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A B S T R A C T

Water-related stresses and risks of droughts, exacerbated by climate change, have been extensively documented.
These studies often rely on various indicators to monitor and forecast the impacts of droughts. However, current
literature on the usability of these indicators for modelling drought risk and in decision-making processes is
fragmented and lacks a clear, systematic, and methodological approach. Usability, in this context, refers to the
relevance, accessibility, clarity, and practicality of indicators for guiding planning strategies. To address this
knowledge gap, the Management of Disaster Risk and Societal Resilience (MADIS)1 project aims to collate and
assess drought vulnerability and resilience indicators from existing literature to support decision-makers in
improving policies related to agricultural droughts on small farms.

The MADIS project identified over 100 indicators, from which 36 were selected for further analysis. A global
online survey using the Delphi technique was conducted, and the resulting data was used to perform a Principal
Component Analysis (PCA). Findings revealed that these 36 indicators could be reduced and grouped up to ten
principal components, each corresponding to a theme across five categories: relevancy, understanding, acces-
sibility, objectivity, and temporal. This study, therefore, highlights the practical usability of these indicators for
developing context-specific and efficient resilience strategies.

Indicators related to water management were found to be crucial and applicable across all five categories, as
the availability, quality, and source of water are essential for monitoring and mitigating drought hazards.
Conversely, indicators related to rural development and demographics, while quantifiable and collected at
different temporal scales, were deemed less understandable and accessible by experts. Grouping indicators under
common themes reduces the complexity of evaluating similar indicators and aids in selecting the most relevant
ones for different contexts. This approach simplifies indicator selection and enables decision-makers to formulate
resilience policies more efficiently and comprehensively.

Practical implications

The study simplifies a complex set of over 100 drought vulnera-
bility and resilience indicators into 36 key indicators, further

distilled into principal components across five categories: rele-
vancy, understanding, accessibility, objectivity, and temporal
characteristics. This approach helps decision-makers avoid
confusion when faced with an overwhelming number of potential
indicators, guiding them to focus on the most critical ones based
on their specific context. This methodological framework aids
policymakers in selecting the right indicators for targeted drought
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resilience strategies, ensuring that policy decisions are based on
clear, justified rationale.

Water management indicators emerged as highly significant
across all categories, demonstrating their critical role in drought
resilience. Together, these indicators stress the whole water
management cycle requiring integrated practices and thinking.
Indicators like groundwater levels, water quality, and the avail-
ability of drought prediction systems are essential for monitoring
water resources and addressing agricultural drought impacts.
Policymakers must prioritise integrated water resource manage-
ment policies that ensure sustainable water use and distribution,
especially in drought-prone regions. Implementing water man-
agement strategies based on these indicators can enhance the
resilience of small farms, which often suffer from limited access to
reliable water sources. In collaboration with national agencies,
local authorities should invest in infrastructure that improves
water retention, storage, and irrigation efficiency.

Indicators related to the socioeconomic aspects of farming com-
munities, such as poverty rates, access to financing, and partici-
pation in farming cooperatives, are also crucial. These indicators
reflect the vulnerability of smallholder farmers to drought, who
often lack financial safety nets or social support mechanisms. By
addressing these socioeconomic factors, policymakers can reduce
the risks associated with drought and enhance the adaptive ca-
pacity of farming communities. Programs that provide financial
support, such as crop insurance or access to credit, are vital. Pol-
icymakers should also promote cooperative farming structures,
which can offer collective resilience through shared resources and
knowledge. Additionally, poverty alleviation programs tailored to
drought-prone regions can bolster resilience by reducing the so-
cioeconomic vulnerabilities of farmers.

The study highlights the importance of ensuring that drought in-
dicators are accessible and objective. Decision-makers need reli-
able, quantifiable data to make informed decisions. However, in
many regions, data collection is inconsistent, and indicators such
as land degradation or crop loss are not readily available or easily
interpretable. To address this challenge, governments and inter-
national organisations should invest in building robust data
collection systems that provide timely, accurate, and objective
information on drought risks. Remote sensing technologies and
local ground-level data collection can significantly enhance the
quality and availability of drought-related information. Ensuring
that this data is accessible to local decision-makers is critical for
timely and effective drought response.

The study identifies the importance of community participation
and policy support indicators in building drought resilience. In-
dicators such as public participation in local policies, technical
assistance from cooperatives, and drought management policies
highlight the role of governance and community engagement in
effective drought risk management. Policymakers should engage
local communities in the planning and implementing drought
resilience strategies. By involving farmers and other stakeholders
in the decision-making process, policies can be better tailored to
local needs and conditions. Furthermore, strengthening local in-
stitutions and providing technical assistance can enhance the ca-
pacity of farming communities to respond to drought.

The temporal category of indicators is crucial for monitoring
drought risks over time. Indicators that capture long-term trends,
such as land degradation or crop water use efficiency, allow pol-
icymakers to develop proactive strategies rather than reactive
responses. Longitudinal data can help identify patterns and pre-
dict future risks, enabling more effective resource allocation and
planning. Policymakers should implement monitoring systems
that track these long-term indicators, ensuring that data is
collected at regular intervals to provide a comprehensive under-
standing of drought dynamics. This information can guide the
development of adaptive management strategies that account for
both short-term impacts and long-term resilience.

The study emphasises the need for context-specific indicators. Not

all drought indicators are equally relevant across different regions
or farming systems. For example, indicators related to rural de-
mographics or land tenure may be more significant in regions
where land ownership is contested or where migration patterns
are influenced by drought. Policymakers should tailor their
drought resilience strategies to the specific vulnerabilities of their
regions. By selecting indicators that reflect an area’s unique so-
cioeconomic, environmental, and institutional conditions,
decision-makers can create more effective and locally relevant
policies. Regional drought management plans should, therefore,
be flexible, allowing for the inclusion of context-specific indicators
that may not be universally applicable.

Indicators related to sustainable agricultural practices, such as
drought-resistant crop varieties or the efficiency of agricultural
inputs, are vital for building resilience. By promoting sustainable
farming techniques, policymakers can reduce the vulnerability of
small farms to drought and enhance their long-term productivity.
Governments should support research and development in
drought-resistant crops and promote the adoption of water-
efficient technologies in agriculture. Additionally, agricultural
extension services should be strengthened to give farmers the
knowledge and tools needed to implement these practices.

The PCA approach used in the study provides a holistic framework
for drought management by revealing the interconnections be-
tween various indicators. This allows policymakers to move
beyond isolated solutions and develop comprehensive strategies
that address the multiple dimensions of drought risk. For example,
water management cannot be discussed without socioeconomic
factors like poverty or access to credit. Therefore, policymakers
must adopt integrated approaches that consider the full range of
factors contributing to drought vulnerability. Cross-sectoral
collaboration between water, agriculture, and social welfare de-
partments is essential for successfully implementing these
strategies.

The study opens avenues for further research on the role of climate
services in enhancing drought resilience. Policymakers and prac-
titioners should collaborate with researchers to refine the in-
dicators used in drought risk assessment, ensuring they stay
relevant in changing climate patterns. Additionally, exploring the
potential of emerging technologies, such as artificial intelligence
and machine learning, in drought prediction and management
could offer new opportunities for proactive resilience building.

1. Introduction

Drought is a complex and pervasive phenomenon that poses signif-
icant challenges to societies around the globe, affecting ecosystems,
economies, and human well-being. Drought is often called a “creeping
hazard” that unfolds gradually, making it distinct from sudden-onset
hazards (Ahmad and Kam, 2024). Unlike earthquakes or hurricanes,
drought events manifest through a slow and cumulative deficiency in
precipitation and other meteorological issues, leading to cascading im-
pacts on water resources, energy infrastructure, agriculture, and eco-
systems. As climate change intensifies, drought events’ frequency and
severity amplify the urgency for effective and proactive planning stra-
tegies (Ault, 2020; Wilhite, 2000). To address these challenges, re-
searchers and decision-makers are increasingly turning to the concept of
drought resilience, a multidimensional framework that aims to enhance
the capacity of communities to cope and recover from the impacts of
drought (Cole et al., 2021). It is an overarching concept that encom-
passes the ability of ecosystems, economies, and communities to antic-
ipate, respond to, and recover from the adverse impacts of drought
(Folke et al., 2010). While the importance of drought resilience is widely
acknowledged, a critical knowledge gap remains in understanding the
specific drought vulnerability and resilience indicators that can guide
the formulation of effective and proactive planning strategies, with an
emphasis on small farms (AghaKouchak et al., 2015; Mishra and Singh,
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2010).
Small farms are crucial to agricultural systems for several reasons.

They produce a significant portion of the world’s food supply, despite
operating on small plots of land. Of the 570 million farms worldwide,
475 million are smallholder farms, and these operate about 12 % of the
world’s agricultural land (Fanzo, 2017). Smallholder farmers, who often
work under challenging conditions with limited resources, contribute
substantially to local food security and the global food market. Thus,
supporting these farmers with drought-resilient solutions enhances their
productivity and sustainability (Shroff, 2022). A clear understanding of
the relevance of drought vulnerability and resilience indicators is crucial
for formulating adaptive planning strategies that can withstand the
increasing threats posed by drought to small farms in a changing climate
(Muthelo et al., 2019).

