Modulus of stability for vector fields on 3-manifolds

Jorge A.Beloqui

Julho 1983

MODULUS OF STABILITY FOR VECTOR FIELDS ON 3-MANIFOLDS · Jorge A. Beloqui

INTRODUCTION

It is well known that a diffeomorphism which exhibits an orbit of tangency between the stable and unstable manifolds of periodic orbits is not structurally stable. The same situation is observed for flows X_t generated by a vectorfield X. In fact there are real invariants for topological equivalence as we point out in $\S1$, so that we have nondenumerable classes of equivalence in any neighborhood of f or X.

Even in this case, if it is possible to parameterize the classes of equivalence by finitely many parameters, we can get a nice description of the dynamical systems near for X. When this happens we say that for X have finite modulus of stability. Of course, a structurally stable vectorfield has zero modulus of stability.

Bifurcations of real dynamical systems are related to this subject as in [1], [2], [3], [4], [5], [6], [7], [8], [18], [23] as well as holomorphic vectorfields [9], [10].

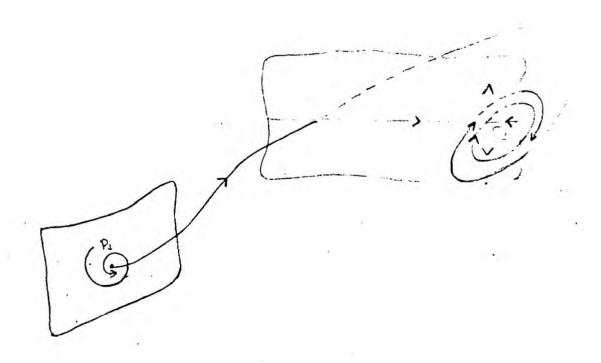
Namely, bifurcations of one-parameter families X_{μ} of vectorfields with simple recurrence occur generically (i.e. on a residual set) for vectorfields X_{μ} that exhibit a quasi-hyperbolic critical element or else have a quasi-transversal saddle connection [1], [3],[6], [7], [11], [23].

Here we examine the modulus of stability for vectorfields on a compact 3-dimensional manifold M that exhibits a quasi-transversal saddle connection between the unstable manifold $W^{U}(\mathfrak{o}_1)$ of a singularity \mathfrak{o}_1 and the stable manifold of a periodic orbit \mathfrak{o}_1 .

We shall need a few definitions in order to state our results. We indicate [12], [22] and [25] as general references for basic facts.

Let X(M) be the space of C^{∞} vectorfields endowed with the C^{∞} . Whitney topology.

Let X be a C^{∞} field on M^3 which exhibits a singularity P_1 and a closed orbit σ_1 , both of saddle type, hyperbolic and C^2 -locally linearizable. These two last conditions are open and dense ([12], [13]). So from the generic point of view they are not restrictive. Suppose $\alpha_1 \pm i\alpha_2$, $\alpha_1 < 0$, α_2 , $\alpha_3 > 0$ are the eigenvalues associated to P_1 (then dim W^S $(o_1) = 2$) and $0 < \beta_1 < 1 < \beta_2$ are those corresponding to σ_1 which has period τ . Furthermore, $W^U(p_1) \in W^S(\sigma_1)$. We shall call D the set of these fields.



A topological equivalence between two vectorfields X, X' on M is an homeomorphism $h:M \rightarrow M$ such that h sends orbits of X into orbits of X', preserving time orientation. If in addition h preserves time, that is $h X_t = X_t' h$ holds, then h is called a conjugation. A vectorfield X is called structurally stable if it is equivalent to any nearby vectorfield;

A semilocal equivalence between X and X' \in D shall be an equivalence defined from a neighborhood of $\overline{W^{U}(p_{1})}$ onto a neighborhood of $\overline{W^{U}(p_{1}')}$

 $\Omega = \Omega(X)$ is the set of non-wandering points, that is $\sigma \in \Omega$ if for every neighborhood U of σ and $t_0 > 0$ there exists $t_1 > t_0$ such that $X_{t_1}(U) \cap U \neq \emptyset$. Here Ω will have finitely many critical elements (singularities and periodic orbits), also called trivial recurrences.

An m-chain (for X) is an m+1-tuple $(\sigma_1,\ldots,\sigma_{m+1})$ of critical elements of X such that $W^U(\sigma_i)-\sigma_i$ of $W^S(\sigma_{i+1})-\sigma_{i+1}$ of $Z=\emptyset$ (1 < i < m). In this case we say that the chain begins at σ_1 and ends at σ_{m+1} . An m-chain for (σ',σ'') is an m-chain such that there exists j, $1 \le j \le m$ for which $\sigma_j=\sigma'$ and $\sigma_{j+1}=\sigma''$. An m-cycle is an m-chain for which $\sigma_1=\sigma_{j+1}$. The behaviour beh (σ_1,σ_2) of σ_1 and σ_2 is the cardinality of the longest chain which begins at σ_1 and ends at σ_2 , whenever it exists.

The relevant chains for us are the "m-chains for (p_1,σ_1) ". We will refer to them simply as "m-chains". Any other case shall be specified. Let $X \in A_1 \subset D$ if:

- a) $\Omega(X)$ has finitely many orbits.
- b) $\Omega(X)$ has only trivial recurrences, all of them hyperbolic.
- c) all invariant manifolds meet transversally except for $W^{\mathbf{U}}(\mathbf{p}_1)$ and $W^{\mathbf{S}}(\sigma_1)$.

An X-orbit σ is a saddle connection if both $\alpha(\sigma)$ and $\omega(\sigma)$ are saddle type critical elements. In this case

$$\sigma \in W^{\mathsf{U}}(\alpha(\sigma)) \subset W^{\mathsf{S}}(\omega(\sigma))$$

Observe that even if $X \in A_1$ it could have infinitely many saddle conections for which ω were $W^S(p_1)$ or α were $W^U(\sigma_1)$. For example if X exhibits a chain $(p_1,\sigma_1,\sigma_2,\sigma_3)$ where σ_2 and σ_3 are saddle type periodic orbits and all the corresponding invariant manifolds meet transversally. We can now state

We can now state

Theorem A: Let $X \in A_1$, and have finite modulus of equivalence. Then

- a) There are finitely many saddle connections in $W^{S}(p_{1})$ or $W^{U}(\sigma_{1})$.
- b) Beh $(\sigma, p_1) \le 1$ and beh $(\sigma_1, \sigma') \le 1$ for σ, σ' saddle type critical elements.
- c) There are no cycles for p_1 or σ_1 .
- d) Any chain for (p_1, σ_1) has at most 6 elements. Moreover if

$$(p_3, p_2, p_1, \sigma_1, \sigma_2, \sigma_3)$$

is one of these chains, then either p_2 or σ_2 are not periodic orbits.

Let $A_2 \subset A_1$ be the set of fields X such that:

- a) $\Omega(X)$ has no cycles. (Hence it is Ω -stable by [21])
- b) Any chain for (p_1, σ_1) has at most 5 elements.
- c) X is C^2 linearizable on neighborhoods of the critical elements in chains for (p_1, σ_1) .

We now state

Theorem B: If $X \in A_2$ then X has finite modulus of equivalence.

Remark: as it will be seen along the proof, the existence of a 6-chain $(p_3,p_2,p_1,\sigma_1,\sigma_2,\sigma_3)$. determines the infiniteness of the modulus of stability by conjugation. The finiteness of the modulus of stability in case A)d) remains undetermined, but in proposition 8 we see that we can C^r approximate X by a field Y with infinitely many tangencies between $W^U(p_2)$ and $W^S(\sigma_2)$.

§ 1 - THE SEMILOCAL INVARIANT μ.

A fence F is a surface transversal to $W^S(p_1)$ and to the flow, such that $\operatorname{Fn}W^S(p_1)$ is a fundamental domain of $W^S(p_1)$. In the locally linearizing coordinates, a cilynder will be a fence. For R a curve in F, and Σ_1 a section transversal to the flow at σ_1 , a spiral E is any connected component of $\Sigma_1 \cap \{X_t(R), t \ge 0\}$ (the positive saturated set of R). When R is a line, we call E a linear spiral. Any connected component S of E-W^S(σ_1) is called a sector. Let $\pi_2 \colon \Sigma_1 \longrightarrow W^U(\sigma_1)$ be the projection on $W^U(\sigma_1)$ in the linearizing coordinates (y_1,y_2) of Σ_1 . To each "upper" sector S_j in E we associate its maximum e_j , that is, the maximum of $\pi_2(S_j)$. This induces a cannonical order between the "upper" sectors. We now establish the main invariant by semilocal equivalence.

