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ABSTRACT
Feng et al. revealed that the usual mean value theorem (MVT) should not be applied directly to a vector-
valued function (e.g., the score function or a general estimating function under a multiparametric model).
This note shows that the application of the Cramer–Wold’s device to a corrected version of the MVT
is sufficient to obtain standard asymptotics for the estimators attained from vector-valued estimating
functions.
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1. Introduction

One of the goals in statistics is to estimate an unknown quantity
θ ∈ �, where � ⊆ R

p is the parameter space, by the roots
of an estimating function Un : � → R

p. For instance, if the
log-likelihood function of the statistical model is concave and
differentiable at each θ ∈ �, then the root of its derivative
with respect to θ is the maximum-likelihood estimator. It is well
known that, under some regularity conditions on Un, the esti-
mator θ̂n such that Un(θ̂n) = 0 is consistent and asymptotically
normally distributed (van der Vaart 1998).

The mean value theorem (MVT) and Taylor’s expansions are
common techniques employed to study the limiting distribution
of zn = √

n(θ̂n − θ). Typically, this topic is studied in a
graduate course of mathematical statistics. A common didactic
artifice to justify the asymptotic distribution of zn is by means
of a straightforward “extension” to the vector-valued estimating
function Un(θ) of the MVT derived for real-valued functions,
see Feng et al. (2013) and also Equation (1) of Section 2. Many
authors have employed this “extension” in the statistical liter-
ature, namely, Barnett (1976), Wu (1981), Andersen and Gill
(1982), McCullagh (1983), Serfling (1993, Lemma B on p. 153),
Wang (1999), and Jacod and Sørensen (2018); for specific details
of some of these cases, go to Section 3. Although it is simple and
easy to understand, Feng et al. (2013) provided a vector-valued
function where such an “extension” is false and offered two
ways to circumvent the problem one of which is a consecrated
MVT for vector-valued functions already used in some books
of asymptotic theory (see Barndorff-Nielsen and Cox 1996;
Ferguson 1996; van der Vaart 1998; Shao 2003, to cite a few).
This consecrated version makes use of an integral operation
on the derivative of Un with respect to θ , see the rule (3) on
page 20 in Ferguson (1996), and, hence, this technique is not
readily applicable without imposing further conditions on the
estimating function.

In this short communication, we show how to correct the
invalid, but often employed, MVT for vector-valued estimating
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functions without changing the main mathematical tools. We
also give a simple argument to justify the asymptotic theory,
see Section 2. To illustrate this, some examples are presented in
Section 3. In Section 4, a brief final remark is offered.

2. Mean Value Theorem for Estimating Functions

We assume the following regularity conditions throughout this
article:

(A)� is an open convex set,
(B)Un is continuously differentiable at each θ ∈ �.

As pointed out by Feng et al. (2013), one very common
identity used by many books and papers is

Un(θ̂n) = Un(θ) + U ′
n(θ̃n)(θ̂n − θ), (1)

where θ̃n = hθ̂n + (1 − h)θ for some h ∈ (0, 1) and U ′
n(θ) =

∂Un(θ)/∂θ� is the first derivative of Un with respect to θ . From
Equation (1) and some extra regularity conditions, it is possible
to show that

1√
n

I−1
θ Un(θ) = zn + op(1), (2)

where zn = √
n(θ̂n − θ). However, Feng et al. (2013) showed a

function, whose domain and codomain are subsets of R2, that
violates the identity Equation (1). That is, the violation could
happen whenever the domain and codomain of Un are subsets
of Rp with p ≥ 2. Therefore, a correction on this expansion is
important to correctly justify standard asymptotics for θ̂n with-
out changing the main ingredients of the standard technique.

Due to the well-known Cramér–Wold’s theorem (see the
Appendix), Equation (1) is not necessary to study the first-order
asymptotics in statistics. The following true identity suffices:

λ�Un(θ̂n) = λ�Un(θ) + λ�U ′
n(θ̃n,λ)(θ̂n − θ),
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for λ ∈ R
p, where θ̃n,λ = hλθ̂n + (1−hλ)θ for some hλ ∈ (0, 1).

Since the codomain of the function λ�Un(θ) is the real set, by
the usual mean theorem value, the above equation is always true
(see Rudin 1976, for instance); moreover, as Un(θ̂n) = 0, it
reduces to

λ�Un(θ) = −λ�U ′
n(θ̃n,λ)(θ̂n − θ). (3)

The Cramér–Wold’s theorem, the identity Equation (3) and
some extra conditions on U ′

n(θ) guarantee the asymptotic rela-
tion between Un(θ) and θ̂n presented in Equation (2).