‘Indicators’ are measurable quantities based on which analysts often
assess specific outcomes (Kumar et al., 2020). Indicators have the ability
to represent multidimensional constructs as quantitative variables. This
enables decision-makers and planners to formulate effective policies as
indicators can provide accessible and reliable information to guide the
decision-making process (UNDP, 2018). While indicators can be
context-specific, and care is needed in their selection, policies formu-
lated with the aid of relevant indicators can ensure that there is a clear
rationale and justification for an approach taken (World Bank, 2019;
Mens et al., 2022). Existing literature on drought risk modelling is
extensive and presents a large set of indicators (Wilhite and Glantz,
1985; Heim, 2002; Le et al., 2024). The danger is that the myriad range
of indicators creates complexity and may well blur the line between
comprehensiveness and importance (Mishra and Singh, 2010). In many
cases, large sets of indicators might induce confusion among decision-
makers as to ‘why’ the indicators were included, in the first place. For
example, there may be instances where inclusion cites data availability
as the reason, while in another instance, indicators may be included
because they were periodically collected over time. For some, indicators
that can be objectively recorded are preferred for policymaking, while
other policymakers may suggest that some indicators are more relevant
for understanding drought impacts than others. These conflicting views
arise from the underlying reason or ‘lens’ through which decision-
makers may view indicators as important. Considering all these selec-
tion perspectives might be crucial for decoding the importance attached
to individual indicators on the part of policymakers. This paper presents
a methodological approach based on Principal Component Analysis
(PCA) to answer this question in the context of drought risk for small
farms. The primary use case of the proposed PCA-based approach is to
identify the most usable and important drought indicators from the
perspectives of different stakeholders involved in drought risk man-
agement for small farms.

Analysts generally assess the importance of such indicators through
pragmatic approaches, which are usually founded on practical aspects
associated with data availability, procurement, or a domain focus area
(Meza et al., 2020). For example, existing literature on drought
vulnerability and resilience indicators primarily focuses on aspects such
as meteorological, hydrological, and agricultural indicators to assess
drought severity and impacts (Mishra and Singh, 2010; Meza, et al.,
2019; Keyantash and Dracup, 2002). However, a comprehensive anal-
ysis of such indicators considering their relevancy, ease of understand-
ing, objectivity, accessibility, and temporal aspects, individually or
together, is seen to be lacking (King-Okumu, 2019). The ‘relevancy’ or
the suitability of different indicators across various drought-prone re-
gions and socio-economic contexts is often lacking (Hayes et al., 1999;
Wilhite and Glantz, 1985). While existing literature discusses the tech-
nical aspects such as calculation methods and data sources of such in-
dicators, there is a lack of emphasis on the ‘understanding’ of drought
indicators or their clarity and interpretability, which is important for
decision-makers, researchers, and practitioners (Svoboda et al., 2002;
Datta and Behera, 2022). Discussions on ‘accessibility’ or availability of
data associated with indicators are crucial for widespread adoption and

application in decision-making processes, especially in developing re-
gions or remote areas, but are often overlooked in existing studies
(Svoboda et al., 2002). ‘Objectivity’ of indicators or quantifiable in-
dicators is another critical aspect that has received limited attention in
the literature, but it is essential for ensuring the credibility and
comparability of drought risks (Heim, 2002). While some research ad-
dresses the temporal aspects of specific indicators, such as satellite-
derived indices for monitoring drought progression, a comprehensive
analysis of temporal features, such as frequency of data collection,
temporal resolution, and the ability to capture short-term and long-term
drought events across different indicators, is lacking for clear under-
standing of drought dynamics and trends over time.

Therefore, amidst the multitude of indicators associated with
drought vulnerability and resilience, the challenge lies in distilling a
manageable set that can effectively support policy and planning strate-
gies. PCA emerges as a powerful statistical tool capable of reducing the
dimensionality of complex datasets while preserving the essential in-
formation contained within them (Jolliffe, 2002). By applying PCA to a
diverse set of agricultural drought vulnerability and resilience in-
dicators, this paper seeks to identify the principal components that most
significantly contribute to the overall resilience of a system vis a vis
small farms. We demonstrate the process of distilling a large set of
drought indicators into a concise, usable form for policymakers and
analysing the relations among these indicators using PCA. The simplest
approach to dealing with such importance scores about indicators is
calculating averages across responses and arriving at the most important
indicator (mean-based approach). However, this PCA-based approach
differs from a mean-based indicator analysis where indicators are
compared independently to identify the most important ones. In the
context of drought analysis, we argue that the PCA-based approach of-
fers a significant advantage over mean-based indicator analysis by
reducing data dimensionality, revealing underlying patterns, and man-
aging multicollinearity, thereby providing a comprehensive and holistic
understanding of the complex interrelationships among various drought
indicators. We demonstrate the process and benefits of analysing expert
opinion surveys, frequently conducted in drought risk modelling and
analysis, using this PCA-based approach that considers interrelation-
ships among the indicators across multiple dimensions. By employing
PCA, this study provides insights into how these indicators can be
effectively grouped and used to inform policy and decision-making. PCA
aids policymakers by identifying interconnections between indicators,
reducing complexity, and highlighting key entry points for targeted
intervention. For instance, clustering related indicators enables
streamlined decision-making by emphasising themes such as water
resource management or socioeconomic resilience. The usability of
drought indicators – defined as their relevance, clarity, accessibility, and
practicality – is critical for improving planning and resilience strategies.
However, existing literature rarely emphasises usability as a criterion for
evaluating indicators. In this study, we address this gap by systemati-
cally analysing the usability of drought vulnerability and resilience in-
dicators, focusing on their applicability to small farms. This
methodological analysis approach constitutes the main contribution of
the paper.

The paper outlines the methodology in Section 2. The results from
the PCA analysis are addressed in Section 3. The discussion in Section 4
is split into two sections: the first analyses the results around the com-
mon indicators across the categories, and the second addresses the in-
dicators that do not fall into any of the five categories. The conclusion in
Section 5 summarises the key issues and points for future research.

2. Methodology

2.1. Indicator selection and responses collected

The MADIS project created an online Delphi survey of several
drought indicators to elicit their usability and importance among global
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domain experts on climate change, agriculture, drought hazard, disaster
risk, within the water-energy-food nexus across geographically diverse
regions. Responses were received from responders based in Africa,
America, Asia and Europe, with the United States and India having the
highest number of participants. From the existing literature, over 100
drought vulnerability and resilience indicators were collated, of which
36 were selected for the Delphi survey based on discussions among the
MADIS team members and opinions from external experts working in
allied areas. This was done on a 4-point scale from ‘relevant’ to ‘not
relevant at all’. The team members and external experts provided their
justifications for including or excluding an indicator from the final list,
after which a consensus was reached for the 36 indicators. This survey
aimed to determine decision-makers’ information needs for improving
drought resilience and resource management policies. To do so, the
online survey asked experts to rate the list of 36 drought vulnerability
and resilience indicators on a 3-point scale of Low, Medium, and High
from five different points of view or lenses. The five lenses were termed
as ‘categories’ for this investigation, and they include – (1) relevancy of
the indicator for improving drought resilience policies; (2) ease of un-
derstanding of the indicator by the decision-makers; (3) data accessi-
bility or availability of the indicator; (4) data objectivity to evaluate the
indicator; and (5) availability of the data over different temporal scales.

All 36 indicators (Table 1) were assessed concerning the above five
categories. Appendix A shows the questions asked to the experts during
the Delphi survey and the operational definitions of the options given
under the 3-point scale. Details about this survey are reported in a
parallel study by Sass et al. (2024) and De MacEdo et al. (2024).

The current paper builds on and extends the work of these two
previous studies by offering a distinct approach to analysing drought
vulnerability and resilience indicators. Sass et al. (2024) classified the
36 indicators collected from the global survey into four clusters. They
proposed specific action points based on these groupings, focusing on
categorising indicators and linking them directly to actionable strategies
for policymakers. In contrast, De MacEdo et al. (2024) concentrated on
the methodological challenges and lessons learned while creating the
global Delphi survey itself, highlighting issues related to data collection,
expert participation, and the survey design process. This current paper,
therefore, takes a different analytical approach. Instead of focusing on
challenges or clustering, authors employ Principal Component Analysis
(PCA) to explore the inter-relationships between the 36 indicators.
Doing so reveals underlying patterns in the dataset and groups in-
dicators into principal components. This method emphasises the con-
nections and shared characteristics among indicators rather than
categorising them into distinct clusters, allowing for a more nuanced
understanding of how different indicators contribute to drought
vulnerability and resilience.

As a part of the online Delphi survey, more than 2000 questionnaires
were mailed to experts, of which a total of 326 responses were received,
and Table 2 shows the sample size details in the final dataset after
removing all ‘null’ responses from each of the categories. ‘Null’ refers to
the situation when the respondents did not answer the question. ‘Don’t
know’ was included as the last option for each category to reduce
pseudo-opinions. The consistency in the experts’ responses was assessed
using the Fleiss Kappa score (κ = 0.73, substantial agreement range:
0.61–0.8), which was found to have adequate reliability across all five
categories.

