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ABSTRACT
The complexity of solving feasibility problems is considered in this
work. It is assumed that the constraints that define the problem
can be divided into expensive and cheap constraints. At each iter-
ation, the introduced method minimizes a regularized pth-order
model of the sum of squares of the expensive constraints sub-
ject to the cheap constraints. Under a Hölder continuity prop-
erty with constant β ∈ (0, 1] on the pth derivatives of the expen-
sive constraints, it is shown that finding a feasible point with pre-
cision ε > 0 or an infeasible point that is stationary with toler-
ance γ > 0 of minimizing the sum of squares of the expensive
constraints subject to the cheap constraints has iteration com-
plexity O(| log(ε)| γ ζ(p,β) ω1+(1/2)ζ(p,β)

p ) and evaluation complex-

ity (of the expensive constraints) O(| log(ε)|[γ ζ(p,β) ω1+(1/2)ζ(p,β)
p +

(1− β)/(p+ β − 1)| log(γ√ε)|]), where ζ(p,β) = −(p+ β)/(p+
β − 1) and ωp = ε if p = 1, while ωp = �(x0) if p> 1. Moreover,
if the derivatives satisfy a Lipschitz condition and a uniform reg-
ularity assumption holds, both complexities reduce to O(| log(ε)|),
independently of p.
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1. Introduction

Many practical problems require the solution of systems of equalities and inequalities.
Socio-economic models usually aim targets with respect to education, housing, eradica-
tion of poverty, sustainability, and public health (see, e.g. [18]). Molecular dynamics is a
powerful technique for comprehension at the molecular level of a great variety of chemical
processes. In molecular dynamics, simulations need starting points with adequate energy
requirements. If the starting configuration has close atoms, the temperature scaling is dis-
rupted by excessive potentials that accelerate molecules over the accepted velocities for
almost any reasonable integration time step. In Packmol [22], the problem of finding an
adequate initial configuration for a molecular dynamics simulation is tackled as a feasibil-
ity problem. The goal is to place molecules within an arbitrary finite domain in such a way
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that distances between every pair of atoms belonging to different molecules are larger than
a given threshold tolerance. Matrix completion (see, e.g. [19,20]) is another problem that
can be classified as a feasibility problemand that includes several practical applications. The
problem consists of reconstructing a matrix possessing certain properties knowing only a
subset of its entries. Properties may include positive semidefinite matrices, Euclidean dis-
tancematrices, contractionmatrices, matrices of a given rank, correlationmatrices, doubly
stochastic matrices, and Hadamard matrices, among others (see [2] for details).

In this work, it is assumed that the constraints that define the problem can be divided
into expensive and cheap constraints. It is also assumed that the set of solutions of the
cheap constraints is non-empty and bounded, that it is relatively easy tomaintain feasibility
with respect to the cheap constraints, and that minimizing a regularized model of the sum
of squares of the expensive constraints subject to the cheap constraints is affordable. In
contrast, it is assumed that expensive constraints are expensive to evaluate. Thus, at each
iteration, the proposed method computes a new iterate as an approximate minimizer of a
regularized model of the sum of squares of the expensive constraints subject to the cheap
constraints. Examples of cheap constraints are bounds on the variables, linear constraints,
spherical and ball constraints, intersections of balls and polytopes, andmatrices with some
property such as idempotency or semidefiniteness, among others.

Feasibility problems that come from linear parameter estimation in the case that prior
information on the parameters is represented by the level set of a nonconvex function
were considered in [4]. The problem of minimizing a sum of squares subject to convex
constraints was considered in [11,12]. In [11], a cubic regularization scheme of ARC-
type [9,10] was employed, and complexity results were given, considering stopping criteria
based on the residual norm and on the gradient of the residual norm. In [12], the approach
of [11] was extended in order to consider arbitrary pth order Taylor approximations of the
objective function in the sense of [8]. The case in which p is odd (including p = 1) was not
addressed in [12]. In the present paper, p ≥ 1 is arbitrary and only Hölder conditions are
assumed to be satisfied by pth derivatives of the expensive constraints as in [13,16,17,21].
In fact, results presented in the present work are a direct consequence of recent develop-
ments on the minimization of functions with Hölder continuity assumptions introduced
in [21]. In the present work, it is shown that finding a feasible point with precision ε > 0
or an infeasible point that is stationary of minimizing the Euclidean norm of the expen-
sive constraints residual subject to the cheap constraints with tolerance γ > 0 has iteration
complexity

O
(
| log(ε)| γ ζ(p,β) ω1+(1/2)ζ(p,β)

p

)
and evaluation complexity (of the expensive constraints and their derivatives)

O
(
| log(ε)|

[
γ ζ(p,β) ω

1+(1/2)ζ(p,β)
p + 1− β

p+ β − 1
| log(γ√ε)|

])
,

where β ∈ (0, 1] is the constant in the Hölder continuity property of the pth derivatives of
the expensive constraints, ζ(p,β) = −(p+ β)/(p+ β − 1) and

ωp =
{
ε, if p = 1,
�(x0), if p > 1.
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When the pth derivatives of the expensive constraints satisfy a Lipschitz condition (so,
β = 1), both complexities reduce to O(| log(ε)| γ−(p+1)/p). Still under the Hölder conti-
nuity property on the pth derivatives of the expensive constraints, and under a gradient-
domination property (see [23]) with constant κ , which guarantees that KKT points of the
sum of squares of the expensive constraints subject to the cheap constraints are feasible,
the iteration complexity is shown to be

O
(
| log(ε)|ω1+(1/2)ζ(p,β)

p

)
;

while the evaluation complexity is given by

O
(
| log(ε)|

[
ω
1+(1/2)ζ(p,β)
p + 1− β

p+ β − 1
| log(√ε)|

])
.

When the pth derivatives of the expensive constraints satisfy a Lipschitz condition (so, β =
1), both complexities reduce to O(| log(ε)|), independently of p. When the pth derivatives
of the expensive constraints do not satisfy a Lipschitz condition (so, β < 1), the iteration
complexity reduces to O(| log(ε)|) and the evaluation complexity reduces to O(| log(ε)|2)
if p>1. The most costly case is the case β < 1 and p = 1, in which both complexities
reduce to O(| log(ε)| ε(β−1)/2β). Similar bounds for the ARC-like method, with convex
cheap constraints and using (p+ 1)-regularized pth order Taylor models with p even, have
been presented in [12, Theorem 3.6].

