [0, 1) × ∂B, take the form ω(x)c(y)xρ lnk(x), ρ ∈ C, k ∈ {0, 1, 2, 3}, where B◦ = B\∂B and 
c ∈ C∞(∂B). More precisely, there exists a discrete set of points ZΔ2 in C, determined only by the family 
of metrics h(·), such that the exponents ρ coincide with the set ZΔ2 ∩{z ∈ C : Re(z) ∈ [n−7

2 −γ, n−3
2 −γ)}. 
The exponents k are also determined by h(·). In particular, when h(·) = h is constant, the set ZΔ2 and the 
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exponents k associated to each ρ ∈ ZΔ2 , are determined by n and the spectrum of Δh. The minimal domain 
D(Δ2

s,min) stands for the domain of the closure of Δ2 : C∞
c (B◦) → Hs,γ(B), and satisfies

Hs+4,γ+4(B) ↪→ D(Δ2
s,min) ↪→

⋂
ε>0

Hs+4,γ+4−ε(B), (1.7)

while

D(Δ2
s,min) = Hs+4,γ+4(B) (1.8)

provided that

{γ + 1, γ + 3} ∩
⋃

λj∈σ(Δh(0))

{
±
√(dim(B) − 2

2

)2
− λj

}
= ∅. (1.9)

Consequently, both spaces D(Δ2
s) and EΔ2,γ are determined explicitly by h(·) and γ, see Corollary 18 for 

details.
These results allow us to define for any s ≥ 0 a semiflow T : [0, ∞) ×Hs+2,γ+2(B) ⊕Rω → Hs+2,γ+2(B) ⊕

Rω on real valued-functions by T (t)u0 := T (t, u0) = u(t), see e.g. [26, Chapter 1, Section 1.1] for more 
details on semiflows, also known as semigroups. Let Xs

1,0 be the space of all real-valued functions u ∈
Hs+2,γ+2(B) ⊕ Rω such that 

´
B udμg = 0, where dμg is the measure associated with the metric g. Then T

can be restricted to Xs
1,0, see Section 4. Our main results are the following.

Theorem 1. Let s ≥ 0, γ be as (1.2) and D(Δ2
s) be the bi-Laplacian domain described in (1.5)-(1.9).

(i) (Global attractor) The semiflow T : [0, ∞) × Xs
1,0 → Xs

1,0 has an s-independent global attractor A ⊂
∩r>0D(Δ2

r). Moreover, if B is a bounded set of Xs
1,0, then for any r > 0, T (t)B is, for sufficiently large t, 

a bounded set of D(Δ2
r) and

lim
t→∞

(sup
b∈B

inf
a∈A

‖T (t)b− a‖D(Δ2
r)) = 0.

(ii) (Convergence to equilibrium) If u0 ∈ X0
1,0, then there exists a u∞ ∈ ∩r>0D(Δ2

r) such that 
limt→∞ T (t)u0 = u∞, where the convergence occurs in D(Δ2

r) for each r ≥ 0.

The definition of global attractor is recalled in Section 4. For proving part (i) of Theorem 1.1, we follow 
the strategy of Temam [26] to obtain estimates in a lower regularity space H−1

0 (B), see Definition 9, and of 
[25] for obtaining higher regularity. For convergence to equilibrium, we first obtain the Lojasiewicz-Simon 
inequality due to [24], and proceed as [3], [9] and [19].

Concerning real-life applications of the above approach, recall first that the physical effects described 
by CH, as well as other evolution equations, occur in reality in many different types of domains and 
surfaces (manifolds), which are usually not smooth: many of them have edges, conical points, cusps, or even 
combinations of these and other types of singularities. In this context, conic manifolds are fundamental and 
a natural place to start. They describe simple point singularities, which, apart from their intrinsic interest, 
can be used to build more general ones [23], [22].

Moreover, whenever we are studying a smooth (n + 1)-dimensional Riemannian manifold M endowed 
with a Riemannian metric f , an important question is: how does the local geometry on M = (M, f) affect 
the evolution? An answer to this question arises as follows: fix a point o on M and denote by d(o, z)
the geodesic distance between o and z ∈ M\{o}, induced by the metric f . There exists an r > 0 such 

that (x, y) ∈ (0, r) × Sn are local coordinates around o and moreover, the metric in these coordinates 
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becomes f = dx2 + x2fSn(x), where Sn = {z ∈ Rn+1 : |z| = 1} is the unit sphere and x �→ fSn(x) is a 
smooth family of Riemannian metrics on Sn. In case of fSn(·) being smooth up to x = 0, we can regard 
((M\{0}) ∪ ({0} ×Sn), f) as a conic manifold with one isolated conical singularity at o. On the other hand, 
since our problem involves the Laplacian, it becomes now degenerate. However, an application of our results 
shows that the asymptotic expansion of the solutions near o is provided by the expansion (1.6), where 
the boundary Laplacian Δh(x) now has to be replaced by the Laplacian ΔfSn(x) on (Sn, fSn(x)). Hence, 
in particular, through the structure of the spaces EΔ2,γ , we obtain an interplay between the spectrum of 
ΔfSn (x) and the evolution.

Though the strategies are mostly well established, the technical results that allow us to use them in the 
context of conical singularities are not, and, therefore, the strategies have to be adapted to this situation. 
For this reason new results on interpolation and embedding of Mellin-Sobolev spaces are developed in this 
article.

In Section 2, we define suitable function spaces to work on conic manifolds and study their embeddings. 
Section 3 is devoted to the domain description and the properties of the Laplacian and bi-Laplacian and 
to provide some facts about the complex interpolation of those spaces. Part (i) of Theorem 1 is proved in 
Section 4 and part (ii) in Section 5.

2. Function spaces

Fix a smooth non-negative function ω ∈ C∞(B) supported on the collar neighborhood (x, y) ∈ [0, 1) ×∂B
such that ω depends only on x and ω = 1 near {0} × ∂B. Moreover denote by C∞

c the space of smooth 
compactly supported functions and by Hs, s ∈ R, the usual Bessel potential spaces defined using the 
L2-norm.

Definition 2 (Mellin-Sobolev spaces). Let γ ∈ R and consider the map

Mγ : C∞
c (R+ ×Rn) → C∞

c (Rn+1) defined by u(x, y) �→ e(γ−n+1
2 )xu(e−x, y).

Let κj : Uj ⊆ ∂B → Rn, j ∈ {1, ..., N}, N ∈ N\{0}, N := {0, 1, 2, ...}, be a covering of ∂B by coordinate 
charts and let {φj}j∈{1,...,N} be a subordinated partition of unity. For any s, γ ∈ R, the Mellin Sobolev 
space Hs,γ(B) is defined to be the space of all distributions u on the interior B◦ such that the norm

‖u‖Hs,γ(B) =
N∑
j=1

‖Mγ(1 ⊗ κj)∗(ωφju)‖Hs(Rn+1) + ‖(1 − ω)u‖Hs(2B) (2.1)

is defined and finite, where 2B is the double of B and ∗ refers to the push-forward of distributions. Different 
choices of ω, covering and partition of unity give us the same spaces with equivalent norms. The space 
Hs,γ(B) is a Banach algebra, up to an equivalent norm, whenever s > (n + 1)/2 and γ ≥ (n + 1)/2, see [18, 
Lemma 3.2].

If s ∈ N, then Hs,γ(B) coincides with the space of all functions u in Hs
loc(B◦) that satisfy

x
n+1

2 −γ(x∂x)k∂α
y (ω(x)u(x, y)) ∈ L2([0, 1) × ∂B,

√
det(h(x))dx

x
dy), k + |α| ≤ s. (2.2)

In Section 3, we will associate the Mellin-Sobolev spaces with the Laplacian and bi-Laplacian.

Remark 3. Let x : B → [0, 1] be a smooth positive function on B◦ that is equal to x(x, y) = x on the collar 
neighborhood [0, 1) ×∂B. Then u ∈ H0,γ(B) iff x−γu ∈ L2(B), where L2(B) = H0,0(B). We define the spaces √

Lp(B) using the measure dμg induced by the metric g. Note that dμg = det(h(x))xndxdy on the collar 
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neighborhood. Moreover, for any α ∈ R, let xαLp(B) := {u :
´
B |x−αu|pdμg < ∞}. Finally, recall that the 

inner product in H0,0(B) induces an identification of the dual space of Hs,γ(B) with H−s,−γ(B), see e.g. 
[11, Lemma 3.2 (ii)].

Besides the Mellin-Sobolev spaces, we define the following space.

Definition 4. Let H1(B) be the completion of C∞
c (B◦) with respect to the inner product

(u, v)H1(B) =
ˆ

B

uvdμg +
ˆ

B

〈
∇u,∇v

〉
dμg,

where ∇ and 〈·, ·〉 are defined by the conical metric g.

We investigate now certain properties of the space H1(B) and its connection with Hs,γ(B).

Remark 5. For the following computations, we note that
(1) The boundedness of 

´
B |u|2 dμg is equivalent to

u ∈ L2
loc(B◦) and (x, y) �→ x

n+1
2 ω(x)u(x, y) ∈ L2([0, 1] × ∂B,

√
det(h(x))dx

x
dy).

(2) If 
´
B |u|2 dμg < ∞, then the boundedness of 

´
B 〈∇u,∇u〉 dμg is equivalent to

u ∈ H1
loc(B◦) and (x, y) �→ x

n−1
2 (x∂x)k∂α

y (ω(x)u(x, y)) ∈ L2([0, 1] × ∂B,
√

det(h(x))dx
x
dy), k + |α| = 1.

