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MODULUS OF STABILITY FOR VECTOR FIELDS ON 3-MANIFOLDS 

INTRODUCTION 

It is well known that a diffeomorphism which exhibits an orbit of 

tangency between the stable and unstable manifolds of periodic orbits is 

not structurally stable. The same situation is observed for flows Xt 

generated by a vectorfield X. In fact there are real invariants for 

topological equivalence as we point out in §1, so that we have 

nondenumerable classes of equivalence in any neighborhood of f or X. 

Even in this case, if it is possible to parameterize the classes 

of equivalence by finitely many parameters; we can get a nice description 

of the dynamical systems near for X. When this happens we say that f 

or X have finite modulus of stability. Of course, a structurally stable 

vectorfield has zero modulus of stability. 

Bifurcations of real dynamical systems are related to this subject 

as in [l], [2], [3], [4], [5], [6], [7], [8], [18], .[23] as well as 

holomorphic vectorfields [9], [10]. · 

Namely, bifurcations of one-parameteir families XlJ of vectorfields 

with simple recurrence occur generically (i.e. on a residual set) for 

vectorfields X,, that exhibit a quasi-hyperbolic critical element or ~o . 
else have a quasi-transversal saddle connection [l], [3],[6], [7], {11], 

(23]. 



Here we examine the modulus of stability for vectorfields on a 

compact 3-dime~sional manifold M that exhibits a quasi-transversal 
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saddle connection between th~ unstable manifold Wu(o,) of a singularity 

p1 and the stable manifold of a periodic orbit a 1. 

We shall need a few definitions in order to state our results. 

We indicate [12], [22] and [25] as general references for basic 

facts. 

Let X(M) be the space of c°" vectorfields endowed with the c°" 

Whitney t~pology. 

Let X be a c°" field on M3 which exhibits a singularity p1 

and a closed orbit a 1, both of saddle type, hyperbolic and c2-locally 

linearizable. These two last conditions are open and dense ([12], [13]). 

So from the generic point of view they are not restrictive. Suppose 

a 1 ± -ia2, a 1 < O,a2,a3> 0 are the eigenvalues associated to p1 (then 

dim Ws (o1) = 2) and _o < s1 < l < s2 are those corresponding to a1 

which has period T• 

set of these fields. 
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A topological equivalence between two vectorfields X, X' on M 

is an homeomorphism h:M_..M such that h sends orbits of .X into orbits 

of X', preserving time orientation. If in addition h preserves time, 

that is h Xt=Xt h holds, then h is called a conjugation. A 

vectorfield Xis called structurally stabl e if it is equivalent to any 

nearby vectorfield; 

A semi local equivalence between X and -- X' e D shall be an equivalence 

defined from a neighboorhood of Wu(p 1) onto a neighborhood of Wu(p1) 

n = n(X) is the set of non-wandering points, that is a en if 

for every neighborhood U of a and .. t 0 > 0 there exists t 1 > t 0 such 

that Xt (U)nU;t0. Here n will have finitely -many· critical elements 
l . 

(singularities and periodic orbits), also called trivial recurrences. 

An m-chain (for X) is an m+l-tuple (o1 , ••. ,om+l) of critical elements 

of X such that Wu(oi)-oi n Ws(oi+l) - o·i+l n.e¢(1 < i <m). In this case we 

say that the chain begins at o1 and ends at om+l" An m-chain for 

(0 1 ,0") is an m-chain such that there exists j, l ~ j ~ m for which a. =a ' 
J 

and ~::i+l = a". An m-cycle is an m-chain for which-o1 = a. 1. The behaviour J,T 

beh (o1,o2) of o1 and o2 is the cardinal ity of the longest chain which 

begins at o1 and ends at -~2, whenever it exists. 

The relevant chains for us are the "m-chains for (p1,o1)". We will 

refer ·to them simply as "m-chains". Any othe.r case shall be specified. 
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a) n(X) ha~ finitely many orbits. 

b) n(X) has only trivial ~ecurrences, all of them hyperbolic. 

c) all invariant manifolds meet transversally except for Wu(p1) and 
s W (o 

1
). 

An X-orbit o is a saddle connection if both a( o) and w(c) are 

saddle type critical elements. In this case 

Observe that even if XE A1 it could have infinitely many saddle 

conections for which w were Ws(p1) or a were Wu(o1). For example 

if X exhibits a chain (p1 ,o1 ,o2,o3) where o2 and o3 are saddle type 

periodic orbits and all the corresponding invariant manifolds meet 

transversally. We can now state 

We can now state 

Theorem A: Let X e: A1 , and have finite modulus· of equ i va 1 ence. 

Then 

a) There are finitely many saddle connections in Ws(p1) or Wu(o1). 

b) Beh (o,p1) ~ 1 and beh(o1 ,0
1

) !;; 1 for o,o' saddle type 

critical elements. 

c) There are no cycles for p1 or cr1. 