Theorem 1. In addition to the assumptions (A) and (B), assume
also that

(i) ‖ θ̂n − θ ‖= op(1),
(ii) there exists a positive definite matrix Iθ such that

‖ 1
n U ′

n(θ) + Iθ ‖= op(1),
(iii) supk∈(0,1)

∥∥∥ 1
n U ′

n
(
θ + k(θ̂n − θ)

) − 1
n U ′

n(θ)

∥∥∥ = op(1),
and

(iv) 1√
n Un(θ) converges in distribution to a random vector

for each θ ∈ �. Then, Equation (2) holds for each θ ∈ �.

The matrix Iθ is the Fisher information under the standard
asymptotic theory for maximum likelihood estimators. Notice
also that if U ′

n(θ) is a type of Lipschitz continuous function,1
then item iii holds from item i. The proof of the above theorem
is presented in the Appendix; it makes use of Equation (3) and
the Cramér–Wold’s theorem, but it could also have been proved
directly from the invalid Equation (1) without applying the
Cramér–Wold’s theorem. Feng et al. (2013) proposed two ways
to circumvent the problem, but both of them require different
techniques and more conditions to verify. Here, we just need to
multiply the terms of the wrong Equation (1) by λ� to obtain a
valid expansion and apply the Cramér–Wold’s theorem to justify
the asymptotic distribution of zn.

3. Examples in the Literature

In this section, we present three examples in the literature where
the invalid MVT (1) is employed to justify the asymptotics of
proposed estimators. We also suggest how to correct the argu-
ments without changing the main assumptions of the involved
theorems.

3.1. Nonlinear Regression Model

Barnett (1976) studied the asymptotic distribution of the
maximum likelihood estimators under the following nonlinear
regression model: yt = g(xt , γ ) + εt , where the random vectors
εt , t = 1, . . . , T, are independent and identically distributed
(iid) as Nq(0, �) with � being a (q × q) positive definite matrix
and g is a continuous and differentiable nonlinear function with
respect to γ . Let θ = (γ �, vech(�)�)� be the p-dimensional
parameter vector, where p = q + q(q + 1)/2 and the vech

1 That is, it satisfies the following condition:
∥∥∥ 1

n U′
n
(
θ1

) − 1
n U′

n(θ2)

∥∥∥ ≤ qn ‖
θ1 − θ2 ‖, where qn = Op(1).

operator stacks the columns of a symmetric matrix without
its redundant elements. The vector-valued estimating function
is the derivative of the log-likelihood function with respect
to θ , namely, UT(θ) = ∂ log L(θ |y,x)

∂θ
, where L(θ |y, x) is the

likelihood function. Barnett’s (1976) theorem 2 states that
zT = √

T(θ̂T − θ) converges to a normal distribution, where
θ̂T is the maximum likelihood estimator. In the appendix, at the
left bottom of page 358, Barnett (1976) gave a proof of theorem
2 in which the invalid MVT formula (1) is explicitly employed
as we show in the box below:

“Proof of Theorem 2: By the multivariate mean value
theorem, it follows that

(1/T)
∂ log L(θ |y, x)

∂θi

∣∣∣∣
θ=θ̂

= (1/T)aTi(θ0)

− (1/T)b′
Ti(θ

∗)(θ̂ − θ0),

where b′
Ti is the ith row of BT(θ), and θ∗ is on the line

between θ̂ and θ0. So by definition of θ̂ , we can determine
that

0 = (1/T)aT(θ0) − (1/T)B′
T(θ∗)(θ̂ − θ0), "

where T is the sample size, aT(θ) is the vector-valued estimating
function UT(θ) and B′

T(θ) is the matrix U ′
T(θ). Clearly, in the

first equation of the box, θ∗ should be indexed by i or, alterna-
tively, in the second equation, both sides should be multiplied
by λ�, where λ is a vector with the same length as aT(θ).

Wu (1981) studied the asymptotic distribution of the
least squares estimators under this nonlinear model with
homoscedastic non normal errors (constant variances). McCul-
lagh (1983) examined the connection between quasi-likelihood
functions, exponential models and nonlinear least squares.
Although the shape of the estimating function in these two
papers is not the derivative of the log-likelihood function, the
authors justify the asymptotics through the invalid MTV (1);
see formula (4.6) in the former and formula (12) in the latter.