The rest of this work is organized as follows. Section 2 introduces the proposed algo-
rithms. Section 3 presents the complexity results. At the end of the section, it is presented
an example showing that the bound | log(ε)| is sharp; and thus, it provides a reliable esti-
mation of the computer work in practical cases. Illustrative numerical examples are given
in Section 4. Final remarks are given in Section 5.

Notation. ‖ · ‖ denotes the Euclidean norm. If v ∈ Rn is a vector with components vi,
v+ is the vectorwith componentsmax{0, vi}, i = 1, . . . , n. Ifψ(x) is a vectorial function, we
denote its Jacobian byψ ′(x) = ((∂ψi/∂xj)(x)).R+ denotes the set of nonnegative elements
of R. If v and w are vectors with components vi and wi, respectively, min{v,w} denotes the
vector with components min{vi,wi}. If C is a set, we denote its diameter by diam(C).

2. Proposed algorithm

The problem tackled in this work consists in finding x ∈ Rn such that

h(x) = 0, g(x) ≤ 0, (1)

h(x) = 0, and g(x) ≤ 0, (2)

where h : Rn→ Rm, g : Rn→ Rq, h : Rn→ Rm, and g : Rn→ R
q have continuous

first derivatives for all x ∈ Rn. Constrains (2) are considered to be ‘cheap’; while con-
straints (1) are considered ‘expensive’ constraints. It is assumed that the set of points x ∈ Rn
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satisfying (2) is non-empty and bounded. For all x ∈ Rn, we define

�(x) = 1
2
(‖h(x)‖2 + ‖g(x)+‖2). (3)

Thus, problem (1,2) can be reformulated as

Minimize�(x) subject to h(x) = 0 and g(x) ≤ 0. (4)

The connection between feasibility problem (1,2) and its reformulation (4) as an optimiza-
tion problem is that a solution to (4) at which the objective function vanishes is also a
solution to (1,2). Unfortunately, under standard assumptions, stationary points of (4) that
do not satisfy expensive constraints (1) are also a possible outcome of a method concerned
with the resolution of (4), even in the case in which feasibility problem (1,2) has a solu-
tion. Certificates of infeasibility could only be obtained using additional assumptions on
the constraints or using global optimization algorithms.

The method considered in this paper for solving (4) is iterative. Each iteration k rests
upon the resolution of a sequence of subproblems of the form

MinimizeMxk,�(x)+ σk,�‖x− xk,�‖p+1 subject to h(x) = 0 and g(x) ≤ 0 (5)

for � = 0, 1, 2, . . . ; where σk,� > 0 and Mxk,�(x) is a pth-order model of �(x) at xk,� (for
some integer p ≥ 1), in a sense that will be defined later. The motivation for this approach
relies on the characterization of constraints (1) and (2) as cheap and expensive constraints.
Constraints (2) are said to be cheap in the sense that it is assumed that obtaining a feasible
point, which is an approximate solution to (5), is affordable. Constraints (1) are said to be
expensive in the sense that it is assumed that evaluating them ismuchmore expensive than
evaluating the cheap constraints. The description of the algorithm follows.

Algorithm 2.1: Assume that ε > 0, γ > 0, p ∈ {1, 2, . . . }, α ∈ (0, 1), σmin > 0, θ > 0,
and x0 ∈ Rn such that h(x0) = 0, g(x0) ≤ 0, and�(x0) > ε are given. Initialize k← 0.

Step 1. Compute xk+1 ∈ Rn, λk+1 ∈ Rm, and μk+1 ∈ R
q
+ satisfying

h(xk+1) = 0, g(xk+1) ≤ 0 and min{μk+1,−g(xk+1)} = 0 (6)

and such that either

�(xk+1) ≤ 1
2
�(xk) (7)

or ∥∥∥∇�(xk+1)+ h′(xk+1)Tλk+1 + g′(xk+1)Tμk+1
∥∥∥ ≤ γ√�(xk). (8)

Step 2. If (7) holds and �(xk+1) > ε, update k← k+ 1, and go to Step 1. Otherwise,
stop.

We now analyse the situation in which, at iteration k, Algorithm 2.1 stops. This means
that xk+1 ∈ Rn, λk+1 ∈ Rm, and μk+1 ∈ R

q
+ are such that (6) holds and either�(xk+1) ≤
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ε or (7) does not hold. In the first case, xk+1 is the feasible point with precision ε we were
looking for. In the latter case, by definition of the algorithm, if (7) does not hold, we must
have that (8) holds. Dividing both sides of (8) by

√
�(xk+1), we obtain∥∥∥∥∥∇�(x

k+1)√
�(xk+1)

+ h′(xk+1)T
(

λk+1√
�(xk+1)

)
+ g′(xk+1)T

(
μk+1√
�(xk+1)

)∥∥∥∥∥ ≤ γ
√
�(xk)√
�(xk+1)

.

(9)
But, since (7) does not hold, one has that

√
�(xk)/

√
�(xk+1) ≤ √2. Moreover,

∇
[√
�(xk+1)

]
= 1

2
∇�(xk+1)√
�(xk+1)

.

Therefore, by (9),∥∥∥∥∥2∇
[√
�(xk+1)

]
+ h′(xk+1)T

(
λk+1√
�(xk+1)

)
+ g′(xk+1)T

(
μk+1√
�(xk+1)

)∥∥∥∥∥ ≤ γ
√
2.

(10)
Thus, ∥∥∥∥∥∇

√
�(xk+1)+ h′(xk+1)T

(
λk+1

2
√
�(xk+1)

)
+ g′(xk+1)T

(
μk+1

2
√
�(xk+1)

)∥∥∥∥∥
≤ γ
√
2
2
= γ√

2
. (11)

By (6), (11)means that xk+1, withmultipliersλk+1/(2
√
�(xk+1)) andμk+1/(2

√
�(xk+1)),

is a KKT point with tolerance γ for the minimization of
√
�(x) subject to h(x) = 0 and

g(x) ≤ 0. If γ is chosen to be much smaller than ε, this stopping criterion may be a symp-
tom of the fact that xk+1 is an approximate infeasible local minimizer of infeasibility. This
is not a guarantee that the original feasibility problem is infeasible. Certificates of infeasi-
bility could only be obtained using additional properties on the constraints or using global
optimization algorithms. Unfortunately, all practical algorithms for constrained optimiza-
tion stop when infeasible points that are almost stationary with respect to infeasibility are
found.