~) Any chain for . (p1,o1) has at most 6 elements. Moreover if 

(p3,P2,P1 ,ol ,cr2,o3) 

is one of these chains, then either p2 or o2 are not periodic orbits. 



a) 

b) 

Let A2cA1 be the set of fields X such that: 

n(X) has no cycles. (Hence it-is St-stable by [21]) 

Any chain for (p1,o~) has at most 5 elements. 

c) Xis c2 linearizable on neighborhoods of the critical elements in 

chains for (p1,o1). 

We now state 

Theorem B: 

Remark: 

If Xe: A2 then X has finite modulus of equivalence. 

as it will be seen along the proof, the existence of a 

6-chain (p3,p2,p1,o1 ,o2,o3). determines the infiniteness of the modulus 

of stability by conjugation. The finiteness of the modulus of stability 

in case A)d) remains undetermined, but in proposition 8 we see that 

we can Cr approximate X by a field Y with infinitely many tangencies 

between Wu(p
2

) and Ws(o2). 
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§ 1 - THE SEMILOCAL INVARIANT µ. 

A fence F is a surface transversa l to Ws(p
1

) and to the flow, 

such that F n Ws(p1) i s a fundamental domain of Ws(p1). In the 

locally linearizing coordinates, a cilyndeir will be a fence. For Ra 

curve in F, and r1 a section transversal to the flow at a1, .a spiral E 

is any connected component of E1n{Xt(R) ,. t ?' O} (the positive saturated 

set of R). When R. is a line, we call E a linear spiral. Any connected 

component s of E-Ws{a
1

) is ca 11 ed a sector. Let 'IT2:El -+ Wu(a
1

) 

be the projection on wuca,) in the .. 1 inearizing coordinates (yl ,y2) of 'i" '-- 1 • 

To each 11 upper11 sector Sj in E we associate its maximum ej, that is, 

the maximum of '1T2(s.). This induces a cannonical order between the "upper" 
. J 

sectors. We now establish the main invariant by semilocal equivalence . 

Notation: 

Proposition , : 
sectors of E, 

Then 

let µ = µ(X) = 

Let EC El . be 

e. 
l 

the maximum 

1 im 
(m,n) 

;.\ = 

a linear spiral, 

of each sector, 

2m:tl /a.2 
e . 

= 1. 

{S.}. N the ordered - · -
l 1 € 
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Proof: Consider cf>: A - i::1 the Poincare diffeomorphism determined by· 

the flow, where A is a plane parallel to Ws(p1) in the linearized 

domain of p1. • We choose coordinates 

corresponds to A n Ws ( a
1

) and x2 

If ¢" = ( 4>1 , <P2 ) in the coordinates 

and hence 

The equation of Sn being 

The equation of S shall be 
m 

in the polar coordinates of A. 

= 

of 

(x1,x2) in A such that xl ~ 0 

kl is perpendicular to x, = k2. 

El we have 

( ( n- l ) < 0 < nn) 

-A little calculation expressing cf> in polar coordinates finishes 

the proof. D 
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The nex~ Proposition proves the invariance of µ under semilocal 

equivalences. 

Proposition 2: Take X, X' € D and ha semilocal equivalence between them 

µ(X) = µ(X') 

Proof: Let E be a linear spiral for the vectorfield X, 

C € Ws ( cr l ) n L l . Let {S } > l n n ~ 

be the ordered sequence of the upper sectors of E and 

Define 

Easily we see that 

n
2
- 1( c) n S ~ yl lJ n E N. 

n . 

N <+oo. 
m 

It follows too that 

By a similar argument 

where £1 and E2 are two different spirals. 

We claim that 

1
. Nm(E,TT21(c),s1) 2na1 
1m ------ = ---
m-- - + co m a2 l ns2 
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In fact,. from Proposition 1 we derive 

for p big enough. Hence, taking logarithms 

l l n' Nm + l 
m [ln{n2(ep)) + ln>- - lncJ:;;- /\m lnB2 ~m[lnti2(ep) - inc] 

Nm(E,n2
1(c),S) 2oal 

l ,im P - ---
m +co m This pfoves that 

As 

differ by a constant sequence, our claim holds. 

