J. Math. Anal. Appl. 531 (2024) 127851

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Regular Articles

Existence of global attractors and convergence of solutions for the
Cahn-Hilliard equation on manifolds with conical singularities

Check for
Updates

Pedro T. P. Lopes®*, Nikolaos Roidos "

& Instituto de Matemdtica e Estatistica, Universidade de Sdo Paulo, Rua do Matdao 1010, 05508-090,
Sao Paulo, SP, Brazil
b Department of Mathematics, University of Patras, 26504 Rio Patras, Greece

ARTICLE INFO ABSTRACT
Article history: We consider the Cahn-Hilliard equation on manifolds with conical singularities
Received 20 June 2022 and prove existence of global attractors in higher order Mellin-Sobolev spaces

Available online 12 October 2023

) with asymptotics. We also show convergence of solutions in the same spaces to
Submitted by H. Frankowska

an equilibrium point and provide asymptotic behavior of the equilibrium near the
conical tips in terms of the local geometry.
© 2023 Elsevier Inc. All rights reserved.

Keywords:

Asymptotic behavior of solutions to
PDEs

Semilinear parabolic equations
Degenerate parabolic equations
Semilinear parabolic equations with
Laplacian, bi-Laplacian or
poly-Laplacian

PDEs on manifolds

1. Introduction

In this article, we show existence and regularity of global attractors as well as convergence results for
the Cahn-Hilliard equation considered on manifolds with conical singularities. We model such a manifold
as a (n + 1)-dimensional compact manifold B with closed boundary 0B, n > 1, which is endowed with a
degenerated Riemannian metric g that, in local coordinates (z,y) € [0,1) x 9B on a collar neighborhood of
the boundary, has the following expression

g = dz* + 2?h(x),

where [0,1) 5 z — h(x) is a smooth family of Riemannian metrics on 0B. We denote B = (B, g) and
OB = (9B, h(0)). The Laplacian on B, in local coordinates (z,y) € [0,1) x OB on the collar part, admits the
following degenerate expression
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A . ((x81)2 -1+ 20, det(h(x))

2det(h(z)) W0+ An);

where Ay, is the Laplacian on (0B, h(x)). The operator A belongs to the class of cone differential operators
or Fuchs type operators, see Section 3 for more details.
On B we consider the following problem

u () + A%u(t) = A(u®(t) —u(t)), te(0,7T),

(1.1)

which is known as Cahn-Hilliard equation (CH for short); it is a diffusion interface equation that models
phase separation of a binary mixture. On classical domains, (1.1) has been generalized and extensively
studied in many directions and aspects, such as existence, regularity and convergence of solutions, existence
of global attractors, etc. A sufficient number of related results can be found in [13].

However, on singular domains much less is known. Using the theory of cone differential operators, in [16]
it was first shown short-time existence of CH on B for the case where h(-) is constant, by employing LP-
maximal regularity techniques. Those results were extended to arbitrary B and improved to higher regularity
in [17]. Finally, global solutions and smoothing results were proved in [11]. Summarizing those results, let
us assume that dim(B) =n + 1 € {2,3}, choose s > 0 and let the exponent v be as follows

dim(Ig%) —4 <y <min{-1+ \/(dim@g) *Q)Q_Ahdim(B) *4}, (1.2)

where 0 = A\g > A; > --- are the eigenvalues of the boundary Laplacian Ay on dB. Denote by H"*(B),
1n,p € R, the Mellin-Sobolev space, see Definition 2. Moreover, let R, and C,, be the finite dimensional
spaces of smooth functions on B that are locally constant close to the singularities, with values in R and
C respectively, see Section 3 for details. Then, for any real-valued ug € H*T27+2(B) @ R, there exists a
unique global solution in the following sense: for any 7' > 0 there exists a unique v € H(0,T;H>7(B)) N
L2(0,T;D(A2?)) solving (1.1) on [0,T] x B. Furthermore, the solution u satisfies the regularity

ue () C((0,00); D(A2)) (1.3)
s>0
and
u € C’([O,oo);HSJFZ‘A’H(B) ®R,) — C([0,00); C(B)). (1.4)

The bi-Laplacian domain we choose is
D(A?) = {u e H* T2 2(B) @ C,, : Au € HT2P2(B) @ C,}, (1.5)
where « is always as (1.2). It satisfies
D(Ag) = D(Ag,min) @ (CUJ EB €A27’Y' (16)
Here £z , is an s-independent finite dimensional space consisting of C'°°(B°)-functions, that in local coor-
dinates (z,y) € [0,1) x 9B, take the form w(z)c(y)z? In®(z), p € C, k € {0,1,2,3}, where B® = B\dB and
¢ € C*(9B). More precisely, there exists a discrete set of points Zaz2 in C, determined only by the family

of metrics h(-), such that the exponents p coincide with the set Za2N{z € C : Re(z) € [25T — v, 252 —7)}.
The exponents k are also determined by h(-). In particular, when h(-) = h is constant, the set Zxz and the
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exponents k associated to each p € Za2, are determined by n and the spectrum of Ay. The minimal domain

D(AZ i) stands for the domain of the closure of A% : C°(B°) — H*7(B), and satisfies
HH(B) = DAL i) = [\ - (B), (L7)
e>0
while
D(AZ pin) = HHTH(B) (1.8)

provided that

{v+1,7+31n {i\/((MH>2Aj}®. (1.9)

2
Aj€(An(0))

Consequently, both spaces D(AZ) and Eaz2 , are determined explicitly by h(-) and v, see Corollary 18 for
details.

These results allow us to define for any s > 0 a semiflow T : [0,00) x H5T27T2(B) O R, — HT27T2(B) @
R, on real valued-functions by T(t)ug := T(t,ug) = u(t), see e.g. [26, Chapter 1, Section 1.1] for more
details on semiflows, also known as semigroups. Let X{, be the space of all real-valued functions u €
HST29T2(B) @ R, such that Jg udpg = 0, where dpg is the measure associated with the metric g. Then T
can be restricted to X7, see Section 4. Our main results are the following.

Theorem 1. Let s > 0, v be as (1.2) and D(A2) be the bi-Laplacian domain described in (1.5)-(1.9).

(i) (Global attractor) The semiflow T : [0,00) x X{ 4 — X7 has an s-independent global attractor A C
Nr>0D(AZ). Moreover, if B is a bounded set of X, then for any r >0, T(t)B is, for sufficiently large t,
a bounded set of D(A2) and

tlggo(fgg inf |T(®)b - allpaz)) = 0.

ii) (Convergence to equilibrium) If ug € X9, then there exists a Uso € NpsoD(A2) such that
1,0

Z
lim; oo T(#)ug = Uso, where the convergence occurs in D(A2) for each r > 0.

The definition of global attractor is recalled in Section 4. For proving part (i) of Theorem 1.1, we follow
the strategy of Temam [26] to obtain estimates in a lower regularity space Hy '(B), see Definition 9, and of
[25] for obtaining higher regularity. For convergence to equilibrium, we first obtain the Lojasiewicz-Simon
inequality due to [24], and proceed as [3], [9] and [19].

Concerning real-life applications of the above approach, recall first that the physical effects described
by CH, as well as other evolution equations, occur in reality in many different types of domains and
surfaces (manifolds), which are usually not smooth: many of them have edges, conical points, cusps, or even
combinations of these and other types of singularities. In this context, conic manifolds are fundamental and
a natural place to start. They describe simple point singularities, which, apart from their intrinsic interest,
can be used to build more general ones [23], [22].