Notation:

For
$$X \in D$$
 let $\mu = \mu(X) = \frac{2\pi\alpha_1}{\alpha_2 \ln\beta_2}$

Proposition 1: Let $E \subset \Sigma_1$ be a linear spiral, $\{S_i\}_{i \in \mathbb{N}}$ the ordered sectors of E, e_i the maximum of each sector,

$$\lambda = e^{2\pi\alpha} 1^{/\alpha} 2$$

Then

$$\lim_{(m,n)\to+\infty} e_{m} \lambda^{m} / e_{n} \lambda^{n} = 1.$$

<u>Proof:</u> Consider $\phi \colon \Lambda \longrightarrow \Sigma_1$ the Poincaré diffeomorphism determined by the flow, where Λ is a plane parallel to $W^S(p_1)$ in the linearized domain of p_1 . We choose coordinates (x_1,x_2) in Λ such that $x_1 \le 0$ corresponds to $\Lambda \cap W^S(\sigma_1)$ and $x_2 = k_1$ is perpendicular to $x_1 = k_2$. If $\phi = (\phi_1,\phi_2)$ in the coordinates of Σ_1 we have

$$\frac{\partial \phi_2}{\partial x_1} (0,0) = 0$$

and hence

$$\frac{\partial \phi_2}{\partial x_2} (0,0) \neq 0.$$

The equation of S_n being

$$\ln \rho - \alpha_1 \Theta / \alpha_2 = \ln \rho_0 - \alpha_1 / \alpha_2$$
; ((n-1) < \theta < n\pi)

The equation of S_m shall be

$$1n\rho - \alpha_1 \Theta/\alpha_2 = 1n\rho_0 - \alpha_1 \Theta_0/\alpha_2 + 2\pi(m-n)\alpha_1/\alpha_2$$

in the polar coordinates of Λ .

.A little calculation expressing $\, \varphi \,$ in polar coordinates finishes the proof. \Box

The next Proposition proves the invariance of $\,\nu$ under semilocal equivalences.

Proposition 2: Take X, $X' \in D$ and h a semilocal equivalence between them

$$\mu(X) = \mu(X')$$

Proof: Let E be a linear spiral for the vectorfield X,

$$c \in W^{S}(\sigma_{1}) \cap \Sigma_{1}$$
. Let $\{S_{n}\}_{n \ge 1}$

be the ordered sequence of the upper sectors of E and

$$\pi_2^{-1}(c) \cap S_n \neq \emptyset \quad \forall n \in \mathbb{N}.$$

Define

$$N_m(E,\pi_2^{-1}(c_1), S_p) = \#\{S_j/S_j \cap X_{-m\tau}(\pi_2^{-1}(c)) \neq \emptyset, j \ge p\}$$

Easily we see that $N_m < +\infty$. It follows too that

$$N_m(E,\pi_2^{-1}(c_1), S_1) - N_m(E,\pi_2^{-1}(c_2), S_p) = k_1 \forall m \in N.$$

By a similar argument

$$N_m(E_1, \pi_2^{-1}(c), S_1^1) - N_m(E_2, \pi_2^{-1}(c), S_1^2) = k_2 \forall m \in N,$$

where E_1 and E_2 are two different spirals.

We claim that

$$\lim_{m \to +\infty} \frac{N_m(E, \pi_2^{-1}(c), S_1)}{+\infty m} = \frac{2\pi\alpha_1}{\alpha_2 \ln\beta_2}.$$

In fact, from Proposition 1 we derive

$$\pi_{2}(e_{p})\lambda^{N_{m}+1} \leq c\beta_{2}^{m} \leq \pi_{2}(e_{p})\lambda^{N_{m}}$$

for p big enough. Hence, taking logarithms

$$\frac{1}{m} \left[\ln(\pi_{2}(e_{p})) + \ln\lambda - \ln c \right] \leq -\ln\lambda \frac{N_{m}}{m} + \ln\beta_{2} \leq \frac{1}{m} \left[\ln\pi_{2}(e_{p}) - \ln c \right]$$
This proves that
$$\lim_{m \to \infty} \frac{N_{m}(E, \pi_{2}^{-1}(c), S_{p})}{m} = \frac{2\pi\alpha_{1}}{\alpha_{2} \ln\beta_{2}}.$$

As

$$\{N_m(E,\pi_2^{-1}(c), S_p\}_{m \in N} \text{ and } \{N_m(E,\pi_2^{-1}(c), S_1)\}_{m \in N}$$

differ by a constant sequence, our claim holds.

We can also define N_m for $R \subset \Sigma_1$ a continuous curve transversal to $W^u(\sigma_1)$ by $N_m(E,R,S_p) = \#\{S_j/S_j \cap X_{-m\tau}(R) \neq \emptyset$, $j \geq p\}$ and

$$N_m(E,R,S_p) - N_m(E,\pi_2^{-1}(c),S_p) = k$$
 for $m \ge m_0$.

For $E_2' = h(E)$ we take two linear spirals E_1' and E_3' such that the associated fibers in the fence F' (a cilynder) intersect $D^S(p_1')$ along nearby points.

In the same way, we choose $c_1, c_2 \in W^{U}(\sigma_1)$ such that

 $c_1 \ge \pi_2'(y_1',y_2') > c_2 > 0$ for $(y_1',y_2') \in h(R)$ sufficiently near $W^U(\sigma_1')$.

Then the following inequality holds:

$$N'(E_2',\pi_2'^{-1}(c_2), S_p'^1) \ge N_m'(E_2',h(R), S_p'^2) \ge N_m'(E_3',\pi_2'^{-1}(c_1), S_p'^3) \qquad \text{and} \qquad consequently}$$

$$\lim_{m \to \infty} \frac{N_m^{"}(E_2^{"},h(R),S_p^{"})}{m} = \lim_{m \to \infty} \frac{N_m^{"}(E_3^{"},\pi_2^{"}^{-1}(c_1),S_p^{"})}{m} = \mu^{"}.$$

But

$$N_{m}(E,R,S_{p}) = N_{m}(h(E),h(R),S_{p})$$

Hence

$$\mu = \lim_{m \to \infty} \frac{N_m}{m} = \lim_{m \to \infty} \frac{N_m^i}{m} = \mu^i \qquad \Box$$

§ 2 - THE RIGIDITY OF THE EQUIVALENCE

Propositions 3 and 4 in this section show that a semilocal equivalence between two vectorfields in D must be quite rigid when the invariant μ of § 1 is irrational.

<u>Proposition 3:</u> Let X, X' \in D and h be a semilocal equivalence between them: If $\mu(=\mu') \notin Q$ then

$$h/W^{U}(\sigma_{1}) n \Sigma_{1}$$
 is logarithmically linear.

<u>Proof:</u> Take a linear spiral $E \subset \Sigma_1$, and S_n $n \ge 1$ the sequence of its ordered upper sectors. We identify e_n and $h(e_n)$ with their images by Π_2 and $\Pi_2^{'}$. Let e_n and e_n^{1} be the absolute maxima of S_n and $S_n^{'} = h(S_n)$. We claim that if

$$e_{n_{\mathbf{j}}} \cdot \beta_{2}^{m_{\mathbf{j}}} \rightarrow z$$
 then $e_{n_{\mathbf{j}}} \cdot \beta_{2}^{m_{\mathbf{j}}} \rightarrow h(z)$

This happens because

$$h(e_{n_j}) \le e_{n_j}$$
 and
$$h(e_{n_j}) \beta_2^{m_j} \le e_{n_j} \beta_2^{m_j}$$

so that
$$h(z) \le \frac{\lim_{j \to \infty} e'_{j} \beta_{2}^{m_{j}}$$

 $h/W^{U}(\sigma_{1}) \cap \Sigma_{1}$ being a conjugation, we get

$$h(\frac{z}{\beta_2^i}) = \frac{1}{\beta_2^{i}} h(z)$$
 and combining our equations,

$$h(\frac{z}{\lambda^{j}\beta_{2}^{j}}) = \frac{h(z)}{\lambda^{ij}\beta_{2}^{i}}$$

If $\mu \notin Q$ then $\forall r \in \mathbb{R} \exists$ a sequence $(m_j(r), n_j(r))$ such that

$$\lambda^{m_{j}(r)} \beta_{2j}^{n_{j}(r)} \rightarrow r$$
 therefore $h(\frac{z_{0}}{r}) = \frac{h(z_{0})}{r^{\beta}}$

where $\beta = L_n \beta_2 / L_n \beta_2'$; and h is logarithmically linear \square

In order to get the rigidity of an equivalence h on D^S , we observe that in the linearized cilyndrical coordinates the orbits of $W^S(p_1)$ are given by

$$1n\rho - \frac{\alpha_1}{\alpha_2} \Theta = 1n\rho_0 - \frac{\alpha_1}{\alpha_2} \Theta_0 = k_0$$

Then to each orbit in $W^S(p_1)$ we associate the angle Θ_0 (mod 2π) with which it intersects $\{\rho=1\}$. In this way, a semilocal equivalence h induces a map

$$\tilde{h}: s^1 - s^1$$

where the orbit passing through $(1,\Theta) \in W^S(p_1)$ (polar coordinates) corresponds by h to the orbit passing through \widetilde{h} $(1,\Theta) = (1,\widetilde{h}(\Theta))$.

$$h^{-1}(\overline{\lim} e'_{n_j}, \beta'_2^{m_j}) \le z$$

$$h(z) = \frac{\lim_{j \to +\infty} e'_{j} \cdot \beta'_{2}^{m_{j}}}{\lim_{j \to +\infty} e'_{j} \cdot \beta'_{2}^{m_{j}}} = \overline{\lim}_{j \to +\infty} e'_{n_{j}} \cdot \beta'_{2}^{m_{j}}$$

Let
$$e_{n,j}^{n}$$
 be the maximum of $S_{i+n,j}^{n}$

$$e_{n_1,j}^{m_1,j} \longrightarrow z$$
 which implies

$$e'_{n_1,j}$$
 $\beta_2^{m_1,j} \longrightarrow z = h(z)$

For j big enough, we have
$$e_{n_{i,j}} = e_{n_{l,j}} \lambda^{i}$$

Then $e_{n_{i,j}}^{m_{j,j}} \rightarrow z/\lambda^{i}$ and a routine calculation shows that

$$h(\frac{z}{\lambda^{1}}) = \frac{h(z)}{\lambda^{1}}$$

In fact

$$\lambda^{i}h(z) = \lambda^{i}\lim_{j \to +\infty} e_{n_{1},j}^{i} = \lim_{j \to +\infty} e_{n_{1},j}^{i} = \lim_{j \to +\infty} e_{n_{1},j}^{i} = h(\lim_{j \to +\infty} e_{n_{1},j}^{i}) = h(\lim_{j \to +\infty} e_{n_{1$$

=
$$h(\lambda^{i} \lim_{j \to +\infty} e_{n_{1,j}}^{n_{1,j}}) = h(\lambda^{i}z)$$

Proposition 4: In this case, \(\textit{\textit{n}} \) is a rotation.