We can also define Nm for Re r1 a continuous curve transversal to 

Nm ( E , R , Sp ) = * { S . / S . n X ( R ) ~ 0 , j ~ p } 
J J -mT ... 

and 

For E2 = h(E) we take two linear spirals E1 and E3 such that the 

associated fibers in the fence F' (a cilynder) intersect D5 (p1) along 

nearby points. 
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Then the following inequality holds: 

N ' ( E ' TI' -
1 ( c ) S ' 1 ) > N ' ( E ' h ( R) S '2) 2': N ' ( E ' TI ' -

1 ( c ) S ' 3) and 
2, 2 2 , p = m 2' ' p - m 3' 2 l ' p 

consequently 

N'(E' h(R) S12 ) 
rn 2' ' p 

l im = 
~ m 

But 

Hence 
N NI 

l . m 1 . m , 
µ = 1m - = 1m - = µ 
~ m rn--+= m 

D 
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§ 2 - THE RIGIDITY OF THE EQUIVALENCE 

Propositions 3 and 4 in this section show that a semilocal 

equivalence between two vectorfields in D must be quite rig i d when the 

invariant µ of § l is irrational. 

Propes it ion 3: Let X, X'E D and h be a semilocal equivalence 

between them: If µ(= µ') t!Q then 

Proof: Take a linear spiral Ee t:1 , and Sn n ;;: 1 the sequence of 

its ordered upper sectors. We identify en and h(en) with their i mages 

by n2 and n2 . Let en and e~ be the absolute maxima of Sn and 

S~ = h(Sn). We claim that if 

m. m. 
en .. s2 

3 
+ z 

J j++ 00 

then e I QI J 
n. · µ2 

J 

This happens because 

so that 

h(e ) ~e• andl n. n. 
. J J 

m. m. 
h(e )S' J <e' S' J n. 2 = n. 2 

J J 

1 . fTl. 
h(z) <--.2!!!. e ' S' J 

m J-+oo n. 2 
J 

+ h(z) 
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h/Wu(o1) n r1 being a conjugation, we get 

z · 1 h(-.-) =--.- h(z) and combining our equations, 
81 8 I 1 
2 2 

If µ ~ Q then V re:: R 3 a sequence . (mj(r), nj{r)) such that 

4- r therefore 
z 

h (_Q_) = 
r 

where and h is logarithmically linear D 

In order to get the rigidity of an equivalence hon Os, we observe that in 

the linearizedcilyndrical coordinates the drbits of Ws(p1) are given by · 

Then to each orbit in Ws(p1) we associate the angle 00 (mod 2rr) with which 

it intersects {p = 1}. In this way, a semilocal equivalence h induces a 

map 

h: s1 - s1 

wheretheorbit passing through (1,0) EWs(p1) (polar coordinates) corresponds 

by h to the orbit passing through h (1,0) = (1, h(0)). 



For the same reasons 

and consequently 
m. 

·- lime' .B' J 
j++oo nj 2 
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Let .e n .. 
l ,J 

be the maximum of S. 
l+n1 . ,J 

Suppose now 
ml . 

e • B ,J - z n1 . 2 
,J 

which ·implies 

ml . 
e' 13 I ,J -z = h(z) 
nl . 2 

,J 

For j big enough, we have e - e :\ i_ 
n. . n., . 

1 ,J ,J 

Then and a routine calculation shows that 

In fact 

. m, . 
= :\ 1 1 l im e' 8 1 ,J 

. n1 . 2 J++oo ,J 

m, . 
= l im e' B' ;J 

. "1 .. 2 J++co ,J 

ml . 
= h (i i m e 8 ,J ) = 

. n .. 2 J++oo 1 ,J 



- 14 -

Proposition 4: In this case, ~ is a rotation. 

Proof: Take polar coordinates in A, as in Prop. 1, with 

{0 = 0} = {x1 = 0}. With the same calculation, we can see the maxima in 

of the spiral E approximatedly occur along the same direction, i.e., 

Therefore, if· E1 and E2 are two linear spirals given by 

(i = 1,2) 

we get lim n2(e1);n2(e2 ) · n n n-++oo 
for e~ the maxima of the "upper" 

sectors of E1(i=l ,2) supposing 

Now take sequences 

(i=l,2) 

such that 
. n. 
1 o· J e ..,2 - w. m. l 
J j:++oo" 

which implies · 



From 

and 

But, as 

so that 

m. n. w. k. 
l 

-+ e we derive ~ J13 J - l 
2 T. 

j-+<x> e , 

From this, we get that 

w' w. 
( ~!)13 = + 
e 1 e J 

( i ,j = l , 2) Hence, 

h/wu(a1) n r1 is logarithmically linear 

k1-k1 
k2-k2 

e = e 
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And replacing this equality in the equations of the spirals, we are done D 
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§ 3 - Restrictions on behaviour: Theorem A 

We can derive several relevant consequences from the rigidity 

properties established in § 2. 

In fact, suppose µ i Q. 

Take Du a fundamental domain of Wu(o
1

) nE
1 

points of the saddle connections between Wu(o
1

) and 

and {z : 
0

, ••• ,z . }cou 
1 , 1 ,m 

Consider the corresponding objects for a field X' equivalent to X under h. 

Then h/Wu(o1) ni:1 is logarithmically li near and we must have 

-· 

µ ( i ,j) 

1/ z. 0 1 n82 = (_,_,) 
z . . 