Moreover, whenever we are studying a smooth (n + 1)-dimensional Riemannian manifold M endowed
with a Riemannian metric f, an important question is: how does the local geometry on M = (M, f) affect
the evolution? An answer to this question arises as follows: fix a point 0 on M and denote by d(o, z)
the geodesic distance between o and z € M\{o}, induced by the metric f. There exists an r > 0 such
that (z,y) € (0,r) x S™ are local coordinates around o and moreover, the metric in these coordinates
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becomes f = dx? + 22 fgn(z), where S™ = {z € R"™! : |z| = 1} is the unit sphere and z — fs«(7) is a
smooth family of Riemannian metrics on S™. In case of fgn(-) being smooth up to = 0, we can regard
((M\{0})U ({0} x S™), f) as a conic manifold with one isolated conical singularity at o. On the other hand,
since our problem involves the Laplacian, it becomes now degenerate. However, an application of our results
shows that the asymptotic expansion of the solutions near o is provided by the expansion (1.6), where
the boundary Laplacian Ay(,) now has to be replaced by the Laplacian Ay, ;) on (S™, fs»(x)). Hence,
in particular, through the structure of the spaces £a2 -, we obtain an interplay between the spectrum of
A s () and the evolution.

Though the strategies are mostly well established, the technical results that allow us to use them in the
context of conical singularities are not, and, therefore, the strategies have to be adapted to this situation.
For this reason new results on interpolation and embedding of Mellin-Sobolev spaces are developed in this
article.

In Section 2, we define suitable function spaces to work on conic manifolds and study their embeddings.
Section 3 is devoted to the domain description and the properties of the Laplacian and bi-Laplacian and
to provide some facts about the complex interpolation of those spaces. Part (i) of Theorem 1 is proved in
Section 4 and part (ii) in Section 5

2. Function spaces

Fix a smooth non-negative function w € C*°(B) supported on the collar neighborhood (z,y) € [0,1) x 9B
such that w depends only on z and w = 1 near {0} x dB. Moreover denote by C2° the space of smooth
compactly supported functions and by H®, s € R, the usual Bessel potential spaces defined using the
L?-norm.

Definition 2 (Mellin-Sobolev spaces). Let v € R and consider the map
M, : C®(R4 x R™) — C°(R™1)  defined by u(w,y) — e('knTﬂﬂu(e*I, Y).

Let k; : U; COB — R", j € {1,..,N}, N € N\{0}, N := {0,1,2,...}, be a covering of 0B by coordinate
charts and let {¢;};e(1,...n} be a subordinated partition of unity. For any s,7 € R, the Mellin Sobolev
space H*7(B) is defined to be the space of all distributions u on the interior B° such that the norm

[wllae @) = ZHM 1 ® kj)s (woju) | ms a1y + (1 — w)ul g 28) (2.1)

is defined and finite, where 2B is the double of B and * refers to the push-forward of distributions. Different
choices of w, covering and partition of unity give us the same spaces with equivalent norms. The space
‘H®7(B) is a Banach algebra, up to an equivalent norm, whenever s > (n+1)/2 and v > (n+1)/2, see [18,
Lemma 3.2].

If s € N, then H*7(B) coincides with the space of all functions u in H{ (B°) that satisfy

(m(“)m)k(’?;‘(w(ac)u(%y)) € L?([0,1) x 0B, \/det(h(gc))C;—gcdy)7 k+ ol <s. (2.2)

n+
xr 2

In Section 3, we will associate the Mellin-Sobolev spaces with the Laplacian and bi-Laplacian.
Remark 3. Let x : B — [0, 1] be a smooth positive function on B° that is equal to x(x,y) = x on the collar

neighborhood [0, 1) x dB. Then u € H%Y(B) iff x~7u € L?(B), where L*(B) = H%(B). We define the spaces
L?(B) using the measure du, induced by the metric g. Note that duy = \/det(h(z))z"dzdy on the collar



P. T. P. Lopes, N. Roidos / J. Math. Anal. Appl. 531 (2024) 127851 5

neighborhood. Moreover, for any o € R, let 2*LP(B) := {u : [ |z~ “u[Pduy < co}. Finally, recall that the
inner product in H%°(B) induces an identification of the dual space of H*7(B) with H=%~7(B), see e.g.
[11, Lemma 3.2 (ii)].

Besides the Mellin-Sobolev spaces, we define the following space.

Definition 4. Let H!(B) be the completion of C2°(B°) with respect to the inner product

(U,U)Hl(]B) = /uﬂdug+/<Vu,W> dpg,

B B
where V and (-,-) are defined by the conical metric g.

We investigate now certain properties of the space H'(B) and its connection with H*7(B).

Remark 5. For the following computations, we note that
(1) The boundedness of [; |u|? dpu, is equivalent to

u € L3 (B°)and (z,y) — anHw(x)u(x7y) € L?([0,1] x 0B, \/det(h(x))dgd

2) If [ lul® dpy < oo, then the boundedness of Jg (Vu, V@) dpy is equivalent to

ue HE (B%)and (z,y) — 7 (28,)" 0 (w(x)u(z,y)) € L([0,1] x B, \/det(h kol = 1.

The last statement can be easily proved once we recall that in local coordinates of [0,1) x B we have

(Vu, V1) = 272 (20,u)(20,7) + 272 Z K (z,y)(0y, ) (Dy, D).

7,7=1

Along this paper, we use < and <% to denote continuous and compact embedding, respectively. We recall
that H7(B) < H¥Y (B), when s > s’ and v > +/, and H*7(B) <> "' (B), when s > s’ and v > 7/, see
[23, Theorem 2.1.53].

Proposition 6. For any 8 < 1, the following inclusions hold

HM(B) ® C, — H'(B) — H"(B),
where u @ v is identified with u + v and the first inclusion is just u ® v — u + v. In particular, H*(B) N
HO°(B).

Proof. We proceed in several steps. Let us denote by C positive constants that can change along the proof.
For simplicity we ignore the term +/det(h(z)) in the proof, as it is uniformly bounded from above and
below, and we abuse the notation |, o Since the computations are made in local coordinates. We also note
that it suffices to check the inclusion on the collar neighborhood and for functions u € C2°(B°).

Step 1: HY1(B) — H(B). We have

2d
//|w u(z,y)] x"dwdy<//‘ o1y u(z,y) ?xdy.

0 oB 0 OB
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Hence it is clear that

2 2
[0l g < €l s
B

Moreover

|20, (wu)|* + Z h (z, )0y, (wu)dy, (wu) | =" dzdy
OB =1

o _
8|~

which implies that

/<VU,W> d,ug <C Hqu-lel(]B)
B

We conclude that

”U”Hl(B) <C HUHHLI(B) :

Step 2: For each € > 0, we have x°* € H'(B). Let 0 < r < 1 and x, : B® — [0, 1] be such that y,(z,y) =
1—w(x/r), for (z,y) € [0,1) x B and x, be equal to 1 outside the collar neighborhood. Tt is enough to
prove that lim, o x,x* = x* in H1(B), as x,x° € C°(B°). For this, we must prove that

1
(i) lim / / lw(xrz® — 2°)|° "dady = 0,

r—0
0 oB

1
(@) Jim [ [ 10, @xa) — 0y, (o)) o™ 2dody =0,

r—0
0 OB

(iii) hm//|x8 wxrx®) — 20, (wz)|? 2" 2dady = 0.
0 OB

Note that (i) follows directly from the dominated convergence theorem and (ii) is identically zero. For (iii),
we have that the integral is smaller or equal to two times

1 1

/ / IXr 20 (wa®) — 20y (wa?)|? 2" 2dady + / / |w (@)= dp X, |” 2 dady.

0 OB 0 OB

Only the last term is important, as we can handle the first one directly with dominated convergence theorem.
Note that |w(z)z=0y x| 2™ = |w(z)z/r(8,w)(x/r)|* 225772 and that, for n > 1, the integrand is smaller
than the integrable function |[20,w||7 e (0,00 22+ =2 Moreover

tim (@) /r(0,2) ) 242 = 0.
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The result now follows again by the dominated convergence theorem.
Step 3: C,, — H'(B). It suffices to show that the constant function equal to one belongs to H'(B) by
showing that lim._,ox® = 1 in H'(B). To this end, it is enough to show that

1
N ev2an _
(i) ;%//W(l 2°)|° 2" dxdy = 0,

0 oB

1
(ii) / |y, (w) — By, (wm€)|2 " 2dxdy = 0,
0 OB

(iii)  lim / / |20, (W) — 20, (wz®)|* 2" 2dady = 0.