The number of fully completed questionnaires per category in this
study ranged from 100 to 134. While variation in sample size across
categories could influence the stability of Principal Component Analysis
(PCA) results, the overall sample size was sufficient to identify mean-
ingful patterns in the data. The PCA was conducted using only fully
completed responses, ensuring that the analysis was based on reliable
and consistent input without introducing artificial assumptions through
imputation.

Regarding inter-category variability, it is acknowledged that differ-
ences in response distributions across categories could lead to variations

Table 1
List of 36 indicators.

No. Indicator name Type Reference

1 Percentage of the
contribution of crop and
livestock production in the
income of smallholder
farming

Vulnerability Lindoso et al. 2011

2 Crop loss Vulnerability Hao et al. 2012; Antwi-
Agyei et al. 2012; Simelton
et al. 2009; Epule 2021

3 Percentage of drought-
resistance crop varieties
cultivated

Resilience Meza et al. 2019

4 Percentage of farmers who
use different types of crops

Resilience Meza et al. 2019

5 Percentage of area protected
and designated for the
conservation of biodiversity

Vulnerability Meza et al. 2019

6 Use of agricultural inputs (e.
g., insecticides, pesticides,
fertilizer, machinery)

Vulnerability Meza et al. 2019

7 Crop water use efficiency
(WUE)

Vulnerability Meza et al. 2019

8 Degree of land degradation
and desertification

Vulnerability Meza et al. 2019

9 Land rights clearly defined
(yes/no)

Resilience Lindoso et al. 2011;
Leguízamo et al., 2020

10 Existence of drought
management policies
(mitigation/adaptation/
prevention/preparedness)

Resilience Kampragou et al. 2015

11 Technical assistance from
local entities (e.g.,
cooperatives/NGO/
government)

Resilience Leguízamo et al., 2020

12 Percentage of farmers with
crop, livestock, or drought
insurance

Resilience Meza et al. 2019

13 Water use rights clearly
defined

Resilience Kampragou et al. 2015

14 Availability of drought
prediction and warning
systems or climatic
predictions

Resilience Lee and Yoo 2021; Xu et al.
2021; Leguízamo et al.,
2020

15 Produce storage and
transportation capacity

Resilience Simelton et al. 2009

16 Access to energy Resilience Meza et al. 2019
17 Prevalence of conflict/

insecurity
Vulnerability Meza et al. 2019

18 Percentage of the population
without access to
(improved) sanitation

Vulnerability Meza et al. 2019

19 Gender inequality Vulnerability Meza et al. 2019
20 Percentage of the rural

population
Vulnerability Meza et al. 2019

21 Unemployment rate and/or
proportion of formal work

Vulnerability Meza et al. 2019

22 Percentage of population
ages 15–64

Vulnerability Meza et al. 2019

23 Percentage of population
displaced internally or
transboundary

Vulnerability Meza et al. 2019

24 Presence of drivers of
migration and displacement

Vulnerability Meza et al. 2019

25 Poverty rate Vulnerability Antwi-Agyei et al. 2012;
Epule 2021

26 Food source reliability and
diversity

Resilience Luetkemeier and Liehr
2018

27 Level of public participation
in local policy

Resilience Meza et al. 2019

28 Participation in farming
cooperatives or associations

Resilience Lindoso et al. 2011

29 Percentage of the population
employed in farms

Vulnerability Lindoso et al. 2011;
Kampragou et al. 2015

30 Access to financing and
credit

Resilience Huai 2017; Leguízamo
et al., 2020

(continued on next page)
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in factor loadings. However, the extracted principal components align
with theoretical expectations and exhibit meaningful interpretability,
suggesting that the variability did not distort the underlying structure of
the data. Additionally, the selection of components was guided by
eigenvalue criteria and scree plot analysis, ensuring that the retained
factors were representative of the overall dataset.

While minor fluctuations in PCA results due to sample variability
cannot be ruled out, the consistency of the identified components sup-
ports the robustness of the findings. Future studies with larger and more
balanced sample sizes could further validate these results.

2.2. Analysis of the responses

Principal Component Analysis (PCA) is a statistical technique used to
reduce the dimensionality of a dataset while preserving as much vari-
ability as possible by transforming the original indicators into a new set
of uncorrelated indicators called principal components. However, the
responses were analysed before conducting PCA by assessing their cor-
relations. This was carried out as a first step because a correlation
analysis helps confirm sufficient correlation among the indicators to
justify the use of PCA. By understanding which indicators are highly
correlated, one can ensure that the principal components derived from
PCA explain the maximum variance with fewer components, leading to
more meaningful and interpretable results. On the other hand, analysing
indicator pairs with low correlation could be a crucial initial position for
developing improved drought policies.

The collected responses were analysed using PCA to study the vari-
ance in responses related to indicators. PCA was, therefore, employed to
distil the 36 drought vulnerability and resilience indicators into the-
matic groups that policymakers can use to prioritize actions. PCA
identifies patterns in data by revealing correlations and clustering in-
dicators into components that explain the largest variance. This study
also highlights the importance of integrating indicators to reflect sys-
temic resilience, emphasising how PCA facilitates such integration by
combining correlated indicators into cohesive themes. However, the
current study focused more on water-energy-food indicators, which are
policy-relevant with widely available data and excluded indicators such
as Days to Day Zero (DDZ) (as proposed by Lankford et al., 2023). This
limitation emphasises the need for future work to incorporate indicators
like DDZ to enhance the scope and applicability of the study further. The
current methodology enables policymakers to focus on actionable

themes rather than individual indicators, offering a practical roadmap
for resilience planning.

Five PCA models were run independently using the responses for
each category (relevancy, understanding, etc.). This was done to identify
principal components that explain the largest variance in each category,
which were ranked based on their relative ability to explain the total
variance, called the eigenvalue of the component. To identify important
principal components, all components with an eigenvalue of more than
1 were retained (Bucherie et al., 2022; Faisal and Shaker, 2017). To do
this, a ‘scree-plot’ was prepared highlighting the principal components
and the eigenvalue. To understand which indicators influence connected
principal components the most, ‘loading’ values were analysed.
‘Loading’ refers to the coefficients or weights that quantify the contri-
bution of each original indicator to a particular principal component.
These values vary between − 1 to + 1 and to decide which indicator is
represented by each principal component, a cut-off point is selected. For
clinical studies, the cut-off usually varies between 0.3 and 0.5,
magnitude-wise (Zhang and Castelló, 2017); however, for vulnerability
and resilience studies, PCA usually uses the cut-off of 0.4 and above,
magnitude-wise (Uddin et al., 2019; Wu, 2021).

The results obtained in this study satisfy Bartlett’s test of sphericity
(p = 0.012, i.e., p < 0.05), indicating that the interpretations are sta-
tistically significant. This is true for all five categories considered in this
study. Based on the orthogonal (varimax) rotated component matrix
results generated from PCA, indicators with a loading of more than 0.5
were grouped under one common theme to interpret associations be-
tween indicators better and classify them into appropriate groups for
each of the five categories.

3. Results

3.1. Correlations among responses

Correlation coefficients were calculated between the 36 indicators
across all five categories. Table 3 presents the top three highest and
lowest correlated indicator pairs. The values of the highly correlated
indicator pairs ranged between 0.625 and 0.752, making them suitable
candidates for furthering the PCA. In the ‘objectivity’ category, the
highest correlation of 0.752 was observed for the Unemployment rate
and/or proportion of formal work (O_21)& Percentage of the population
ages 15–64 (O_22). It was also noted that Percentage of retained
renewable water (35) was seen to be highly correlated with other in-
dicators in all five categories. This indicator may be capturing the same
or similar information that other indicators are also conveying, and
therefore, might be redundant. For example, the strong correlation be-
tween the Unemployment rate (21) and the % of population ages 15–64
(22) suggests a socioeconomic dimension critical for addressing drought
vulnerability. While the correlation between indicators (21) and (22) is
inherent due to their mathematical relationship, its significance in the
context of drought vulnerability extends beyond this dependency. A
high proportion of the working-age population coupled with high un-
employment reflects economic instability and limited livelihood op-
portunities, which can exacerbate social vulnerability during drought
events. In such scenarios, unemployed individuals and their households
face financial constraints, reducing their capacity to adapt to drought-
induced economic disruptions, such as increased food and water prices
or reduced agricultural productivity. Therefore, rather than viewing this
correlation as merely a statistical artefact, it serves as an indicator of
economic resilience or fragility in drought-prone regions. To further
substantiate this argument, additional analysis incorporating employ-
ment types and income distribution can be explored to reinforce the
socioeconomic dimension of drought vulnerability.

Weak correlations, such as between the Existence of drought man-
agement policies (10) and the Ratio of annual withdrawals to available
water (31), highlight areas where further integration of policies and
dynamic water management practices could enhance resilience. This

Table 1 (continued )

No. Indicator name Type Reference

31 Ratio of annual withdrawals
to available water

Vulnerability Meza et al. 2019

32 Water quality Vulnerability Meza et al. 2019
33 Groundwater level/sources Vulnerability Kampragou et al. 2015; Wu

and Yang, 2013; Alonso
et al. 2019; Murthy and
Yadav, 2015

34 Integrated land and water
management policies

Resilience Lerner et al. 2018

35 Percentage of retained
renewable water

Resilience Meza et al. 2019

36 Total dam capacity Resilience Meza et al. 2019

Table 2
Details of responses considered for the analysis.