, ,J 

or 

Corollary 5: If {z. 0, ... ,z. } c Du 
1 , 1 ,m 

z'. 1/lnB2 
= (~) . . Z I 

i ,j 
: lJ I ( i ,j) 

are points of the saddle 

connections between Wu(o1) 
s . 

and W (a.) then there are at least m real 
1 

invariants µ(i,j) for the existence of an equivalence . 

. In the same way, let Os be a fundamental domain in Ws(p1), which we 

may assume to be the circle {p = lL Let {(1,0
1
. 0) , .•. ,(1,0. )} c Os be , ,,m 

points of the saddle connections between Ws ( p1) and Wu ( a i) ( i ;;: 2). 

Consider the analog~us objects fora.field X' equivalent to X. Then if h 
. s s 

is an equivalence it will induce a. rotation between D and D1 
• Hence we 

must have: 

A(i,j) = 0 .. - 0. O = 0! . - 0! O = Ar(i,j) 
1 ,J 1 , 1 ,J l , 

forollary 6: . Let 
~ 

{(1,0. 0), ••• ,(1,0. )}c: D be as above. Then there , , , ,m 

are at least m real invariants for the existence of an equivalence, 
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namely 

Proof of Theorem A: We may assume, taking a small perturbation of the 

fiel~ if necessary, that the semi-local invariantµ of Section l is not 

rati ona 1. Thus by Co roll ari es 5 and 6 . if µ J Q, each new· saddle 

connection gives rise to a new invariant, at least; so a) holds. if 

(x1,x2 ,p1) is a chain, Wu(x1) intersects Ws(p1) along infinitely may 

orbits, because of the transversality between invariant manifolds. Therefore 

either x is a source or there are _infinitely many moduli of equivalence. 

Similarly, for chains (cr
1

,x1 ,x2)x2 must be a sink. Now we prove 

c): if . (p1 ,o1 ,p1) is a cycle, we get homoclinic points for o1• The 

existence of a cycle (x1 ,p1,a1,x1) means the existence of homoclinic points 

for x1• Longer cycles are forbidden on account of a) and b). 

Necessarily p3 and a
3 

cannot be saddles, if X has finite modulus. 

But 

Prop 8: . Let X be as before. Then · X can be aproximafed in the Cr 

top6logy by fields Z with infinitely many tangencie~. 

·Proof: (part of this proof was suggested by F. Takens) 

Let ijJ: R -.. [0, 1] c°". be a bump function 11 ·w II r :ii M, 1/J = l on 

a neighborhood of 0, 'IJ(X)::O for lxl~l, the ball B[0,1] being 

contained in the domain of linearization L of p1• Call 1/Jl =1/J. 
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Define 

a vectorfield on M3
, zero on M-L. Observe that n(X+YA) = n(X) 

< y 
>.. 

-a 
' az > = O • 

As Ws ( a2 , X + Y ~ n r1 does n?t change with A, we may take 

Let E(A) be a spiral on r1 defined by Wu(p2, X + YA). Then we 

define Nm(E(A), ~, s1(A)) which varies with A. For X small enough, 

51(>..) will be near s1(o). In this ~ense, a point of discontinuity of 

Nm shall be 

These points 

N 
1 . m 

µ = 1m -
IJt++O'> m 

a point of tangency between Wu(p2, 

. 2rra, 
exist for µ(X + Y") = ( +A)~ 

~ 2 
changes with A, and 

as seen before. So some Nm must change. Accordingly take 

such that X + YA 
l 

has a tangency and >-1M < £/2 . Now our field 

near X and has a tangency between 

Now let r be the distance between the orbit of tangency and 

p1, and let Define 

and consider z1 + Y>-,2• 
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This field continues to exhibit the tangency of z1 as YA, 2 is zero 

on this orbit. Repeating o~r arguments, there exists A2 such that 

Z + YA has a new tangency and A 4M ~ E/4. 
2 2 -z 

rl 

Inductively, we construct fields Zn= Zn-l + YA which exhibit 
n 

n tangencies at distances from They have the same 

criti~al points and are identical on M-L. These Zne X(M) and converge 

in the Cr topology to a field Ze C
00 

on M, a fact that is easy to prove . 

Z has infinitely many tarygencies betwen W5 (cr2,Z) and Wu(p2,Z) and is 

e: - Cr near X D 

Note: Ob.6Vtve. tha.,t t he..6e. tange.nue..6 a1te. pa1tabouc. 

These tangencies give rise to new moduli of equivalence, in case p2 

and 0
2 are closed orbits. In fact, the s i tuation is anologous to the one 

treated in [8], §2, for diffeomorphisms. 

So we get the following: 
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Corollary 9: Let XE A1 and have 6 - chain (p
3

,p2
,p

1 
,a

1
,a

2
,a

3
) 

where Pz and a2 are closed orbits •. Then X has infinite moduli of 

equivalence. 