Again (i) follows directly from the dominated convergence theorem, (ii) is identically zero as the functions
do not depend on y, and the integral in (iii) is smaller than two times

1 1
//|x8w(w)—x5m8x(w)|2 x"_2dxdy+//|wxagg(a:€)|2 " ?dxdy.

0 B 0 oB
The first term can be dealt again by dominated convergence. For the second one, note that

1 . 2
8 g n— d < - -
/‘MC w79 TS et
0
and the last term goes to zero, as € goes to zero.
Step 4: If B < 1, then H'(B) — H'#(B). By density, it is enough to show that there is a constant C' > 0
such that ||ully.6m) < Cllull g1 gy, for all u € C(B°).
If k + || = 1, then, in local coordinates on [0, 1) x 9B, we have

n+1 n—1

23 P (20,) 05 (w@u(, )| < [2"7 (20,) 95 (w(@)u(z.y) .

If k4 |a| = 0, then as

we have
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1 1 1 )
S//x”_w /:f”ds /5" %(w(s)u(s,y)) ds | dxdy
B 0O x T
1 1 1 s 2 .
:/m"_zﬁ /s_”ds // s7 (sg) (w(s)u(s,y)) :dy dx
0 @ B
1 1
< /m"‘w /s_”ds dx ||“||12L11(IB)’
0 x

where we have used Cauchy-Schwarz in the first inequality. The last integral is finite forn > land < 1. O

For functions in H!(B), we define

(w0)ym) = [ (V. Vohduy and fully = [ (V. Va) dy.

B B
In particular,
(U,’U)HI(B) = (u,v)Ho,O(B) + (U,U)Hé(B) (2.3)
and
2 2
el @y = /00y + 1l s (2.4)

Moreover, whenever u € L'(B), we define (u)p := fgudx = |B|™* [5 udpu,, where [B| = [5 dpug is the area
of B.

Lemma 7 (Poincaré-Wirtinger inequality). There is a constant C > 0 such that
lu = (WB 008 < C HUHH&(B) , Vue H'(B).

Proof. The proof follows the same argument as in the proof of [6, Theorem 1 of Section 5.8], using the fact
that H!(B) is compactly embedded in H*%(B). O

Definition 8. Denote by H}(B) the space of all u € H(B) such that (u)g = 0.

@ C, where C is identified with the set of constant functions. Moreover,

It is clear that H!( H}(B)
= 0, we see that the map H}(B) > u l[ull 3 ) € R is equivalent to the

B) =
applying Lemma 7 with (u)p
H'(B) norm.

Definition 9. We denote by H~!(B) the dual space of H'(B) and by H; ' (B) C H~'(B) its subspace defined
by

H0_1<B) = {u € Hﬁl(B) : <u>1>H*1(B)><H1(]B) = O}'

Using the fact that H'(B) = H}(B) @ C, we can see that the map H, *(B) > u Ul my € L(Hg (B), C)
is bijective, that is, Hy '(B) can be identified with the dual of H}(B).



P. T. P. Lopes, N. Roidos / J. Math. Anal. Appl. 531 (2024) 127851 9

Proposition 10. Let u € HOP(B), for some 3 > —1. Then T, : H*(B) — C and T, : H*(B) — C defined by

Tu(v) = /uvdug7

B

To(v) = / (u— (w)g)vdp,

B
are continuous. Moreover the functional T, belongs to H;'(B) and fu|H&(B) = TU|H5(IB)'

Proof. Since 3 > —1, we have the inclusion H*#(B) < L'(B). In fact,

1/2

/‘U|d’ug = /X_B ‘U|Xﬂdlu/g S /X2Bd’ug HUHHO,B(B)v
B B B

due to Remark 3. Note that [ x??dp is finite, as fol 2" +28dy < oo. The fact that H*#(B) — L!(B) ensures
that (u)p is well defined.

In order to prove that T, is continuous, let us assume, without loss of generality, that —1 < 8 < 0. We
denote by Z_g : H*(B) — H%~#(B) the continuous inclusion from Proposition 6. Then, we have that

Tu(v) = /uvdug = <u7Ifﬁ(v»no,ﬁ(]g)xﬂo,—ﬁ(]g) .
B

Therefore T, is continuous as it is the composition of continuous functions. The continuity of fu follows
similarly. The fact that Ty,| Hi(B) = T H1(B) follows from the fact that the integral of v is equal to zero if
ve HYB). O

A version of Gauss theorem can also be proved for H!(B). It simplifies and improves [11, Lemma 4.3].

Theorem 11 (Gauss theorem). Let u and v belong to H'(B) and Av € H%Y(B), for some v > —1. Then

/(Vu,Vv) dug = —/uAvdyg.

B B

In particular, if u € H*(B) is such that Au € HOY(B), for some v > —1, then f]B Audpg = 0.

Proof. Without loss of generality, we assume that —1 < < 0. First we note that for v and u in C°(B°),
we have

/(Vu, V) dpg = —/uAvdug =— (Av,u)D,(BO)XCé_X,(BO) , (2.5)
B B

where D’ (B°) stands for the dual space of C'°(B°).

For v € H'(B), we can choose a sequence of functions in C°(B°) that converge to v in H'(B) and,
therefore, also in D’(B°). Hence the equality between the first and the third term of (2.5) still holds for all
v € HY(B) and u € C°(B°).
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Moreover if v € H'(B) and Av € H*7(B) C L (B°) C L. .(B°), we have again

loc loc

<AU7U>D/(B°)XCSO(]B°) :/UAUd/Lg, (26)
B

for all u € C°(B°).

Finally, if v € H'(B), Av € H%7(B) and u € H'(B), we take a sequence in C2°(B°) that converges to u
in H'(B). As H'(B) < H%~7(B), the sequence will also converge to u in H%~7(B). Using the duality of
HO~7(B) and H%V(B), (2.5) and (2.6), we obtain our result. O
Proposition 12. The operator A : H}(B) — Hy '(B) is well-defined, continuous and bijective.

Note that Au € D'(B°) is always well defined. As C>°(B®) is dense in H'(B), H,'(B) can be easily
identified, by restricting to C2°(B°), with a subset of D’'(B°).

Proof. By Riesz theorem, there is a bijective map R : Hj (B) — H, *(B) such that

(RUST) 1+ 3yt ) = (0 8) = / (Vu, Vo) dps,.
B

Then, the operator A can be easily identified with —R. O
Corollary 13. There is a constant C' > 0 such that
lull g1y < C AU o1y Yu € Ho(B).

Proof. This follows from the continuous inclusion H}(B) < Hy '(B), provided by Propositions 6 and 10,
and Proposition 12. O

2.1. Sobolev immersions

In this section, we prove some embeddings concerning Mellin-Sobolev spaces.

Proposition 14. Suppose that p € [2,00), if n = 1, and p € [2,(2n + 2)/(n — 1)], if n > 2. Then, for
each v € R, we have H™(B) — x~(+DA/2=1/P)LP(B). In particular, if v > (n + 1)(1/2 — 1/p), then
HL(B) < LP(B).

Proof. First, we note that

HY(B) C HL.(B°) C LY (B°).

loc

Therefore, it is enough to understand the behavior of elements of #7(B) in the neighborhood of the conical
tip. We have H'(R"*!) — LP(R™*!). Hence

|(2y) = 0 e )0 (ule ", y)|

Lp(R7+1)

—nflyg —x —x
< Cf[@y) = O e 0wy, <Ol s (2.7)
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where we recall that {¢;};cs is a partition of unity of 0B and w is as Definition 2. A change of variables
e %+ xin (2.7) implies
Hx(nﬂ)(%f%)ﬂ“H

LP(B) < Clullym)

which shows the claim. 0O

Corollary 15. The following continuous inclusions hold:
(i) If dim(B) € {2, 3}, then H*(B) — L*(B).