3.2. Cox’s Regression Model

Andersen and Gill (1982) developed an asymptotic theory
for the maximum likelihood estimators in a Cox’s regression
model for censored survival data. Let T1, . . . , Tn be n possible
right censored survival times and z1, . . . , zn the corresponding
covariate vectors, where zi is observed on [0, Ti]. The partial
likelihood function is

L(β , T, z) =
n∏

i=1

{
eβ�zi(Ti)∑

j∈Ri eβ�zj(Ti)

}δi

,

where Ri = {j : Tj ≥ Ti} and 1 − δi is the censoring indicator.
The estimator β̂n that maximizes L is a root of the derivative
of the logarithm of the partial likelihood function with respect
to β , namely Un(β , 1). In their Section 2.2, Formula (2.5), this
vector-valued estimating function is expanded as follows:
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“Taylor expanding U(β , 1) around β0, we get

U(β , 1) − U(β0, 1) = −I(β∗, 1)(β − β0),

where β∗ is on the line segment between β and β0 [and
the positive semidefinite matrix I(β , 1) is minus the
derivative of U(β , 1).]”

As U(β , 1) is a vector-valued estimating function, the above
expansion is the application of the invalid MTV formula (1). To
correct this expansion, one could multiply by λ� in both sides
of the above equation, where λ is a vector with the same length
as U(β , 1).

3.3. General Estimating Functions

Jacod and Sørensen (2018) provided a review of asymptotic
theory of estimating functions. They considered a vector-valued
estimating function Gn and an estimator θ̂n such that Gn(θ̂n) =
0. The authors stated many regularity conditions on Gn to show
that zn = √

n(θ̂n − θ̄ ) converges to a normal distribution
(which is a consequence of their Theorem 2.11). In the proof of
their theorem 2.11, the authors also employed the invalid MVT
formula (1) as we can see in the following:

“[T]he mean value theorem yields that on Cn

Gn(θ̂n) − Gn(θ̄) = ∂θ G̃n(θ̂n − θ̄ ).

Here, ∂θ G̃n is the p × p—matrix whose jkth entry is
∂θ G̃n(θ

(j)
n )jk, where each θ

(j)
n is a (random) convex com-

bination of θ̂n and θ̄ ."

Clearly, the above MVT is the invalid MVT (1). This
expression may be corrected by multiplying both sides of the
above equation by λ�, where λ is a vector with the same length
as Gn(β).

In order to correct the asymptotic arguments in all the three
examples, we only need to replace the invalid MVT (1) with
the valid MVT (3) and apply the Cramér–Wold device. Alter-
natively, Theorem 1 could also be applied directly.

4. Concluding Remarks

We conclude that, despite the “Taylor’s expansion” presented in
Equation (1) for an estimating function is incorrect, the result-
ing first-order asymptotic theory remains correct. Therefore,
although Feng et al.’s (2013) criticism is important and should be
considered, it does not affect very much the asymptotic theory
of estimators attained from estimating equations.

Appendix A. Appendix: Proof of the Theorem

We use the following lemma in the proof of Theorem 1.

Lemma A.1 (Cramér–Wold’s theorem). Let {Wn}n≥0 be a sequence of
random p-vectors. Then,

Wn
D−→ W0 ⇐⇒ λ�Wn

D−→ λ�W0,

for all λ ∈ R
p, λ �= 0, where “ D−→” stands for “convergence in

distribution to.”

We begin the proof of the Theorem 1, from identity Equation (3),
that

λ� 1
n

Un(θ) = −λ� 1
n

U′
n(θ)(θ̂n − θ)

−λ� 1
n
[
U′

n(θ̃n,λ) − U′
n(θ)

]
(θ̂n − θ) (4)

where θ̃n,λ = θ +hλ(θ̂n−θ) for some hλ ∈ (0, 1). Thus, by ii, iii, and iv,

Op(n−1/2) = λ�Iθ (θ̂n − θ) + op(‖ θ̂n − θ ‖).

As ‖ θ̂n − θ ‖= op(1), we have that ‖ θ̂n − θ ‖= Op(n−1/2) and,
consequently,

√
n

∥∥∥∥ 1
n
[
U′

n(θ̃n,λ) − U′
n(θ)

]∥∥∥∥ ‖ θ̂n − θ ‖= op(1). (5)

Multiplying the terms in Equation (4) by n−1/2, plugging Equation (5)
into Equation (4) and employing assumption ii, we obtain

λ� 1√
n

Un(θ) = λ�√
nIθ (θ̂n − θ) + op(1).

As the above equation is valid for each λ ∈ R
p, by Lemma A.1 (the

Cramér–Wold’s theorem),
1√
n

Un(θ) = √
nIθ (θ̂n − θ) + op(1)

and the result follows by multiplying both sides of the above equation
by the inverse of Iθ .
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