Proof: Let ZEX(M) be the £ - Cr near X field constructed in 

P~op 8 which exhibits infinitely many orbits of parabolic tangency between 

Wu(p2;Z) and Ws(o2;Z). 

Take transversal sections E(p2) and E(a2) invariant by the time one 

flow, reparameterizing, if necessary, X and all fields in a neighbourhood. 

Let Du(p2) c Wu(p2) n L(p2) be a fundamental domain and wi E Du(p2
) n W5 (o2

) 

b~ the points of tangency between Wu(p2) and W5 (a2). 

Then we define T2(p2 ,a2,w1 ,wi) (the quotient of the normal 

derivatives). This number is an invariant by topological equivalence, or a 

modulus of equivalence, for each · i EN, i;:: 2. For details see [8] §2. 

The existence of infinitely many tangencies arises the same number of 

moduli thus establishing the result D 
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§ 4 - Sufficient conditions for finite modulus Fields with 4-chains 

In this section we prove theorem B for fields X € D such that any chain 

for (p1 
,o1) has length 4, that is, their expression is (o3 ,p1 ,o1 ,a2 ) 

where a3 is a source and a2 is a sink. 



On account of the results of the last section, we recall the definition 

a) any chain for (p1 ,o1) has at most 5 elements. 

bl all the critical elements are c2 linearizable. 

Theorem 10: Let X,X'eA2 
and 

a) They are er . E - near, 

b) µ(X)= µ(XI) ; 

c) any chain for (p1
,a1 ) ·has at most 4 ·elements. 

Proof: It is clear that if X exhibit only 4 - chains, there is a 

Cr neighborhood of it such that any nearby . X' will be Morse-Smale or else 

belong to A2. And if X,~• . A2, for analogous reasons their phase 

diagrams shall be isomorphic. 

The proof shall hegin by constructing a semilocal equivalence h in 

a neighborhood of · Wu(p1). Then we shall extend h to all of M3 using the 

methods in [20]. 

Take in L cylindrical coordinates (p,0,z) where 

{i = O} = W~
0
/p

1
) , {p = O} = W~

0
c(pi) , {z>O} = Wu(p1)n Ws(cr1)n L. 

Suppose {p ~ 1, z:::; l }c L and 

reparameterizing X if necessary. 



- :.!3 -

Considerate 

rr1:C={P=l, Z~l} -+{p = 1} given by 

{(p,0,Z)/ P= l, 0 = 0
0

, Z < 1} (trivial fibration) 

given by 

(trivial fibration). 

Consider the analogous objects for X' . 

We begin our proof by constructing a semilocal equivalence h. Then 

we shall extend h to all of M3 approximatedly like in [20] 

Like in Proposition 1, let A = {p ~ 1, ;z =l }, with coordinates 

and consider 

ljJ = (1/1 1, ii,2): A -+ 1: 1 induced by the flow . We want to see that 

spirals Xt(rr11 (00)) n x1 (A) tangenciate the fibers of n2 along a curve 

c1, differentiable and unique. 

(l., 
As ·each spiral as given by ln P- -- 0 = a0 (l,~ 

we examine the 

·-
equation 

ex, s/ (l2 a, 31/12 (ll 31/12 ol/J2 
= a e [(- cos s - sens)-~-+(- sens+ cos s)-;-x ].Since-;-x (0,0) = 
. Q <l2 oXl etz o 2 o 1 

al 
·the factor (-- sens+ cos s) 

(l2 
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must be approximatedly zero for the solutions of the equation, for 

p(s) 
als/a.2 a.2 

We calculate = aoe small enough, that is s - arctg(--). 
a.l 

d2lj) 
~(p(s) cos s, o(s) Sl:?n s) = 
ds 

for points satisfying 10.l. This follows because if 

a.l 
(- sens+ cos s) ~ 0 then 
a.2 

for the sames. 

As and on account of the continuous dependence on 

a0 , it follows, by the Implicit function Theorem, that locally each curve 

of tangency is unique and differentiable. 

a.2 
s + arctg{--). 

P -+ 0 al 
The differentiability on (0,0) follows because 

The uniqueness of the curve is a consequence of the fact that on the 

·"upper" sectors, the critical points of ljJ2(p(s),s) are all extrema of the 

same type (maxima); hence unique. 

Let us begin to define the homeo h. 
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For the sake of simplicity, we identify e = 0 and e' = 0. Then 

define h(p = 1 ,e, 1) = (p' = l,8 1 = e,z• = 1). This induces a 

correspondence between the spirals in A and A', which together with 

the condition h(C1) = c1 , define h uniquely along c1. 