(ii) If dim(B) = 2, then H*(B) — L°(B).

(iii) If dim(B) = 3 and o > 0, then H'(B) < x~*L%(B).

Proof. We have seen that H'(B) < H1#(B), for all 8 < 1. For dim(B) = 2, if we choose 1/2 < 8 < 1,
we have H'#(B) — L*(B). For dim(B) = 3, if we choose 3/4 < 3 < 1, we have H'#(B) — L*(B). For
dim(B) = 2, if we choose if 2/3 < 8 < 1, then H1#(B) — L(B). Finally, for dim(B) = 3 and o > 0, then
choose 1 — a < 3 < 1 so that HYA(B) — x*L¢(B). O

3. Realizations of the Laplacian and bi-Laplacian

We start with some basic concepts on analytic semigroup theory.

Definition 16. Let X be a complex Banach space and A : D(A) — X be a densely defined closed operator
in X. We say that A is a negative generator of an analytic semigroup if for some 0, C > 0 we have

{AeC: Re(A) > -6} Cp(A) and |[[(A- A)*1H£(X) < C/IA|, Re(A) > —o.

The semigroup associated to a negative generator A is denoted e!4 € L£(X), see e.g. [1, Chapter 1.1.2].
Both semigroup and the complex powers (—A)* : D((—A)?*) — X, z € C, can be defined by Cauchy’s integral
formula, see e.g. [1, Theorem II1.4.6.5]. In the case of (—A)" € L£(X) for all t € R and ||(—A)"|| < Me?l"],
for some M > 0 and ¢ > 0, we say that —A has bounded imaginary powers and denote by —A € BZP(¢),
see e.g. [1, Chapter I111.4.7]. Recall that if —A € BZP, then [X,D(A)]s = D((—A)?), see e.g. [12, Theorem
4.17].

Next we recall some basic facts from the cone calculus, for more details we refer to [5,8,10,7,21,20,22].
The Laplacian A, as a cone differential operator, acts naturally on scales of Mellin-Sobolev spaces. Let us
consider it as an unbounded operator in H*7(B), s,v € R, with domain C°(B°). Denote by Ag min the
minimal extension (i.e. the closure) of A and by As max the maximal extension, defined as usual by

D(Aymax) = {u € H*(B) | Au € HM(B)}.

An important result in the field of cone differential operators tells us that those two domains differ in
general, unlike the case of closed manifolds. In particular, there exists an s-independent finite-dimensional
space Emax,A,y, that is called asymptotics space, such that

D(As,max) = D(Asﬁmin) @ gmax,A,'y' (31)

More precisely, Emax,a,y consists of linear combinations of smooth functions in B°. Those functions
vanish outside the collar neighborhood and, in local coordinates (z,y) € [0,1) x OB, can be writ-
ten as w(x)c(y)z—?log"(x). The function w is the cut-off function defined on Section 2, ¢ € C*(dB),
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p € {z € C|Re(z) € [252 —v,2H — )} and k € {0,1}. Here, the metric h(-) determines explicitly the
exponents p. As for the minimal domain, it can be proved that D(Ag min) = H¥+2772(B), whenever

e L = MR

A suitable choice of the domain of the Laplacian is given below. For this, we denote by C,, the finite
dimensional space of functions that are equal to zero outside the collar neighborhood and that close to the
singularities are expressed by Zjvzl cjwj, where N is the number of connected components of 0B and w;
are the restrictions of w to these components. Also denote by R, the subspace of C,, such that ¢; € R.

Theorem 17. [21, Theorem 6.7] Let

n—3 . n—1\2 n—+1
5 <7<m1n{—1+ ( 3 ) _/\17T}’ (3.2)

where Ay is the greatest non-zero eigenvalue of the boundary Laplacian Apy on (0B, h(0)). Then for every
¢, ¢ > 0, the operator A —c : H3 27 2(B) o C,, — H*7(B) is a negative generator of an analytic semigroup
such that —A + ¢ € BIP(¢). The Laplacian A : H5T27T2(B) @ C,, — H*"(B) will be denoted by As.
Similarly to the Laplacian, the bi-Laplacian has a minimal extension A2 . which is the closure of
A? . CX(B°) — H®(B) satisfying H5T7T4(B) — D(AZ i) <= NesoH5T7T17¢(B), and a maximal
extension A2 ... whose domain is {u € H*7(B) : A*u € H*7(B)}. They are related by D(A2 . ) =
D(Ag,mm) ® Emax, A2y, Where Enax A2 4 is a finite dimensional space consisting of linear combinations of
functions of the form w(z)e(y)z " log® (x), with k € {0,1,2,3} and p € {z € C : Re(2) € (25T —, 2 )}
We will choose a bi-Laplacian domain D(A?) satisfying D(A? ;) < D(A2) < D(A2 ,..)- The definition

and the properties of the operator A2 : D(A2%) — H%7(B) are explained in the following corollary of
Theorem 17.

Corollary 18 (bi-Laplacian). Consider the bi-Laplacian D(A2%) = {u € D(Ay) : Asu € D(A,)}, where
Ay is as in Theorem 17. Then, there exists an s-independent finite dimensional space Eaz ~ contained in
HE T2 (B) N Eax,a2,4, for some ag > 0, such that (1.6) holds. In particular, D(A2) — HsT47 e g
Cu ®En2 5, for alle > 0. The space Eaz , consists of C°(B°)-functions, which in local coordinates (x,y) €
[0,1) x OB, are of the form w(x)c(y)x” In*(x), where c € C=(dB), p € {z € C : Re(2) € [%57 —v, %52 — )}
and k € {0,1,2,3}; for more details we refer to [11, Section 3.2].

Moreover, for every ¢ > 0, the operator Ag := —(1 — Ag)? : D(A2%) — H*7(B) is a negative generator of
an analytic semigroup such that (1 — Ay)? € BIP(¢), see [11, Proposition 3.6].

For a € [0,2], we define X3 := D((—A,)*/?) = [H*7(B), D(A2)]4/2. Notice that X5 = D(A?) and
X7 = D(A;). We also denote X7° := Ng>0 X7 and X5° := Ny>0X35. We close this section with some facts
about the complex interpolation of the domain of the Laplacian and bi-Laplacian.

Proposition 19. Let o € (0,1) and assume that v satisfies (3.2).

() Ifa¢ {352 £ 3/(252)2 = )\ 1 j € N}, then [H37(B), X{]o = H*T207H29(B) @ C,,.
(ii) We always have H* T4 H4(B) & Cy, ® Eaz ., C [H*7(B), X3]a.

(iii) If 20 ¢ {352 £ 1,/(252)2 — \; 1 j € N}, then

(157 (B), X5]a < NesoH T4 @ Cy @ Enz 1 a(a1)s
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where §A2ﬁ+4(a71) C H>®Y2(B) is a subspace of the asymptotic space Emax,A? y+4(a—1)- We note that the
sums above are not necessarily direct.

Proof. (i) It follows from [11, Lemma 4.5 (i)].
(ii) It follows from the inclusions C,, & a2, — D(A2) = X3 and

AT () = (1 (B), T (B)]o < [H0(B), X5l

where in the first equality we have used [11, Lemma 3.3 (iii)].
(iii) Case o € (0,1/2]. We have

[H*7(B), X3]a = D((—45)%) = D((1 = A,)**) = [H*7(B), D(As)]2a = H*T**7H(B) & C.,.