No. Category Total responses
received

Complete responses
received

1 Relevancy 326 134
2 Understanding 326 125
3 Accessibility 326 115
4 Objectivity 326 117
5 Temporal 326 100
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weak correlation in the analysis does not diminish their practical rele-
vance. Rather, it suggests a dynamic approach to integrate policies with
real-time water resource monitoring, allowing policymakers to adapt

withdrawal strategies based on changing supply conditions. By high-
lighting such nuances, PCA simplifies complex datasets and identifies
areas where policy interventions can be most impactful. Similar findings

Table 3
Highest and lowest correlation (magnitude-wise) for each category.

Category Indicator pairs Correlation value
(Highest)

Indicator pairs Correlation value
(Lowest)

Relevancy (R) Integrated land and water management policies (34)
& % of retained renewable water (35)

0.711 % of population ages 15–64 (22) & Water quality (32) 0.009

Groundwater level/sources (33) & % of retained
renewable water (35)

0.645 Use of agricultural inputs (6)& Unemployment rate and/
or proportion of formal work (21)

0.016

% of retained renewable water (35) & Total dam
capacity (36)

0.637 Use of agricultural inputs (6) & Total dam capacity (36) 0.021

Understanding
(U)

Integrated land and water management policies (34)
& % of retained renewable water (35)

0.669 % of drought-resistance crop varieties cultivated (3)&%
of the population without access to sanitation (18)

0.008

Produce storage and transportation capacity (15) &
Access to energy (16)

0.632 Existence of drought management policies (10) & % of
population ages 15–64 (22)

0.010

Ratio of annual withdrawals to available water (31)&
Water quality (32)

0.625 Crop water use efficiency (7) & % of population
displaced (23)

0.020

Accessibility (A) % of the rural population (20)&% of population ages
15–64 (22)

0.725 Prevalence of conflict/insecurity (17) & Groundwater
level/sources (33)

0.005

Ratio of annual withdrawals to available water (31)&
% of retained renewable water (35)

0.680 % of the rural population (20) & Ratio of annual
withdrawals to available water (31)

0.017

% of drought-resistance crop varieties cultivated (3)
& % of farmers who use different types of crops (4)

0.653 % of the rural population (20) & Integrated land and
water management policies (34)

0.024

Objectivity (O) Unemployment rate (21) & % of population ages
15–64 (22)

0.752 Existence of drought management policies (10) & Ratio
of annual withdrawals to available water (31)

0.013

Groundwater level/sources (33) & % of retained
renewable water (35)

0.725 Water use rights clearly defined (13) & Ratio of annual
withdrawals to available water (31)

0.035

Existence of drought management policies (10) &
Availability of drought prediction and warning
systems (14)

0.683 Prevalence of conflict/insecurity (17) & Ratio of annual
withdrawals to available water (31)

0.035

Temporal (T) % of population displaced (23) & Presence of drivers
of migration and displacement (24)

0.739 % of farmers with crops, livestock or drought insurance
(12)& Presence of drivers of migration and displacement
(24)

0.033

Ratio of annual withdrawals to available water (31)&
% of retained renewable water (35)

0.729 Prevalence of conflict/insecurity (17) & Total dam
capacity (36)

0.052

Groundwater level/sources (33) & % of retained
renewable water (35)

0.713 Produce storage and transportation capacity (15) &
Poverty rate (25)

0.064

Fig. 1. Scree plot for all the categories showing the number of principal components with their corresponding eigenvalues.
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were further investigated using the PCA results in subsequent sections.

3.2. Principal components derived

Fig. 1 presents the ‘scree-plot’ showing the relationship between
individual components and their corresponding eigenvalue for each
category. At least eight components had an eigenvalue of more than 1
for each category. Implications for each category are discussed in later
sections. The vertical dotted lines in the figure that cross the horizontal
line (showing the eigenvalues = 1), represent the total number of
components for the categories.

When the data points for ‘relevancy’ and ‘understanding’ were
analysed, PCA provided nine components for each category, explaining
the highest variability (66.98 % and 69.08 %, respectively) among the
responses. For ‘accessibility’ the data points were analysed which pro-
vided ten components that explained 72.65 % of the variability. Simi-
larly, for ‘objectivity’ and ‘temporal’ the data points provided eight
principal components for each category which explained 69.86 % and
71.53 % of the variability, respectively. The association of indicators
with these principal components is taken forward for interpretation in
the next sections. The principal component groupings derived for each
of the five categories, along with the total variance and cumulative
percentages, are shown in Appendix B to F.

To simplify the PCA models, we used only the top principal com-
ponents with the highest eigenvalues. This still provides a good level of
predictability. The cumulative explained variance ratio was calculated
to show how much of the total variability in the responses is explained
by these principal components. In the ‘relevancy’ category (Appendix
B), the top four principal components explain > 50 % of the total vari-
ability, which indicates that the model, despite its simplicity, can still
capture a significant portion of the response’s variance and hence
maintain good predictability. Similarly, in the ‘understanding’, ‘acces-
sibility’, and ‘objectivity’ categories too (Appendix C to E), the top four
principal components explain > 50 % of the total variability. For the
‘temporal’ category (Appendix F) the top three components explain >

50 % of the total variability, thus showing that the ‘temporal’ category is
well explained in only three components as compared to the other four
categories. This shows that at least three components (for each category)
could explain variability and help policymakers focus only on the most
important and usable indicators.

3.3. Interpretation of themes assigned towards principal components

The most influential Component 1 (See Table 4, yellow highlights) in
the ‘relevancy’ category includes the following seven indicators – Per-
centage of retained renewable water (35); Integrated land and water
management policies (34); Groundwater level/sources (33); Total dam
capacity (36); Ratio of annual withdrawals to available water (31);
Availability of drought prediction and warning systems or climatic
predictions (14); Water quality (32). Looking at the nature of the seven
indicators in Table 4, they may be interpreted as being related to the
theme ‘Drought Preparedness and Water Resource Management’ because
this group signifies a collection deemed highly relevant to drought in-
dicators influencing water-related policies. The indicator loadings
highlighted in red in Table 4 do not fall under any principal component.
Also see Fig. 2 for a graphical representation of the PCA loadings ac-
cording to indicators (adapted from Fig. 5 in Ermitão et al., 2023).

In the ‘relevancy’ category, Component 2: ‘Socioeconomic and Agri-
cultural Development’ (explaining 13.8 % variance) indicators exhibit
greater statistical explanatory power than Component 4: ‘Infrastructure
and Policy Support’ (explaining 4.6 % variance). However, both sets of
indicators broadly relate to the types of assistance provided by co-
operatives or decision-makers to support small-scale farming commu-
nities against the severe impacts of droughts. This points out that experts
think that indicators grouped under Component 2 [Poverty Rate (25);
Participation in farming cooperatives or associations (28); Access to

financing and credit (30); Food source reliability and diversity (26)] are
more relevant for drought resilience as compared to indicators under
Component 4 [Access to energy (16); Produce storage and trans-
portation capacity (15); Existence of drought management policies
(mitigation/adaptation/prevention/preparedness) (10); Technical
assistance from local entities (e.g., cooperatives/NGO/government)
(11).] These statistical interpretations of components do not necessarily
dictate which indicators policymakers should prioritise; they provide a
framework to identify themes with significant data-driven backing. For
policymakers, this means considering the broader context of all com-
ponents while recognising that higher variance components, such as
Component 2, may offer a more substantial statistical basis for initial
exploration. All theme names and associated components across the five
categories have been listed in Appendix B to F.

4. Discussions

The objective of PCA was to filter out only the most important and
usable indicators for this context. Indicators were evaluated not only for
their scientific validity but also for their practical application in real-
world scenarios. PCA revealed that integrating usability-focused
criteria – such as clarity for decision-makers and ease of data access –
enhances the relevance and applicability of indicators. For example,
water management indicators like groundwater levels and drought
prediction systems scored highly across all five categories, emphasising
their role in developing robust resilience strategies. It was found that
under each category, some indicators were not associated with any
principal component. ‘Relevancy’ and ‘understanding’ had nine com-
ponents each; therefore, three and seven indicators could be excluded.
This exclusion resulted in only 33 and 29 indicators for these two cat-
egories, respectively, instead of the initial 36 indicators. Similarly,
‘accessibility’ consisted of 26 out of 36 indicators. Furthermore, ‘ob-
jectivity’ and ‘temporal’ comprised 32 and 33 indicators, respectively.

4.1. Indicators common across all five categories

Explaining which common indicators across all five categories are
important for monitoring drought vulnerability and resilience. As dis-
cussed before, drought vulnerability and resilience are influenced by
multiple factors, including environmental, social, economic, institu-
tional, and infrastructural aspects. Identifying common indicators pro-
vides a comprehensive understanding of these interconnected factors.