For our purposes we need h(A) c A and to preserve rr2 . and n2 
in a neighborhood of c1. In order to do so,. take (Y1 ,Y2) E c1 and 

associate the fiber 

to the fiber 

rr•-1 
2 

These 3 facts (preservation of spirals, curves of tangency and segments 

transversal to c1 ,c1) define h uniquely on a neighborhood u1 of c1. 

Extend h to x_1 (u1) = u0 and to Vn = Xn (u1) nE1 by conjugation . 

We want to prove that h (Y 1 ,n, Y 2) · converges ( to a 1 ogarithmi ca 11 y - - . 

linear appliccation}. Therefore observe the second coordinate: 

A little calculation concludes that 

o.'/a' [0' eJ 
h(p,0) = (p

81 
e 1 2 ~ 0

') along C . ,~ l. 
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We conclude 

Hence and 

as we 

wished to prove. 

Now we are concerned with a modification of rr2 "between" u1 and 

u2. Applying the same techniques of [2] and the last conclusion, we 

get a new n2 where each fiber is piecewise linear and 

is compatible with h and rr2. 

Let us return to L. Extend h to {p ~ 1, 0 ~z ~ 1} by arc length 

between u
0 

and C, which is continuous by our previous constructions. 

At this point we remember the techn1iques in [20], and the 

differehtiability of h and h-l on C - Ws(Pl) and on (Wu(ol) -0 1> n r1 

to end our proof 
□ 
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Now we prove 

Theorem B: If X € A2 and every chain for (p
1 

,a
1

) has at most 4 

elements, then it has finite modulus of equivalence. 

Proof: There is a neighborhood U of X such that 

a) X is n-equivalent to every YE U; 

b) all critical elements a1(Y) meets Wu(crj(X) transversally then so do 

Take a family F(A) = X + YA as in proposition 8. Then for V open 

c U small enough every YE V either is equivalent to F(A0) for some AO 

(on account of the last theorem) or is Morse-Smale. 

Suppose now Y is Morse-Smale. Then there are at most 2 possible . 

equivalence classes in a neighborhood of X, as it is easily seen from the 

proof in [20]. 

Hence the equivalence classes in V are described by F(A) and two 

more vectorfields. D 



§ 5 - Sufficient conditions for f1·n,·te modulus. F. ld ·th t 6 h · s ,e s Wl OU -c a,n. 

We proved Theorem B"for fields with chains of length 4. In case X 

exhibits a 5-chain for (p1,o
1

) the proof is .more complicated. First, 

there shall appear new moduli. Second, the fibrations which we constructed 

alpng that proof shall be different. But except for these two modifications, 

the method shall be essentially the same. 

We recall the invariants µ(i,j) and ~(i,j) from corollaries 5 and 

6. To be consistent with the notation for the invariants we introduce here, 

denote µ1(i,j) = µ(i,j) 

As the maximum length for chains for (p1,o1) is five, there are two 

possibilities: 

a) a(Ws(p
1

) - p1) is a source or else 

b) w(Ws(o
1

) - o
1

) is a sink or two. 

Call 0 i(2~i :;;£
1

) the saddle type singularities and oi(R..;+l !ii ~ £2) 

the saddle type periodic orbits such that Wu(o1) n Ws(ai) = 0 (case a) or 

s( ) u( ) a ( 1 h) In either case let r,. be the number of . W p
1 

n W oi = ~ case .· · • 

orbits i~ these intersections. 

The new moduli llz ( i ,j )( £1 + 1 ~ i ~ i2, 1 ~ j ~ r i) arise from the 

t · of h to a neighborhood of o • (£1+ 1 ~ i ~ £2) obstruction to the ex ens1on . . 1 

that is, the saddle type periodic orbits. The reason is the differentiability 

for µ i Q. 
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From now on, we state and prove the results for case b), that is 

w(Wu(cr1) - cr1) is a sink or two. For the other case the results are 

analogous and the proof of the theorem is slightly different. 

In the first place a Proposition about necessity of the invariants 

Proposition: Suppose X ,X I 
E A1• Let a. , be a saddle type periodic orbit 

equivalence between X and X' then 

{\'11 , ••• ,wr_} = Ds(p1) nWu(cri). , If his an 

a) µ2(i,l) = µ2(i,l) (the eigenv~lues associated to w5(cr;) and w5(cri)) 

b) µ2(i,j) = r2(cr1 ,cri,w1,wj) = T2(cr1,ai,~l'wj) = µ2(i,j) (2~j~ri) 

(the "normal derivatives 11 associated to each new orbit in the inter­

section). 

Proof: use the methods in §2,3 and [8]. D 

Now we can state 

Theorem 11: Let X XI 
E A and be , 2 

00 

e: - C near. Suppose: . 

a) µ = µ' 

b) µ
1
{;,j) = µ1(1,j) 1:si:st2 t 1:Sj:Sr1 

c) µ2(i,j) = µ2(i,j) 1 < • < R, . t,+ - 1 - 2, 1:Sj:Sri 

d) their phase diagrams are isomorphic 

Then the·y are topoiogically equivalent. 