In the first and third equalities we have used the BZP property of 1 — Ay and —A,. In the last equality, we
have used (i).
Case o € (1/2,1). We first note that

A2[H(B), D(A)]o = [HS4774(B), MO (B))o = HeHHle- D4 (B,

where [11, Lemma 3.3 (iii)] was used in the last equality. Hence, we have

[’HS’V(B% X;]a — D(A§+4(o¢—1) C HS+4&77+4&_E(B) @ SmaX,Az,'y+4(a—1)' (33)

,max)

Moreover,
[H*7(B), X3]a = D((1 = A)**) = D(A,) = HF272(B) @ C.,, (3.4)

where in the first equality we have used the BZP property of —A,. Now let u € [H*7(B), X5]o. By (3.3),
we have that u = v + w, where v € H* 47 He~¢(B) and w € Enax,A2,4+4(a—1)- Hence, by (3.4) and for
sufficiently small € > 0, we have

w=u—v€HTITB) @ C, + H T He—(B) = H+2IH2(B) @ C,,.
Therefore
w e (P72 (B) & Cu) N Emax,a2,4+4(a—1) € Coo B (Emax, a2 4 +4(a—1) N HTIT2(B))
which concludes the proof. O
4. Existence and regularity of the global attractors

For the rest of the paper v is fixed and satisfies (1.2). The constants C > 0 may change along the
computations.

In this section we prove part (i) of Theorem 1. In the sequel all the spaces we use are the real parts of
the ones defined previously. Recall that a global attractor for a semiflow 7' : [0,00) X X — X defined on a
Hilbert X is a compact set A C X such that T'(t)A := {T'(t)z : x € A} = A, for all ¢t > 0, which, moreover,
attracts all bounded sets B C X in the following sense:

I inf [|T'(t)b — al| ) = 0.
Jim (sup inf [ T(#)b — allx)
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If it exists, then it is unique.
As mentioned in the introduction, for any s > 0, we can define a semiflow 7" in X7. It is convenient,
however, to restrict T to a smaller space. For this reason, we first prove the following proposition.

Proposition 20. Let ug € X¢, then the function (u)p : (0,00) — R, defined by

(wp(t) = = /T(t)uod,ug, t>0,
B

is constant. Here |B| = [5 dpug.

Proof. The proof is similar to [26, Equation (4.61)], where we have to take into account (1.3) and Theo-
rem 11. O

Consider the Hilbert space
Xio={ueH"*B)OR, : (u)p = 0}.

By Proposition 20, T'(t) X7 o C X7 o. Therefore, T' restricts to a semiflow on X7 ;. Concerning the existence
of global attractors, we recall the following result.

For two Hilbert spaces X and Y such that ¥ < X and a semiflow T : [0,00) x X — X, we define the
w-limit set wz(B) of B C X, where Z =X or Y, by

wz(B) = {z €Z:3 t,—o00 and {x,}nen C B such that nl;rrgo T (tn)xn — 2|, = O}. (4.1)

If Z =Y, then the above definition requires that T'(¢,, )z, € Y for all n € N. In order to show existence and
regularity of global attractors, we prove the following variation of [15, Theorem 10.5].

Theorem 21. Let Y — X be Hilbert spaces, T : [0,00) x X — X be a semiflow and K C Y be a com-
pact set in Y. Assume that for all bounded sets B C X there exists a constant tg > 0 such that, if
t > tp, then T(t)B C K. Under these conditions there exists a (unique) global connected attractor A for
the semiflows T. Moreover, A = wx(K) = wy(K) is contained in Y and attracts bounded sets of X in
Y in the following sense: for any bounded set B C X, the set T(t)B is bounded in Y for large t and
limy s o0 SUpye g infac 4 |7(¢)b — ally = 0.

Proof. First we show that wx(K) = wy(K). Since Y < X, the definition given by (4.1) implies that
wy (K) C wx(K). On the other hand, if z € wx(K) and lim, || T(t,)z, — 2|y = 0 for some ¢, — oo
and {z,}nen C K, then T(t,)z, € K for all ¢, > tx. By the compactness of K in Y, some subsequence
{T(tn,)xn,}jen converges in Y, which implies that z € wy (K).

Let A :=wx(K) = wy(K). Using the notation " for the closure of C in Y, (4.1) says that

Y _—Y
(UY(IC) = mt>0U5>t(T(S)IC N Y) = ﬁt>t;< Us>tT(S)IC N

which implies that A is a non-empty compact set of Y - and also of X - since it is the intersection of
decreasing non-empty compact sets. The invariance of A follows easily from (4.1), see also [4, Proposition
1.1.1].

Finally, the fact that A attracts bounded sets of X in Y - and in X as well - follows from the arguments
of [15, Theorem 10.5], which we provide for completeness. Let us suppose that

li inf | T(t)b — ally =0
A‘&iﬁg;&” ()b —ally
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does not hold for some bounded set B C X. Then, we can find sequences t,, — 00, {b,}nen C B and g9 > 0
such that infoec 4 || T(tn)bn — ally > €o for all n. But for ¢, > tp and b € B, then T'(t,)b € K which is a
compact set in Y. Hence a subsequence {T'(t,; )bn, }jen converges in Y. As T'(t; )on; = T (tn, —tn)T (tn)bn,
and T(t,)bn; € K, we conclude that the subsequence {T'(t,,)by,} converges to an element of wy (K) = A,
which gives us a contradiction. Connectness follows exactly as in [15]. O

For our purposes we use the following consequence.

Corollary 22. Let X be a Hilbert space, A : D(A) C X — X be a negative generator of an analytic semigroup
with compact resolvent and F : X, = D((-A)*) = X, 0 < a < 1, be a locally Lipschitz function. Consider
the following problem

u'(t) = Au(t) + F(u(t)),

where ug € X,. Assume that
(i) There is a closed subspace Xo C Xo such that for all ug € Xq, a global solution u € C*((0,00), X) N
C((0,00), D(A)) N C([0,0), X¢o) is defined.
(ii) There are Hilbert spaces Y and W such that Y S W s X, and a constant Cy > 0 with the following
property: for every R > 0, there ewists tg > 0 such that if ug € Xo and uollx, < R, then u(t,up) €Y and
|lu(t,uo)lly < Cy, for allt > tg.

Then the semiflow T : [0,00) x Xo — Xo defined by T(t)ug = u(t) has a global connected attractor A
that is contained in W and attracts bounded sets of X, inW.

Proof. We have to show that the conditions of Theorem 21 are satisfied. As Y <> W, the bounded set
Ko :={z €Y : |z|y, <Cy} is a relative compact subset of W. We define K to be the closure of Ky in
W. Let B C X, be a bounded set, i.e. there exists R > 0 such that uollx, < R, for all ug € B. By our
assumptions, there exists tg > 0 such that if ¢ > tg, then |T'(¢)uglly < Cy. Therefore T'(¢t)B C Koy C K, if

t>tr. O

The above corollary will now be applied to the proof of the following theorem, from which part (i) of
Theorem 1 will follow.

Theorem 23. Let 0 < € < (n+ 1)/16 — /8. Then, for each s > 0 there is a constant »sc > 0 with the
following property: for every R > 0, there exists tg s > 0 such that if ug € X?,o and Hu0||H51(B) < R, then
[u(t, wo)lp(—a,yi+ey < e, for allt > tp s ..

The theorem will be proved in several steps. The first one follows directly from Temam [26]. We just
highlight the necessary results for repeating the arguments.

Proposition 24. There is a constant k with the following property: for every R > 0, there is a constant
tr >0 such that if ug € X7 and ||u0HH0_1(]B) < R, then |[u(t, o)l s @) < &, for all t > tg.