In relation to Component 1, indicators, Ratio of annual withdrawals
to available water (31), Water quality (32), Groundwater level/sources
(33), and Percentage of retained renewable water (35), appear across all
the five categories (Table 5). This shows that Component 1 pertains to
integrated water management across all five categories. Unsurprisingly,
the availability of water, its quality, and its source are a prerequisite for
monitoring and mitigating drought hazards and is recognised by other
scholars (Alonso et al., 2019; Kampragou et al., 2015; Meza et al., 2019;
Murthy and Yadav, 2015; Wu and Yang, 2013). Thus, Component 1,
which clusters indicators like “Groundwater level” (33), “Water quality”
(32), and “Drought prediction systems” (14), underscores the critical
role of integrated water management. PCA, therefore, provides policy-
makers with actionable insights by grouping indicators into principal
components, each representing a cohesive theme such as water resource
management, socioeconomic development, or governance. Policy-
makers can use this component to prioritize investments in monitoring
systems and sustainable water use policies.

In Tables 6 and 7, Components 2 and 3 each had three indicators,
which were identified as common across three categories. With respect
to Component 2 (Table 6), Percentage of drought-resistance crop vari-
eties cultivated (3), Percentage of farmers who use different types of
crops (4), and Use of agricultural inputs (e.g., insecticides, pesticides,
fertilizer, machinery) (6) appear common across accessibility, objec-
tivity, and temporal categories and are indicators that relate to
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Table 4
Loading values highlighting indicator grouping for ‘relevancy’.

Indicators
Component and Loadings

1 2 3 4 5 6 7 8 9
% of retained 
renewable 
water (35)

.862 .101 .018 .019 .094 .054 .170 .040 -.070

Integrated land 
and water 
management 
policies (34)

.793 .055 .062 .005 .163 .113 .117 -.118 .107

Groundwater 
level/sources 
(33)

.773 .154 -.048 .244 -.134 -.033 -.002 .138 -.006

Total dam 
capacity (36)

.753 .146 -.081 -.062 -.091 .179 .077 .069 -.035

Ratio of annual 
withdrawals to 
available water 
(31)

.627 .430 -.075 -.072 -.046 -.025 -.056 -.059 .167

Availability of 
drought 
prediction and 
warning 
systems (14)

.572 .036 .029 .334 -.231 .338 .129 .046 .100

Water quality 
(32)

.570 .252 -.039 .341 .081 -.275 -.030 .161 -.068

Poverty rate 
(25)

.094 .684 .438 -.007 .156 .058 -.042 .007 .054

Participation in 
farming 
cooperatives 
(28)

.237 .672 .173 .224 .012 -.087 .223 .110 .109

Access to 
financing and 
credit (30)

.198 .661 .028 .303 .157 .074 .123 .206 .071

food source 
reliability and 
diversity (26)

.279 .576 .193 .109 -.044 .243 .175 .034 .018

% of the rural 
population (20)

-.063 .047 .764 .296 .153 .042 .024 .025 -.172

Unemployment 
rate (21)

-.055 .123 .694 .302 .182 .159 -.155 .166 -.075

Presence of 
drivers of 
migration and 
displacement 
(24)

-.091 .200 .636 -.178 .426 .007 .292 -.153 .111

% of population 
displaced (23)

.009 .209 .603 -.155 .323 -.137 .229 .063 .192

% of population 
ages 15-64 (22)

-.203 .364 .590 -.104 .144 -.069 -.080 .361 .219

% of the 
population 
employed in 
farms (29)

.324 .473 .547 .084 .010 .045 .053 .060 -.033

Access to 
energy (16)

.076 .326 .052 .694 .136 .141 .028 .065 .154

Produce storage 
and 
transportation 
capacity (15)

.057 .230 .260 .617 .299 .139 .173 .146 .159

(continued on next page)
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sustainable agricultural development. Component 3 (Table 7) have in-
dicators that relate to rural development and demographics, namely,
Percentage of the rural population (20), Unemployment rate and/or
proportion of formal work (21), and Percentage of population ages
15–64 (22) appear common across relevancy, objectivity, and temporal
categories. This is in agreement with the fact that population and
employment-related data are indeed available from the Census and
Government databases. These indicators are quantifiable in nature and

are collected at different temporal scales (Meza et al., 2019) but sur-
prisingly are not understandable or the data is inaccessible, as rated
during the survey.

Further, there was commonality noted in relation to Component 4
(Table 8) where indicator (10) – Existence of drought management
policies (mitigation/adaptation/prevention/preparedness) – appeared
to be relevant, having data that is objective or quantifiable, and also
available across different temporal scales. This also suggests that

Table 4 (continued )

 
Existence of 
drought 
management 
policies (10)

.410 -.088 -.013 .521 -.239 .320 .168 -.016 .122

Technical 
assistance from 
local entities 
(11)

.131 .375 .175 .504 -.248 .172 .173 .205 .109

% of population 
without access 
to sanitation 
(18)

.057 -.016 .187 .158 .821 .108 .050 .046 .047

Gender 
inequality (19)

-.145 .178 .317 .008 .716 .109 .074 .103 -.148

Prevalence of 
conflict/insecurit
y (17)

.038 .075 .240 -.017 .648 -.231 -.031 .287 .261

Crop loss (2) .202 -.030 -.071 .238 .003 .690 -.024 .027 .201
% of the 
contribution of 
crop and 
livestock 
production in 
the income of 
smallholder 
farming (1)

-.096 .427 .168 .072 .103 .572 -.011 .082 -.035

% of farmers 
with crop, 
livestock, or 
drought 
insurance (12)

.262 .357 -.019 .215 .055 .503 .130 .239 .091

% of area 
protected and 
designated for 
the conservation 
of biodiversity 
(5)

.108 .168 .021 .111 .104 -.022 .831 .103 .051

% of drought 
resistance crop 
varieties 
cultivated (3)

.334 .105 -.023 .174 -.221 .249 .527 .296 .210

Level of public 
participation in 
local policy (27)

.252 .470 .168 .162 .179 .090 .485 -.092 .060

Land rights 
clearly defined 
(9)

.035 .205 .093 .239 .196 .062 .025 .740 -.039

% of farmers 
who use 
different types
of crops (4)

.108 -.040 .224 -.149 .050 .425 .233 .532 .093

Water use rights 
clearly defined 
(13)

.385 .047 .109 .376 .123 .055 .296 .464 .132

Degree of land 
degradation and 
desertification 
(8)

.098 .095 .109 .108 .057 .120 .070 -.115 .815

Use of 
agricultural 
inputs (6)

-.150 .172 -.204 .164 .114 .073 .075 .303 .576

Crop water use 
efficiency (7)

.400 -.106 .003 .266 -.254 .230 .159 .155 .448
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indicator (10) is not easy to understand and thereby making data
accessibility difficult. However, Kampragou et al. (2015) state that re-
gions and countries with drought management policies are proactive
towards drought resilience and develop better predictive mechanisms.

Additionally, it was seen that when the total variance explained
decreased from Component 2 to 10 (1 explaining the most variance), the
number of common indicators across the components also decreased.
This points to the fact that indicators in the low variance components
were stand-alone indicators, which may not be important for all
categories.

From Components 5 to 10, there was no common indicator across at
least three categories. For example, in relation to Component 5 across all
categories, indicator Prevalence of conflict/insecurity (17) was rated as
relevant and the availability of its data over different temporal scales,
whereas the indicator was not easily understandable, its data were
inaccessible, and difficulty in finding data that is quantifiable. This is in
accordance with a study by Meza et al. (2019) where it was concluded

that more than 50 % of the 124 experts considered by Meza et al. (2019)
rated this indicator as relevant at the global level (out of total 64 in-
dicators). On the other hand, in the current study, indicators Percentage
of population displaced internally or transboundary (23) and Presence
of drivers of migration and displacement (24) (Component 5) were rated
as easy to understand as well as available over different temporal scales.
These indicators were observed to be irrelevant, inaccessible, and
difficult to quantify. This is unexpected as the relevancy of these in-
dicators to drought resilience has been shown in a similar study con-
ducted by Meza et al. (2019). It is also contrary to the experiences and
perceptions of small-scale farmers who have reported migration and
displacement as the primary impacts of droughts and hence require
proactive adaptive measures to mitigate the same (Lottering et al.,
2021). Table 9 summarises the common indicators across all categories
as discussed in the above sections.

PCA identifies thematic components that represent integrated di-
mensions of drought resilience. These integration of correlated

Fig. 2. Principal Component (PC) loadings as per indicators.

Table 5
Component 1 indicators common across all five categories.
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indicators offers a context for policymakers to assess and carry out a
comparative analysis, such as assessing whether “System A is more
resilient than System B.” Thematic components, enable pathway to
determine actionable strategies because a multitude of indicators are
looked at from a holistic point of view, as a component, rather than in
silos or individually. For instance, if a system scores lower on socio-
economic indicators clustered under a specific component (say
Component 2), policymakers can prioritise interventions like increasing
access to financing and credit or promoting farming cooperatives to
improve resilience. By addressing these dimensions together, PCA pro-
vides a pathway to enhance resilience by guiding specific improvements
in indicator clusters rather than isolated metrics.