Proof: Take polar coordinates in Λ , as in Prop. 1, with $\{\Theta=0\}=\{x_1=0\}$. With the same calculation, we can see the maxima in of the spiral E approximatedly occur along the same direction, i.e., $\operatorname{arctg}(-\alpha_1/\alpha_2)$.

Therefore, if E_1 and E_2 are two linear spirals given by

$$1n\rho - \frac{\alpha_1}{\alpha_2} \Theta = k_1 \mod (2\pi\alpha_1/\alpha_2) \qquad (i = 1,2)$$

we get $\lim_{n\to +\infty} \pi_2(e_n^1)/\pi_2(e_n^2) = e^{k_1-k_2}$ for e_n^i the maxima of the "upper"

sectors of E_i (i=1,2) supposing $e_n^1 \ge e_n^2 \ge e_{n+1}^1$

Now take sequences

$$\{e_{\mathbf{m}_{\mathbf{j}}}^{\mathbf{i}}\}$$
, $\{n_{\mathbf{j}}\}_{\mathbf{j}\in\mathbb{N}}$ (i = 1,2)

such that

$$e_{m_{j}}^{i} \beta_{2}^{j} \xrightarrow{j \to +\infty} w_{i}$$
 which implies

$$e_{m_j}^{i} \beta_2^{i} \xrightarrow{j \to +\infty} w_i$$

$$\text{From} \quad \frac{e^{i}_{m_{j}}}{\lambda^{m_{j}}} \xrightarrow{j \to \infty} e^{k_{j}} \quad \text{we derive} \quad \lambda^{m_{j}} \beta_{2}^{n_{j}} \xrightarrow{k_{i}} \frac{w_{i}}{e^{k_{i}}}$$

and
$$\lambda^{m_{j}}_{\beta_{2}^{j}} \xrightarrow{n_{j}} \frac{w_{i}^{l}}{k_{i}^{l}}$$
. From this, we get that

$$\left(\frac{w_{i}^{\prime}}{k_{i}^{\prime}}\right)^{\beta} = \frac{w_{j}}{k_{j}}$$
 (i,j = 1,2) Hence, $\frac{w_{i}^{\prime\beta}}{w_{i}} = e^{\beta K_{i}^{\prime} - K_{i}}$

But, as
$$h/w^{U}(\sigma_{1}) \cap \Sigma_{1}$$
 is logarithmically linear $\frac{w_{1}^{'}}{w_{1}} = \frac{w_{2}^{'}}{w_{2}}$ so that $e^{k_{1}^{'}-k_{1}} = e^{k_{2}^{'}-k_{2}}$.

And replacing this equality in the equations of the spirals, we are done $\,\Box$

§ 3 - Restrictions on behaviour: Theorem A

We can derive several relevant consequences from the rigidity properties established in § 2.

. In fact, suppose ¼ ∉ Q.

Take D^{u} a fundamental domain of $W^{u}(\sigma_{1}) \cap \Sigma_{1}$ and $\{z_{i,0},\ldots,z_{i,m}\} \in D^{u}$ points of the saddle connections between $W^{u}(\sigma_{1})$ and $W^{s}(\sigma_{i})$ ($i \neq 1$). Consider the corresponding objects for a field X' equivalent to X under h. Then $h/W^{u}(\sigma_{1}) \cap \Sigma_{1}$ is logarithmically linear and we must have

$$\mu(i,j) = (\frac{z_{i,0}}{z_{i,j}})^{1/\ln \beta_2} = (\frac{z_{i,0}^{i,0}}{z_{i,j}^{i}})^{1/\ln \beta_2^{i}} = \mu'(i,j) \qquad i \leq j \leq m$$

or

Corollary 5: If $\{z_{i,0},\ldots,z_{i,m}\}\in D^U$ are points of the saddle connections between $W^U(\sigma_1)$ and $W^S(\sigma_i)$ then there are at least m real invariants $\mu(i,j)$ for the existence of an equivalence.

In the same way, let D^S be a fundamental domain in $W^S(p_1)$, which we may assume to be the circle $\{\rho=1\}$. Let $\{(1,\Theta_{i,0}),\ldots,(1,\Theta_{i,m})\}\subset D^S$ be points of the saddle connections between $W^S(p_1)$ and $W^U(\sigma_i)$ $(i\geq 2)$. Consider the analogous objects for a field X' equivalent to X. Then if h is an equivalence it will induce a rotation between D^S and D^{S} . Hence we must have:

$$\lambda(i,j) = \Theta_{i,j} - \Theta_{i,0} = \Theta'_{i,j} - \Theta'_{i,0} = \lambda^{r}(i,j) \qquad 1 \le j \le m$$

<u>Corollary 6</u>: Let $\{(1,\Theta_{i,0}),\ldots,(1,\Theta_{i,m})\}\subset D^{\hat{s}}$ be as above. Then there are at least m real invariants for the existence of an equivalence,

namely

$$\lambda(i,j) = \lambda'(i,j)$$
 $(1 \le j \le m)$

Proof of Theorem A: We may assume, taking a small perturbation of the field if necessary, that the semi-local invariant μ of Section 1 is not rational. Thus by Corollaries 5 and 6 if $\mu \notin Q$, each new saddle connection gives rise to a new invariant, at least; so a) holds. if (x_1,x_2,p_1) is a chain, $W^U(x_1)$ intersects $W^S(p_1)$ along infinitely may orbits, because of the transversality between invariant manifolds. Therefore either x is a source or there are infinitely many moduli of equivalence. Similarly, for chains $(\sigma_1,x_1,x_2)x_2$ must be a sink. Now we prove c): if (p_1,σ_1,p_1) is a cycle, we get homoclinic points for σ_1 . The existence of a cycle (x_1,p_1,σ_1,x_1) means the existence of homoclinic points for x_1 . Longer cycles are forbidden on account of a) and b).

Let $X \in A_1$ and $(p_3,p_2,p_1,\sigma_1,\sigma_2,\sigma_3)$ be a 6 - chain for (p_1,σ_1) . Necessarily p_3 and σ_3 cannot be saddles, if X has finite modulus. But

Prop 8: Let X be as before. Then X can be aproximated in the C^r topology by fields Z with infinitely many tangencies.

Proof: (part of this proof was suggested by F. Takens)

Let ψ : $R \to [0,1]$ C^{∞} be a bump function $\|\psi\|_{r} \le M$, $\psi \equiv 1$ on a neighborhood of 0, $\psi(x) \equiv 0$ for $|x| \ge 1$, the ball B[0,1] being contained in the domain of linearization L of p_1 . Call $\psi_1 = \psi$.

Define

$$Y_{\lambda,1}(x,y,z) = \lambda(y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y})(\psi_1(x)\psi_1(y)\psi_1(z))$$

a vectorfield on M^3 , zero on M-L. Observe that $\Omega(X+Y_{\lambda}) = \Omega(X)$ and $W^{U}(p_1,X+Y_{\lambda}) \in W^{S}(\sigma_1,X+Y_{\lambda})$ because $\langle Y_{\lambda},\frac{\partial}{\partial z} \rangle = 0$.

As W^S $(\sigma_2, X + Y_{\lambda}) \cap \Sigma_1$ does not change with λ , we may take $Z_1 \in W^S(\sigma_2) \cap W^U(\sigma_1) \cap \Sigma_1$ and a disk R of $W^S(\sigma_2) \cap \Sigma_1$ around Z_1 . Let $E(\lambda)$ be a spiral on Σ_1 defined by $W^U(p_2, X + Y_{\lambda})$. Then we define $N_m(E(\lambda), R, S_1(\lambda))$ which varies with λ . For λ small enough, $S_1(\lambda)$ will be near $S_1(0)$. In this sense, a point of discontinuity of N_m shall be a point of tangency between $W^U(p_2, X + Y_{\lambda})$ and $W^S(\sigma_2, X + Y_{\lambda})$. These points exist for $\mu(X + Y_{\lambda}) = \frac{2\pi\alpha_1}{(\alpha_2 + \lambda)\ln\beta_2}$ changes with λ , and $\mu = \lim_{m \to +\infty} \frac{N_m}{m}$ as seen before. So some N_m must change. Accordingly take λ_1 such that $X + Y_{\lambda_1}$ has a tangency and $\lambda_1 M < \varepsilon/2$. Now our field $Z_1 = X + Y_{\lambda_1}$ is $\frac{\varepsilon}{2} - C^r$ near X and has a tangency between $W^U(p_2, Z_1)$ and $W^S(\sigma_2, Z_1)$.