Proof: 0 Shall ·begin by con~tructing a semilocal As in Theorem 1 we 
· f wu( ) Then we shall extend h to all 

h in a neighborhood o P1 • equivalence 

of M3 using the methods in [20] . . 
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We reparameterize c2 all 
periodic orbits to period 1. Consider all 

singularities and periodic orbits c2 
1

. . 

singularities a. 
1 

1near1zed in a neighborhood. For the 
we define·fences ri , transversal to the corresponding 

2-invariant submanifold. 

Again we reparameterize c2 . 1n order to get : If 

there exists a neighborhood v f 0 X, 

some fundamental domain D~ in wu(ai). 

such that X 
1 

(V) c L 
- J for some fundamental domain D~ 

1 

Define trivial fibrations 

in 

where V~ is a neighborhood of oi (i1 ~ i ~ 2) or V~ is a neighborhood of 

a . n r. , , in Ei (R.2 ~ i ~ .e.1 + l). Then it is possible to define 

Again we shall prove that there is a unique curve of tangencies c1 

between the spirals defined by the saturation of (TT~)-1(x) and the trivial 

fibration + wu(o
1

) n r
1

• Using the same notation of theorem 

10, the expression of TTf in the cilyndrical coordinates is 

(TT~)-1(x) = {(1,s(s),s)} 

because wu(o;) intersects Ws(p1) transversally. 

for 
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• 
We examine cx2 

,.. ln s, 1) that is, the image 
""3 

of a spiral in A by <P = (<P
1

,~
2

): A ~ ~l the 
~ ~ corresponding Poincare 

transform. 

The points of tangency satisfy the equation . 

(11.1) 

·-a 
1 

-- l a .. 
dg s 3 cl </>2 cl <P2 

D = - = --- (r1 (s) ~.x + r 2(s) -,, -
dS a3 o l ox

2 

For small p and hence small s we have 

This means if 

and 

dg - 0 ds - . Consequently 

2 2 r
2
(s) ~-(a

1 
+ cx

2
) cos s for points satisfying (11.1) . 

2 
~ · ~ on such points: 
ds 

(11.2) 

for 1(!>0. 

and 

Let us calculate 

• 



For points satisfying (11. l) the signal of~➔ depe~ds only on 
ds 

which is preserved. 
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Then all critical points of g(s) are extrema of the same type, 

yieldi ng unicity of the curve. Th d"ff · b"l · u( ) e , erent,a , ,ty on W p1 n r1 

follows as in theorem 10. 

The following steps consists on the semilocal definition of the 

homeomorphism. Assume we have performed the same constructions for X'. 

Carry out the beginning of the definition by steps: 

a) Define h/Ws(p1) n F pS the unique possible rotation on account of 

prop. 4 and hypothesis b). 

b) This definition induces a correspondence between fibers in F given 

by h(TI~f1(x)) = (TI0u)-\h(x)) ¥ XE Ws(p1) n F and consequently a 

correspondence between spirals in neighborhoods of c1 and c1. 

c) Now we require h(C1) c c1 which _completely defines h along c1 

on account of b). 

d) The observation before induces a unique correspondence between the 

fibers of n
2 

and n2 • Namely, if (y1 ,.v2) E c1 then 

h(n2l(O,y2)) = _(ni~)-l(rr2h(yl ,y2)). 

e) The two last considerations yield a definition of h on a 

neighborhood u1 c r, of Cl • 

to Uo = x_
1 

(Ul) c: /\ and to Un = Xn (UO) by conjugation. 
f) Extend h/U1 

g) Extend h/Uo to the solid cilynder whose border is F, by arc length. 
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In order to extend the definition of h to all of Ll it is 

necessary to change the fibers of n2 as in theorem 10. · They will be 

piecewise linear, and horizontal in neighborhoods of x (C .). We shall be 
n J 

allowed to carry out such a modification verifying that the applications 

hn = h/Un converge to a (logarithmically 1 inear) function de-fined along 

Wu(o1) n E1• This will happen because n~ behaves as a trivial fibration; 

so h/F will define the germ of a log linear application on Wu(p1) n c1• 

Then h/C1, when iterated by conjugation shall converge to the desired 

function. 