Water resource-related indicators exhibited consistent significance
across all five categories. This suggests that water access and usage
patterns are foundational and spatially ubiquitous drivers of regional
differentiation. For example, given the agrarian nature of many Indian
and African regions and the critical role of water in sustaining both
agriculture and domestic needs, water-related indicators tend to exhibit
relatively high variance and correlation with multiple developmental

and environmental variables, thereby influencing several components.
In contrast, socioeconomic indicators such as the percentage of the rural
population (20) and poverty rate (25) are context-dependent. They may
not exhibit the same level of statistical variation or correlation across all
regions. Their partial significance in specific components suggests that
these variables strongly influence only certain developmental typologies
or clusters (e.g., components emphasizing rural backwardness or ur-
banization levels) rather than universally affecting all regional dy-
namics. This contrast highlights how the availability of natural
resources (e.g., water) serves as a fundamental driver of regional
development patterns. At the same time, socioeconomic factors may be
more selectively influential, depending on the local context and existing
infrastructure.

4.2. Indicators not identified with any principal component across all five
categories

The following three indicators did not fall under any principal
component in the ‘relevancy’ category – Level of public participation in

Table 6
Component 2 indicators common across at least three categories.

Comp. Indicators R U A O T

2

Percentage of the contribution of crop and livestock production in the 
income of smallholder farming (1)
Crop loss (2)
Percentage of drought-resistance crop varieties cultivated (3)
Percentage of farmers who use different types of crops (4)
Percentage of area protected and designated for the conservation of 
biodiversity (5)

Use of agricultural inputs (e.g., insecticides, pesticides, fertilizer, 
machinery) (6)
Existence of drought management policies 
(mitigation/adaptation/prevention/preparedness) (10)
Percentage of farmers with crop, livestock, or drought insurance (12)
Water use rights clearly defined (13)
Poverty Rate (25)
Food source reliability and diversity (26)
Level of public participation in local policy (27)
Participation in farming cooperatives or associations (28)
Access to financing and credit (30)

Table 7
Component 3 indicators common across at least three categories.
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local policy (27), Water use rights clearly defined (13), and Crop water
use efficiency (WUE) (7). Indicators (27) and (13) both represent rights
or norms within governance and legal systems, with engagement and
ownership being considered fundamental to being heard and repre-
sented in policies affecting them. It may be that these indicators were
considered too remote from drought, but further investigation is war-
ranted. Indicators (13) and (7) are also water-related indicators, but
according to the analysis, do not fall within the most relevant Compo-
nent 1, broadly pertaining to integrated water management policies. This is
unexpected as the importance of these indicators to drought manage-
ment has been shown in the past (Kampragou et al. 2015; Meza et al.,
2019) and the reason they were selected for inclusion in the MADIS
project. It is also contrary to anecdotal experience within the MADIS
team, where small-scale farmers are seeking better irrigation and water
use efficiency, for example. The reason may be that experts do not
perceive the information on these indicators being relevant for the
specific job of formulating drought related mitigation strategies.
Regarding the indicator Crop water use efficiency (WUE) (7), while the
PCA analysis identified WUE as a less significant independent factor for
policymaking when integrated into targeted tools or calculators, WUE
can become highly actionable. For instance, its use in dynamic model-
ling frameworks or resource allocation systems enables policymakers to
optimise water use in agriculture. This highlights the need for contextual
applications of WUE, whose relevance depends on its integration into
broader decision-making frameworks. This may warrant further inves-
tigation in future research. Due to the low variability in responses be-
tween Components 7 to 9, and their similarity, it is arguable these could

be integrated into a single component of sustainable agriculture.
‘Understanding’ and ‘accessibility’ had a maximum number of in-

dicators that did not relate to any principal component (seven and ten
indicators, respectively) owing to the experts either rating them as ‘not
known’ or ‘low’. Percentage of drought-resistance crop varieties culti-
vated (3), Land rights clearly defined (yes/no) (9), Access to financing
and credit (30), Technical assistance from local entities (e.g., co-
operatives/NGO/government) (11), Percentage of farmers with crop,
livestock, or drought insurance (12), Percentage of population ages
15–64 (22), and Percentage of the population employed in farms (29)
were the indicators that were excluded from the ‘understanding’ cate-
gory. This may be because the experts regard these as too broad an in-
dicator for clear ‘understanding’, the indicators did not fall under the
research area of the experts rating them, or these indicators are not
directly related to a policy objective for delivering it to the broader
public. For the ‘accessibility’ category, along with indicator (29), nine
more indicators were not included, namely, Total dam capacity (36),
Crop loss (2), Percentage of the contribution of crop and livestock pro-
duction in the income of smallholder farming (1), Technical assistance
from local entities (e.g., cooperatives/NGO/government) (11), Partici-
pation in farming cooperatives or associations (28), Percentage of the
population without access to (improved) sanitation (18), Level of public
participation in local policy (27), Crop water use efficiency (WUE) (7),
and Degree of land degradation and desertification (8). This may be
because the data of these ten indicators is not easily accessible or
available, and collecting and processing the data requires significant
time and effort. This was an interesting note because for drought

Table 8
Component 4 indicators common across at least three categories.

Table 9
List of indicators common across categories.

Comp. Relevancy (R) Understanding (U) Accessibility (A) Objectivity (O) Temporal (T) Common

1 35, 34, 33, 36, 31, 14, 32 35, 34, 7, 31, 32, 14, 33 32, 33, 31, 35 33, 35, 32, 31, 36, 34, 7 35, 33, 31, 34, 32, 7, 8, 28, 36 31, 32, 33, 35
2 25, 28, 30, 26 10, 26, 5, 13, 27 4, 6, 3 3, 4, 1, 5, 2, 6 1, 4, 2, 6, 3, 12 3, 4, 6

(A, O, T)
3 20, 21, 24, 23, 22, 29 16, 15 30, 15, 16, 12 22, 21, 20, 25 22, 25, 20, 21, 29 20, 21, 22 (R, O, T)
4 16, 15, 10, 11 36, 28, 21 22, 20, 21 10, 14, 13 9, 13, 10, 11 10

(R, O, T)
5 18, 19, 17 23, 24 34, 10 28, 27, 29, 30, 26 24, 23, 17 − -
6 2, 1, 12 17, 18 19, 17 15, 16, 12 18, 19 − -
7 5, 3 19, 1, 25, 20 26, 25 19, 17 14, 15 − -
8 9, 4 6, 4 14, 13 23, 9 26, 27 − -
9 8, 6 2, 8 23, 24 ​ ​ − -
10 ​ ​ 9, 5 ​ ​ − -
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management policies to be formulated and implemented contextually, it
is imperative that the indicators are understood well and data are
accessible to be able to be monitored in a timely manner (Lindoso et al.,
2011; Kampragou et al., 2015). Looking back at the questions asked for
rating indicators under these two categories of ‘understanding’ and
‘accessibility’, this may be because the indicators were interpreted
differently by various decision-makers and the indicator data is not
easily accessible or available, as best known by the experts.

Similarly, Degree of land degradation and desertification (8), Tech-
nical assistance from local entities (e.g., cooperatives/NGO/govern-
ment) (11), Percentage of the population without access to (improved)
sanitation (18), and Presence of drivers of migration and displacement
(24) were excluded from the ‘objectivity’ category hinting that the data
of these four indicators is subjective and requires expert judgement to be
quantitatively evaluated or interpreted (Leguízamo et al., 2020; Meza
et al., 2019). Whereas for the ‘temporal’ category, Access to financing
and credit (30), Percentage of area protected and designated for the
conservation of biodiversity (5), and Access to energy (16) were not
included. This may be due to the reason that the data of these three
indicators is collected in an ad-hoc manner, limiting the ability to
monitor and compare the indicator over different temporal scales (Huai,
2017; Leguízamo et al., 2020; Meza et al., 2019). Of all indicators,
Technical assistance from local entities (e.g., cooperatives/NGO/gov-
ernment) (11) does not associate with any of the three categories
namely, understanding, accessibility, and objectivity, because experts
feel that data on indicator (11) is qualitative, less understandable, and if
the data exists it is not accessible to all. However, this indicator is
relevant and can be collected at different temporal scales.

To reiterate, it was interesting to note that Crop water use efficiency
(WUE) (7) did not relate to any of the components with the ‘relevancy’
and ‘accessibility’ categories. Whereas this same indicator is related to
Component 1 in the ‘objectivity’ category. This may indicate that while
WUE could be easily quantified with low ambiguity, it is perceived as
not relevant to the context of droughts, which makes the data for this
indicator unavailable or inaccessible (Meza et al., 2019). Although WUE
is a very related indicator for droughts, policy makers must be aware
that this indicator may be highly unreliable for developing drought
mitigation strategies. Fig. 3 summarises the indicators that were not
identified under any principal component for all the five categories.

5. Conclusion

This study underscores the importance of indicator usability in

drought resilience planning. By systematically evaluating indicators
across multiple dimensions, this study employs a PCA-based approach to
analyse 36 drought vulnerability and resilience indicators, grouped into
five categories − relevancy, ease of understanding, data accessibility,
data objectivity, and temporal data availability for decision-makers to
select the most practical and impactful indicators. Analysis shows that
not all the 36 indicators were grouped under the themes of the principal
components and fewer indicators can be considered to be used in the
decision-making process by policymakers. The analysis highlights the
significant role of water-related indicators, consistently prominent in
Component 1 across all categories, underscoring the critical importance
of integrated water management in mitigating agricultural drought
impacts, particularly for small-scale farming communities. It was also
seen that at least three components (for each category) could explain >

50% of the variability and thereby help policymakers contextually focus
only on the most important and usable indicators, offering a more
concise framework for drought assessment in small farms.