The last statement can be easily proved once we recall that in local coordinates of [0, 1) × ∂B we have

〈∇u,∇v〉 = x−2(x∂xu)(x∂xv) + x−2
n∑

i,j=1
hij(x, y)(∂yi

u)(∂yj
v).

Along this paper, we use ↪→ and 
c
↪→ to denote continuous and compact embedding, respectively. We recall 

that Hs,γ(B) ↪→ Hs′,γ′(B), when s ≥ s′ and γ ≥ γ′, and Hs,γ(B) c
↪→ Hs′,γ′(B), when s > s′ and γ > γ′, see 

[23, Theorem 2.1.53].

Proposition 6. For any β < 1, the following inclusions hold

H1,1(B) ⊕Cω ↪→ H1(B) ↪→ H1,β(B),

where u ⊕ v is identified with u + v and the first inclusion is just u ⊕ v �→ u + v. In particular, H1(B) c
↪→

H0,0(B).

Proof. We proceed in several steps. Let us denote by C positive constants that can change along the proof. 
For simplicity we ignore the term 

√
det(h(x)) in the proof, as it is uniformly bounded from above and 

below, and we abuse the notation 
´
∂B since the computations are made in local coordinates. We also note 

that it suffices to check the inclusion on the collar neighborhood and for functions u ∈ C∞
c (B◦).

Step 1: H1,1(B) ↪→ H1(B). We have

1ˆ ˆ
|ω(x)u(x, y)|2 xndxdy ≤

1ˆ ˆ ∣∣∣xn+1
2 −1ω(x)u(x, y)

∣∣∣2 dx
dy.
0 ∂B 0 ∂B
x
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Hence it is clear that
ˆ

B

|u|2 dμg ≤ C ‖u‖2
H1,1(B) .

Moreover

1ˆ

0

ˆ

∂B

1
x2

⎛
⎝|x∂x(ωu)|2 +

n∑
i,j=1

hij(x, y)∂yi
(ωu)∂yj

(ωu)

⎞
⎠xndxdy

≤ C
∑

k+|α|=1

1ˆ

0

ˆ

∂B

∣∣∣xn−1
2 (x∂x)k∂α

y (ω(x)u(x, y))
∣∣∣2 dx

x
dy,

which implies that
ˆ

B

〈
∇u,∇u

〉
dμg ≤ C ‖u‖2

H1,1(B) .

We conclude that

‖u‖H1(B) ≤ C ‖u‖H1,1(B) .

Step 2 : For each ε > 0, we have xε ∈ H1(B). Let 0 < r < 1 and χr : B◦ → [0, 1] be such that χr(x, y) =
1 − ω(x/r), for (x, y) ∈ [0, 1) × ∂B and χr be equal to 1 outside the collar neighborhood. It is enough to 
prove that limr→0 χrxε = xε in H1(B), as χrxε ∈ C∞

c (B◦). For this, we must prove that

(i) lim
r→0

1ˆ

0

ˆ

∂B

|ω(χrx
ε − xε)|2 xndxdy = 0,

(ii) lim
r→0

1ˆ

0

ˆ

∂B

∣∣∂yj
(ωχrx

ε) − ∂yj
(ωxε)

∣∣2 xn−2dxdy = 0,

(iii) lim
r→0

1ˆ

0

ˆ

∂B

|x∂x(ωχrx
ε) − x∂x(ωxε)|2 xn−2dxdy = 0.

Note that (i) follows directly from the dominated convergence theorem and (ii) is identically zero. For (iii), 
we have that the integral is smaller or equal to two times

1ˆ

0

ˆ

∂B

|χrx∂x(ωxε) − x∂x(ωxε)|2 xn−2dxdy +
1ˆ

0

ˆ

∂B

|ω(x)xε∂xχr|2 xndxdy.

Only the last term is important, as we can handle the first one directly with dominated convergence theorem. 
Note that |ω(x)xε∂xχr|2 xn = |ω(x)x/r(∂xω)(x/r)|2 x2ε+n−2 and that, for n ≥ 1, the integrand is smaller 
than the integrable function ‖x∂xω‖2

L∞([0,∞)) x
2ε+n−2. Moreover

lim |ω(x)x/r(∂xω)(x/r)|2 x2ε+n−2 = 0.

r→0
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The result now follows again by the dominated convergence theorem.
Step 3 : Cω ↪→ H1(B). It suffices to show that the constant function equal to one belongs to H1(B) by 
showing that limε→0 xε = 1 in H1(B). To this end, it is enough to show that

(i) lim
ε→0

1ˆ

0

ˆ

∂B

|ω(1 − xε)|2 xndxdy = 0,

(ii)
1ˆ

0

ˆ

∂B

∣∣∂yj
(ω) − ∂yj

(ωxε)
∣∣2 xn−2dxdy = 0,

(iii) lim
ε→0

1ˆ

0

ˆ

∂B

|x∂x(ω) − x∂x(ωxε)|2 xn−2dxdy = 0.

Again (i) follows directly from the dominated convergence theorem, (ii) is identically zero as the functions 
do not depend on y, and the integral in (iii) is smaller than two times

1ˆ

0

ˆ

∂B

|x∂x(ω) − xεx∂x(ω)|2 xn−2dxdy +
1ˆ

0

ˆ

∂B

|ωx∂x(xε)|2 xn−2dxdy.

The first term can be dealt again by dominated convergence. For the second one, note that

1ˆ

0

|ωx∂x(xε)|2 xn−2dx ≤ ε2

2ε + n− 1 ,

and the last term goes to zero, as ε goes to zero.
Step 4 : If β < 1, then H1(B) ↪→ H1,β(B). By density, it is enough to show that there is a constant C > 0
such that ‖u‖H1,β(B) ≤ C ‖u‖H1(B), for all u ∈ C∞

c (B◦).
If k + |α| = 1, then, in local coordinates on [0, 1) × ∂B, we have

∣∣∣xn+1
2 −β(x∂x)k∂α

y (ω(x)u(x, y))
∣∣∣ ≤ ∣∣∣xn−1

2 (x∂x)k∂α
y (ω(x)u(x, y))

∣∣∣ .
If k + |α| = 0, then as

ω(x)u(x, y) = −
1ˆ

x

∂

∂s
(ω(s)u(s, y))ds,

we have

ˆ

∂B

1ˆ

0

∣∣∣xn+1
2 −βω(x)u(x, y)

∣∣∣2 dx

x
dy

=
ˆ 1ˆ

xn−2β

∣∣∣∣∣∣
1ˆ
s−

n
2 s

n
2
∂

∂s
(ω(s)u(s, y)) ds

∣∣∣∣∣∣
2

dxdy
∂B 0 x
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≤
ˆ

B

1ˆ

0

xn−2β

⎛
⎝ 1ˆ

x

s−nds

⎞
⎠

⎛
⎝ 1ˆ

x

sn
∣∣∣∣ ∂∂s (ω(s)u(s, y))

∣∣∣∣
2

ds

⎞
⎠ dxdy

=
1ˆ

0

xn−2β

⎛
⎝ 1ˆ

x

s−nds

⎞
⎠

⎛
⎝ˆ

∂B

1ˆ

x

∣∣∣∣sn−1
2

(
s
∂

∂s

)
(ω(s)u(s, y))

∣∣∣∣
2
ds

s
dy

⎞
⎠ dx

≤
1ˆ

0

xn−2β

⎛
⎝ 1ˆ

x

s−nds

⎞
⎠ dx ‖u‖2

H1(B) ,

where we have used Cauchy-Schwarz in the first inequality. The last integral is finite for n ≥ 1 and β < 1. �
For functions in H1(B), we define

(u, v)H1
0 (B) =

ˆ

B

〈∇u,∇v〉 dμg and ‖u‖2
H1

0
=
ˆ

B

〈∇u,∇u〉 dμg.

In particular,

(u, v)H1(B) := (u, v)H0,0(B) + (u, v)H1
0 (B) (2.3)

and

‖u‖H1(B) =
√
‖u‖2

H0,0(B) + ‖u‖2
H1

0 (B). (2.4)

Moreover, whenever u ∈ L1(B), we define (u)B :=
ffl
B udx = |B|−1 ´

B udμg, where |B| =
´
B dμg is the area 

of B.

Lemma 7 (Poincaré-Wirtinger inequality). There is a constant C > 0 such that

‖u− (u)B‖H0,0(B) ≤ C ‖u‖H1
0 (B) , ∀u ∈ H1(B).

Proof. The proof follows the same argument as in the proof of [6, Theorem 1 of Section 5.8], using the fact 
that H1(B) is compactly embedded in H0,0(B). �
Definition 8. Denote by H1

0 (B) the space of all u ∈ H1(B) such that (u)B = 0.

It is clear that H1(B) = H1
0 (B) ⊕C, where C is identified with the set of constant functions. Moreover, 

applying Lemma 7 with (u)B = 0, we see that the map H1
0 (B) � u �→ ‖u‖H1

0 (B) ∈ R is equivalent to the 
H1(B) norm.

Definition 9. We denote by H−1(B) the dual space of H1(B) and by H−1
0 (B) ⊂ H−1(B) its subspace defined 

by

H−1
0 (B) := {u ∈ H−1(B) : 〈u, 1〉H−1(B)×H1(B) = 0}.