Now let r be the distance between the orbit of tangency and p₁, and let $\psi_2(X) = \psi(\frac{2x}{r_1})$. Define

$$Y_{\lambda,2}(x,y,z) = \lambda \psi_2(x) \psi_2(y) \psi_2(z) (y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y})$$

and consider $Z_1 + Y_{\lambda,2}$.

This field continues to exhibit the tangency of Z_1 as $Y_{\lambda,2}$ is zero on this orbit. Repeating our arguments, there exists λ_2 such that $Z + Y_{\lambda_2}$ has a new tangency and $\lambda_2 \frac{4M}{r_1^2} \le \varepsilon/4$.

Inductively, we construct fields $Z_n = Z_{n-1} + Y_{\lambda}$ which exhibit n tangencies at distances $r_1 > r_2 > \dots > r_n$ from p_1 . They have the same critical points and are identical on M-L. These $Z_n \in X(M)$ and converge in the C^r topology to a field $Z \in C^\infty$ on M, a fact that is easy to prove. Z has infinitely many tangencies between $W^S(\sigma_2, Z)$ and $W^U(p_2, Z)$ and is $\varepsilon - C^r$ near X

Note: Observe that these tangencies are parabolic.

These tangencies give rise to new moduli of equivalence, in case p_2 and σ_2 are closed orbits. In fact, the situation is anologous to the one treated in [8], §2, for diffeomorphisms.

So we get the following:

Corollary 9: Let $X \in A_1$ and have 6 - chain $(p_3, p_2, p_1, \sigma_1, \sigma_2, \sigma_3)$ where p_2 and σ_2 are closed orbits. Then X has infinite moduli of equivalence.

Proof: Let $Z \in X(M)$ be the $\varepsilon - C^r$ near X field constructed in Prop 8 which exhibits infinitely many orbits of parabolic tangency between $W^{U}(p_2;Z)$ and $W^{S}(\sigma_2;Z)$.

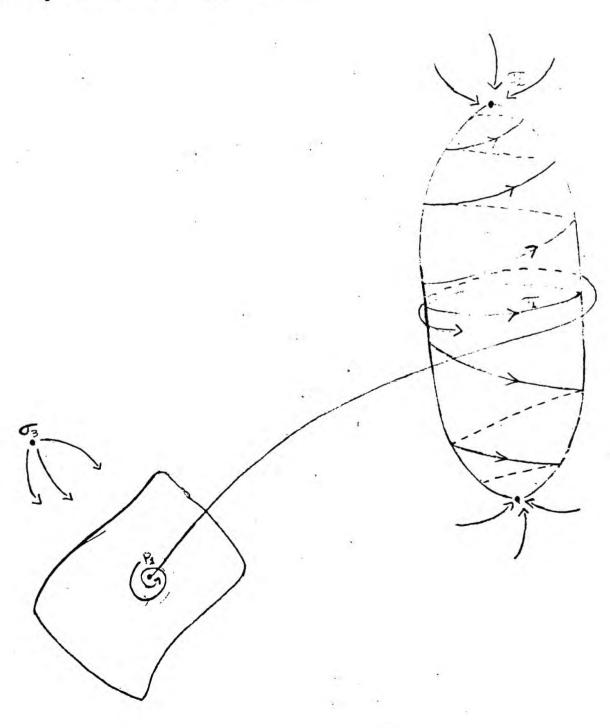
Take transversal sections $\Sigma(p_2)$ and $\Sigma(\sigma_2)$ invariant by the time one flow, reparameterizing, if necessary, X and all fields in a neighbourhood. Let $D^{u}(p_2) \in W^{u}(p_2) \cap \Sigma(p_2)$ be a fundamental domain and $w_i \in D^{u}(p_2) \cap W^{s}(\sigma_2)$ be the points of tangency between $W^{u}(p_2)$ and $W^{s}(\sigma_2)$.

Then we define $T_2(p_2,\sigma_2,w_1,w_i)$ (the quotient of the normal derivatives). This number is an invariant by topological equivalence, or a modulus of equivalence, for each $i \in \mathbb{N}$, $i \ge 2$. For details see [8] §2.

The existence of infinitely many tangencies arises the same number of moduli thus establishing the result $\hfill\Box$

§ 4 - Sufficient conditions for finite modulus Fields with 4-chains

In this section we prove theorem B for fields $X \in D$ such that any chain for (p_1, σ_1) has length 4, that is, their expression is $(\sigma_3, p_1, \sigma_1, \sigma_2)$ where σ_3 is a source and σ_2 is a sink.



On account of the results of the last section, we recall the definition of $A_2 \cdot X \in A_2 \subseteq A_1$ if

- a) any chain for (p_1, σ_1) has at most 5 elements.
- b) all the critical elements are C² linearizable.

Theorem 10: Let $X, X' \in A_2$ and

- a) They are ε -C^r near;
- b) $\mu(X) = \mu(X')$;
- c) any chain for (p_1, σ_1) has at most 4 elements.

<u>Proof:</u> It is clear that if X exhibit only 4 - chains, there is a C^r neighborhood of it such that any nearby X' will be Morse-Smale or else belong to A_2 . And if X,X' A_2 , for analogous reasons their phase diagrams shall be isomorphic.

The proof shall begin by constructing a semilocal equivalence h in a neighborhood of $W^{U}(p_1)$. Then we shall extend h to all of M^3 using the methods in [20].

Take in L cylindrical coordinates (p,0,z) where $\{z=0\} = W_{loc}^{S}(p_{l}) \quad , \ \{\rho=0\} = W_{loc}^{U}(p_{l}) \quad , \ \{z>0\} = W_{loc}^{U}(p_{l}) \cap W_{loc}^{S}(\sigma_{l}) \cap L.$

Suppose $\{\rho \le 1, z \le 1\} \subset L$ and $\Lambda_n = X_n(\{\rho \le 1, z = 1\}) \subset \Sigma_1$ reparameterizing X if necessary.

Considerate

$$\Pi_1$$
: $C = \{ \rho = 1, z \leq 1 \} \rightarrow \{ \rho = 1 \}$ given by

$$\Pi_1^{-1}(\Theta_0) = \{(\rho,\Theta,z)/\rho = 1, \Theta = \Theta_0, z < 1\}$$
 (trivial fibration)

In Σ_1 take $\Pi_2:\Sigma_1 \to W^{U}(\sigma_1) \cap \Sigma_1$ given by

$$\Pi_2^{-1}(w_0) = \{w = w_0\} \qquad \text{(trivial fibration)}.$$

Consider the analogous objects for X'.

We begin our proof by constructing a semilocal equivalence h. Then we shall extend h to all of M³ approximatedly like in [20] Like in Proposition 1, let $\Lambda = \{ \rho \le 1, z = 1 \}$, with coordinates $(x_1,x_2),(\Theta,\rho)$ and consider

 $\psi = (\psi_1, \psi_2) \colon \Lambda \to \Sigma_1 \quad \text{induced by the flow. We want to see that}$ spirals $X_t(\pi_1^{-1}(\Theta_0)) \cap X_1(\Lambda) \quad \text{tangenciate the fibers of} \quad \pi_2 \quad \text{along a curve}$ C_1 , differentiable and unique.

As each spiral as given by $\ln \rho - \frac{\alpha_1}{\alpha_2} \Theta = a_0$ we examine the equation

$$0 = \frac{d}{ds} \left(a_0 e^{\alpha_1 s/\alpha_2} \cos s, \quad a_0 e^{\alpha_1 s/\alpha_2} \sin s \right) =$$

$$= a_0 e^{\alpha_1 s/\alpha_2} \left[\left(\frac{\alpha_1}{\alpha_2} \cos s - \sin s \right) \frac{\partial \psi_2}{\partial x_1} + \left(\frac{\alpha_1}{\alpha_2} \sin s + \cos s \right) \frac{\partial \psi_2}{\partial x_2} \right] \cdot \operatorname{Since} \frac{\partial \psi_2}{\partial x_1} (0,0) =$$

$$= 0, \frac{\partial \psi_2}{\partial x_2} (0,0) \neq 0, \quad \text{the factor} \quad \left(\frac{\alpha_1}{\alpha_2} \sin s + \cos s \right)$$

must be approximatedly zero for the solutions of the equation, for

$$\rho(s) = \alpha_0 e^{\alpha_1 s/\alpha_2} \qquad \text{small enough, that is} \qquad s \sim \arctan(-\frac{\alpha_2}{\alpha_1}). \quad \text{We calculate}$$

$$\frac{d^2 \psi_2}{ds^2} (\rho(s) \cos s, \, \rho(s) \, \sin s) =$$

$$= \rho(s) \left(\frac{\alpha_1}{\alpha_2} \cos s - \sin s\right) \frac{\partial \psi_2}{\partial x_2} + O(\rho < s)) \neq 0$$

for points satisfying 10.1. This follows because if

$$(\frac{\alpha_1}{\alpha_2} \text{ sen s + cos s}) \sim 0 \text{ then}$$

$$\left(\frac{\alpha_1}{\alpha_2}\cos s - \sin s\right) - \left(\frac{\alpha_1}{\alpha_2} + \frac{\alpha_2}{\alpha_1}\right) \frac{\alpha_1}{\sqrt{\alpha_1^2 + \alpha_2^2}} \neq 0$$
 for the same s.