Proof. The proof is obtained by following the arguments in [26, Section 4.2.2]. First we prove the existence
of k > 0 with the following property: for every R > 0, there is a constant tg > 0 such that if ug € X?,o
and |lug|l =15y < R, then |lu(t, uo)l| -1 gy < &, for all t > g, see deductions of [26, Equations (4.89)-
(4.90)]. For our situation, we only have to take into account the Sobolev immersion H!(B) < L*(B) from
Corollary 15 and Theorem 11, which allow the definition of the strict Lyapunov function [9, Definition 8.4.5]
L:H'B)— R by
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L(v) = %]B/<Vv, V) dpg +]Bf (iv4 - %v2> dpg, (4.2)

see also [11, Section 4.2]. We also use Proposition 10 to identify elements of H%#(B), 8 > —1, with elements
in H~1(B) for the computations. The rest of proof follows the deduction of [26, Equation (4.95)]. O
In order to proceed to the proof of Theorem 23, we write (1.1) as
u'(t) = Asu+ F(u), (4.3)
where Ay : X5 — X§ is given by Ay = —(1 — Ay)? and F : X{ — X§ is given by F(u) = Ag(u® — 3u) + w.

It is well known, see [14, Theorem 6.13], that for some § > 0 depending on A,, the fractional powers
satisfy

||(—AS) e ~(B)) < cmst*ae*ét, t>0, (4.4)

where ¢, s > 0 only depends on «a,s > 0.

Lemma 25. Let 0 <o <a<f<1,0<t<t, d>0 beasin (4.4) and u € C([t,t], D(As)). Then

t

A u(Oll ) < Coe™ Ot = )7 (= A)* D). gy + Cany [ €5t = 5)2

t

<(earsrtem], o+ e i) A 6 g ) a5, (45)

o (B) e (B)
for some constants C,, Co g only depending on «, 8, o and s.

Proof. We apply (—A;)* to the variation of constants formula
¢
u(®) = e ud) [ O Ful))ds
i

to obtain

”(*As)au(t)”q{sw(]g)

- o, —As(t—1) o a ou ,B Ag(t—s)
= H( As)7e HB(HM(B)) IC HH”(B) /H

% || (—=As)*8 (AP (s) — Bu(s)) + uls )HHM(B) ds

D) son. n e o - s ~
< Coe 0 — )77 [|(—Al)” u(t)HHM(B)JrCa,ﬁ/e 3t=s)(t — 5)=F

t

x <H(As)aﬁ+éu3(s)HHm(B) i H(*As)"‘*“%u(s)H

B(H*7(B))

t

o () + H(As)aﬁu(s)HHM(B)) ds.

In (1) we have used that

H(_AS)Q_BA”HHS,w(]B) = H(l — Ag)TIAG (A>T ay ‘Hs,w(]ﬂs) < |[(—A)2 P2y O

‘HM(B)'
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Proposition 26. There is a constant k1 > 0 with the following property: for every R > 0, there is a constant
tr1 > 0 such that if ug € X7 and HUOHH(;I(B) < R, then [lu(t,uo)| xo < k1, for allt > tg,;.

Proof. Step 1. Let 6 € [1/2,1). There exists kg > 0 with the following property: for every R > 0, there is a
constant tpg > 0 such that if up € X7, and ||u0||H0_1(B) < R, then ||u(t,u0)||Xg < kg, for all t > tg .

Let ug € X7 be such that Hu0||H0_1(B) < R, u(t) = T(t)up and tg, k be as Proposition 24. If x is as in
Remark 3, then we have

1/2

_ 6 3 3
HU(S)3HHo,w(B) <C /’X 7/3@6(8)’ dpg =C ”uwa/?»LG(B) < C||u||H1(]B)7 (4.6)
B
where we have used Corollary 15 and (1.2). Also, due to Proposition 6 and Proposition 19 (i), for suitable
0</¢<1,wehave y+/¢<1and
H'(B) — H M (B) = H T (B) @ Cy = X7y

Hence, using (4.5) with = tg, a = g, o= g - % + ¢ for some € > 0, 8 = g + %7 (4.6) and Proposition 24,
we obtain for t > tg

., <ctt-arioi

a0t

w/eﬂs(m)(t _ g5+ (Hu3(5>||ﬂo,~as> + [2t(5) |40 5y + H(Ao)éu(s)HHM(BD ds
i

< 06*5(1’/*5) (t _ t)*(g*%Jrs) Hu(f)HHl(]B)

i
—5(t— (041
+C/€ =)t — 5)=(2+2) (||U(S)H§{1(B) + HU(S)HHl(B)) ds

t

< Ce 0(ttr) (¢t — 4y~ (5—i+e) +C/e—5ss—%—%ds,
0

where the constants C' in the last line depend on &, since [|u(t)| g1 () < & for t > tg.
Let us define xg := C' + C [° e99579/271/2ds and choose tg g > tr such that

6_6(tR’9_tR)(tR,9 _ tR)—(%—%-i-e) <1

Then ||(—Ao)?/2u(t) |10 B) < Ko, Vt > tryg.

Step 2. Choose in (4.5) a = 3, 0 = L and B, such that 1 < 3 <142 — "T'H. This is possible as n € {1,2}

and %‘3 < v < 0. Hence %"1 — 7 < 2, which implies that 7 — ”TH > f%. With this choice of 3, we also

have % >1—-4> ”T'H — 1. Therefore, with a suitable choice of 3, we have, according to Proposition 19 (i),

that X3, _p) = HAA=B)A0=B)+7(B) @ C,, is an algebra as 4(1 -8+ > ol and 4(1-6) > 2H, asy <0.
Choosing t = max{tg 21-p),tr,1/2} and using (4.5) with ¢t > ¢, a = 1/2, 0 = 1/4 and 3 as above, we

have

H(*Ao)%u(t)H < O30 (t — f)fi

(—A0) Fu(d)|
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. <|\<—Ao>1-ﬂu3<s>HW(B) A ) o + A Pt Y

< 0D B [ulD) +0/ )
x(lu(s)xg, o+ (g, )ds

< Ce_é(t_f)(t — E)_%Iil/g + C/e“sss_ﬁds (Kg(l_ﬁ) + Hg(l_B)) .

Let us define

o0

k1= CKyjg +C /eiéssfﬁds (/@3(1_5) + mg(l_ﬂ))
0

and we choose tg 1 such that tpq >t and le/ge_‘s(t_f) (t— f)_i < 1, for t >t 1. Therefore, we conclude
that for ¢t > tg 1, we have ||(—A0)%U(t)”;|.[0‘w(]]3) <k;. DO

Proposition 27. For every s > 0 and 6 € [1/2,1) there is a constant ks 9 > 0 with the following prop-
erty: for every R > 0 there is a constant trse > 0 such that, if uy € X?,o and Hu0||H51(B) < R, then
[ult, wo)llp((—a.ye) < Ks0, for allt > TR sp.

Proof. The result is a direct consequence of the following two claims.

First claim: Suppose that for some s > 0 there is a constant ks > 0 with the following property: for every
R > 0 there exists tg,s > 0 such that, if ug € X7, and ol -1 gy < R then [Ju(t, uo)llypes2ms2m@yoc, < Fss
for all ¢ > fgp . If such a constant r, > 0 exists, then for each 6 € [1/2,1) there is also a constant
Ks,9 > 0 with the following property: for every R > 0 there exists tg ¢ > 0 such that, if uy € X?,o and
||u0||H0_1(B) < R, then [[u(t,wo)|lp(—a,ye) < Ks,0, for all t > tr s 0.

Proof of the first claim: We use (4.5) with a = =0 =0¢€ [1/2,1), s and t > £, to obtain

t

|~ AD u0)]| 0 ) < Coe™ Dt = B ()] ) + Car / e (¢ — )"
«(fla. + Aot

S Cae—é(tft) (t — 5)70 ||u(E)H'H9«’Y(]B) + Ca,ﬁ/efts(tfs) (t _ 8)79

t

N)I»—l

; ||u<s>||w,w<m) s

HHS"V(]B) He (B)

3
% (a5 202 @0, + 10 s s2ia@yac, + 180 lhgen @) ) ds

oo
< Colt = i) T,k Cu (67 4 20) [ 570
0
Let us choose

o0
ks,o = Cq Iis—l—caﬁ m +2I€ /s Oe=95(s
0
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and tg s > g s such that (¢ — 5375)_96_‘5“_{’*«5) <1 when t > tp s 9. Then ||u(t)||D((7AS)9) < Ks,g for all
t > tR,S’g.