Using the fact that H1(B) = H1
0 (B) ⊕C, we can see that the map H−1

0 (B) � u �→ u|H1
0 (B) ∈ L(H1

0 (B), C)

is bijective, that is, H−1

0 (B) can be identified with the dual of H1
0 (B).
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Proposition 10. Let u ∈ H0,β(B), for some β > −1. Then Tu : H1(B) → C and T̃u : H1(B) → C defined by

Tu(v) =
ˆ

B

uvdμg,

T̃u(v) =
ˆ

B

(u− (u)B)vdμg

are continuous. Moreover the functional T̃u belongs to H−1
0 (B) and T̃u|H1

0 (B) = Tu|H1
0 (B).

Proof. Since β > −1, we have the inclusion H0,β(B) ↪→ L1(B). In fact,

ˆ

B

|u| dμg =
ˆ

B

x−β |u| xβdμg ≤

⎛
⎝ˆ

B

x2βdμg

⎞
⎠

1/2

‖u‖H0,β(B) ,

due to Remark 3. Note that 
´
B x2βdμg is finite, as 

´ 1
0 xn+2βdx < ∞. The fact that H0,β(B) ↪→ L1(B) ensures 

that (u)B is well defined.
In order to prove that Tu is continuous, let us assume, without loss of generality, that −1 < β ≤ 0. We 

denote by I−β : H1(B) → H0,−β(B) the continuous inclusion from Proposition 6. Then, we have that

Tu(v) =
ˆ

B

uvdμg = 〈u, I−β(v)〉H0,β(B)×H0,−β(B) .

Therefore Tu is continuous as it is the composition of continuous functions. The continuity of T̃u follows 
similarly. The fact that T̃u|H1

0 (B) = Tu|H1
0 (B) follows from the fact that the integral of v is equal to zero if 

v ∈ H1
0 (B). �

A version of Gauss theorem can also be proved for H1(B). It simplifies and improves [11, Lemma 4.3].

Theorem 11 (Gauss theorem). Let u and v belong to H1(B) and Δv ∈ H0,γ(B), for some γ > −1. Then

ˆ

B

〈∇u,∇v〉 dμg = −
ˆ

B

uΔvdμg.

In particular, if u ∈ H1(B) is such that Δu ∈ H0,γ(B), for some γ > −1, then 
´
B Δu dμg = 0.

Proof. Without loss of generality, we assume that −1 < γ ≤ 0. First we note that for v and u in C∞
c (B◦), 

we have
ˆ

B

〈∇u,∇v〉 dμg = −
ˆ

B

uΔvdμg = −〈Δv, u〉D′(B◦)×C∞
c (B◦) , (2.5)

where D′(B◦) stands for the dual space of C∞
c (B◦).

For v ∈ H1(B), we can choose a sequence of functions in C∞
c (B◦) that converge to v in H1(B) and, 

therefore, also in D′(B◦). Hence the equality between the first and the third term of (2.5) still holds for all 

v ∈ H1(B) and u ∈ C∞

c (B◦).
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Moreover if v ∈ H1(B) and Δv ∈ H0,γ(B) ⊂ L2
loc(B◦) ⊂ L1

loc(B◦), we have again

〈Δv, u〉D′(B◦)×C∞
c (B◦) =

ˆ

B

uΔvdμg, (2.6)

for all u ∈ C∞
c (B◦).

Finally, if v ∈ H1(B), Δv ∈ H0,γ(B) and u ∈ H1(B), we take a sequence in C∞
c (B◦) that converges to u

in H1(B). As H1(B) ↪→ H0,−γ(B), the sequence will also converge to u in H0,−γ(B). Using the duality of 
H0,−γ(B) and H0,γ(B), (2.5) and (2.6), we obtain our result. �
Proposition 12. The operator Δ : H1

0 (B) → H−1
0 (B) is well-defined, continuous and bijective.

Note that Δu ∈ D′(B◦) is always well defined. As C∞
c (B◦) is dense in H1(B), H−1

0 (B) can be easily 
identified, by restricting to C∞

c (B◦), with a subset of D′(B◦).

Proof. By Riesz theorem, there is a bijective map R : H1
0 (B) → H−1

0 (B) such that

〈Ru, v〉H−1
0 (B)×H1

0 (B) = (u, v)H1
0 (B) =

ˆ

B

〈∇u,∇v〉 dμg.

Then, the operator Δ can be easily identified with −R. �
Corollary 13. There is a constant C > 0 such that

‖u‖H−1
0 (B) ≤ C ‖Δu‖H−1

0 (B) , ∀u ∈ H1
0 (B).

Proof. This follows from the continuous inclusion H1
0 (B) ↪→ H−1

0 (B), provided by Propositions 6 and 10, 
and Proposition 12. �
2.1. Sobolev immersions

In this section, we prove some embeddings concerning Mellin-Sobolev spaces.

Proposition 14. Suppose that p ∈ [2, ∞), if n = 1, and p ∈ [2, (2n + 2)/(n − 1)], if n ≥ 2. Then, for 
each γ ∈ R, we have H1,γ(B) ↪→ xγ−(n+1)(1/2−1/p)Lp(B). In particular, if γ ≥ (n + 1)(1/2 − 1/p), then 
H1,γ(B) ↪→ Lp(B).

Proof. First, we note that

H1,γ(B) ⊂ H1
loc(B◦) ⊂ Lp

loc(B
◦).

Therefore, it is enough to understand the behavior of elements of H1,γ(B) in the neighborhood of the conical 
tip. We have H1(Rn+1) ↪→ Lp(Rn+1). Hence

∥∥∥(x, y) �→ e(γ−n+1
2 )xω(e−x)φj(y)u(e−x, y)

∥∥∥
Lp(Rn+1)∥∥ (γ−n+1 )x −x −x

∥∥
≤ C ∥(x, y) �→ e 2 ω(e )φj(y)u(e , y)∥
H1(Rn+1)

≤ C ‖u‖H1,γ(B) , (2.7)
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where we recall that {φj}j∈J is a partition of unity of ∂B and ω is as Definition 2. A change of variables 
e−x �→ x in (2.7) implies

∥∥∥x(n+1)( 1
2− 1

p )−γu
∥∥∥
Lp(B)

≤ C ‖u‖H1,γ(B) ,

which shows the claim. �
Corollary 15. The following continuous inclusions hold:
(i) If dim(B) ∈ {2, 3}, then H1(B) ↪→ L4(B).
(ii) If dim(B) = 2, then H1(B) ↪→ L6(B).
(iii) If dim(B) = 3 and α > 0, then H1(B) ↪→ x−αL6(B).

Proof. We have seen that H1(B) ↪→ H1,β(B), for all β < 1. For dim(B) = 2, if we choose 1/2 ≤ β < 1, 
we have H1,β(B) ↪→ L4(B). For dim(B) = 3, if we choose 3/4 ≤ β < 1, we have H1,β(B) ↪→ L4(B). For 
dim(B) = 2, if we choose if 2/3 ≤ β < 1, then H1,β(B) ↪→ L6(B). Finally, for dim(B) = 3 and α > 0, then 
choose 1 − α ≤ β < 1 so that H1,β(B) ↪→ x−αL6(B). �
3. Realizations of the Laplacian and bi-Laplacian

We start with some basic concepts on analytic semigroup theory.

Definition 16. Let X be a complex Banach space and A : D(A) → X be a densely defined closed operator 
in X. We say that A is a negative generator of an analytic semigroup if for some δ, C > 0 we have

{λ ∈ C : Re(λ) > −δ} ⊂ ρ(A) and
∥∥(λ−A)−1∥∥

L(X) ≤ C/|λ|, Re(λ) > −δ.

The semigroup associated to a negative generator A is denoted etA ∈ L(X), see e.g. [1, Chapter I.1.2]. 
Both semigroup and the complex powers (−A)z : D((−A)z) → X, z ∈ C, can be defined by Cauchy’s integral 
formula, see e.g. [1, Theorem III.4.6.5]. In the case of (−A)it ∈ L(X) for all t ∈ R and 

∥∥(−A)it
∥∥ ≤ Meφ|t|, 

for some M > 0 and φ ≥ 0, we say that −A has bounded imaginary powers and denote by −A ∈ BIP(φ), 
see e.g. [1, Chapter III.4.7]. Recall that if −A ∈ BIP, then [X, D(A)]θ = D((−A)θ), see e.g. [12, Theorem 
4.17.].

Next we recall some basic facts from the cone calculus, for more details we refer to [5,8,10,7,21,20,22]. 
The Laplacian Δ, as a cone differential operator, acts naturally on scales of Mellin-Sobolev spaces. Let us 
consider it as an unbounded operator in Hs,γ(B), s, γ ∈ R, with domain C∞

c (B◦). Denote by Δs,min the 
minimal extension (i.e. the closure) of Δ and by Δs,max the maximal extension, defined as usual by

D(Δs,max) =
{
u ∈ Hs,γ(B) |Δu ∈ Hs,γ(B)

}
.

An important result in the field of cone differential operators tells us that those two domains differ in 
general, unlike the case of closed manifolds. In particular, there exists an s-independent finite-dimensional 
space Emax,Δ,γ , that is called asymptotics space, such that

D(Δs,max) = D(Δs,min) ⊕ Emax,Δ,γ . (3.1)

More precisely, Emax,Δ,γ consists of linear combinations of smooth functions in B◦. Those functions 
vanish outside the collar neighborhood and, in local coordinates (x, y) ∈ [0, 1) × ∂B, can be writ-

ten as ω(x)c(y)x−ρ logk(x). The function ω is the cut-off function defined on Section 2, c ∈ C∞(∂B), 
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ρ ∈ {z ∈ C | Re(z) ∈ [n−3
2 − γ, n+1

2 − γ)} and k ∈ {0, 1}. Here, the metric h(·) determines explicitly the 
exponents ρ. As for the minimal domain, it can be proved that D(Δs,min) = Hs+2,γ+2(B), whenever

n− 3
2 − γ /∈

{n− 1
2 ±

√(n− 1
2

)2
− λj : j ∈ N

}
.