As
$$\frac{d^2\psi_2}{ds^2} \neq 0$$
 and on account of the continuous dependence on

 ${f a}_0$, it follows, by the Implicit function Theorem, that locally each curve of tangency is unique and differentiable.

The differentiability on (0,0) follows because
$$s \to \arctan(-\frac{\alpha_2}{\alpha_1})$$
.

The uniqueness of the curve is a consequence of the fact that on the "upper" sectors, the critical points of $\psi_2(\rho(s),s)$ are all extrema of the same type (maxima); hence unique.

Let us begin to define the homeo h.

For the sake of simplicity, we identify $\theta=0$ and $\theta'=0$. Then define $h(\rho=1,\theta,1)=(\rho'=1,\theta'=\theta,Z'=1)$. This induces a correspondence between the spirals in Λ and Λ' , which together with the condition $h(C_1)=C_1'$, define h uniquely along C_1 .

For our purposes we need $h(\Lambda) \subset \Lambda$ and to preserve Π_2 and Π_2' in a neighborhood of C_1' . In order to do so, take $(y_1,y_2) \in C_1$ and associate the fiber

$$\pi_2^{-1}$$
 $(\pi_2^{\cdot} h(y_1, y_2))$

to the fiber

$$\Pi_2^{-1}(y_2)$$
.

These 3 facts (preservation of spirals, curves of tangency and segments transversal to C_1, C_1') define h uniquely on a neighborhood U_1 of C_1 . Extend h to X_{-1} (U_1) = U_0 and to $U_n = X_n$ (U_1) $_n \Sigma_1$ by conjugation.

We want to prove that $h(y_{1,n}, y_2)$ converges (to a logarithmically linear application). Therefore observe the second coordinate:

$$\Pi_2^1(h(y_{1,n}, y_2)) = \beta_2^{n} \psi_2^1(h(\psi_2^{-1}(\frac{y_{1,n}}{\beta_1^n}, \frac{y_2}{\beta_2^n})))$$

A little calculation concludes that

$$h(\rho,\theta) = (\rho^{\beta'} e^{\alpha_1'/\alpha_2'[\theta'-\theta]},\theta') \text{ along } C_1. \text{ As } \rho_n = \frac{y_2}{\beta_2^{n} \frac{\partial \psi_2}{\partial x_2}} (0,0) + 0 \left(\frac{y_2}{\beta_2^{n}}\right)$$

We conclude

$$\pi_{2}(h(y_{1,n}, y_{2}) \sim \frac{y_{2}^{\beta'} e^{\frac{\alpha_{1}^{2}}{\alpha_{2}^{2}}[\theta'_{n} - \theta_{n}]} \frac{\partial \psi_{2}}{\partial x_{2}^{\beta}}(0,0)}{\left[\frac{\partial \psi_{2}}{\partial x_{2}}(0,0)\right]^{\beta'}}$$

Hence $\lim_{n\to +\infty} \Pi_2^{\prime}(h(y_1, n, y_2)) = A y_2^{\beta'}$ where $\beta' = \ln \beta_2^{\prime}/\ln \beta_2$ and

$$A = e^{\frac{\alpha_1'}{\alpha_2'} [\theta'(0) - \theta(0)]}$$

$$A = e^{\frac{\partial \psi_2'}{\partial x_2'} (0,0) [\frac{\partial \psi_2}{\partial x_2} (0,0)]^{-\beta'}}, \quad \text{as we}$$

wished to prove.

Now we are concerned with a modification of Π_2^1 "between" U_1^1 and U_2^1 . Applying the same techniques of [2] and the last conclusion, we get a new Π_2^1 where each fiber is piecewise linear and

$$\Pi_2^{\cdot}(h(\Pi_2^{-1}(0,y_2))) = A y_2^{\beta'}$$
, i.e., Π_2^{\cdot}

is compatible with h and Π_2 .

Let us return to L. Extend h to $\{\rho \le 1,\ 0 \le z \le 1\}$ by arc length between U_0 and C, which is continuous by our previous constructions.

At this point we remember the techniques in [20], and the differentiability of h and h^{-1} on $C-W^S(P_1)$ and on $(W^U(\sigma_1)-\sigma_1)$ n Σ_1 to end our proof

Now we prove

Theorem B: If $X \in A_2$ and every chain for (p_1, σ_1) has at most 4 elements, then it has finite modulus of equivalence.

Proof: There is a neighborhood U of X such that

- a) X is Ω -equivalent to every $Y \in U$;
- b) all critical elements $\sigma_1(Y)$ meets $W^U(\sigma_j(X))$ transversally then so do $W^S(\sigma_i(Y)) \quad \text{and} \quad W^U(\sigma_j(Y)).$

Take a family $F(\lambda)=X+Y_\lambda$ as in proposition 8. Then for V open ${\bf c}$ U small enough every $Y\in V$ either is equivalent to $F(\lambda_0)$ for some λ_0 (on account of the last theorem) or is Morse-Smale.

Suppose now Y is Morse-Smale. Then there are at most 2 possible equivalence classes in a neighborhood of X, as it is easily seen from the proof in [20].

Hence the equivalence classes in V are described by $F(\lambda)$ and two more vectorfields. \Box

§ 5 - Sufficient conditions for finite modulus. Fields without 6-chains.

We proved Theorem B for fields with chains of length 4. In case X exhibits a 5-chain for (p_1,σ_1) the proof is more complicated. First, there shall appear new moduli. Second, the fibrations which we constructed along that proof shall be different. But except for these two modifications, the method shall be essentially the same.

We recall the invariants $\mu(i,j)$ and $\lambda(i,j)$ from corollaries 5 and 6. To be consistent with the notation for the invariants we introduce here, denote $\mu_1(i,j) = \mu(i,j)$, $\lambda_1(i,j) = \lambda(i,j)$

As the maximum length for chains for (p_1,σ_1) is five, there are two possibilities:

- a) $\alpha(W^{S}(p_1) p_1)$ is a source or else
- b) $\omega(W^{S}(\sigma_{1}) \sigma_{1})$ is a sink or two.

Call $\sigma_i(2 \le i \le \ell_1)$ the saddle type singularities and $\sigma_i(\ell_i+1 \le i \le \ell_2)$ the saddle type periodic orbits such that $W^U(\sigma_1) \cap W^S(\sigma_i) \ne \emptyset$ (case a) or $W^S(p_1) \cap W^U(\sigma_i) \ne \emptyset$ (case !b). In either case let r_i be the number of orbits in these intersections.

The new moduli $\mu_2(i,j)(\ell_1+1\leq i\leq \ell_2,1\leq j\leq r_i)$ arise from the obstruction to the extension of h to a neighborhood of $\sigma_i(\ell_1+1\leq i\leq \ell_2)$ that is, the saddle type periodic orbits. The reason is the differentiability of $h/W^U(\sigma_1)\cap \Sigma_1=\sigma_1$ and $h/D^S(p_1)$ for $\mu \notin Q$.

From now on, we state and prove the results for case b), that is $\omega(\mathtt{W}^{\mathsf{U}}(\sigma_1)-\sigma_1)$ is a sink or two. For the other case the results are analogous and the proof of the theorem is slightly different.

In the first place a Proposition about necessity of the invariants $\mu_2(\textbf{i},\textbf{j}),$

Proposition: Suppose $X, X' \in A_1$. Let σ_i be a saddle type periodic orbit such that $W^S(p_1) \cap W^U(\sigma_i) \neq \emptyset$ and $\{W_1, \dots, W_{r_i}\} = D^S(p_1) \cap W^U(\sigma_i)$. If h is an equivalence between X and X' then

- a) $\mu_2(i,1) = \mu_2^i(i,1)$ (the eigenvalues associated to $W^s(\sigma_i)$ and $W^s(\sigma_i^i)$)
- b) $\mu_2(i,j) = T_2(\sigma_1,\sigma_i,w_1,w_j) = T_2(\sigma_1',\sigma_i',w_1',w_j') = \mu_2'(i,j) \quad (2 \le j \le r_i)$ (the "normal derivatives" associated to each new orbit in the intersection).

Proof: use the methods in $\S2,3$ and [8].