Second claim: For every s > 0 there is a constant ks > 0 with the following property: for every R > 0,
there exists tr,s > 0 such that, if ug € X7, and [uoll -1 gy < R, then |[u(t, uo)llyst2+2@)ac, < Ks, for
all t > tr,s-

Proof of the second claim: We have seen that this is true for s = 0 by Proposition 26. We now proceed
by induction as follows: we prove that, if the property holds for some sy > 0, then it also holds for all
s € [s0, 80 + 1]. Indeed, let us suppose that it holds for some sy > 0. Taking 8 > 3/4, 0 € [0,1], s=sg + 0
and a suitable small ¢ > 0, Proposition 19 (iii) with o = 3/4 4 ¢ implies

||U(ta“0)||Hso+<w+2(]]3;)@;(0w < ||U(tvu0)||71so+3w+2(13)@«:w < Hu(t7UO)||H50+3‘W+3(B)®Cw@§A2,771+4E

< Mt o) a0 @), x5015 41 = 1t w0) (- a,g)orarey < ults wo)llp—a g0 -

By the induction hypothesis and the first claim, the last term is smaller or equal to k4, ¢ for all t > tg 4, 4.
Hence the result follows for g sy 40 := tr.sy.0, for all o € (0,1]. O

Proof. (of Theorem 23) First we note that, choosing € > 0 properly, we have

D((—A5)*) = [H*7(B), D(=Ay)]2 = [H*7(B), D((—A4)"/?)]ae W
_ ['HS”Y(B), Hs+2,'y+2 (B) o (Cw}4€ (é) Hs+8€,’y+8£ (B) D (Cw _ Hs+85,’y+85 (B), .

where we have used Proposition 19 (i) in (1) and that v+ 8¢ < (n 4+ 1)/2 in the last equality. Moreover for
suitable 0 < £ < 1/2 — 2¢ we have

D((—As)'/272559) = [H*7(B), D(Ao)1 o242
— Hs+2+8€’v+2+8€ (B) @ (Cw @ §A2,’Y—2+86+4§’ (48)
where we have used Proposition 19 (iii).

Let tgso > 0,0 = 1/242e+¢ be as in Proposition 27, and ug € X7 . Then, applying formally (—A)'*e
to the variation of constants formula give us

(_As)l-i-au(t) _ (—As)1+ee(t_tR’s’9)AsU(tR,s,G) + / (—As)l_ee(t_S)As(—AS)2EF(U(8))d8. (4.9)

tR,s,0

Notice however that we do not know that u(t) € D((—A4)**¢) a priori. This will follow by showing that
the H*7(B) norm of the integrand of (4.9) is integrable, see [2, Proposition 1.1.7], which is a consequence
of the following computations, similar to Lemma 25.

()l p(—a,y+e) = H(—As)”fu(t)lhs,w(g)

<C H(_As)l-&-se(t—tza,s,e)z‘\s

trs0)laen
B(He(B) [w(tr,s5,0)ll 340 ()

C /t H(_As)l—se(t—s)As

tR,s,0

_ 2¢e

Notice that
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(=A% F(u(s)) D || As P (s) = 3u(s)) + uls

HHM(B) ) ’|7—L5+85»‘/+85 (B)

(2)
< C ||u - 3“(5) ||7_Ls+85+2,~,+85+2(]3;)@(cw + c ||u(5) ||7-LS+85,7+85 (B)

3
< C(HU(S) ||Hs+8s+2,w+ss+2(B)@Cw@éAZ + ”u(s) ||HS+8€’7+8€ (B))

¥ —2+48e+4&

3
S C(Hu(s)||D((,AS)1/2+25+5) + ||U(8)HD((,AS)1/2+25+5))
< C(”§,1/2+25+5 + HS71/2+2E+€)7 (4.11)

where we have used (4.7) in (1), the continuity of A : Hs+8+27H8+2(B) ¢ C,, — HT8=7H85(B) in (2),
(4.8) in (3) and Proposition 27 in (4). By (4.10) and (4.11), we find

Hu(t)HD((—AS)HE) <C(t—trso)” (1+e) g=0(t—tr.s0) o+ C 9 + Kep /S_(l_a)e_ésds,
0
Let us choose
CHS9+C 6+ﬁ99 /5 (lfs)efésds
0

and Tr s > tp.s such that (t —tg )" (1Te 0 —tre0) <1 for t > g .. Then Hu(t)\|D((7AS)1+E) < st e
forallt >tps.. O

We are now finally in position to prove part (i) of Theorem 1.

Proof. (of part (i) of Theorem 1). We check the conditions of Corollary 22 for (4.3). Here we use v = 1/2, so
that X, = X§, and X, = X3 . For any r > s, we choose W = D(A2) and Y = D((—A,)'*¢), where ¢ is as
in Theorem 23. Condition (i) follows from (1.3)-(1.4) and Proposition 20. For condition (ii), we first note that
D((—A,)1He) S D(—A,) = D(A2) — HFT27T2(B) ¢ C,,. Moreover, if ug € X{o and [Jug| x; < R, then,
as X7 < H ' (B) and [j uodpy = 0, we conclude that ”U’OHHO_l(]B) < R. Theorem 23 gives the necessary
estimate of the second condition.

Corollary 22 implies the existence of a connected global attractor A* for the semiflow T : [0, 00) x X to—
X3 5. By uniqueness of the global attractor, A® does not depend on r. Hence A* C D(AZ) for all » > 0 and
it attracts bounded sets of X} in D(A2).

For the s-independence, let s; > s9 > 0. As X7' < X;? is continuous and A®! is compact in X7} 0, e
conclude that A" is also compact in X7%. Consider now a bounded set B C X7%. Due to Theorem 23,
there exists £ > 0 such that the set T'()B is a bounded set of X7 Therefore, for t > ¢, we have

f || T(t)b— sy < inf ||T(¢)b— s
sup Inf IT()b — allxz2 < sup inf [IT()b — all

=sup inf ||T(t—0)T(¢)b —aHXfl 220,

beB a€EASL

Finally, as T'(t)A* = A°!, we conclude that A°! is a global attractor for the semiflow 7' in X7%. By
uniqueness of global attractors A% = A%2. O
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5. Convergence to the equilibrium

In this section, we prove part (ii) of Theorem 1. We first state an abstract result from [9]. Let V and H be
real Hilbert spaces such that V' is densely and continuously embedded to H. We recall that an element x € H

TH,V*

defines a continuous linear functional in V by y € V — (y,2)y € R. Under this, we have V Ry & il V=,
where iy, i and ig v+ are continuous embeddings with dense image.

Theorem 28. [9, Section 11.2] Let E : V. — R be a real analytic function such that E(0) = 0 € R,
DE(©) = 0 € V* and A := D?E(0) : V. — V* is a Fredholm operator, where DE : V — V* and
D?E .V — B(V,V*) are the first and second Fréchet derivatives. Then there exist 6 € (0,1/2], o > 0 and
¢ > 0 such that

E@)|"? <c |DE(v)|ly« for allv €V satisfying ||v|,, < o.

The above inequality is called the Lojasiewicz-Simon inequality at 0. In our application, the function F
of Theorem 28 will be related to the Lyapunov (energy) functional defined for the Cahn-Hilliard equation.
In this section, we always assume that dim(B) € {2,3} and work with the subspaces of real functions. In
order to apply the Theorem 28, we need the following technical lemma.