Algorithm 2.2 is used at Step 1 of Algorithm 2.1 to compute xk+1, λk+1, and μk+1. The
description of Algorithm 2.2 below is an instantiation of [21, Alg.1] applied to the mini-
mization of�(x) subject to h(x) = 0 and g(x) ≤ 0, using xk as initial guess, (1/2)�(xk) as
a target for the functional value, and min{0.99, γ

√
�(xk)} as the tolerance for the norm of

the gradient of the Lagrangian. Note that, in (8), a precision of γ
√
�(xk) is required. The

min{0.99, ·} appears because this quantity plays the role of a tolerance that, in [21, Alg.1],
is assumed to be in (0, 1). In this sense, the constant 0.99 could be replaced with any other
value in (0, 1). The constant 1/2 in (7) could also be replaced with any other value in (0, 1).
It is implicit that, every time Algorithm 2.2 is used, its parameters γ , p, α, σmin, and θ cor-
respond to those of Algorithm 2.1, i.e. the same at every call. This is why some of those
values, that are not explicitly used in Algorithm 2.1, appear in its list of parameters.
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Algorithm 2.2: Assume that γ > 0, p ∈ {1, 2, . . . }, α ∈ (0, 1), σmin > 0, θ > 0 are given.
Initialize xk,0 = xk, σk,0 = σmin, and �← 0.

Step 1. Choose a pth-order modelMxk,�(x) for�(x) at xk,�.
Step 2. Find x ∈ Rn, λ ∈ Rm, and μ ∈ R

q
+ such that

Mxk,�(x)+ σk,�‖x− xk,�‖p+1 ≤ Mxk,�(x
k,�), (12)∥∥∥∇(Mxk,�(x)+ ‖x− xk,�‖p+1)+ h′(x)Tλ+ g′(x)Tμ

∥∥∥ ≤ θ‖x− xk,�‖p, (13)

h(x) = 0, g(x) ≤ 0, and ‖min{μ,−g(x)}‖ = 0. (14)

Step 3. If

�(x) ≤ 1
2
�(xk) (15)

or ∥∥∥∇�(x)+ h′(x)Tλ+ g′(x)Tμ
∥∥∥ ≤ min

{
0.99, γ

√
�(xk)

}
, (16)

stop returning x, λ, and μ.
Step 4. Test the sufficient descent condition

�(x) ≤ �(xk,�)− α

(2p+ 4)p+1/p
min

{
0.99, γ

√
�(xk)

}p+1/p
σk,�

. (17)

If (17) does not hold, redefine σk,�← 2σk,� and go to Step 2. Otherwise, define
xk,�+1 = x and σk,�+1 = σk,�, update �← �+ 1, and go to Step 1.

Remark: In the case p = 1, modelMxk,� may take the form

Mxk,�(x) = �(xk,�)+ ∇�(xk,�)T(x− xk,�)+ 1
2
(x− xk,�)TBk,�(x− xk,�),

with arbitrary choices of the matrix Bk,�. Even the null matrix may be chosen. (As it will
be seen in Section 3, assumptions required to obtain the desired complexity results, in
particular Assumption A1, require Bk,� to be uniformly bounded.) This opens the possi-
bility of using problem-oriented safeguarded quasi-Newton approximations of ∇2�(x).
The Gauss–Newton approximation

m∑
i=1
∇hi(x)∇hi(x)T +

∑
gi(x)≥0

∇gi(x)∇gi(x)T ,

that only involves first-order information of the derivatives of h and g, is an interesting
alternative due to its positive semidefiniteness and the fact that it approximates ∇2�(x)
when x is almost feasible. Other possibilities in the quasi-Newton field are the rank-one
correction SR1 and structured quasi-Newton approximations [14].

An attentive reader familiar with [21, Alg.1] may have noticed that parameter δ > 0
of [21, Alg.1] is missing in the description of Algorithm 2.2. Parameter δ in [21, Alg.1]
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is a tolerance for the satisfaction of the constraints and the complementarity. In the cur-
rent work, we are assuming that constraints h and g are cheap. This is why, at Step 2 of
Algorithm 2.2, it is possible to require (14) instead of

‖h(x)‖ ≤ δ, ‖g(x)+‖ ≤ δ, and ‖min{μ,−g(x)}‖ ≤ δ. (18)

Since, naturally, (14) implies (18) for any δ > 0, the properties of [21, Alg.1] are preserved
in Algorithm 2.2.

3. Complexity results

By the continuity of the derivatives of h(x) and g(x), function �(x) also has continuous
first derivatives. However, in general, the second derivatives of �(x) do not exist. This
fact could restrict the applicability of the proposed method to the case p = 1. However,
modifying the constraints gi(x) ≤ 0 by means of the introduction of slack variables, all
expensive constraints become equalities and function�(x) inherits all the differentiability
properties of the functions that define the expensive constraints.

Assumption A1: Let C0 be an open, convex, and bounded set that contains all solutions
to (2). There exist β ∈ (0, 1] and L > 0 such that for all x̄, x ∈ C0,

‖∇�(x)−∇Mx̄(x)‖ ≤ L‖x− x̄‖p+β−1,
Mx̄(x̄) = �(x̄), and �(x) ≤ Mx̄(x)+ L‖x− x̄‖p+β .

Assumption A1 corresponds to assumptions (2) and (3) in [21, p. 2448]. Note that con-
stants L and β in Assumption A1 may depend on the diameter of C0. Assumption A1
holds assuming Hölder continuity of the pth-derivatives of � if the model Mx̄ is built as
the pth Taylor polynomial around x̄ plus a homogeneous polynomial of order p+ 1 (see,
e.g. [13,21],[25, Lem.1]]).

Assumption A2 ensures that Step 2 of Algorithm 2.2 is well defined.

Assumption A2: For all θ > 0, σ ≥ 0, and x̄ ∈ Rn satisfying h(x̄) = 0 and g(x̄) ≤ 0, there

exist x ∈ Rn, λ ∈ Rm, and μ ∈ R
q
+ such that

Mx̄(x)+ σ‖x− x̄‖p+1 ≤ Mx̄(x̄),∥∥∥∇(Mx̄(x)+ σ‖x− x̄‖p+1)+ h′(x)Tλ+ g′(x)Tμ
∥∥∥ ≤ θ‖x− x̄‖p,

‖h(x)‖ = 0, ‖g(x)+‖ = 0, and ‖min{μ,−g(x)}‖ = 0.