Unlike traditional mean-based indicator analysis, PCA provides a
nuanced understanding of the interrelationships between indicators,
allowing for the identification of core components that drive drought
vulnerability and resilience. This methodological advantage enables a
more holistic and interconnected view, facilitating the development of
comprehensive and effective drought management strategies. PCA thus
aids policymakers by reducing complexity, revealing interconnections,
and grouping indicators into actionable themes. The simplicity of using
mean-based analysis does not help uncover the interrelationships be-
tween indicators, nor does it help to categorise indicator information
into usable groups for decision-making.

Small farms can integrate these drought resilience indicators into
their planning by focusing on the most relevant and practical compo-
nents identified through PCA. By prioritising key water-related in-
dicators, such as crop water use efficiency and access to water resources,
small farms can implement water conservation strategies and optimize
irrigation systems to mitigate drought impacts. These indicators help
farmers adopt efficient practices like rainwater harvesting and soil
moisture monitoring, vital for maintaining productivity during drought
conditions. Additionally, incorporating socioeconomic indicators, such
as the unemployment rate and the percentage of the population aged
15–64, allows small farms to assess community vulnerability and ensure
economic preparedness for drought recovery. By focusing on the most
actionable indicators, based on the PCA results, small farms can
streamline their decision-making processes, making them more efficient
and effective in building resilience to drought.

Fig. 3. Representation of indicators (depicted by their numbers) not identified under any principal component.
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The findings offer practical implications for decision-makers, plan-
ners, water resource managers, and community stakeholders, guiding
the creation of targeted and context-specific interventions. By focusing
on integrated water management policies and viewing individual in-
dicators within the broader water cycle, policymakers can better address
the multifaceted challenges of drought. The findings emphasize the need
for clear, accessible, and relevant data to support effective policy-
making, particularly for small-scale farmers. PCA’s combinatorial (or
reducing data dimensionality) nature helps policymakers understand
systemic resilience by grouping indicators. For example, the clustering
of indicators like “Unemployment rate” (21) and “% of population ages
15-64″ (22) into socioeconomic components highlights their collective
relevance in addressing vulnerabilities. Meanwhile, the analysis of weak
correlations, such as between the ”Existence of drought management
policies“ (10) and the ”Ratio of annual withdrawals to available water“
(31), offers valuable insights for designing integrated policies that
dynamically respond to drought conditions. The nuanced treatment of
Crop water use efficiency (7) further demonstrates how specific in-
dicators, while less influential on their own, gain policy relevance when
integrated into targeted tools or calculators. Using PCA results, policy-
makers can compare resilience between systems, identify weaknesses,
and implement targeted measures that improve the overall resilience of
that system (vis a vis small farms in the current study). Policymakers are
thus equipped with both a strategic overview and detailed guidance for
implementation, making the framework both scientifically robust and
practically usable.

Furthermore, this study opens avenues for future research, suggest-
ing the inclusion of additional lenses, such as indicators’ susceptibility to
climate patterns and their cascading risks across the water-energy-food
nexus. For example, indicators linked to the water-energy-food nexus –
such as Crop water use efficiency (7), Access to energy (16), Food source
reliability and diversity (26), etc. – were included to capture the inter-
connected challenges and opportunities within this methodology.
Research on such topics will provide a valuable resource for refining
drought resilience strategies, ultimately aiding policymakers in making
informed decisions that bolster community resilience to drought events.

Also to be noted is that the relevance and applicability of these in-
dicators can vary significantly depending on geographical location.
Water-related indicators will be especially crucial in regions facing
water scarcity or recurrent droughts, where efficient water management
is central to maintaining crop yields. In contrast, farms in areas with
more stable rainfall patterns or better access to water resources might

emphasise crop diversification and food source reliability more than
direct water management. Socioeconomic indicators also vary in rele-
vance based on local conditions, with regions experiencing high un-
employment or labour migration benefitting from integrating these into
their drought preparedness strategies. The PCA framework allows small
farms to tailor their resilience plans to their specific environmental,
economic, and social contexts, helping policymakers and farmers
address regional challenges effectively and focus on the most impactful
indicators for their unique circumstances.
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Appendix A:. Questionnaire design

No. Category Question Scale
Low Medium High

1 Relevancy How relevant are the indicators in
terms of the information needs of
decision-makers for improving
drought resilience policies and better
managing resources?

The indicator is irrelevant to the
information needs of decision-
makers.

The indicator is moderately
relevant to the information
needs of decision-makers.

The indicator is highly relevant to the
information needs of decision-makers.

2 Understanding How easy to understand are the
indicators by decision-makers to be
used in a drought resilience index for
small to medium size farms?

The indicator may be interpreted
differently by various decision-
makers. The indicator is not
clearly connected to a policy
objective.

The indicator is understood by
most decision-makers with
some clarification. The
indicator conveys useful
information.

The indicator is readily understood by
decision-makers and, preferably, the
broad audience. The indicator conveys
useful, relevant information for
decision-makers on a specific policy
objective.

3 Accessibility How easy is the data accessibility of
the indicators for reasonable cost or
level of effort?

The indicator data is not easily
accessible or available.
Collecting and processing the
data requires significant time
and effort.

The indicator data is mostly
available, but processing the
data requires some effort.

The indicator data is publicly accessible
and readily available. Processing the
data requires minimal effort.

4 Objectivity How objective or subjective is the
available data for ease of
interpretation?

A subjective measure that
requires expert judgment to
evaluate the indicator.

Requires some degree of expert
judgment to interpret

An objective measure is based on
quantifiable, impartial, and recorded
data.

(continued on next page)
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(continued )

No. Category Question Scale
Low Medium High

quantitative or qualitative
data.

5 Temporal How consistent is the data availability
over different temporal scales to be
used in a drought resilience index for
small to medium size farms?

The indicator data is collected in
an ad-hoc manner, limiting the
ability to monitor and compare
the indicator over different
temporal scales.

The indicator data is collected
periodically but not frequently
enough for comparing the
indicator in different temporal
scales.

The indicator data is collected regularly
and available over different time scales,
allowing for monitoring and comparing
the indicator over different temporal
scales.

Appendix B:. ‘Relevancy’ category principal components

Component no. and name Total %
Variance

Cumulative
%

Indicator grouping

1: Drought Preparedness and Water
Resource Management

9.04 25.133 25.133 Percentage of retained renewable water (35); Integrated land andwater management policies (34);
Groundwater level/sources (33); Total dam capacity (36); Ratio of annual withdrawals to available
water (31); Availability of drought prediction and warning systems or climatic predictions (14);
Water quality (32)

2: Socioeconomic and Agricultural
Development

4.99 13.870 39.004 Poverty Rate (25); Participation in farming cooperatives or associations (28); Access to financing
and credit (30); Food source reliability and diversity (26)

3: Demographic and Labor Market
Dynamics

2.31 6.440 45.444 Percentage of the rural population (20); Unemployment rate and/or proportion of formal work
(21); Presence of drivers of migration and displacement (24); Percentage of population displaced
internally or transboundary (23); Percentage of population ages 15–64 (22); Percentage of the
population employed in farms (29)

4: Infrastructure and Policy Support 1.66 4.627 50.071 Access to energy (16); Produce storage and transportation capacity (15); Existence of drought
management policies (mitigation/adaptation/prevention/preparedness) (10); Technical
assistance from local entities (e.g., cooperatives/NGO/government) (11)

5: Social Vulnerability and Equity 1.45 4.048 54.118 Percentage of the population without access to (improved) sanitation (18); Gender inequality (19);
Prevalence of conflict/insecurity (17)

6: Agricultural Livelihood and Risk
Management

1.35 3.769 57.887 Crop loss (2); Percentage of the contribution of crop and livestock production in the income of
smallholder farming (1); Percentage of farmers with crop, livestock, or drought insurance (12)

7: Ecological Resilience and
Conservation

1.15 3.203 61.090 Percentage of area protected and designated for the conservation of biodiversity (5); Percentage of
drought-resistance crop varieties cultivated (3)

8: Agricultural Diversity and Land
Tenure

1.09 3.035 64.125 Land rights clearly defined (yes/no) (9); Percentage of farmers who use different types of crops (4)

9: Agricultural Intensification and
Land Health

1.03 2.862 66.987 Degree of land degradation and desertification (8); Use of agricultural inputs (e.g., insecticides,
pesticides, fertilizer, machinery) (6)

Appendix C:. ‘Understanding’ category principal components

Component no. and name Total %
Variance

Cumulative
%

Indicator grouping

1: Water Resource Management
and Efficiency

11.36 31.572 31.572 Percentage of retained renewable water (35); Integrated land and water management policies (34);
Crop water use efficiency (WUE) (7); Ratio of annual withdrawals to available water (31); Water
quality (32); Availability of drought prediction and warning systems or climatic predictions (14);
Groundwater level/sources (33)

2: Environmental Policy and
Community Engagement

3.83 10.645 42.217 Existence of drought management policies (mitigation/adaptation/prevention/preparedness) (10);
Food source reliability and diversity (26); Percentage of area protected and designated for the
conservation of biodiversity (5); Water use rights clearly defined (13); Level of public participation in
local policy (27)

