

PRELIMINARY CRYSTALLOGRAPHIC DATA OF THE $\text{Ln}(\text{PF}_6)_3 \cdot 4\text{TDTD} \cdot 4\text{H}_2\text{O}$ COMPLEXES-*

Mueller, R.A. (1), Ulbrich, H.H. (2), Vicentini, G. (1) and Giesbrecht, E. (1)

(1) Instituto de Química and (2) Instituto de Geociências, University of São Paulo,
Cidade Universitária, São Paulo, Brazil.

Vicentini et al (J. Inorg. Nucl. Chem., 37, 2021, 1975) synthesized a series of complexes $\text{Ln}(\text{PF}_6)_3 \cdot 4\text{TDTD} \cdot 4\text{H}_2\text{O}$ ($\text{Ln} = \text{La-Lu, Y}$; TDTD = 1,4 - dithiane - 1,4 - dioxide) as very fine powders. Recrystallized single crystals are always complexly twinned and show the same D-S powder pattern as the original powders. Precession, Weissenberg and rotation methods were used to determine the crystallographic characteristics of the compounds with $\text{Ln} = \text{La, Ce, Yb}$. The La and Ce compounds are monoclinic with β close to 90° , and $P2, Pm, P2/m$ as possible space groups (diffraction symbol is $2/mP \dots$). The Yb compound shows orthorhombic symmetry, space group Pnca (Pbcn is the standard orientation). Doubling of two axes increases the unit cell content from 1 in the monoclinic to 4 in the orthorhombic crystals. D-S powder films were made of all the recrystallized material ($\text{Cr K}\alpha$, Si as internal standard) and a few lines computer-indexed. Cell constants were calculated using conventional least-squares computer methods. All complexes with $\text{Ln} = \text{Y, La to Tm}$, have comparable powder patterns and are thus monoclinic, while the Lu pattern is identical to that of the orthorhombic Yb. Cell parameters, change from $a = 9.05(1)$, $b = 9.12(2)$, $c = 12.44(1)$ Å, $V = 1026(2)$ Å³ (Y compound) to $a = 8.93(1)$, $b = 9.31(2)$, $c = 12.41(2)$ Å, $V = 1031(2)$ Å³ (Tm compound) while β changes from $92^\circ 06'(6)$ to $91^\circ 51'(10)$; corresponding data for the Yb compound are $17.19(4)$, $17.75(3)$, $13.37(2)$ Å, $V = 1020(3)$ Å³ (V per molecule). There is, within the low resolution of the cell parameters, an irregular tendency for the cell parameters to decrease, probably controlled by a small overall lanthanide contraction effect (Siekierski, J. Inorg. Nucl. Chem., 33, 377, (1971)).

* Supported by FAPESP