Step 2 of Algorithm 2.2 relies on the approximateminimization of the subproblem given
by

MinimizeMx̄(x)+ σ̄‖x− x̄‖p+1 subject to h(x) = 0 and g(x) ≤ 0,

with x̄ = xk,� and σ̄ = σk,� for some k and some �. Since x̄ is a feasible point at which the
subproblem’s objective function value isMx̄(x̄), the first condition in Assumption A2must
be satisfied at every minimizer of the subproblem. If the cheap constraints (that are the
constraints of the subproblem) satisfy a constraint qualification, then the KKT conditions
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hold at every minimizer of the subproblem; and thus, every minimizer also satisfies the
second and the third conditions in Assumption A2. Therefore, under the assumption that
the cheap constraints satisfy a constraint qualification, the minimizers of the subproblem
satisfy Assumption A2. Since it is assumed that the set of points that satisfy the cheap con-
straints is non-empty and bounded, the subproblem has at least a minimizer; and thus,
under the assumption that the cheap constraints satisfy a constraint qualification, at least
a point that satisfies Assumption A2 exists.

The following theorem, which is a particular case of [21, Theorem 2.3], limits the
number of iterations of Algorithm 2.2 when it is called at iteration k of Algorithm 2.1.

Theorem 3.1: Suppose that Assumptions A1 and A2 hold. Then, there exists cp > 0, only
dependent on α, β, θ , L, and p such that, when Algorithm 2.2 is called at iteration k of
Algorithm 2.1, after at most

�(xk)
2

(
min

{
0.99, γ

√
�(xk)

})− p+β
p+β−1

αcp
(19)

iterations, Algorithm 2.2 computes x ∈ Rn, λ ∈ Rm, and μ ∈ R
q
+ verifying

‖h(x)‖ = 0, ‖g(x)+‖ ≤ 0, and ‖min{μ,−g(x)}‖ = 0 (20)

that also satisfies either

�(x) ≤ 1
2
�(xk) (21)

or ∥∥∥∇�(x)+ h′(x)Tλ+ g′(x)Tμ
∥∥∥ ≤ min

{
0.99, γ

√
�(xk)

}
. (22)

Proof: The proof follows from [21, Thm.2.3]. The expression of cp is given in [21, (26)].
�

The following theorem, which is a particular case of [21, Thm.2.4], provides a bound
for the number of evaluations of � and its derivatives made by Algorithm 2.2 when it is
called at iteration k of Algorithm 2.1.

Theorem 3.2: Suppose that Assumptions A1 and A2 hold. Then, the number of evaluations
of � and its derivatives made when Algorithm 2.1 is called at iteration k of Algorithm 2.1 is
bounded above by

�(xk)
2

(
min

{
0.99, γ

√
�(xk)

})−(p+β)/(p+β−1)
αcp

+ 1− β
p+ β − 1

∣∣log2(γ√ε)∣∣+ ca, (23)

where cp and ca only depend on α, β, θ , L, p, and σmin.
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Proof: By Theorem 3.1, when Algorithm 2.2 is called at iteration k of Algorithm 2.1, a
maximum of

�(xk)
2

(
min

{
0.99, γ

√
�(xk)

})−(p+β)/(p+β−1)
αcp

(24)

iterations are performed; and by [21, Thm.2.4], the maximum number of function and
derivatives evaluations of� is given by (24) plus

max

{
log(θ),

(
1− β

p+ β − 1
log

((
min

{
0.99, γ

√
�(xk)

})−1)
+ ce

)}

+ ∣∣log2(σmin)
∣∣+ 1, (25)

where cp and ce only depend on α, β , θ , L, and p. (In fact, as already mentioned in the
proof of Theorem 3.1, constant cp is given by [21, (26)]; while ce corresponds to c� in the
statement of [21, Thm.2.4].) If we define

ca = ce +
∣∣log(θ)∣∣+ ( 1− β

p+ β − 1

)
log(0.99−1)+ ∣∣log(σmin)

∣∣+ 1 (26)

then (23) follows from straightforward calculations using that, before termination of
Algorithm 2.1, one has that�(xk) > ε. �

The following theorem limits the total number of iterations of Algorithm 2.2, as well
as the total number of evaluations of � and its derivatives, during the whole execution of
Algorithm 2.1.

Theorem 3.3: Suppose that Assumptions A1 and A2 hold. Then, during the execution of
Algorithm 2.1, the total number of iterations of Algorithm 2.2 is bounded above by

1
2αcp

∣∣log2 (ε/�(x0))∣∣max
{
0.99ζ(p,β)�(x0), γ ζ(p,β) ω1+(1/2)ζ(p,β)

p

}
, (27)

and the total number of evaluations of � and its derivatives performed by Algorithm 2.2 is
bounded above by

1
2αcp

∣∣log2 (ε/�(x0))∣∣
(
max

{
0.99ζ(p,β)�(x0), γ ζ(p,β) ω1+(1/2)ζ(p,β)

p

}

+ 1− β
p+ β − 1

∣∣log2 (γ√ε)∣∣+ ca
)
, (28)

where

ωp =
{
ε, if p = 1,
�(x0), if p > 1,

ζ(p,β) = −(p+ β)/(p+ β − 1), and cp, given by [21, (26)], and ca, defined in (26), depend
only on α, β, θ , L, p, and σmin.
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Proof: Theorem 3.1 gives the upper bound (19) for the number of iterations performed by
Algorithm 2.2 when it is called at iteration k of Algorithm 2.1. Note that

�(xk)
2

(
min

{
0.99, γ

√
�(xk)

})ζ(p,β)
αcp

= 1
2αcp

max
{
0.99ζ(p,β)�(xk), γ ζ(p,β)�(xk)1+(1/2)ζ(p,β)

}
. (29)

If p = 1 then p+ β ≤ 2 and, therefore, 1+ (1/2)ζ βp = (p+ β − 2)/2(p+ β − 1) ≤ 0.
So, using that�(xk) > ε, we have that

�(xk)1+(1/2)ζ(p,β) ≤ ε1+(1/2)ζ(p,β). (30)

On the other hand, if p>1 then p+ β ≥ 2 and, therefore, 1+ (1/2)ζ βp = (p+ β − 2)/
2(p+ β − 1) ≥ 0. So, since�(xk) ≤ �(x0), we have that

�(xk)1+(1/2)ζ(p,β) ≤ �(x0)1+(1/2)ζ(p,β). (31)

Thus, (27) follows from (29), �(xk) ≤ �(x0), (30), (31), and the fact that the number
of times Algorithm 2.2 calls Algorithm 2.1 is obviously bounded by | log2(ε/�(x0))|.
Bound (28) follows by using the same arguments but starting from upper bound (23),
given by Theorem 3.2, on the number of evaluations of � and its derivatives performed
by Algorithm 2.2 when it is called at iteration k of Algorithm 2.1. �

Let us examine the result of Theorem 3.3 under the light of the new assumption below.