A suitable choice of the domain of the Laplacian is given below. For this, we denote by Cω the finite 
dimensional space of functions that are equal to zero outside the collar neighborhood and that close to the 
singularities are expressed by 

∑N
j=1 cjωj , where N is the number of connected components of ∂B and ωj

are the restrictions of ω to these components. Also denote by Rω the subspace of Cω such that cj ∈ R.

Theorem 17. [21, Theorem 6.7] Let

n− 3
2 < γ < min

{
− 1 +

√(n− 1
2

)2
− λ1,

n + 1
2

}
, (3.2)

where λ1 is the greatest non-zero eigenvalue of the boundary Laplacian Δh(0) on (∂B, h(0)). Then for every 
c, φ > 0, the operator Δ − c : Hs+2,γ+2(B) ⊕Cω → Hs,γ(B) is a negative generator of an analytic semigroup 
such that −Δ + c ∈ BIP(φ). The Laplacian Δ : Hs+2,γ+2(B) ⊕Cω → Hs,γ(B) will be denoted by Δs.

Similarly to the Laplacian, the bi-Laplacian has a minimal extension Δ2
s,min, which is the closure of 

Δ2 : C∞
c (B◦) → Hs,γ(B) satisfying Hs+4,γ+4(B) ↪→ D(Δ2

s,min) ↪→ ∩ε>0Hs+4,γ+4−ε(B), and a maximal 
extension Δ2

s,max, whose domain is {u ∈ Hs,γ(B) : Δ2u ∈ Hs,γ(B)}. They are related by D(Δ2
s,max) =

D(Δ2
s,min) ⊕ Emax,Δ2,γ , where Emax,Δ2,γ is a finite dimensional space consisting of linear combinations of 

functions of the form ω(x)c(y)x−ρ logk(x), with k ∈ {0, 1, 2, 3} and ρ ∈ {z ∈ C : Re(z) ∈ [n−7
2 −γ, n+1

2 −γ)}.
We will choose a bi-Laplacian domain D(Δ2

s) satisfying D(Δ2
s,min) ↪→ D(Δ2

s) ↪→ D(Δ2
s,max). The definition 

and the properties of the operator Δ2
s : D(Δ2

s) → Hs,γ(B) are explained in the following corollary of 
Theorem 17.

Corollary 18 (bi-Laplacian). Consider the bi-Laplacian D(Δ2
s) = {u ∈ D(Δs) : Δsu ∈ D(Δs)}, where 

Δs is as in Theorem 17. Then, there exists an s-independent finite dimensional space EΔ2,γ contained in 
H∞,γ+2+α0(B) ∩ Emax,Δ2,γ , for some α0 > 0, such that (1.6) holds. In particular, D(Δ2

s) ↪→ Hs+4.γ+4−ε ⊕
Cω ⊕EΔ2,γ , for all ε > 0. The space EΔ2,γ consists of C∞(B◦)-functions, which in local coordinates (x, y) ∈
[0, 1) ×∂B, are of the form ω(x)c(y)xρ lnk(x), where c ∈ C∞(∂B), ρ ∈ {z ∈ C : Re(z) ∈ [n−7

2 −γ, n−3
2 −γ)}

and k ∈ {0, 1, 2, 3}; for more details we refer to [11, Section 3.2].
Moreover, for every φ > 0, the operator As := −(1 −Δs)2 : D(Δ2

s) → Hs,γ(B) is a negative generator of 
an analytic semigroup such that (1 − Δs)2 ∈ BIP(φ), see [11, Proposition 3.6].

For α ∈ [0, 2], we define Xs
α := D((−As)α/2) = [Hs,γ(B), D(Δ2

s)]α/2. Notice that Xs
2 = D(Δ2

s) and 
Xs

1 = D(Δs). We also denote X∞
1 := ∩s≥0X

s
1 and X∞

2 := ∩s≥0X
s
2 . We close this section with some facts 

about the complex interpolation of the domain of the Laplacian and bi-Laplacian.

Proposition 19. Let α ∈ (0, 1) and assume that γ satisfies (3.2).
(i) If α /∈ {1−γ

2 ± 1
2

√
(n−1

2 )2 − λj : j ∈ N}, then [Hs,γ(B), Xs
1 ]α = Hs+2α,γ+2α(B) ⊕Cω.

(ii) We always have Hs+4α,γ+4α(B) ⊕Cω ⊕ EΔ2,γ ⊂ [Hs,γ(B), Xs
2 ]α.

(iii) If 2α /∈ {1−γ
2 ± 1

2

√
(n−1

2 )2 − λj : j ∈ N}, then
[Hs,γ(B), Xs
2 ]α ↪→ ∩ε>0Hs+4α,γ+4α−ε ⊕Cω ⊕ EΔ2,γ+4(α−1),
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where EΔ2,γ+4(α−1) ⊂ H∞,γ+2(B) is a subspace of the asymptotic space Emax,Δ2,γ+4(α−1). We note that the 
sums above are not necessarily direct.

Proof. (i) It follows from [11, Lemma 4.5 (i)].
(ii) It follows from the inclusions Cω ⊕ EΔ2,γ ↪→ D(Δ2

s) = Xs
2 and

Hs+4α,γ+4α(B) = [Hs,γ(B),Hs+4,γ+4(B)]α ↪→ [Hs,γ(B), Xs
2 ]α,

where in the first equality we have used [11, Lemma 3.3 (iii)].
(iii) Case α ∈ (0, 1/2]. We have

[Hs,γ(B), Xs
2 ]α = D((−As)α) = D((1 − Δs)2α) = [Hs,γ(B),D(Δs)]2α = Hs+4α,γ+4α(B) ⊕Cω.

In the first and third equalities we have used the BIP property of 1 −Δs and −As. In the last equality, we 
have used (i).
Case α ∈ (1/2, 1). We first note that

Δ2[Hs,γ(B),D(Δ2
s)]α ↪→ [Hs−4,γ−4(B),Hs,γ(B)]α = Hs+4(α−1),γ+4(α−1)(B),

where [11, Lemma 3.3 (iii)] was used in the last equality. Hence, we have

[Hs,γ(B), Xs
2 ]α ↪→ D(Δ2

s+4(α−1),max) ⊂ Hs+4α,γ+4α−ε(B) ⊕ Emax,Δ2,γ+4(α−1). (3.3)

Moreover,

[Hs,γ(B), Xs
2 ]α = D((1 − Δs)2α) ↪→ D(Δs) = Hs+2,γ+2(B) ⊕Cω, (3.4)

where in the first equality we have used the BIP property of −As. Now let u ∈ [Hs,γ(B), Xs
2 ]α. By (3.3), 

we have that u = v + w, where v ∈ Hs+4α,γ+4α−ε(B) and w ∈ Emax,Δ2,γ+4(α−1). Hence, by (3.4) and for 
sufficiently small ε > 0, we have

w = u− v ∈ Hs+2,γ+2(B) ⊕Cω + Hs+4α,γ+4α−ε(B) = Hs+2,γ+2(B) ⊕Cω.

Therefore

w ∈
(
Hs+2,γ+2(B) ⊕Cω

)
∩ Emax,Δ2,γ+4(α−1) ⊂ Cω ⊕

(
Emax,Δ2,γ+4(α−1) ∩Hs+2,γ+2(B)

)
,

which concludes the proof. �
4. Existence and regularity of the global attractors

For the rest of the paper γ is fixed and satisfies (1.2). The constants C > 0 may change along the 
computations.

In this section we prove part (i) of Theorem 1. In the sequel all the spaces we use are the real parts of 
the ones defined previously. Recall that a global attractor for a semiflow T : [0, ∞) ×X → X defined on a 
Hilbert X is a compact set A ⊂ X such that T (t)A := {T (t)x : x ∈ A} = A, for all t ≥ 0, which, moreover, 
attracts all bounded sets B ⊂ X in the following sense:
lim
t→∞

(sup
b∈B

inf
a∈A

‖T (t)b− a‖X) = 0.
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If it exists, then it is unique.
As mentioned in the introduction, for any s ≥ 0, we can define a semiflow T in Xs

1 . It is convenient, 
however, to restrict T to a smaller space. For this reason, we first prove the following proposition.

Proposition 20. Let u0 ∈ Xs
1 , then the function (u)B : (0, ∞) → R, defined by

(u)B(t) := 1
|B|

ˆ

B

T (t)u0dμg, t > 0,

is constant. Here |B| =
´
B dμg.

Proof. The proof is similar to [26, Equation (4.61)], where we have to take into account (1.3) and Theo-
rem 11. �

Consider the Hilbert space

Xs
1,0 = {u ∈ Hs+2,γ+2(B) ⊕Rω : (u)B = 0}.

By Proposition 20, T (t)Xs
1,0 ⊂ Xs

1,0. Therefore, T restricts to a semiflow on Xs
1,0. Concerning the existence 

of global attractors, we recall the following result.
For two Hilbert spaces X and Y such that Y ↪→ X and a semiflow T : [0, ∞) ×X → X, we define the 

ω-limit set ωZ(B) of B ⊂ X, where Z = X or Y , by

ωZ(B) =
{
z ∈ Z : ∃ tn → ∞ and {xn}n∈N ⊂ B such that lim

n→∞
‖T (tn)xn − z‖Z = 0

}
. (4.1)

If Z = Y , then the above definition requires that T (tn)xn ∈ Y for all n ∈ N. In order to show existence and 
regularity of global attractors, we prove the following variation of [15, Theorem 10.5].