Lemma 29. If u € H'(B), then the linear operator T, : H*(B) — H~1(B) defined by
(Tu(v), h>H—1(B)><H1(]B) = /U%hdﬂg
B

is continuous and compact.

Proof. Let 8> 0 and T, : H'(B) — H*~#(B) be defined by T, (v) = u2v. This function is continuous. In
fact,

2 O ] ) 4 2
/Xw [u?o|” dpg = /Xﬁu4xﬁ@2dug < x5 ullzom) X2 ol Zem) < C lulle sy 015 @) -
B B

In (1) we have used Holder inequality and in (2) Corollary 15. Therefore we have ||fu(v)||Ho,-/a(B) <
¢ HUHip(B) HU||H1(1B)~

Let us fix 0 < 8 < a < 1. We observe that H*(B) — HY*(B) < H*5(B) — H%O(B). Therefore
HOB(B)* < H~1(B) is also compact. Denote by i4p : A — B the inclusion map A < B and by I :
HOB(B) — HOP(B)* the usual identification induced by the inner product in H%°(B). The following map

i’HOvB(B)*,Hl(B)* o IOTu : HI(B) — HO’_B(B) — %O’ﬁ(B)* — H_I(B)

is continuous and compact, as iy0.8(B)+, z-1(B) is a compact operator. The result follows now by the equality

Tu = Z‘HO,B(]B)*’H—l(B) olo Tu O

As H}(B) — L*(B), we can define the Lyapunov function £ : Hi(B) — R by (4.2). It is a real analytic
function, as it is the composition of linear and multilinear functions. The following theorem is our main
result of this section. Given ug € X7, we denote by w(ug) the w-limit set wyo ({uo}).
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Theorem 30. Let ug € X7 . If ¢ € w(ug), then there exist constants ¢,0 > 0 and 6 € (0,1/2] such that the
following inequality holds:

-6
1£(0) — LI < eI DLO| o )
whenever [[v — || 1 gy < 0.

Proof. The argument is standard and can be found e.g. in [3] and [19]. We only stress here the necessary
changes for the conical singularities situation.

We check the assumptions of Theorem 28. For this, we choose V = H}(B), V* = Hy'(B) and H =
{u e HOO(B); [g uduy =0}, and define the function E : H}(B) — R by E(v) = L(v+¢) — L(p). It is clear
that E(0) = 0. For the derivatives, for v, h € H(B) we have that

DL(v) = —Av+1v3 —v — ][USdug € H;'(B),
B

D*L(v)h = —Ah + (3v* = 1)h — 3][112hd,ug € Hy*'(B).
B

The proof of the above expressions uses Theorem 11, the Mellin-Sobolev embeddings from Corollary 15 and
the identification of Proposition 10.
In order to prove that DE(0) = 0 € V*, we note that DE(v) = DL(v + ¢). Therefore

DE(0) = —Ap + ¢* — ¢ — (¢*)p.

Since ¢ € w(u), we know that ¢ € H(B) is an equilibrium point [9, Theorem 8.4.6]. Hence —Ay + ¢® —
is constant. In fact, as ¢ € D(A3) and %—f = 0, Theorem 11 with u = v = Ap — p> + ¢ and (1.1) shows
that V(Ap — ¢® + ¢) = 0. This constant must be equal to (¢*)g by Theorem 11 and [ ¢du, = 0, which
implies that DE(0) = 0.

For showing Fredholm property of D?E(0), we first note that

D?*E(0)h = —Ah + (30> — 1)h — 3][<p2hd,ug € Hy'(B).
B
The inclusion H'(B) < H~!(B) is compact and by Lemma 29 the map h € H'(B) — v?h € H~1(B) is
also compact. In addition, the map h € H}(B) — —3 f5 v*hduy has finite rank and, therefore, it is also
a compact operator from H{(B) to Hy ' (B). We conclude that D?E(0) : H}(B) — Hy '(B) is a compact
perturbation of the isomorphism A : H}(B) — Hy '(B). O

As L is a Lyapunov function bounded from below and as w(ug) is compact in H>72(B) & C,, — H*(B),
we conclude the following:

Corollary 31. Let ug € X?,0~ Then
(i) There is a constant Lo € R such that L(p) = Lo, for all p € w(ug).
(ii) There is a neighborhood U C H}(B) of w(ug) and constants C > 0, 6 € (0,1/2] such that

1L(v) = Loo|' ™" < CIIDL®) 1 8y »

forallvel.
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Having the Lojasiewicz-Simon inequality, we can prove the convergence theorem below.

Proposition 32. Let ug € X7 and u be the solution of (1.1). Then there exists a us € w(ug) such that

limy o0 [|u(t) — vos || 1) = 0-

Proof. The proof follows from the arguments in [3, Section 3]. We sketch here the steps for the convenience
of the reader.

Let Loo = limy—soo L(u(t)). Then Loo < L(u(t)) for all ¢t € [0, 00). We define the function H : [0,00) — R
by

where 6 € (0,1/2] as in Corollary 31. The function H is non-negative and non-increasing, as

d . d
SLH(E) = 0(£(ut) — Loo)" "' L(u(t)) <0,

Moreover lim;_,, H(t) = 0. Let U C H}(B) be the open set of Corollary 31. Due to [9, Theorem 5.1.8], we

have

lim (inf [|T()u — vll32042m)gr,) =0 (5.1)

t—00 vew(ug)

Thus, there exists tg > 0 such that, for ¢ > tg, we have u(t) € U. Hence, for t > 3, we estimate

Jo (V(=Au+u? —u), V(=Au+ v’ —u)) dpug
[—Au+u? —u — (u?)B| -1 (5

o (V(=But w6 — ), V(~Au+ - ) dy,
[A(AY = u? + u)| =1 g,

|A(-Au +u? _“)Hfr{gl(B) 3
||A(Au —ud u)”Hgl(]B) =C ||A(*A’UJ+ u’ — U)HHJI(B) .

In (1) we have used Theorem 11 and Corollary 31, in (2) Corollary 13 and in (3) the definition of || - || ;-1 g,
and the isomorphism A : H}(B) — Hy '(B). By (1.1), we infer that

Hence % € LY(0,00; Hy '(B)) and e := limy o0 u(t R 9u (5)ds, where the limit is taken in
Hi'(B).

It remains to prove that us, € w(ug). We know that w(ug) C H272(B) ®R,, is compact. As H27T2(B)®
R, < H~!(B), we conclude that w(up) is also compact in H, *(B). Thus it is also closed. Equation (5.1)

d
. = |A(-Au+v® —u ||H @) < C%H(t).
0

du
ot

implies that

lim (inf ||T()u = v 5-15)) =0

t—00 wew(ug)
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and, therefore, that inf,eu(uo) [[ttoo — V|| -1 () = 0. As w(uo) is closed in H; ' (B), we conclude that u., €
w(ug). O

Finally, we prove part (ii) of Theorem 1.

Proof. (of part (ii) of Theorem 1) Recall first that T'(t)up € N,>oD(A2) due to (1.3). Therefore the limit in
D(A?) makes sense. We know by Theorem 23 that {T'(t)ug},~ is precompact in D(A?) for some T' > 0. Let
Uso € wW(up) be such that lim, . T(t)up = us in Hy ' (B). Note that since u, is an equilibrium point [9,
Theorem 8.4.6], T'()too = oo for all ¢ > 0 and, hence, us € Ny>oD(A2). Suppose that this limit does not
hold in D(A2). Then, there exist an gy > 0 and a sequence t;, — oo such that ||T(tx)ug — Ueo ||D(Ag) > £9. By
compactness, there exists a subsequence tj, — oo such that T'(¢4,)uo converges to a function w in D(A?).
This implies that T'(ty,)ug also converges to w in H~*(B). Therefore w = us by uniqueness of the limit
and we obtain a contradiction. O
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