Indeed the fibers of are given by (1 ,n(s,ta)) for 

n: [-1, l] x [0,21r] ~ R e: c2 111here ta = n(a,ta) is the angle corresponding 

to the fiber on ws(p
1
). The associated spirals of ~ satisfy the equation: 

a1 a1 ln p- - e = - - n(s,ta)· 
a2 a2 

C X (C) ,·s g,·ven by (p,0(p),1) where S(p) Suppose O = _1 1 
~ arctg(-a2/ a1). 

p+{) 

Compare 

(11.4) 

f Spiral with Ca and its image : the intersection° a 

observe that: 
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b) uniformly n(s,t) - n 1 (s 1 ,t') .-+-'"" th 1 s e ang e of the rotation 
s,s'-+-0 O 

Hence, for p small enough, 

Now take a sequence 

The notation is legitimate because each fiber is horizontal on Un i.~., 

examine only the case in which (yl,n'y2) EXn(c0). To end up the proof 

of the convergence of hn proceed like in theorem 10. 

Now we are able to see which are the classes of equivalence in a 

neighborhood of X EA
2 where w(Wu(cr

1(X)) - cr
1(X)) has only sinks, and 

how we can parameterize them. 

For the sake of simplicity we only··e-xanri"ne -the· ·case for which 

has exactly one orbit for all t 2 ~i ~2. 

Theorem B. If XE A (no 6-chains) then it has finite modulus of . 2 

equivalence. 

·Proof: Take a neighborhood U of X where it is n-stable. 

U~ing the same type of argument as · in -Prop -8 we def_ine fami1 ies of 

fields .('-) H Ml M2 ,·n a neigborhood of X "X(M). G F .. ' .. · 
' i ,j ' i ,j ' l ,J l ,J 



I) 

I I) 

IV) 
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G c A 1 is the fami l Y described by the parameters of theorem 11. 

Fi ,i A) ( 12 ~ i ~ R-1 + l ' J E ~ £2- l) verifies 

a) 0 ;(Fi,J(>.)) is the periodic orbit corresponding to 

b) There exist exactly jp orbits of transversal · intersection between 

u 
W (o (F . J)) 

p l ' 

c) There exists only one non-transversal orbit in 

Wu(cri_(Fi ,J)) n Ws(o1 (Fi ,J) and . it is quasi transversal 

d) 

a) 

b) 

1 n s1 (a . ( F. J ( 11) ) ) 
l l , = A 

1 n s2 ( a 1 ( Fi , J ( >. ) ) ) . 
where is the stable 

eigenvalue associated to a .. 
l 

There exist exactly jp orbits of. trans versa 1 

Wu ( a p (Fi , J ) ) n Ws ( o l ( Fi , J ) ) ( i2· ;;:. p. z: 2) . . . • · 

There exists only one orbit of non transv~rsal 

intersection 

intersection 

Wu(o.(F. J)) nWs(cr1(F. J)) and it is quasi transversal. 
l l , l , 

c} cr.(H. J) is the singularity associated to o1(X). 
l l , 

Observe that in cases II) and III) jjp - jl I~ 1. 

in 

in 

1 
M. J l , 

is a family of only two non equivalent Morse-Smale vectorfields 

near Fi;J(>.). · They are non equivalent because the quasi-transversal 

inte~section of F. J(A) was turned transversal either by avoiding , ' 
w5 (cr.) or by intersecting it twice. 

l 



V) 2 
M. J , , 
H. J. , , 

- 36 -

is also a family of only two Morse-Smale vectorfields, near 

They are non equivalent for the same reason as IV. 

We claini that fields y which are Ceo ( · 3 
E- actually e-C) near x 

have at most one tangency and it is quasi-transversal. 

In case Wu(pl(X'))cWs(crl(X')) this is obvious. For the other case 

express . W~oc(crl(X')) as the graph o·f a function Fl f Ws ( ( )) 
o . 1 oc 0 1 X • 

, 

(R-2 ;:;: i :;: 2) as the graph of a function 

s 
F2 of Wloc(cr1(X)). The points of tangency must verify 

F1(x) = F2
(x) 

F1(x) = F2(x) 

As in theorem 11, (F1-F2)" preserves its signal along these points 

and the same argument holds. 

We use [8], (24], theorem 11, and the proof of [20] to prove that 

these families really exhaust the classes of equivalence around X. 

Remark on fields with 6-chains 

As we proved before, in order to classify the classes of equi~alence 

around f-ields that exhibit a chain (a3,P1 ,cr1,a2) where 0 2 and 0 3 are 

saddle type periodic orbits we shall need infinitely many real parameters. 
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(Using the same proof we see that any of these fields has infinite moduli 

of conjugation, o2 and o3 being periodic orbits or not) 

For fields such that either a(W5 (p1 
)) or w(Wu(a

1
)) contain no 

saddle type periodic orbit there is at least one more parameter which we 

must take into account. In any case we stress that one more invariant 

mu·st be taken into account. Namely, if h/ Wu(a
1
} n r

1 
is a fixed 

logarithmically linear application it shall induce a unique rotation on 

h/Ds(p1) whose ·angle is a new invariant. The proof is similar to the one 

concerning l-!1(i,j) or >-1(i,j) in §3. 
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