Assumption A3: There exists κ > 0 such that, for all x ∈ Rn, λ ∈ Rm, and μ ∈ R
q
+

satisfying h(x) = 0, g(x) ≤ 0,min{μ,−g(x)} = 0, and�(x) > 0, we have that∥∥∥∥∇�(x)√
�(x)

+ h′(x)Tλ+ g′(x)Tμ
∥∥∥∥ ≥ κ . (32)

Consider the problem

Minimize
√
�(x) subject to h(x) = 0 and g(x) ≤ 0. (33)

Since ∇[√�(x)] = (1/2)∇�(x)/√�(x), Assumption A3 means that, if (x, λ,μ) ∈ Rn ×
Rm ×R

q
+ is such that x is a feasible point of problem (33) at which �(x) does not vanish

and μ satisfies the complementarity conditions of problem (33) then the gradient of the
Lagrangian of problem (33) evaluated at (x, λ,μ) is bounded away from zero. Thus, KKT
points of (33)must satisfy�(x) = 0; and this means that theymust be solutions to original
feasibility problem (1,2). If problem (1,2) has no cheap constraints, then (32) represents a
uniform regularity assumption of constraints (1). Moreover, if problem (1,2) has no cheap
constraints, then (32) coincides with the gradient-domination property of degree 2 and
constant τ� = κ2 as defined in [23, p. 191]. In the general case, i.e. in the presence of cheap
constraints, it does not seem to be possible to identify a simple sufficient condition for the
fulfilment of Assumption A3.
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Lemma 3.1: Suppose that Assumption A3 holds. Then, given �(xk) > 0, for all x ∈ Rn,
λ ∈ Rm, and μ ∈ R

q
+ satisfying h(x) = 0, g(x) ≤ 0, andmin{μ,−g(x)} = 0, whenever∥∥∥∇�(x)+ h′(x)Tλ+ g′(x)Tμ

∥∥∥ ≤ κ√
2

√
�(xk) (34)

we have that

�(x) ≤ 1
2
�(xk). (35)

Proof: Let x ∈ Rn, λ ∈ Rm, and μ ∈ R
q
+ be such that h(x) = 0, g(x) ≤ 0, and

min{μ,−g(x)} = 0. If �(x) = 0 then the thesis follows trivially. We consider �(x) > 0
from now on. Assume that (34) holds and, by contradiction, that (35) does not hold. Then,
�(x) > (1/2)�(xk) or, equivalently,

√
�(xk) <

√
2
√
�(x). Thus, by (34),∥∥∥∇�(x)+ h′(x)Tλ+ g′(x)Tμ

∥∥∥ ≤ κ√
2

√
�(xk) < κ

√
�(x). (36)

Dividing both sides of (36) by
√
�(x), we obtain the negation of Assumption A3 with

multipliers λ/
√
�(x) and μ/

√
�(x). �

The purpose of tests (8) and (16) inAlgorithms 2.1 and 2.2 is to detect convergence to an
infeasible stationary point of the infeasibility that no longer exists under Assumption A3.
Therefore, under Assumption A3, these two tests and parameter γ should be eliminated
from the algorithms. The consequence of Lemma 3.1 is that, if AssumptionA3 holds, Algo-
rithms 2.1 and 2.2 with tests (8) and (16) suppressed behave exactly as in the case in which
the two tests are not suppressed and γ is chosen to satisfy γ = κ/√2. Thus, the theorem
below follows.

Theorem 3.4: Suppose that Assumptions A1, A2, and A3 hold, and that, in Algorithms 2.1
and 2.2, parameter γ and tests (8) and (16) are suppressed. Then, during the execution of
Algorithm 2.1, the total number of iterations of Algorithm 2.2 is bounded above by

1
2αcp

∣∣log2 (ε/�(x0))∣∣max

{
0.99ζ(p,β)�(x0),

(
κ√
2

)ζ(p,β)
ω
1+(1/2)ζ(p,β)
p

}
, (37)

and the total number of evaluations of � and its derivatives performed by Algorithm 2.2 is
bounded above by

1
2αcp

∣∣log2 (ε/�(x0))∣∣
(
max

{
0.99ζ(p,β)�(x0),

(
κ√
2

)ζ(p,β)
ω
1+(1/2)ζ(p,β)
p

}

+ 1− β
p+ β − 1

∣∣∣∣log2
(
κ√
2

√
ε

)∣∣∣∣+ ca
)
, (38)

where

ωp =
{
ε, if p = 1,
�(x0), if p > 1,

ζ(p,β) = −(p+ β)/(p+ β − 1), and cp, given by [21, (26)], and ca, defined in (26), depend
only on α, β, θ , L, p, and σmin.
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Proof: The bounds in the thesis of this theorem are the bounds given in Theorem 3.3
with γ substituted by κ/

√
2. So the thesis follows from Theorem 3.3 and Lemma 3.1. �

Corollary 3.1 summarizes the results for the case in which Assumption A3 holds. It
should be noted that when Assumption A1 holds with β = 1, i.e. when the pth order
derivatives of � satisfy a Lipschitz condition, the complexity bounds do not depend
on p.

Corollary 3.1: Suppose that Assumptions A1, A2, and A3 hold, and that, in Algorithms 2.1
and 2.2, parameter γ and tests (8) and (16) are suppressed. Then, during the execution of
Algorithm 2.1:

(a) The total number of iterations of Algorithm 2.2 and the total number of evaluations of�
and its derivatives performed by Algorithm 2.2 are both bounded by O(|log(ε)|) if β = 1
and independently of p.

(b) The total number of iterations of Algorithm 2.2 is bounded by O(|log(ε)|) and the total
number of evaluations of � and its derivatives performed by Algorithm 2.2 is bounded
by O(| log(ε)|2) if β < 1 and p>1.

(c) The total number of iterations of Algorithm 2.2 and the total number of evalua-
tions of � and its derivatives performed by Algorithm 2.2 are both bounded by
O(| log(ε)| ε(β−1)/2β) if β < 1 and p = 1.