Now we can state

Theorem 11: Let X, $X' \in A_2$ and be $\varepsilon - C^{\infty}$ near. Suppose:

- a) $\mu = \mu'$
- b) $\mu_{1}(i,j) = \mu'_{1}(i,j)$ $1 \le i \le \ell_{2}$, $1 \le j \le r_{i}$
- c) $\mu_2(i,j) = \mu_2'(i,j)$ $\ell_1+1 \le i \le \ell_2, \quad 1 \le j \le r_i$
- their phase diagrams are isomorphic
 Then they are topologically equivalent.

<u>Proof:</u> As in Theorem 10 we shall begin by constructing a semilocal equivalence h in a neighborhood of $W^{U}(p_{1})$. Then we shall extend h to all of M^{3} using the methods in [20].

We reparameterize C^2 all periodic orbits to period 1. Consider all singularities and periodic orbits C^2 linearized in a neighborhood. For the singularities σ_i we define fences Σ_i , transversal to the corresponding 2-invariant submanifold.

Again we reparameterize C^2 in order to get: If

$$x \in D_i^u \cap W^S(\sigma_j) - W^u(\rho_l)$$

there exists a neighborhood V of x, $V \subseteq \Sigma_i$ such that $X_1(V) \subseteq \Sigma_j$ for some fundamental domain D_i^u in $W^u(\sigma_i)$.

If $x \in D_i^s \cap W^u(\sigma_j) - W^u(\rho_l)$ there exists a neighborhood V of X, $V \subseteq \Sigma_i$ such that $X_{-1}(V) \subseteq \Sigma_j$ for some fundamental domain D_i^s in $W^s(\sigma_i)$.

Define trivial fibrations

$$\pi_{i}^{u}: V_{i}^{u} \rightarrow W^{S}(p_{i})(\ell_{1} \geq i \geq 2)$$

where $V_{\mathbf{i}}^{\mathbf{u}}$ is a neighborhood of $\sigma_{\mathbf{i}}(\ell_1 \geq i \geq 2)$ or $V_{\mathbf{i}}^{\mathbf{u}}$ is a neighborhood of $\sigma_{\mathbf{i}} \cap \Sigma_{\mathbf{i}}$ in $\Sigma_{\mathbf{i}}(\ell_2 \geq i \geq \ell_1 + 1)$. Then it is possible to define $\pi_0^{\mathbf{u}} \colon F \to W^{\mathbf{S}}(p_1) \in \mathbb{C}^2$ compatible with all $\pi_{\mathbf{i}}^{\mathbf{u}}(\ell_2 \geq i \geq 2)$.

Again we shall prove that there is a unique curve of tangencies C_1 between the spirals defined by the saturation of $(\pi_0^u)^{-1}(x)$ and the trivial fibration $\pi_2\colon V^S \cap \Sigma_1 \to W^U(\sigma_1) \cap \Sigma_1$. Using the same notation of theorem 10, the expression of π_1^u in the cilyndrical coordinates is

$$(\pi_1^{\mathsf{u}})^{-1}(x) = \{(1,\beta(s),s)\}\$$

because $W^{u}(\sigma_{i})$ intersects $W^{s}(p_{1})$ transversally.

We examine $g(s) = \phi_2(s^{-\alpha_1/\alpha_3}, \beta(s) - \frac{\alpha_2}{\alpha_3} \ln s, 1)$ that is, the image of a spiral in Λ by $\phi = (\phi_1, \phi_2)$: $\Lambda \to \Sigma_1$ the corresponding Poincaré transform.

The points of tangency satisfy the equation

(11.1)
$$0 = \frac{\frac{-\alpha_1}{\alpha_3} - 1}{\frac{\alpha_3}{\alpha_3}} (r_1(s)) \frac{\partial \phi_2}{\partial x_1} + r_2(s) \frac{\partial \phi_2}{\partial x_2}$$

where
$$r_1(s) = \alpha_1 \cos s - \alpha_2 \sin s + \alpha_3 s \sin s \frac{d\beta}{ds}$$
.
 $r_2(s) = \alpha_1 \sin s + \alpha_2 \cos s - \alpha_3 s \cos s \frac{d\beta}{ds}$.

For small ρ and hence small s we have

$$\frac{\partial \phi_2}{\partial x_1} \sim 0$$
 and $\frac{\partial \phi_2}{\partial x_2} \neq 0$.

This means $r_2 \sim 0$ if $\frac{dg}{ds} = 0$. Consequently $tgs \sim \frac{-\alpha_2}{\alpha_1}$ and $r_2(s) \sim -(\alpha_1^2 + \alpha_2^2) \cos s$ for points satisfying (11.1). Let us calculate $\frac{d^2g}{ds^2}$ on such points:

$$(11.2) \quad \frac{d^2q}{ds^2} = \frac{\frac{-\alpha_1}{\alpha_3} - 2}{\alpha_3^2} \quad \left\{ (\alpha_1 + \alpha_3) \left(r_1 \frac{\partial \phi_2}{\partial x_1} + r_2 \frac{\partial \phi_2}{\partial x_2} \right) - \alpha_2 r_2 \frac{\partial \phi_2}{\partial x_1} + \alpha_2 r_1 \frac{\partial \phi_2}{\partial x_2} + 0 \left(s^K \right) \right\}$$

For points satisfying (11.1) the signal of $\frac{d^2g}{ds^2}$ depends only on $r_1\frac{\partial \phi_2}{\partial x_2}$, which is preserved.

Then all critical points of g(s) are extrema of the same type, yielding unicity of the curve. The differentiability on $W^{U}(p_1) \cap \Sigma_1$ follows as in theorem 10.

The following step s consists on the semilocal definition of the homeomorphism. Assume we have performed the same constructions for χ' . Carry out the beginning of the definition by steps:

- a) Define $h/W^S(p_1) \cap F$ as the unique possible rotation on account of prop. 4 and hypothesis b).
- b) This definition induces a correspondence between fibers in F given by $h(\pi_0^u)^{-1}(x)) = (\pi_0^{\cdot u})^{-1}(h(x)) \quad \forall \ x \in W^S(p_1) \cap F$ and consequently a correspondence between spirals in neighborhoods of C_1 and $C_1^{\cdot \cdot}$.
- c) Now we require $h(C_1) \in C_1'$ which completely defines h along C_1 on account of b).
- d) The observation before induces a unique correspondence between the fibers of π_2 and π_2' . Namely, if $(y_1,y_2)\in C_1$ then

$$h(\pi_2^{-1}(0,y_2)) = (\pi_2')^{-1}(\pi_2'h(y_1,y_2)).$$

- e) The two last considerations yield a definition of h on a neighborhood $U_1 \subseteq \Sigma_1$ of C_1 .
- f) Extend h/U_1 to $U_0 = X_{-1}(U_1) \subset \Lambda$ and to $U_n = X_n(U_0)$ by conjugation.
- g) Extend h/U_0 to the solid cilynder whose border is F, by arc length.

In order to extend the definition of h to all of Σ_1 it is necessary to change the fibers of π_2' as in theorem 10. They will be piecewise linear, and horizontal in neighborhoods of $X_n(C_j)$. We shall be allowed to carry out such a modification verifying that the applications $h_n = h/U_n$ converge to a (logarithmically linear) function defined along $W^U(\sigma_1) \cap \Sigma_1$. This will happen because π_0^U behaves as a trivial fibration; so h/F will define the germ of a log linear application on $W^U(p_1) \cap C_1$. Then h/C_1 , when iterated by conjugation shall converge to the desired function.

Indeed the fibers of π_0^u are given by $(1,\eta(s,t_0))$ for $\eta\colon [-1,1]\times [0,2\pi] \to \mathbb{R}\in \mathbb{C}^2 \text{ where } t_0=\eta(0,t_0) \text{ is the angle corresponding}$ to the fiber on $W^S(p_1)$. The associated spirals of Λ satisfy the equation:

$$\ln \rho - \frac{\alpha_1}{\alpha_2} \theta = -\frac{\alpha_1}{\alpha_2} \eta(s,t_0).$$
 Suppose $C_0 = X_{-1}(C_1)$ is given by $(\rho,\theta(\rho),1)$ where $\theta(\rho) \to \arctan(-\alpha_2/\alpha_1).$ $\rho \to 0$

Compare the intersection of a spiral with c_0 and its image:

(11.4)
$$\frac{\alpha_2}{\alpha_1} \ln \rho - \frac{\alpha_2'}{\alpha_1'} \ln \rho' = \eta(s,t) - \eta'(s',t') + \theta(\rho) - \theta'(\rho')$$
observe that:

a)
$$\theta(\rho)' - \theta'(\rho') \rightarrow \arctan - \frac{\alpha_2'}{\alpha_1'} - \arctan - \frac{\alpha_2'}{\alpha_1'}$$

b) uniformly $n(s,t) - n'(s',t') \to \xi_0$ the angle of the rotation $s,s' \to 0$ given by $h/F \cap W^S(p_1)$.

Hence, for p small enough,

$$\alpha_2/\alpha_1 \sim \kappa_0 \alpha_2^{1/\alpha_1}$$

Now take a sequence

$$h_n(y_2) = \pi_2^!(h(y_{1,n},y_2)) \text{ where } (y_{1,n},y_2) \in U_n.$$

The notation is legitimate because each fiber is horizontal on U_n i.e., examine only the case in which $(y_1, n, y_2) \in X_n(C_0)$. To end up the proof of the convergence of h_n proceed like in theorem 10.