Theorem 21. Let Y ↪→ X be Hilbert spaces, T : [0, ∞) × X → X be a semiflow and K ⊂ Y be a com-
pact set in Y . Assume that for all bounded sets B ⊂ X there exists a constant tB > 0 such that, if 
t > tB, then T (t)B ⊂ K. Under these conditions there exists a (unique) global connected attractor A for 
the semiflows T . Moreover, A = ωX(K) = ωY (K) is contained in Y and attracts bounded sets of X in 
Y in the following sense: for any bounded set B ⊂ X, the set T (t)B is bounded in Y for large t and 
limt→∞ supb∈B infa∈A ‖T (t)b− a‖Y = 0.

Proof. First we show that ωX(K) = ωY (K). Since Y ↪→ X, the definition given by (4.1) implies that 
ωY (K) ⊂ ωX(K). On the other hand, if x ∈ ωX(K) and limn→∞ ‖T (tn)xn − x‖X = 0 for some tn → ∞
and {xn}n∈N ⊂ K, then T (tn)xn ∈ K for all tn > tK. By the compactness of K in Y , some subsequence 
{T (tnj

)xnj
}j∈N converges in Y , which implies that x ∈ ωY (K).

Let A := ωX(K) = ωY (K). Using the notation CY for the closure of C in Y , (4.1) says that

ωY (K) = ∩t>0∪s>t(T (s)K ∩ Y )
Y

= ∩t>tK∪s>tT (s)KY
,

which implies that A is a non-empty compact set of Y - and also of X - since it is the intersection of 
decreasing non-empty compact sets. The invariance of A follows easily from (4.1), see also [4, Proposition 
1.1.1].

Finally, the fact that A attracts bounded sets of X in Y - and in X as well - follows from the arguments 
of [15, Theorem 10.5], which we provide for completeness. Let us suppose that
lim
t→∞

sup
b∈B

inf
a∈A

‖T (t)b− a‖Y = 0
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does not hold for some bounded set B ⊂ X. Then, we can find sequences tn → ∞, {bn}n∈N ⊂ B and ε0 > 0
such that infa∈A ‖T (tn)bn − a‖Y > ε0 for all n. But for tn > tB and b ∈ B, then T (tn)b ∈ K which is a 
compact set in Y . Hence a subsequence {T (tnj

)bnj
}j∈N converges in Y . As T (tnj

)bnj
= T (tnj

− tn)T (tn)bnj

and T (tn)bnj
∈ K, we conclude that the subsequence {T (tnj

)bnj
} converges to an element of ωY (K) = A, 

which gives us a contradiction. Connectness follows exactly as in [15]. �
For our purposes we use the following consequence.

Corollary 22. Let X be a Hilbert space, A : D(A) ⊂ X → X be a negative generator of an analytic semigroup 
with compact resolvent and F : Xα = D((−A)α) → X, 0 ≤ α < 1, be a locally Lipschitz function. Consider 
the following problem

u′(t) = Au(t) + F (u(t)),

u(0) = u0,

where u0 ∈ Xα. Assume that
(i) There is a closed subspace X̃α ⊂ Xα such that for all u0 ∈ X̃α, a global solution u ∈ C1((0, ∞), X) ∩
C((0, ∞), D(A)) ∩ C([0, ∞), X̃α) is defined.
(ii) There are Hilbert spaces Y and W such that Y c

↪→ W ↪→ Xα and a constant CY > 0 with the following 
property: for every R > 0, there exists tR > 0 such that if u0 ∈ X̃α and ‖u0‖Xα

≤ R, then u(t, u0) ∈ Y and 
‖u(t, u0)‖Y ≤ CY , for all t > tR.

Then the semiflow T : [0, ∞) × X̃α → X̃α defined by T (t)u0 = u(t) has a global connected attractor A
that is contained in W and attracts bounded sets of X̃α in W .

Proof. We have to show that the conditions of Theorem 21 are satisfied. As Y c
↪→ W , the bounded set 

K0 := {x ∈ Y : ‖x‖Y ≤ CY } is a relative compact subset of W . We define K to be the closure of K0 in 
W . Let B ⊂ X̃α be a bounded set, i.e. there exists R > 0 such that ‖u0‖Xα

≤ R, for all u0 ∈ B. By our 
assumptions, there exists tR > 0 such that if t ≥ tR, then ‖T (t)u0‖Y ≤ CY . Therefore T (t)B ⊂ K0 ⊂ K, if 
t ≥ tR. �

The above corollary will now be applied to the proof of the following theorem, from which part (i) of 
Theorem 1 will follow.

Theorem 23. Let 0 < ε < (n + 1)/16 − γ/8. Then, for each s ≥ 0 there is a constant κs,ε > 0 with the 
following property: for every R > 0, there exists tR,s,ε > 0 such that if u0 ∈ X0

1,0 and ‖u0‖H−1
0 (B) ≤ R, then 

‖u(t, u0)‖D((−As)1+ε) ≤ κs,ε, for all t > tR,s,ε.

The theorem will be proved in several steps. The first one follows directly from Temam [26]. We just 
highlight the necessary results for repeating the arguments.

Proposition 24. There is a constant κ with the following property: for every R > 0, there is a constant 
tR > 0 such that if u0 ∈ X0

1,0 and ‖u0‖H−1
0 (B) ≤ R, then ‖u(t, u0)‖H1

0 (B) ≤ κ, for all t > tR.

Proof. The proof is obtained by following the arguments in [26, Section 4.2.2]. First we prove the existence 
of κ > 0 with the following property: for every R > 0, there is a constant tR > 0 such that if u0 ∈ X0

1,0
and ‖u0‖H−1

0 (B) ≤ R, then ‖u(t, u0)‖H−1
0 (B) ≤ κ, for all t > tR, see deductions of [26, Equations (4.89)-

(4.90)]. For our situation, we only have to take into account the Sobolev immersion H1(B) ↪→ L4(B) from 
Corollary 15 and Theorem 11, which allow the definition of the strict Lyapunov function [9, Definition 8.4.5]

L : H1(B) → R by
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L(v) = 1
2

ˆ

B

〈∇v,∇v〉 dμg +
ˆ

B

(
1
4v

4 − 1
2v

2
)
dμg, (4.2)

see also [11, Section 4.2]. We also use Proposition 10 to identify elements of H0,β(B), β > −1, with elements 
in H−1(B) for the computations. The rest of proof follows the deduction of [26, Equation (4.95)]. �

In order to proceed to the proof of Theorem 23, we write (1.1) as

u′(t) = Asu + F (u), (4.3)

where As : Xs
2 → Xs

0 is given by As = −(1 − Δs)2 and F : Xs
1 → Xs

0 is given by F (u) = Δs(u3 − 3u) + u.
It is well known, see [14, Theorem 6.13], that for some δ > 0 depending on As, the fractional powers 

satisfy ∥∥(−As)αetAs
∥∥
B(Hs,γ(B)) ≤ cα,st

−αe−δt, t > 0, (4.4)

where cα,s > 0 only depends on α, s ≥ 0.

Lemma 25. Let 0 ≤ σ ≤ α ≤ β < 1, 0 < t̃ < t, δ > 0 be as in (4.4) and u ∈ C([t̃, t], D(As)). Then

‖(−As)αu(t)‖Hs,γ(B) ≤ Cσe
−δ(t−t̃)(t− t̃)−σ

∥∥(−As)α−σu(t̃)
∥∥
Hs,γ(B) + Cα,β

tˆ

t̃

e−δ(t−s)(t− s)−β

×
(∥∥∥(−As)α−β+ 1

2u3(s)
∥∥∥
Hs,γ(B)

+
∥∥∥(−As)α−β+ 1

2u(s)
∥∥∥
Hs,γ(B)

+
∥∥(−As)α−βu(s)

∥∥
Hs,γ(B)

)
ds, (4.5)

for some constants Cσ, Cα,β only depending on α, β, σ and s.

Proof. We apply (−As)α to the variation of constants formula

u(t) = e(t−t̃)Asu(t̃) +
tˆ

t̃

e(t−s)AsF (u(s))ds

to obtain

‖(−As)αu(t)‖Hs,γ(B)

≤
∥∥∥(−As)σe−As(t−t̃)

∥∥∥
B(Hs,γ(B))

∥∥(−As)α−σu(t̃)
∥∥
Hs,γ(B) +

tˆ

t̃

∥∥∥(−As)βeAs(t−s)
∥∥∥
B(Hs,γ(B))

×
∥∥(−As)α−β

(
Δ(u3(s) − 3u(s)) + u(s)

)∥∥
Hs,γ(B) ds

(1)
≤ Cσe

−δ(t−t̃)(t− t̃)−σ
∥∥(−As)α−σu(t̃)

∥∥
Hs,γ(B) + Cα,β

tˆ

t̃

e−δ(t−s)(t− s)−β

×
(∥∥∥(−As)α−β+ 1

2u3(s)
∥∥∥
Hs,γ(B)

+
∥∥∥(−As)α−β+ 1

2u(s)
∥∥∥
Hs,γ(B)

+
∥∥(−As)α−βu(s)

∥∥
Hs,γ(B)

)
ds.