Proof: The proof follows from Theorem 3.4 by substituting p and β in (37) and (38) by
the corresponding values and eliminating all the terms that do not depend on ε. �

It is easy to see that the complexity bound given by Corollary 3.1 is sharp when
p = 1 and β = 1. For that purpose, consider problem (1,2) given by m = 1, h(x) = x,
and q = m = q = 0, i.e. �(x) = x2. Given x0 arbitrary and considering σk,0 = 2 and
Bk,0 = 0 for all k, we have that x = xk,0 − (1/2σk,0)∇�(xk,0) satisfies (12) and (13). But
x = (1/2)xk,0 and, thus, by the definition of�, (15) holds. Therefore, x = xk,1 = xk+1. This
implies that xk+1 = (1/2)xk and�(xk+1) = (1/4)�(xk) for all k ∈ N. Then, for all k ∈ N,
�(xk) = (1/4k)�(x0). So,�(xk) ≤ ε if and only if (1/4k)�(x0) ≤ ε or, equivalently, k ≥
(1/2) log2(�(x

0)/ε) = (1/2)| log2(ε/�(x0))|.

4. Illustrative examples

In this section, we aim to illustrate with numerical examples the theoretical result given
by Corollary 3.1 item (a), i.e. the O(| log(ε)|) iterations and evaluations complexity of
Algorithm 2.1–2.2 to find x satisfying �(x) ≤ ε, h(x) = 0, and g(x) ≤ 0 under Assump-
tions A1 (with p = 1 and β = 1), A2, and A3. With this purpose, we implemented
Algorithms 2.1 and 2.2 in Fortran 90. In the implementation, the underlying problem at
Step 2 of Algorithm 2.1, which consists of minimizing a quadratic function with arbitrary
constraints, is solved usingAlgencan [1,5]. In the numerical experiments, we setα = 10−8,
σmin = 10−8, and θ = 100.
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4.1. Toy illustrative examples

Example 1: Consider the feasibility problemwithm = 2, q = 0,m = 0, q = 4, and n = 2
given by

h(x) =
(
10(x2 − x21)

1− x1

)
and

g(x) =

⎛
⎜⎜⎝

x1 − 2
x2 − 2
−x1 − 2
−x2 − 2

⎞
⎟⎟⎠ .

This means that �(x) = 100(x2 − x21)
2 + (1− x1)2 is the popular Rosenbrock function

and cheap constraints (2) are x ∈ [−2, 2]. Numerically, it can be verified that Assump-
tion A3 holds with κ = 0.5. We employed Algorithm 2.1–2.2 for minimizing �(x) with
x ∈ [−2, 2] using Bk,0 as the Barzilai–Borwein–Raydan diagonal estimation of the Hes-
sian as in [3,7,24] and Bk,� = Bk,0 + ξk,�I, where ξk,� > 0 for � = 1, 2, . . . is given by a
safeguarded backtracking procedure. Starting from x0 = (−1.2, 1)T , Table 1 displays the
sequence�(xk) together with the accumulated number of iterations of Algorithm 2.2 (#it
in the table) and evaluations of � (#� in the table). The correlations between the values
of | log(ε)| and the accumulated number of iterations and functional evaluations per-
formed by Algorithm 2.2 are 0.85 and 0.80, respectively, corroborating that the logarithmic
estimation is reliable.

Example 2: Let A ∈ Rn×n be symmetric and positive definite. Consider the feasibility
problem withm = 1, q = 0,m = 0, and q = 0 given by

h(x) =
√
1
2
(x− x̄)TA(x− x̄).

Then �(x) = (1/2)(x− x̄)TA(x− x̄); thus, ∇�(x) = A(x− x̄) and ‖∇�(x)‖2 =√
(x− x̄)TATA(x− x̄). Then, for all x ∈ Rn,

‖∇�(x)‖ ≥ λmin‖x− x̄‖

Table 1. Details of the execution of
Algorithm 2.1–2.2 in the toy illustrative Example 1.

k #it #� �(xk)

0 0 1 2.42000000E+01
1 2 5 4.56006286E+00
2 9 17 1.74588298E+00
3 18 31 6.72291440E−01
4 24 38 1.69811030E−01
5 30 46 4.81342844E−02
6 36 54 3.57124613E−03
7 40 58 5.98641542E−04
8 46 65 1.88139425E−05
9 56 76 1.23125395E−06
10 59 79 4.75271921E−10
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Table 2. Details of the execution of
Algorithm 2.1–2.2 in the toy illustrative Example 2.

k #it #� �(xk)

0 0 1 3.99006133E+00
1 1 2 9.67457272E−02
2 2 3 9.07733377E−03
3 3 4 3.54371350E−04
4 4 5 2.25072660E−06
5 5 6 3.86115181E−07
6 6 7 1.35021882E−08
7 7 8 9.67220885E−11

and √
�(x) ≤ λmax‖x− x̄‖,

where λmin and λmax are the smallest and the largest eigenvalues of A, respectively. Thus,
for all x �= x̄,

‖∇�(x)‖√
�(x)

≥ λmin

λmax
.

Therefore, Assumption A3 holds with κ equal to the inverse of the condition number ofA.
We solved this problem beingA the diagonal matrix with eigenvalues 1/2, 1/3, . . . , n/(n+
1) and x̄i = 1 for all i, employingAlgorithm2.1–2.2with the definition ofBk,� for all k and �
given in the previous example. Starting from x0 = 0, Table 2 displays the sequence �(xk)
together with the accumulated number of iterations of Algorithm 2.2 (#it in the table) and
evaluations of � (#� in the table). As it can be observed, for every k, Algorithm 2.2 per-
forms a single model minimization to obtaining a point that reaches the desired target
on �(·). The number of evaluations is always equal to the number of iterations plus one.
The ‘plus one’ corresponds to the evaluation of �(x0). The fact that the number of eval-
uations is equal to the number of iterations plus one also means that the regularization
parameter was never increased. Using the data in the table, we can see that the correlation
between | log(ε)| and the accumulated number of iterations of Algorithm 2.2 is 0.99. (Of
course, the same is true for the accumulated number of function evaluations.)