Now we are able to see which are the classes of equivalence in a neighborhood of $X \in A_2$ where $\omega(W^u(\sigma_1(X)) - \sigma_1(X))$ has only sinks, and how we can parameterize them.

For the sake of simplicity we only examine the case for which $W^u(\sigma_i) \cap W^S(p_1)$ has exactly one orbit for all $\ell_2 \ge i \ge 2$.

Theorem B. If $X \in A_2$ (no 6-chains) then it has finite modulus of equivalence.

Proof: Take a neighborhood U of X where it is Ω -stable. Using the same type of argument as in Prop 8 we define families of fields G, $F_{i,j}(\lambda)$, $H_{i,j}$, $M_{i,j}^1$, $M_{i,j}^2$ in a neigborhood of $X \in X(M)$.

- I) $G \in A_1$ is the family described by the parameters of theorem 11.
- II) $F_{i,J}(\lambda)$ $(\ell_2 \ge i \ge \ell_1 + 1, J \in \mathbb{N}^{\ell_2 1})$ verifies
 - a) $\sigma_i(F_{i,J}(\lambda))$ is the periodic orbit corresponding to $\sigma_i(X)$.
 - b) There exist exactly j_p orbits of transversal intersection between $W^U(\sigma_p(F_{i,J}))$ and $W^S(\sigma_1(F_{i,J}))$ ($\ell_2 \ge p \ge 2$).
 - c) There exists only one non-transversal orbit in $\text{W}^u(\sigma_i(\textbf{F}_{i,J})) \cap \text{W}^S(\sigma_l(\textbf{F}_{i,J})) \text{ and it is quasi transversal}$
 - d) $\frac{\ln \beta_{1}(\sigma_{i}(F_{i,J}(\lambda)))}{\ln \beta_{2}(\sigma_{1}(F_{i,J}(\lambda)))} = \lambda \quad \text{where} \quad \beta_{1}(\sigma_{i}) \quad \text{is the stable}$ eigenvalue associated to σ_{i} .
- III) $H_{i,J}(l_1 \ge i \ge 2, J \in \mathbb{N}^{l_2-1}$
 - a) There exist exactly j_p orbits of transversal intersection in $W^U(\sigma_p(F_i,J)) \cap W^S(\sigma_1(F_i,J)) \quad (\ell_2 \geq p \geq 2).$
 - b) There exists only one orbit of non transversal intersection in $W^{U}(\sigma_{i}(F_{i,J})) \cap W^{S}(\sigma_{l}(F_{i,J}))$ and it is quasi transversal.
 - c) $\sigma_i(H_{i,J})$ is the singularity associated to $\sigma_i(X)$. Observe that in cases II) and III) $|j_p j_1| \le 1$.
- IV) $M_{i,J}^l$ is a family of only two non equivalent Morse-Smale vectorfields near $F_{i;J}(\lambda)$. They are non equivalent because the quasi-transversal intersection of $F_{i,J}(\lambda)$ was turned transversal either by avoiding $W^S(\sigma_i)$ or by intersecting it twice.

V) $M_{i,J}^2$ is also a family of only two Morse-Smale vectorfields, near $H_{i,J}$. They are non equivalent for the same reason as IV.

We claim that fields Y which are $\epsilon - C^\infty$ (actually $\epsilon - C^3$) near X have at most one tangency and it is quasi-transversal.

In case $W^{U}(p_{1}(X')) \in W^{S}(\sigma_{1}(X'))$ this is obvious. For the other case, express $W^{S}_{loc}(\sigma_{1}(X'))$ as the graph of a function F_{1} of $W^{S}_{loc}(\sigma_{1}(X))$, $\|F_{1}\|_{r} \le \varepsilon$ and a sector of $W^{U}(\sigma_{i})$ $(\ell_{2} \ge i \ge 2)$ as the graph of a function F_{2} of $W^{S}_{loc}(\sigma_{1}(X))$. The points of tangency must verify

$$\begin{cases} F_1(x) = F_2(x) \\ F_1'(x) = F_2'(x) \end{cases}$$

As in theorem 11, (F_1-F_2) " preserves its signal along these points and the same argument holds.

We use [8], [24], theorem 11, and the proof of [20] to prove that these families really exhaust the classes of equivalence around X.

Remark on fields with 6-chains

As we proved before, in order to classify the classes of equivalence around fields that exhibit a chain $(\sigma_3, p_1, \sigma_1, \sigma_2)$ where σ_2 and σ_3 are saddle type periodic orbits we shall need infinitely many real parameters.

(Using the same proof we see that any of these fields has infinite moduli of conjugation, σ_2 and σ_3 being periodic orbits or not)

For fields such that either $\alpha(W^S(p_1))$ or $\omega(W^U(\sigma_1))$ contain no saddle type periodic orbit there is at least one more parameter which we must take into account. In any case we stress that one more invariant must be taken into account. Namely, if $h/W^U(\sigma_1) \cap \Sigma_1$ is a fixed logarithmically linear application it shall induce a unique rotation on $h/D^S(p_1)$ whose angle is a new invariant. The proof is similar to the one concerning $\mu_1(i,j)$ or $\lambda_1(i,j)$ in §3.

REFERENCES

- [1] S. NEWHOUSE, J. PALIS Cycles and Bifurcation Theory, Astérisque 31 (1976), p. 43-140.
- [2] W. DE MELO, J. PALIS Moduli of stability for diffeomorphisms, Conference held at Norhwestern University. Lecture Notes in Mathematics, Springer-Verlag, to appear.
- [3] S. NEWHOUSE, J. PALIS Bifurcations of Morse-Smale Dynamical Systems, Dynamical Systems, Academic Press, 1973, p. 303-366.
- [4] J. PALIS Moduli of Stability and Bifurcation Theory, Proc. Int. Congress of Math. Helsinki (1978), to appear.
- [5] F. TAKENS Global Phenomena in Bifurcations of Dynamical Systems with Simple Recurrence, Jber. d. Dt. Math. Verein <u>81</u>(1979), p. 87-96.
- [6] J. SOTOMAYOR Generic one Parameter Families of Vector Fields, Publ. I.H.E.S. 43 (1974), p. 5-46.
- [7] J. SOTOMAYOR Structural Stability and Bifurcation Theory, Proc. of a Symposium held at Salvador-Brasil (1971), p. 549-558.
- [8] W. DE MELO Moduli of Stability of Two-Dimensional Diffeomorphisms, Topology 19, (1980), 9-21.
- [9] C. CAMACHO, N. KUIPER, J. PALIS The Topology of Holomorphic Flows with Singularity, Publications Mathematiques, Inst. des Hautes Études Scientifiques, 48 (1978), p. 5-28. See also C.R. Acad. Sc. Paris, t. 282 (1976), p. 958-961.
- [10] Yu. S. IL'YASHENKO Remarks on the Topology of Singular Points of Analytic Differential Equations in the Complex Domain and Ladis Theorem, Funct. Analysis and its Applications, Vol. 11, no 2 (1977), p. 105-113.

- [11] F. TAKENS Moduli and Bifurcations; Non-transversal Intersection of Invariant Manifolds of Vector fields. Conference held at Univ. Fed. de São Carlos (SP), Brazil and "Functional differential Equations and bifurcations" Ed. A.F. Ize, Springer-Verlag, 799 (1980), 368-384.
- [12] P. HARTMAN Ordinary Differential Euqations, John Wiley & Sons, New York, 1964.
- [13] F. TAKENS Partially Hyperbolic Fixed Points, Topology 10 (1971), p. 133-147.
- [14] M.J. PACIFICO Structural Stability of Vector Fields on 3-manifolds with Boundary, Anais da Academia Brasileira de Ciência (to appear).
- [15] S. NEWHOUSE, J. PALIS, F. TAKENS Stable Families of Diffeomorphisms, IMPA, Preprint.
- [16] J. PALIS A Differentiable Invariant of Topological Conjugacies and Moduli of Stability, Astérisque 51 (1978), 335-346.
- [17] W. DE MELO, J. PALIS, S.J. VAN STRIEN Characterizing diffeomorphisms with Modulus of Stability One, IMPA (1981), Preprint.
- [18] S.J. VAN STRIEN Dynamical Systems with Non-Real Eigenvalues can have a Continuum of Moduli, University of Utrecht. Preprint (1980).
- [19] M.W. HIRSCH, C.C. PUGH, M. SHUB Invariant Manifolds, Lecture Notes in Mathematics 583, Springer-Verlag (1977).
- [20] J. PALIS On Morse-Smale Dynamical Systems, Topology 8 (1969), p. 385-40!
- [21] S. NEWHOUSE, Hyperbolic Limit Sets, Trans. of the AMS, vol. 167.
- [22] McIRWIN, Smooth Dynamical Systems. Ac. Press (1981).
- [23] S.J. VAN STRIEN, One Parameter Families of vectorfields. Bifurcations near saddle connections. (THESIS, 1982)

- [24] J. BELOQUI M'odulo de estabilidade para campos vetoriais em variedades tridimensionais (THESIS; IMPA, 1981)
- [25] J. PALIS/W. DE MELO, Geometric Theory of Dynamical Systems; An introduction. Springer-Verlag, New York, 1982.