3: Infrastructure and Energy
Access

2.00 5.565 47.782 Access to energy (16); Produce storage and transportation capacity (15)

4: Economic and Institutional
Capacity

1.54 4.304 52.086 Total dam capacity (36); Participation in farming cooperatives or associations (28); Unemployment
rate and/or proportion of formal work (21)

5: Population Displacement and
Migration Drivers

1.48 4.124 56.210 Percentage of population displaced internally or transboundary (23); Presence of drivers of
migration and displacement (24)

6: Human Security and Public
Health

1.39 3.862 60.073 Prevalence of conflict/insecurity (17); Percentage of the population without access to (improved)
sanitation (18)

7: Rural Livelihood and Social
Equity

1.17 3.263 63.336 Gender inequality (19); Percentage of the contribution of crop and livestock production in the
income of smallholder farming (1); Poverty Rate (25); Percentage of the rural population (20)

8: Agricultural Practices and Crop
Diversity

1.05 2.921 66.257 Use of agricultural inputs (e.g., insecticides, pesticides, fertilizer, machinery) (6); Percentage of
farmers who use different types of crops (4)

9: Agricultural Resilience and
Land Health

1.01 2.829 69.086 Crop loss (2); Degree of land degradation and desertification (8)
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Appendix D:. ‘Accessibility’ category principal components

Component no. and name Total %
Variance

Cumulative
%

Indicator grouping

1: Water Resource Availability and
Quality

12.11 33.662 33.662 Water quality (32); Groundwater level/sources (33); Ratio of annual withdrawals to available
water (31); Percentage of retained renewable water (35)

2: Crop Diversity and Agricultural
Practices

3.07 8.544 42.206 Percentage of farmers who use different types of crops (4); Use of agricultural inputs (e.g.,
insecticides, pesticides, fertilizer, machinery) (6); Percentage of drought-resistance crop varieties
cultivated (3)

3: Agricultural Risk Management
and Infrastructure

2.02 5.619 47.825 Access to financing and credit (30); Produce storage and transportation capacity (15); Access to
energy (16); Percentage of farmers with crop, livestock, or drought insurance (12)

4: Rural Demographic and Labor
Market

1.77 4.927 52.752 Percentage of population ages 15–64 (22); Percentage of the rural population (20); Unemployment
rate and/or proportion of formal work (21)

5: Policy Frameworks for Drought
and Water Management

1.42 3.961 56.713 Integrated land and water management policies (34); Existence of drought management policies
(mitigation/adaptation/prevention/preparedness) (10)

6: Social Vulnerability and Gender
Equity

1.35 3.769 60.482 Gender inequality (19); Prevalence of conflict/insecurity (17)

7: Food Security and Poverty 1.22 3.406 63.888 Food source reliability and diversity (26); Poverty Rate (25)
8: Water Governance and Predictive
Capabilities

1.07 2.978 66.865 Availability of drought prediction and warning systems or climatic predictions (14); Water use
rights clearly defined (13)

9: Migration and Displacement Risk 1.06 2.954 69.819 Percentage of population displaced internally or transboundary (23); Presence of drivers of
migration and displacement (24)

10: Biodiversity Conservation and
Land Tenure

1.02 2.840 72.659 Land rights clearly defined (yes/no) (9); Percentage of area protected and designated for the
conservation of biodiversity (5)

Appendix E:. ‘Objectivity’ category principal components

Component no. and name Total %
Variance

Cumulative
%

Indicator grouping

1: Water Resource Management
and Efficiency

12.22 33.946 33.946 Groundwater level/sources (33); Percentage of retained renewable water (35); Water quality (32);
Ratio of annual withdrawals to available water (31); Total dam capacity (36); Integrated land and
water management policies (34); Crop water use efficiency (WUE) (7)

2: Agricultural Sustainability and
Resilience

2.91 8.099 42.045 Percentage of drought-resistance crop varieties cultivated (3); Percentage of farmers who use
different types of crops (4); Percentage of the contribution of crop and livestock production in the
income of smallholder farming (1); Percentage of area protected and designated for the conservation
of biodiversity (5); Crop loss (2); Use of agricultural inputs (e.g., insecticides, pesticides, fertilizer,
machinery) (6)

3: Rural Socioeconomic
Development

2.46 6.858 48.903 Percentage of population ages 15–64 (22); Unemployment rate and/or proportion of formal work
(21); Percentage of the rural population (20); Poverty Rate (25)

4: Drought Governance and
Preparedness

2.23 6.208 55.111 Existence of drought management policies (mitigation/adaptation/prevention/preparedness) (10);
Availability of drought prediction and warning systems or climatic predictions (14); Water use rights
clearly defined (13)

5: Agricultural and Community
Resilience

1.66 4.615 59.725 Participation in farming cooperatives or associations (28); Level of public participation in local policy
(27); Percentage of the population employed in farms (29); Access to financing and credit (30); Food
source reliability and diversity (26)

6: Agricultural Infrastructure and
Risk Management

1.51 4.197 63.922 Produce storage and transportation capacity (15); Access to energy (16); Percentage of farmers with
crop, livestock, or drought insurance (12)

7: Social Equity and Security 1.12 3.127 67.049 Gender inequality (19); Prevalence of conflict/insecurity (17)
8: Land Tenure and Displacement 1.01 2.815 69.864 Percentage of population displaced internally or transboundary (23); Land rights clearly defined

(yes/no) (9)

Appendix F:. ‘Temporal’ category principal components

Component no. and name Total %
Variance

Cumulative
%

Indicator grouping

1: Sustainable Agriculture and
Water Management

13.05 36.269 36.269 Percentage of retained renewable water (35); Groundwater level/sources (33); Ratio of annual
withdrawals to available water (31); Integrated land and water management policies (34); Water
quality (32); Crop water use efficiency (WUE) (7); Degree of land degradation and desertification (8);
Participation in farming cooperatives or associations (28); Total dam capacity (36)

2: Agricultural Productivity and
Resilience

2.82 7.859 44.128 Percentage of the contribution of crop and livestock production in the income of smallholder farming
(1); Percentage of farmers who use different types of crops (4); Crop loss (2); Use of agricultural inputs
(e.g., insecticides, pesticides, fertilizer, machinery) (6); Percentage of drought-resistance crop varieties
cultivated (3); Percentage of farmers with crop, livestock, or drought insurance (12)

3: Land and Water Governance 2.60 7.243 51.371 Percentage of population ages 15–64 (22); Poverty Rate (25); Percentage of the rural population (20);
Unemployment rate and/or proportion of formal work (21); Percentage of the population employed in
farms (29)

4: Natural Resource Governance 1.88 5.228 56.598 Land rights clearly defined (yes/no) (9); Water use rights clearly defined (13); Existence of drought
management policies (mitigation/adaptation/prevention/preparedness) (10); Technical assistance
from local entities (e.g., cooperatives/NGO/government) (11)

(continued on next page)
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(continued )

Component no. and name Total %
Variance

Cumulative
%

Indicator grouping

5: Human Security and
Displacement

1.72 4.779 61.378 Presence of drivers of migration and displacement (24); Percentage of population displaced internally
or transboundary (23); Prevalence of conflict/insecurity (17)

6: Social Equity and Public
Health

1.37 3.815 65.193 Percentage of the population without access to (improved) sanitation (18); Gender inequality (19)

7: Infrastructure and Resilience
Planning

1.18 3.289 68.481 Availability of drought prediction and warning systems or climatic predictions (14); Produce storage
and transportation capacity (15)

8: Community Food Security and
Governance

1.09 3.053 71.534 Food source reliability and diversity (26); Level of public participation in local policy (27)

Data availability

Data supporting this study are openly available at https://sites.psu.
edu/belmont/files/2024/08/PCA_Paper.zip
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Zhang, Z., Castelló, A., 2017. Principal components analysis in clinical studies. Ann.
Transl. Med. 5 (17).

T. Sarmah et al. Climate Services 38 (2025) 100569 

18 

https://doi.org/10.1007/s11069-013-0617-y
http://refhub.elsevier.com/S2405-8807(25)00030-5/h0320
http://refhub.elsevier.com/S2405-8807(25)00030-5/h0320
https://doi.org/10.1007/s11069-021-04681-1
http://refhub.elsevier.com/S2405-8807(25)00030-5/h0330
http://refhub.elsevier.com/S2405-8807(25)00030-5/h0330

	Usability of agricultural drought vulnerability and resilience indicators in planning strategies for small farms: A princip ...
	1 Introduction
	2 Methodology
	2.1 Indicator selection and responses collected
	2.2 Analysis of the responses

	3 Results
	3.1 Correlations among responses
	3.2 Principal components derived
	3.3 Interpretation of themes assigned towards principal components

	4 Discussions
	4.1 Indicators common across all five categories
	4.2 Indicators not identified with any principal component across all five categories

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A: Questionnaire design
	Appendix B: ‘Relevancy’ category principal components
	Appendix C: ‘Understanding’ category principal components
	Appendix D: ‘Accessibility’ category principal components
	Appendix E: ‘Objectivity’ category principal components
	Appendix F: ‘Temporal’ category principal components
	Data availability
	References