Example 3: Consider the feasibility problem with m = m = 1, q = q = 0, and n = 2
given by

h(x) = π

2
− 4
π

p̃∑
j=1

cos((2j+ 1)(x1 + x2))/(2j+ 1)2,

h(x) = 100(x2 − x21)
2 + (1− x1)2 − 1,

and

−π ≤ x1 + x2 ≤ π ,
where p̃ = 108. Clearly, the cost of evaluating h, which approximates |x1 + x2|, is O(p̃);
while the cost of evaluating h is O(1). This means that h is a costly-to-evaluate, when
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Table 3. Details of the execution of Algorithm 2.1–2.2 in
the toy illustrative Example 3.

k #it #� �(xk)

0 0 1 1.1781930563200053E−01
1 1 2 1.6522725284161665E−02
2 2 3 6.1041411149626642E−04
3 3 4 5.0318577198977945E−06
4 4 5 7.2445391801959614E−07
5 5 6 1.1568585375673346E−07
6 6 7 2.1071181599933004E−09

compared to h, but topologically simple function. Thus, it makes sense, as an illustra-
tive example, to solve this feasibility problem by minimizing a model of h(x)2 subject to
h(x) = 0 and −π ≤ x1 + x2 ≤ π . Note that, in this case, it is not trivial to verify whether
Assumption A3 holds or not.

In this example, we considered Bk,� = ∇2�(xk,�) when ∇2�(xk,�) is positive definite;
and Bk,� = ∇2�(xk,�)+ ξk,�I, otherwise. In the latter case, ξk,� is the smallest power of 10,
not smaller than 10−8, such that Bk,� is numerically positive definite. Starting from a
point that satisfies the cheap constraints, Table 3 displays the sequence �(xk) together
with the accumulated number of iterations of Algorithm 2.1 (#it in the table) and eval-
uations of � (#� in the table). The behaviour of the method in this example is identical
to the one observed in the previous example, i.e. the correlation between | log(ε)| and the
accumulated number of iterations of and evaluations performed by Algorithm 2.1 is 0.99.

4.2. Illustration with problems of the CUTEst collection

In this section, we illustrate the behaviour of Algorithm 2.1–2.2 in 40 feasibility problems
from the CUTEst collection [15] with no bound constraints. Selected problems are prob-
lems for which Algencan [1,5] was able to find a feasible point. (Problems for which a
solution is found when looking for a point that satisfies the cheap constraints were dis-
carded.) Constraints were arbitrarily divided into two sets: constraints with odd indices
were considered expensive constraints; while constraints with even index were considered
cheap constraints.

For all k and �, we considered Bk,� as the Gauss-Newton approximation to ∇2�(xk,�)
plus ξk,�I, where ξk,� is the smallest power of 10, not smaller than 10−8, such that Bk,� is
numerically positive definite.

For each one of the 40 problems, we recorded the accumulated number of iterations
of Algorithm 2.2 and the accumulated number of evaluations of �(·) that were needed
to find x such that �(x) ≤ ε, with ε ∈ {10−1, 10−2, . . . , 10−8}. Table 4 shows the details.
Comparing the number of iterations and the number of evaluations of� required to reach
�(x) ≤ 10−8, it can be seen that there are only 10 problems (HIMMELBC, POWELLBS,
HELIXNE, HEART6, HEART8, HYDCAR6, HYDCAR20, VANDERM1, VANDERM2,
and SPIN2) in which the number of function evaluations is greater than the number of
iterations plus one, meaning sufficient descent condition (17) was not satisfied and the reg-
ularization parameter had to be increased at Step 4 of Algorithm 2.2. Columns ‘Correlation
#it ’ and ‘Correlation #�’ show the correlation between the achieved value of | log(�(·))|
and the cumulative number of iterations and evaluations of� performed byAlgorithm 2.2,
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Table 4. Performance of Algorithm 2.1–2.2.

Number of iterations before reaching�(·) ≤ ε Number of evaluations of� before reaching�(·) ≤ ε

Problem n m p �(x∗) 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 Correlation #it 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 Correlation #� κ̂