TRAIMALHOS

DO

DEPARTAMENTO DE MATEMATICA TITULOS PUBLICADOS

- 8001 PLETCH, A. Local freeness of profinite groups. São Paulo, IME-USP, 1980. 10p.
- 8002 PLETCH, A. Strong completeness in profinite groups.
 São Paulo, IME-USP, 1980. 8p.
- 8003 CARNIELLI, W.A. & ALCANTARA, L.P. de. Transfinite induction on ordinal configurations. São Paulo, IME-USP, 1980. 22p.
- 8004 JONES RODRIGUES, A.R. <u>Integral representations of</u> ciclic p-groups. São Paulo, IME-USP, 1980. 13p.
- 8005 CORRADA, M. & ALCANTARA, L.P. de. Notes on many-sorted systems. São Paulo, IME-USP, 1980. /25/p.
- group ring. São Paulo, IME-USP, 1980. /10/p.
- 8007 CHEN, C.C. On the Ricci condition and minimal surfaces
 with constantly curved Gauss map. São Paulo, IME-USP,
 1980. 10p.
- 8008 CHEN, C.C. Total curvature and topological structure of complete minimal surfaces. São Paulo, IME-USP, 1980.

 21p.
- 8009 CHEN, C.C. On the image of the generalized Gauss man of a complete minimal surface in R⁴. São Paulo, IME-USP, 1980. 8p.
- .8110 JONES RODRIGUES, A.R. <u>Units of ZCpⁿ</u>. São Paulo, IME-USP, 1981. 7p.
- .8111 KOTAS, J. & COSTA, N.C.A. da. Problems of modal and discussive logics. São Paulo, IME-USP, 1981. 35p.

- 8112 BRITO, F.B. & CONCALVES, D.L. Algebras rão associativos, sistemas diferenciais polineviais homogeneos e clemento características. São Paulo, IME-USP, 1981. 70.
- .8113 POLCINO MILIES, F.C. <u>Croup riras ubose torsion units</u>

 <u>form a subgroup II.</u> São Paulo, 198-USP, 1981. lv.

 (não paginado)
- .8114 CHEN, C.C. An elementary proof of Célabi's theorers or holomorphic curves. São Paule, INTEUSP, 1981. 5p.
- Ells COSTA, M.C.A. Ga & ALVES, E.H. Pelations between paraconsistent logic and many-valued logic. See Paulo, IMF-USP, 1981. Sp.
- .8116 CASTILIA, M.S.A.C. On Przymusinski's theorem. São Paulo, IME-USP, 1981. fp.
- . 2117 CHEM, C.C. & GOFS, C.C. <u>Degerorate minimal surfaces in</u>
 R⁴. São Paulo, IME-USP, 1981. 21p.
- .8110 CASTILIA, M.S.A.C. <u>Imagers inverses de algumas anlica-</u> ções fechadas. São Paulo, IME-USP, 1981. 11p.
- .8119 ARAGONA VALEJO, A.J. & EXEL FILHO, P. An infinite dimensional version of Kartons' extension theorem. São Fau lo, INF-USP, 1981. 9p.
- .8120 GCNÇALVES, J.Z. Groups rings with solvable unit groups.
 São Paulo, IME-USP, 1981. 15p.
- .8121 CARNIELLI, W.A. & ALCANTARA, L.P. de. <u>Paraconsistent algebras</u>. São Paulo, IME-USP, 1981. 16p.
- .8122 GONÇALVES, D.L. <u>Nilpotent actions</u>. São Paulo, IME-USP, 1981. 10p.
- .8123 COELHO, S.P. Group rings with units of bounded exponent over the center. São Paulo, IME-USP, 1981. 25p.

- .8124 PARMENTER, M.M. & POLCINO MILLES, P.C. A note on isomerphic group rings. São Paulo, INE-USP, 1981. 4p.
- .8125 MURKLEN, H.A. <u>Hereditary algebras with maximum spectra</u> are of finite type. São Paulo, IME-USP, 1981. 10p.
- .8126 POLCINO MILIES, F.C. Units of group rings: a short survey São Paulo, INE-USP, 1981. 32p.
- 8127 CHEN, C.C. & GACKSTATTER, F. Elliptic and hyperelliptic functions and complete minimal surfaces with handles.

 São Paulo, IME-USP, 1981. 14p.
- .8128 POS-CINO MILIES, F.C. A glance at the early history of oup rings. São Paulo, IME-USP, 1981. 22p.
- .8129 FEINER SANTOS, W.R. Reductive actions of algebraic groups on affine varieties. São Paulo, INE-USP, 1981. 52p.
- .8130 COSTA, N.C.A. da. The philosophical import of paraconsistent logic. São Paulo, INE-USP, 1981. 26p.
 - .8131 GONÇALVES, D.L. Generalized classes of groups, spaces c-nilpotent and "the Hurewicz theorem". São Paulo, IME-USP, 1981. 30p.
 - .8132 COSTA, N.C.A. da & MORTENSEN, Chris. Notes on the theory of variable binding term operators. São Paulo, INE-USP, 1981. 18p.
 - -8133 MERKLEN, H.A. Homogenes 1-hereditary algebras with maximum spectra. São Paulo, IME-USP, 1981. 32p.
 - 8134 PERESI, L.A. A note on semiprime generalized alternative algebras. São Paulo, IME-USP, 1981. 100.
 - 8135 MIRAGLIA NETO, F. On the preservation of elementary equivalence and embedding by filtred powers and structures of stable continuous functions. São Paulo, IME-USP, 1981. 9p.

- 8248 CHEN, C.C. The generalized curvature ellipses and minimal surfaces. São Paulo, IME-USP, 1982. 10p.
- 8249 COSTA, R.C.F. On the derivation algebra of zygotic algebras
 for polyploidy with multiple alleles. São Paulo, IME-USP,
 1982. 24p.
- 8350 GONÇALVES, J.Z. Free subgroups in the group of units of group rings over algebraic integers. São Paulo, IME-USP, 1983. Sp.
- 8351 MANDEL, A. & GONÇALVES, J.Z. Free k-triples in linear groups.
 São Paulo, IME-USP, 1983. 7p.
- 8352 BRITO, F.G.B. A remark on closed minimal hypersurfaces of S4 with second fundamental form of constant length. Sac Paulo, IME-USP, 1983. 12p.
- 8353 KIIHL, J.C.S. <u>U-structures and sphere bundles</u>. São Paulo, IME-USP, 1983. 8p.
- 8354 COSTA, R.C.F. On genetic algebras with prescribed derivations. São Paulo, IME-USP, 1983. 23p.
- 8355 SALVITTI, R. <u>Integrabilidade das distribuições dadas por</u>

 <u>subalgebras de Lie de codimensão finita no gh(n,C).</u>

 São Paulo, IME-USP, 1983. 4p.
- 8356 MANDEL, A. & GONÇALVES, J.Z. Construction of open sets of free k-Tuples of matrices. São Paulo, IME-USP, 1983.

 18p.
- 8357 BRITO, F.G.B. A remark on minimal foliations of codimension two. São Paulo, IME-USP, 1983. 24p.
- 8358 GONÇALVES, J.Z. Free groups in subnormal subgroups and the residual nilpotence of the group of units of group rings.

 São Paulo, IME-USP, 1983. 9p.

- 8136 FIGUEIREDO, G.V.R. <u>Catastrophe theory: some global theory</u>
 <u>a full proof.</u> São Paulo, IME-USP, 1981. 91p.
- 8237 COSTA, R.C.F. On the derivations of gametic algebras. São Paulo, IME-USP, 1982. 17p.
- 8238 FIGUEIREDO, G.V.R. de. A shorter proof of the Thom-Zeeman global theorem for catastrophes of cod ≤ 5. São Paulo, IME-USP, 1982. 7p.
 - 8239 MELOSO, J.M.M. Lie equations and Lie algebras: the intransitive case. São Paulo, IME-MED, 1982. 975.
 - 8240 GOES, C.C. Some results about minimal immersions having flat normal bundle. São Paulo, IME-USP, 1982. 37n.
 - 8241 FERRER SANTOS, W.R. Cohomology of comodules II. São Paulo, IME-USP, 1982. 15p.
 - 8242 SOUZA, V.H.G. Classification of closed sets and diffeos of one-dimensional manifolds: São Paulo, IME-USP, 1982. 15p.
 - 8243 GOES, C.C. The stability of minimal cones of codimension greater than one in Rⁿ. São Paulo, INE-USP, 1982. 27p.
 - 8244 PERESI, L.A. On automorphisms of gametic algebras. São Paulo, IME-USP, 1982. 27p.
 - 8245 POLCINO MILIES, F.C. & SEHGAL, S.K. <u>Torsion units in integral group rings of metacyclic groups</u>. São Paulo, IME-USP, 1982. 18p.
 - 8246 GONÇALVES, J.Z. Free subgroups of units in group rings. São Paulo, IME-USP, 1982. 8p.
 - 8247 VELOSO, J.M.M. <u>New classes of intransitive simple Lie pseudogroups</u>. São Paulo, IME-USP, 1982. 8p.