In (1) we have used that

∥
α−β

∥ ∥∥ −1 α−β+ 1
∥∥ ∥∥ α−β+ 1

∥∥
∥(−As) Δv∥Hs,γ(B) = ∥(1 − Δs) Δs(−As) 2 v∥
Hs,γ(B)

≤ cs ∥(−As) 2 v∥
Hs,γ(B)

. �
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Proposition 26. There is a constant κ1 > 0 with the following property: for every R > 0, there is a constant 
tR,1 > 0 such that if u0 ∈ X0

1,0 and ‖u0‖H−1
0 (B) ≤ R, then ‖u(t, u0)‖X0

1
≤ κ1, for all t > tR,1.

Proof. Step 1. Let θ ∈ [1/2, 1). There exists κθ > 0 with the following property: for every R > 0, there is a 
constant tR,θ > 0 such that if u0 ∈ X0

1,0 and ‖u0‖H−1
0 (B) ≤ R, then ‖u(t, u0)‖X0

θ
≤ κθ, for all t > tR,θ.

Let u0 ∈ X0
1,0 be such that ‖u0‖H−1

0 (B) ≤ R, u(t) = T (t)u0 and tR, κ be as Proposition 24. If x is as in 
Remark 3, then we have

∥∥u(s)3
∥∥
H0,γ(B) ≤ C

⎛
⎝ˆ

B

∣∣∣x−γ/3u(s)
∣∣∣6 dμg

⎞
⎠

1/2

= C ‖u‖3
xγ/3L6(B) ≤ C ‖u‖3

H1(B) , (4.6)

where we have used Corollary 15 and (1.2). Also, due to Proposition 6 and Proposition 19 (i), for suitable 
0 ≤ � < 1, we have γ + � < 1 and

H1(B) ↪→ H�,γ+�(B) = H�,γ+�(B) ⊕Cω = X0
�/2.

Hence, using (4.5) with t̃ = tR, α = θ
2 , σ = θ

2 − 1
4 + ε for some ε > 0, β = θ

2 + 1
2 , (4.6) and Proposition 24, 

we obtain for t > tR∥∥∥(−A0)
θ
2 u(t)

∥∥∥
H0,γ(B)

≤ Ce−δ(t−t̃)(t− t̃)−( θ
2− 1

4+ε)
∥∥∥(−A0)

1
4−εu(t̃)

∥∥∥
H0,γ(B)

+C

tˆ

t̃

e−δ(t−s)(t− s)−( θ
2+ 1

2 )
(∥∥u3(s)

∥∥
H0,γ(B) + ‖u(s)‖H0,γ(B) +

∥∥∥(−A0)−
1
2u(s)

∥∥∥
H0,γ(B)

)
ds

≤ Ce−δ(t−t̃)(t− t̃)−( θ
2− 1

4+ε) ∥∥u(t̃)
∥∥
H1(B)

+C

tˆ

t̃

e−δ(t−s)(t− s)−( θ
2+ 1

2 )
(
‖u(s)‖3

H1(B) + ‖u(s)‖H1(B)

)
ds

≤ Ce−δ(t−tR)(t− tR)−( θ
2− 1

4+ε) + C

∞̂

0

e−δss−
θ
2− 1

2 ds,

where the constants C in the last line depend on κ, since ‖u(t)‖H1(B) ≤ κ for t ≥ tR.
Let us define κθ := C + C

´∞
0 e−δss−θ/2−1/2ds and choose tR,θ > tR such that

e−δ(tR,θ−tR)(tR,θ − tR)−( θ
2− 1

4+ε) < 1.

Then ‖(−A0)θ/2u(t)‖H0,γ(B) ≤ κθ, ∀t > tR,θ.
Step 2. Choose in (4.5) α = 1

2 , σ = 1
4 and β, such that 1

2 < β < 1 + γ
4 − n+1

8 . This is possible as n ∈ {1, 2}
and n−3

2 < γ ≤ 0. Hence n+1
2 − γ < 2, which implies that γ4 − n+1

8 > −1
2 . With this choice of β, we also 

have 1
2 > 1 − β > n+1

8 − γ
4 . Therefore, with a suitable choice of β, we have, according to Proposition 19 (i), 

that X0
2(1−β) = H4(1−β),4(1−β)+γ(B) ⊕Cω is an algebra as 4(1 −β) +γ > n+1

2 and 4(1 −β) > n+1
2 , as γ ≤ 0.

Choosing t̃ = max{tR,2(1−β), tR,1/2} and using (4.5) with t > t̃, α = 1/2, σ = 1/4 and β as above, we 
have

∥∥∥(−A0)
1
2u(t)

∥∥∥ ≤ Ce−δ(t−t̃)(t− t̃)− 1
4

∥∥∥(−A0)
1
4u(t̃)

∥∥∥ + C

tˆ
e−δ(t−s)(t− s)−β
H0,γ(B) H0,γ(B)
t̃
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×
(∥∥(−A0)1−βu3(s)

∥∥
H0,γ(B) +

∥∥(−A0)1−βu(s)
∥∥
H0,γ(B) +

∥∥∥(−A0)
1
2−βu(s)

∥∥∥
H0,γ(B)

)
ds

≤ Ce−δ(t−t̃)(t− t̃)− 1
4
∥∥u(t̃)

∥∥
X0

1/2
+ C

tˆ

t̃

e−δ(t−s)(t− s)−β

×(‖u(s)‖3
X0

2(1−β)
+ ‖u(s)‖X0

2(1−β)
)ds

≤ Ce−δ(t−t̃)(t− t̃)− 1
4κ1/2 + C

∞̂

0

e−δss−βds
(
κ3

2(1−β) + κ2(1−β)

)
.

Let us define

κ1 := Cκ1/2 + C

⎛
⎝ ∞̂

0

e−δss−βds

⎞
⎠(

κ3
2(1−β) + κ2(1−β)

)

and we choose tR,1 such that tR,1 > t̃ and Cκ1/2e
−δ(t−t̃)(t − t̃)− 1

4 < 1, for t > tR,1. Therefore, we conclude 
that for t > tR,1, we have ‖(−A0)

1
2u(t)‖H0,γ(B) ≤ κ1. �

Proposition 27. For every s ≥ 0 and θ ∈ [1/2, 1) there is a constant κs,θ > 0 with the following prop-
erty: for every R > 0 there is a constant tR,s,θ > 0 such that, if u0 ∈ X0

1,0 and ‖u0‖H−1
0 (B) ≤ R, then 

‖u(t, u0)‖D((−As)θ) ≤ κs,θ, for all t > tR,s,θ.

Proof. The result is a direct consequence of the following two claims.
First claim: Suppose that for some s ≥ 0 there is a constant κs > 0 with the following property: for every 
R > 0 there exists t̃R,s > 0 such that, if u0 ∈ X0

1,0 and ‖u0‖H−1
0 (B) ≤ R, then ‖u(t, u0)‖Hs+2,γ+2(B)⊕Cω

≤ κs, 
for all t > t̃R,s. If such a constant κs > 0 exists, then for each θ ∈ [1/2, 1) there is also a constant 
κs,θ > 0 with the following property: for every R > 0 there exists tR,s,θ > 0 such that, if u0 ∈ X0

1,0 and 
‖u0‖H−1

0 (B) ≤ R, then ‖u(t, u0)‖D((−As)θ) ≤ κs,θ, for all t > tR,s,θ.
Proof of the first claim: We use (4.5) with α = β = σ = θ ∈ [1/2, 1), t̃ = t̃R,s and t > t̃, to obtain

∥∥(−As)θu(t)
∥∥
Hs,γ(B) ≤ Cσe

−δ(t−t̃)(t− t̃)−θ
∥∥u(t̃)

∥∥
Hs,γ(B) + Cα,β

tˆ

t̃

e−δ(t−s)(t− s)−θ

×
(∥∥∥(−As)

1
2u3(s)

∥∥∥
Hs,γ(B)

+
∥∥∥(−As)

1
2u(s)

∥∥∥
Hs,γ(B)

+ ‖u(s)‖Hs,γ(B)

)
ds

≤ Cσe
−δ(t−t̃)(t− t̃)−θ

∥∥u(t̃)
∥∥
Hs,γ(B) + Cα,β

tˆ

t̃

e−δ(t−s)(t− s)−θ

×
(
‖u(s)‖3

Hs+2,γ+2(B)⊕Cω
+ ‖u(s)‖Hs+2,γ+2(B)⊕Cω

+ ‖u(s)‖Hs,γ(B)

)
ds

≤ Cσ(t− t̃R,s)−θe−δ(t−t̃R,s)κs + Cα,β

(
κ3
s + 2κs

) ∞̂

0

s−θe−δsds.