BOOTH 2 2 0 5.6E−16 1 1 1 1 1 1 1 1 1.00 2 2 2 2 2 2 2 2 1.00 1.9E+00
CLUSTER 2 2 0 1.3E−10 0 0 0 0 1 2 2 3 1.00 0 0 0 0 2 3 3 4 1.00 1.8E−01
CUBENE 2 2 0 2.2E−14 1 1 1 1 1 1 1 1 1.00 2 2 2 2 2 2 2 2 1.00 4.8E−01
GOTTFR 2 2 0 1.9E−11 0 0 0 0 1 2 2 3 0.99 0 0 0 0 2 3 3 4 0.99 1.3E+00
HIMMELBA 2 2 0 1.1E−16 1 1 1 1 1 1 1 1 1.00 2 2 2 2 2 2 2 2 1.00 5.7E+00
HIMMELBC 2 2 0 2.9E−15 2 3 3 3 3 4 4 4 0.78 11 12 12 12 12 13 13 13 0.41 8.6E+00
HS8 2 2 0 3.0E−16 1 2 2 2 2 2 3 3 0.94 2 3 3 3 3 3 4 4 0.94 1.4E+01
HYPCIR 2 2 0 3.3E−09 1 1 1 2 2 2 2 2 1.00 2 2 2 3 3 3 3 3 1.00 2.8E+00
POWELLBS 2 2 0 4.8E−14 8 8 8 8 9 9 9 9 0.78 10 10 10 10 11 11 11 11 0.73 1.8E+03
SINVALNE 2 2 0 2.0E−18 1 1 1 1 1 1 1 1 1.00 2 2 2 2 2 2 2 2 1.00 1.4E+01
HATFLDF 3 3 0 1.1E−09 0 0 1 1 7 9 10 11 0.94 0 0 2 2 8 10 11 12 0.94 3.2E+00
HELIXNE 3 3 0 2.6E−20 7 7 7 7 8 8 8 8 0.11 47 47 47 47 48 48 48 48 0.06 1.5E+00
HIMMELBE 3 3 0 2.5E−17 1 2 2 2 2 2 2 2 1.00 2 3 3 3 3 3 3 3 1.00 1.0E+00
RECIPE 3 3 0 4.6E−13 1 2 2 2 2 2 2 2 1.00 2 3 3 3 3 3 3 3 1.00 2.8E−01
ZANGWIL3 3 3 0 1.0E−12 1 1 1 1 1 1 1 1 1.00 2 2 2 2 2 2 2 2 1.00 1.6E+00
POWELLSE 4 4 0 1.3E−09 3 4 5 5 6 7 8 9 0.92 4 5 6 6 7 8 9 10 0.92 4.5E−02
HEART6 6 6 0 4.1E−14 40 260 316 334 348 360 360 360 0.80 223 1534 1870 1978 2062 2123 2123 2123 0.80 1.8E+00
HEART8 8 8 0 1.1E−09 18 18 18 19 19 19 19 19 0.29 126 126 126 127 127 127 127 127 0.32 3.9E+00
COOLHANS 9 9 0 2.2E−14 0 0 0 2 2 2 2 3 0.88 0 0 0 3 3 3 3 4 0.88 6.0E+01
MOREBVNE 10 10 0 3.9E−16 0 1 1 1 1 1 2 2 1.00 0 2 2 2 2 2 3 3 1.00 3.8E+00
OSCIPANE 10 10 0 5.7E−16 1 1 1 1 1 1 2 2 1.00 2 2 2 2 2 2 3 3 1.00 2.9E+03
VARDIMNE 10 12 0 1.7E−24 0 0 0 0 1 1 1 1 1.00 0 0 0 0 2 2 2 2 1.00 1.2E+01
INTEQNE 12 12 0 4.2E−16 0 1 1 1 1 1 2 2 1.00 0 2 2 2 2 2 3 3 1.00 1.6E+00
WATSONNE 12 31 0 3.2E−11 0 0 0 0 0 0 1 1 1.00 0 0 0 0 0 0 2 2 1.00 1.3E+10
HATFLDG 25 25 0 2.7E−13 3 4 4 4 4 5 5 5 0.82 4 5 5 5 5 6 6 6 0.82 2.1E+00
HYDCAR6 29 29 0 6.1E−14 8 16 26 36 47 57 57 57 0.98 19 41 81 121 165 198 198 198 0.98 9.2E+00
METHANB8 31 31 0 4.0E−11 1 1 1 1 2 2 2 2 1.00 2 2 2 2 3 3 3 3 1.00 2.2E+02
METHANL8 31 31 0 1.4E−09 3 4 4 4 4 4 4 4 0.17 4 5 5 5 5 5 5 5 0.17 3.6E+02
CHNRSBNE 50 98 0 2.6E−17 1 1 1 1 1 1 1 1 1.00 2 2 2 2 2 2 2 2 1.00 7.9E+00
HYDCAR20 99 99 0 9.9E−09 4 7 9 12 25 135 226 524 0.85 6 14 20 29 68 396 578 1165 0.87 4.4E−01
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VANDERM1 100 100 99 2.1E−09 0 0 0 1 1 2 3 4 1.00 0 0 0 2 2 3 4 5 1.00 2.3E−01
VANDERM2 100 100 99 2.1E−09 0 0 0 1 1 2 3 4 1.00 0 0 0 2 2 3 4 5 1.00 2.3E−01
VANDERM3 100 100 99 7.8E−09 0 0 0 1 2 3 4 4 1.00 0 0 0 2 3 4 5 5 1.00 3.1E−01
SPIN2 102 100 0 8.1E−09 3 3 3 3 3 4 4 5 0.61 4 4 4 4 4 7 7 10 0.70 5.3E+00
ARGTRIG 200 200 0 7.0E−11 1 1 1 2 2 2 2 2 1.00 2 2 2 3 3 3 3 3 1.00 1.6E+02
BROWNALE 200 200 0 1.2E−18 0 0 0 1 1 1 1 1 1.00 0 0 0 2 2 2 2 2 1.00 7.0E+02
CHANDHEU 500 500 0 2.2E−09 3 4 5 5 6 7 7 8 0.76 4 5 6 6 7 8 8 9 0.76 6.0E−01
EIGENAU 2550 2550 0 8.1E−12 1 1 1 1 1 1 1 1 1.00 2 2 2 2 2 2 2 2 1.00 1.1E+02
BROYDN3D 5000 5000 0 4.8E−09 3 3 3 4 4 4 4 4 0.38 4 4 4 5 5 5 5 5 0.38 8.3E+00
BROYDNBD 5000 5000 0 4.8E−14 4 4 4 5 5 5 5 5 0.56 5 5 5 6 6 6 6 6 0.56 5.7E+00
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respectively. It is easy to see that, when correlations are not close to 1, it is because rela-
tions are even better than linear. The last column in the table, named κ̂ , shows a rough
estimate of the constant κ in Assumption A3, computed as min{‖∇�(x)+ h′(x)Tλ+
g′(x)Tμ‖2/

√
�(x)} over all the triplets (x, λ,μ) computed at Step 2 of Algorithm 2.2. Note

that the computed estimate κ̂ suggests that κ is bounded away from zero in all problems.

5. Final remarks

The objective of Optimization is to find a point in the feasible region at which the objective
function takes a value as small as possible. Optimality conditions, which relate the local
variation of the objective function with the local variations of the constraints, are tools
for recognizing whether a point is close to a solution or not, but do not have an intrinsic
value formost users. Lagrangemultipliers are generally used to estimate the variation of the
minimumwith respect to the variation of different constraints, but this utility is challenged
in the case that constraint qualifications do not hold orwhen the set of Lagrangemultipliers
is infinity. As a matter of fact, the variation of the minimum with respect to constraints
is more reliably estimated by means of running the solver with the desired modification
of constraints that does not need to be small. This is the reason why the default version
of many constrained optimization solvers, after satisfying a (successful or unsuccessful)
stopping criterion at some iterate x, try to find a very accurate point in the feasible region,
starting with x as an initial approximation. Alternatively, these solvers address the problem
of finding a feasible point subject to the additional feasibility constraint f (z) ≤ f (x).

Constrained optimization problems are usually formulated in the form

Minimize f (x) (39)

subject to

h(x) = 0, g(x) ≤ 0, h(x) = 0, g(x) = 0, (40)

where the constraints h(x) = 0 and g(x) = 0 are cheap in the sense discussed in this work.
AugmentedLagrangian (AL)methods are appropriate for these formulations.At each outer
iteration of anALmethod, the augmented Lagrangian function, which combines f, h, and g,
is approximately minimized subject to the cheap constraints. See, for example, [1,5], where
this approach is developed and analysed. The complexity of solving each subproblem by
means of regularization methods is similar to the complexity of solving unconstrained
optimization problems. The difficulty of extending this result to the whole constrained
minimization process relies on the fact that, in the worst situation, penalty parameters
could grow indefinitely, affecting the Lipschitz constants associated with each subproblem
(see [6]). However, inmany practical cases, users do not need to ‘minimize’ f (x) and would
be happy after finding a feasible point for which f (x) is smaller than a given target ftarget.
In this case, requirement (39) may be replaced by the inequality f (x)− ftarget ≤ 0, so far
defining a feasibility problem together with constraints (40). In this work, we showed that
solving this feasibility problemmay be easier than solving (39,40) by means of constrained
optimization solvers.
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