Let us choose

κs,θ := Cσκs + Cα,β

(
κ3
s + 2κs

) ∞̂

s−θe−δsds
0
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and tR,s,θ > t̃R,s such that (t − t̃R,s)−θe−δ(t−t̃R,s) ≤ 1 when t ≥ tR,s,θ. Then ‖u(t)‖D((−As)θ) ≤ κs,θ for all 
t > tR,s,θ.
Second claim: For every s ≥ 0 there is a constant κs > 0 with the following property: for every R > 0, 
there exists t̃R,s > 0 such that, if u0 ∈ X0

1,0 and ‖u0‖H−1
0 (B) ≤ R, then ‖u(t, u0)‖Hs+2,γ+2(B)⊕Cω

≤ κs, for 
all t > t̃R,s.
Proof of the second claim: We have seen that this is true for s = 0 by Proposition 26. We now proceed 
by induction as follows: we prove that, if the property holds for some s0 ≥ 0, then it also holds for all 
s ∈ [s0, s0 + 1]. Indeed, let us suppose that it holds for some s0 ≥ 0. Taking θ > 3/4, σ ∈ [0, 1], s = s0 + σ

and a suitable small ε > 0, Proposition 19 (iii) with α = 3/4 + ε implies

‖u(t, u0)‖Hs0+σ,γ+2(B)⊕Cω
≤ ‖u(t, u0)‖Hs0+3,γ+2(B)⊕Cω

≤ ‖u(t, u0)‖Hs0+3,γ+3(B)⊕Cω⊕EΔ2,γ−1+4ε

≤ ‖u(t, u0)‖[Hs0,γ(B),Xs0
2 ]3/4+ε

= ‖u(t, u0)‖D((−As0 )3/4+ε) ≤ ‖u(t, u0)‖D((−As0 )θ) .

By the induction hypothesis and the first claim, the last term is smaller or equal to κs0,θ for all t > tR,s0,θ. 
Hence the result follows for t̃R,s0+σ := tR,s0,θ, for all σ ∈ (0, 1]. �
Proof. (of Theorem 23) First we note that, choosing ε > 0 properly, we have

D((−As)2ε) = [Hs,γ(B),D(−As)]2ε = [Hs,γ(B),D((−As)1/2)]4ε

= [Hs,γ(B),Hs+2,γ+2(B) ⊕Cω]4ε
(1)= Hs+8ε,γ+8ε(B) ⊕Cω = Hs+8ε,γ+8ε(B),

(4.7)

where we have used Proposition 19 (i) in (1) and that γ + 8ε < (n + 1)/2 in the last equality. Moreover for 
suitable 0 < ε̃ < 1/2 − 2ε we have

D((−As)1/2+2ε+ε̃) = [Hs,γ(B),D(As)]1/2+2ε+ε̃

↪→ Hs+2+8ε,γ+2+8ε(B) ⊕Cω ⊕ EΔ2,γ−2+8ε+4ε̃, (4.8)

where we have used Proposition 19 (iii).
Let tR,s,θ > 0, θ = 1/2 +2ε + ε̃ be as in Proposition 27, and u0 ∈ X0

1,0. Then, applying formally (−As)1+ε

to the variation of constants formula give us

(−As)1+εu(t) = (−As)1+εe(t−tR,s,θ)Asu(tR,s,θ) +
tˆ

tR,s,θ

(−As)1−εe(t−s)As(−As)2εF (u(s))ds. (4.9)

Notice however that we do not know that u(t) ∈ D((−As)1+ε) a priori. This will follow by showing that 
the Hs,γ(B) norm of the integrand of (4.9) is integrable, see [2, Proposition 1.1.7], which is a consequence 
of the following computations, similar to Lemma 25.

‖u(t)‖D((−As)1+ε) =
∥∥(−As)1+εu(t)

∥∥
Hs,γ(B)

≤ C
∥∥∥(−As)1+εe(t−tR,s,θ)As

∥∥∥
B(Hs,γ(B))

‖u(tR,s,θ)‖Hs,γ(B)

+C

tˆ

tR,s,θ

∥∥∥(−As)1−εe(t−s)As

∥∥∥
B(Hs,γ(B))

∥∥(−As)2εF (u(s))
∥∥
Hs,γ(B) ds. (4.10)
Notice that
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∥∥(−As)2εF (u(s))
∥∥
Hs,γ(B)

(1)=
∥∥Δs(u3(s) − 3u(s)) + u(s)

∥∥
Hs+8ε,γ+8ε(B)

(2)
≤ C

∥∥u3(s) − 3u(s)
∥∥
Hs+8ε+2,γ+8ε+2(B)⊕Cω

+ C ‖u(s)‖Hs+8ε,γ+8ε(B)

≤ C(‖u(s)‖3
Hs+8ε+2,γ+8ε+2(B)⊕Cω⊕EΔ2,γ−2+8ε+4ε̃

+ ‖u(s)‖Hs+8ε,γ+8ε(B))

(3)
≤ C(‖u(s)‖3

D((−As)1/2+2ε+ε̃) + ‖u(s)‖D((−As)1/2+2ε+ε̃))

(4)
≤ C(κ3

s,1/2+2ε+ε̃ + κs,1/2+2ε+ε̃), (4.11)

where we have used (4.7) in (1), the continuity of Δ : Hs+8ε+2,γ+8ε+2(B) ⊕ Cω → Hs+8ε,γ+8ε(B) in (2), 
(4.8) in (3) and Proposition 27 in (4). By (4.10) and (4.11), we find

‖u(t)‖D((−As)1+ε) ≤ C(t− tR,s,θ)−(1+ε)e−δ(t−tR,s,θ)κs,θ + C
(
κ3
s,θ + κs,θ

) ∞̂

0

s−(1−ε)e−δsds.

Let us choose

κs,ε := Cκs,θ + C
(
κ3
s,θ + κs,θ

) ∞̂

0

s−(1−ε)e−δsds

and tR,s,ε > tR,s,θ such that (t − tR,s,θ)−(1+ε)e−δ(t−tR,s,θ) ≤ 1 for t ≥ tR,s,ε. Then ‖u(t)‖D((−As)1+ε) ≤ κs,ε

for all t > tR,s,ε. �
We are now finally in position to prove part (i) of Theorem 1.

Proof. (of part (i) of Theorem 1). We check the conditions of Corollary 22 for (4.3). Here we use α = 1/2, so 
that Xα = Xs

1 , and X̃α = Xs
1,0. For any r ≥ s, we choose W = D(Δ2

r) and Y = D((−Ar)1+ε), where ε is as 
in Theorem 23. Condition (i) follows from (1.3)-(1.4) and Proposition 20. For condition (ii), we first note that 
D((−Ar)1+ε) c

↪→ D(−Ar) = D(Δ2
r) ↪→ Hs+2,γ+2(B) ⊕ Cω. Moreover, if u0 ∈ Xs

1,0 and ‖u0‖Xs
1
≤ R, then, 

as Xs
1 ↪→ H−1(B) and 

´
B u0dμg = 0, we conclude that ‖u0‖H−1

0 (B) ≤ R̃. Theorem 23 gives the necessary 
estimate of the second condition.

Corollary 22 implies the existence of a connected global attractor As for the semiflow T : [0, ∞) ×Xs
1,0 →

Xs
1,0. By uniqueness of the global attractor, As does not depend on r. Hence As ⊂ D(Δ2

r) for all r > 0 and 
it attracts bounded sets of Xs

1,0 in D(Δ2
r).

For the s-independence, let s1 > s2 ≥ 0. As Xs1
1 ↪→ Xs2

1 is continuous and As1 is compact in Xs1
1,0, we 

conclude that As1 is also compact in Xs2
1,0. Consider now a bounded set B ⊂ Xs2

1,0. Due to Theorem 23, 
there exists t̃ > 0 such that the set T (t̃)B is a bounded set of Xs1

1,0. Therefore, for t ≥ t̃, we have

sup
b∈B

inf
a∈As1

‖T (t)b− a‖Xs2
1

≤ sup
b∈B

inf
a∈As1

‖T (t)b− a‖Xs1
1

= sup
b∈B

inf
a∈As1

∥∥T (t− t̃)T (t̃)b− a
∥∥
X

s1
1

t→∞−→ 0.

Finally, as T (t)As1 = As1 , we conclude that As1 is a global attractor for the semiflow T in Xs2
1,0. By 
uniqueness of global attractors As1 = As2 . �
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5. Convergence to the equilibrium

In this section, we prove part (ii) of Theorem 1. We first state an abstract result from [9]. Let V and H be 
real Hilbert spaces such that V is densely and continuously embedded to H. We recall that an element x ∈ H

defines a continuous linear functional in V by y ∈ V �→ (y, x)H ∈ R. Under this, we have V
iV,H

↪→ H
iH,V ∗
↪→ V ∗, 

where iV,H and iH,V ∗ are continuous embeddings with dense image.

Theorem 28. [9, Section 11.2] Let E : V → R be a real analytic function such that E(0) = 0 ∈ R, 
DE(0) = 0 ∈ V ∗ and A := D2E(0) : V → V ∗ is a Fredholm operator, where DE : V → V ∗ and 
D2E : V → B(V, V ∗) are the first and second Fréchet derivatives. Then there exist θ ∈ (0, 1/2], σ > 0 and 
c > 0 such that

|E(v)|1−θ ≤ c ‖DE(v)‖V ∗ for all v ∈ V satisfying ‖v‖V < σ.

The above inequality is called the Lojasiewicz-Simon inequality at 0. In our application, the function E
of Theorem 28 will be related to the Lyapunov (energy) functional defined for the Cahn-Hilliard equation. 
In this section, we always assume that dim(B) ∈ {2, 3} and work with the subspaces of real functions. In 
order to apply the Theorem 28, we need the following technical lemma.

Lemma 29. If u ∈ H1(B), then the linear operator Tu : H1(B) → H−1(B) defined by

〈Tu(v), h〉H−1(B)×H1(B) =
ˆ

B

u2vhdμg

is continuous and compact.

Proof. Let β > 0 and T̃u : H1(B) → H0,−β(B) be defined by T̃u(v) = u2v. This function is continuous. In 
fact,

ˆ

B

x2β ∣∣u2v
∣∣2 dμg =

ˆ

B

xβu4xβv2dμg

(1)
≤ ‖x β

4 u‖4
L6(B)‖x

β
2 v‖2

L6(B)
(2)
≤ C ‖u‖4

H1(B) ‖v‖
2
H1(B) .

In (1) we have used Hölder inequality and in (2) Corollary 15. Therefore we have ‖T̃u(v)‖H0,−β(B) ≤
C ‖u‖2

H1(B) ‖v‖H1(B).
Let us fix 0 < β < α < 1. We observe that H1(B) ↪→ H1,α(B) c

↪→ H0,β(B) ↪→ H0,0(B). Therefore 
H0,β(B)∗ c

↪→ H−1(B) is also compact. Denote by iA,B : A → B the inclusion map A ↪→ B and by I :
H0,−β(B) → H0,β(B)∗ the usual identification induced by the inner product in H0,0(B). The following map

iH0,β(B)∗,H1(B)∗ ◦ I ◦ T̃u : H1(B) → H0,−β(B) → H0,β(B)∗ → H−1(B)

is continuous and compact, as iH0,β(B)∗,H−1(B) is a compact operator. The result follows now by the equality 

Tu = iH0,β(B)∗,H−1(B) ◦ I ◦ T̃u. �
As H1

0 (B) ↪→ L4(B), we can define the Lyapunov function L : H1
0 (B) → R by (4.2). It is a real analytic 

function, as it is the composition of linear and multilinear functions. The following theorem is our main 

result of this section. Given u0 ∈ X0

1,0, we denote by ω(u0) the ω-limit set ωX0
1,0

({u0}).
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Theorem 30. Let u0 ∈ X0
1,0. If ϕ ∈ ω(u0), then there exist constants c, σ > 0 and θ ∈ (0, 1/2] such that the 

following inequality holds:

|L(v) − L(ϕ)|1−θ ≤ c ‖DL(v)‖H−1
0 (B) ,

whenever ‖v − ϕ‖H1
0 (B) < σ.

Proof. The argument is standard and can be found e.g. in [3] and [19]. We only stress here the necessary 
changes for the conical singularities situation.

We check the assumptions of Theorem 28. For this, we choose V = H1
0 (B), V ∗ = H−1

0 (B) and H ={
u ∈ H0,0(B);

´
B udμg = 0

}
, and define the function E : H1

0 (B) → R by E(v) = L(v +ϕ) −L(ϕ). It is clear 
that E(0) = 0. For the derivatives, for v, h ∈ H1

0 (B) we have that

DL(v) = −Δv + v3 − v −
 

B

v3dμg ∈ H−1
0 (B),

D2L(v)h = −Δh + (3v2 − 1)h− 3
 

B

v2hdμg ∈ H−1
0 (B).

The proof of the above expressions uses Theorem 11, the Mellin-Sobolev embeddings from Corollary 15 and 
the identification of Proposition 10.

In order to prove that DE(0) = 0 ∈ V ∗, we note that DE(v) = DL(v + ϕ). Therefore

DE(0) = −Δϕ + ϕ3 − ϕ− (ϕ3)B.

Since ϕ ∈ ω(u), we know that ϕ ∈ H1
0 (B) is an equilibrium point [9, Theorem 8.4.6]. Hence −Δϕ + ϕ3 − ϕ

is constant. In fact, as ϕ ∈ D(Δ2
0) and ∂ϕ∂t = 0, Theorem 11 with u = v = Δϕ − ϕ3 + ϕ and (1.1) shows 

that ∇(Δϕ − ϕ3 + ϕ) = 0. This constant must be equal to (ϕ3)B by Theorem 11 and 
´
B ϕdμg = 0, which 

implies that DE(0) = 0.
For showing Fredholm property of D2E(0), we first note that

D2E(0)h = −Δh + (3ϕ2 − 1)h− 3
 

B

ϕ2hdμg ∈ H−1
0 (B).

The inclusion H1(B) ↪→ H−1(B) is compact and by Lemma 29 the map h ∈ H1(B) �→ v2h ∈ H−1(B) is 
also compact. In addition, the map h ∈ H1

0 (B) �→ −3 
ffl
B v2hdμg has finite rank and, therefore, it is also 

a compact operator from H1
0 (B) to H−1

0 (B). We conclude that D2E(0) : H1
0 (B) → H−1

0 (B) is a compact 
perturbation of the isomorphism Δ : H1

0 (B) → H−1
0 (B). �

As L is a Lyapunov function bounded from below and as ω(u0) is compact in H2,γ+2(B) ⊕Cω ↪→ H1(B), 
we conclude the following:

Corollary 31. Let u0 ∈ X0
1,0. Then

(i) There is a constant L∞ ∈ R such that L(ϕ) = L∞, for all ϕ ∈ ω(u0).
(ii) There is a neighborhood U ⊂ H1

0 (B) of ω(u0) and constants C > 0, θ ∈ (0, 1/2] such that

|L(v) − L∞|1−θ ≤ C ‖DL(v)‖H−1
0 (B) ,
for all v ∈ U .
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Having the Lojasiewicz-Simon inequality, we can prove the convergence theorem below.

Proposition 32. Let u0 ∈ X0
1,0 and u be the solution of (1.1). Then there exists a u∞ ∈ ω(u0) such that 

limt→∞ ‖u(t) − u∞‖H−1
0 (B) = 0.

Proof. The proof follows from the arguments in [3, Section 3]. We sketch here the steps for the convenience 
of the reader.

Let L∞ = limt→∞ L(u(t)). Then L∞ ≤ L(u(t)) for all t ∈ [0, ∞). We define the function H : [0, ∞) → R

by

H(t) = (L(u(t)) − L∞)θ,

where θ ∈ (0, 1/2] as in Corollary 31. The function H is non-negative and non-increasing, as

d

dt
H(t) = θ(L(u(t)) − L∞)θ−1 d

dt
L(u(t)) ≤ 0.

Moreover limt→∞ H(t) = 0. Let U ⊂ H1
0 (B) be the open set of Corollary 31. Due to [9, Theorem 5.1.8], we 

have

lim
t→∞

( inf
v∈ω(u0)

‖T (t)u− v‖H2,γ+2(B)⊕Rω
) = 0. (5.1)

Thus, there exists t0 > 0 such that, for t ≥ t0, we have u(t) ∈ U . Hence, for t ≥ t0, we estimate

− d

dt
H(t) = θ(L(u(t)) − L∞)θ−1

(
− d

dt
L(u(t))

)

(1)
≥ C

´
B

〈
∇(−Δu + u3 − u),∇(−Δu + u3 − u)

〉
g
dμg

‖−Δu + u3 − u− (u3)B‖H−1
0 (B)

(2)
≥ C

´
B

〈
∇(−Δu + u3 − u),∇(−Δu + u3 − u)

〉
dμg

‖Δ(Δu− u3 + u)‖H−1
0 (B)

(3)
≥ C

∥∥Δ(−Δu + u3 − u)
∥∥2
H−1

0 (B)

‖Δ(Δu− u3 + u)‖H−1
0 (B)

= C
∥∥Δ(−Δu + u3 − u)

∥∥
H−1

0 (B) .

In (1) we have used Theorem 11 and Corollary 31, in (2) Corollary 13 and in (3) the definition of ‖ · ‖H−1
0 (B)

and the isomorphism Δ : H1
0 (B) → H−1

0 (B). By (1.1), we infer that

∥∥∥∥∂u∂t
∥∥∥∥
H−1

0 (B)
=

∥∥Δ(−Δu + u3 − u)
∥∥
H−1

0 (B) ≤ −C
d

dt
H(t).

Hence ∂u∂t ∈ L1(0, ∞; H−1
0 (B)) and u∞ := limt→∞ u(t) = u(0) +

´∞
0

∂u
∂t (s)ds, where the limit is taken in 

H−1
0 (B).
It remains to prove that u∞ ∈ ω(u0). We know that ω(u0) ⊂ H2,γ+2(B) ⊕Rω is compact. As H2,γ+2(B) ⊕

Rω ↪→ H−1(B), we conclude that ω(u0) is also compact in H−1
0 (B). Thus it is also closed. Equation (5.1)

implies that
lim
t→∞

( inf
v∈ω(u0)

‖T (t)u− v‖H−1(B)) = 0
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and, therefore, that infv∈ω(u0) ‖u∞ − v‖H−1(B) = 0. As ω(u0) is closed in H−1
0 (B), we conclude that u∞ ∈

ω(u0). �
Finally, we prove part (ii) of Theorem 1.

Proof. (of part (ii) of Theorem 1) Recall first that T (t)u0 ∈ ∩r≥0D(Δ2
r) due to (1.3). Therefore the limit in 

D(Δ2
r) makes sense. We know by Theorem 23 that {T (t)u0}t≥T is precompact in D(Δ2

r) for some T > 0. Let 
u∞ ∈ ω(u0) be such that limt→∞ T (t)u0 = u∞ in H−1

0 (B). Note that since u∞ is an equilibrium point [9, 
Theorem 8.4.6], T (t)u∞ = u∞ for all t > 0 and, hence, u∞ ∈ ∩r≥0D(Δ2

r). Suppose that this limit does not 
hold in D(Δ2

r). Then, there exist an ε0 > 0 and a sequence tk → ∞ such that ‖T (tk)u0 − u∞‖D(Δ2
r) ≥ ε0. By 

compactness, there exists a subsequence tkj
→ ∞ such that T (tkj

)u0 converges to a function w in D(Δ2
r). 

This implies that T (tkj
)u0 also converges to w in H−1(B). Therefore w = u∞ by uniqueness of the limit 

and we obtain a contradiction. �
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