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Abstract

We classify contact manifolds (M,D) which are homogeneous under a connected semisimple Lie
group G, and symmetric in the sense that there exists a contactomorphism of (M,D) normalizing G,

xing a point o in M and restricting to minus identity along Do.
c 2020 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

1. Introduction

In a short note published in 1990, the first named author described a simple construction
f all contact homogeneous spaces M = G/H of a given Lie group G in terms of the orbits

of the coadjoint representation of the group G [1] analogous to the Kirillov–Kostant–Souriau
construction of symplectic homogeneous spaces.

A contact structure on a smooth manifold M of dimension 2n + 1 is a maximally non-
integrable distribution D of hyperplanes in the tangent spaces of M ; the pair (M,D) is then
called a contact manifold. Locally D can be given as the field of kernels of a locally defined
1-form θ , called a local contact form, and the maximal non-integrability condition refers to the
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∗ Corresponding author.
E-mail addresses: dalekseevsky@iitp.ru (D. Alekseevsky), gorodski@ime.usp.br (C. Gorodski).
Please cite this article as: D. Alekseevsky and C. Gorodski, Semisimple symmetric contact spaces, Indagationes Mathematicae (2020),
https://doi.org/10.1016/j.indag.2020.09.008.

ttps://doi.org/10.1016/j.indag.2020.09.008
019-3577/ c⃝ 2020 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/indag
https://doi.org/10.1016/j.indag.2020.09.008
http://www.elsevier.com/locate/indag
mailto:dalekseevsky@iitp.ru
mailto:gorodski@ime.usp.br
https://doi.org/10.1016/j.indag.2020.09.008


D. Alekseevsky and C. Gorodski Indagationes Mathematicae xxx (xxxx) xxx

c

s

a
S

g
t
a
a
t
a

fact that θ ∧ (dθ )n is never zero. In case M is transversally orientable, a contact form can be
hosen globally and moreover uniquely up to a conformal factor.

The automorphism group of a contact structure is infinite-dimensional; its elements are
ometimes called contactomorphisms. A contact manifold (M,D) is called homogeneous if it

admits a transitive Lie group of contactomorphisms; in this case the contact structure is called
invariant. The problem of describing invariant contact structures on a homogeneous space of a
Lie group can be formulated in terms of Lie algebras. Fix a Lie group G. According to main
theorem in [1], the invariant contact structures on a simply-connected homogeneous space M
of G fall into one of the two following disjoint classes:

1. M is the universal covering of the projectivization of a conical coadjoint orbit.
2. M is the total space of a 1-dimensional bundle over a covering of a non-conical coadjoint

orbit.

Recall that a nonzero coadjoint orbit of a Lie group G is called conical if together with
ny point in the orbit also the positive ray through the point is contained in the orbit. In
ections 2.1 and 2.2 we review in detail and in our context the two constructions above.

Following [8,15,19,22,27] we say that a contact manifold (M,D) is symmetric if each
point p of M is fixed under an involutive contactomorphism that restricts to minus identity
along Dp; such a contactomorphism is called a symmetry at p (it does not have to be unique).
In the quoted references, the contact manifold carries additional geometric structure related
to D and the symmetries are required to preserve it (e.g. sub-Riemannian, sub-conformal,
sub-Hermitian, Cauchy–Riemann or parabolic structure). Contrary to the case of Riemannian
symmetric spaces, a contact symmetric space needs not be homogeneous, namely, the group
generated by symmetries may act non-transitively on the space. The first known example
(an odd-dimensional projective space with two deleted points) was constructed by Lenka
Zalabová [27]. For this reason, in this paper we further restrict to homogeneous spaces and we
say that a homogeneous contact manifold (M,D) of a Lie group G is symmetric if it admits
a symmetry at the basepoint o = eH ∈ M that normalizes G. Our main result is a complete
classification of simply-connected symmetric homogeneous contact manifolds of a semisimple
Lie group. For simplicity, we call such objects (semisimple) symmetric contact spaces.

Some remarks are in order. Although [8] assumes there is a compatible Riemannian structure
on the contact distribution, their classification result includes many homogeneous spaces of
non-semisimple Lie groups; the existence of a Hermitian Cauchy–Riemann structure on the
distribution follows from the compactness of the isotropy group; their examples associated to
simple Lie groups are listed in Table 5. More generally [19] considers symmetric Hermitian
Cauchy-Riemann structures on distributions more general than of contact type (of arbitrary
codimension), albeit with no general classification results. The examples in Tables 6–8 admit an
invariant (para-) Cauchy-Riemann structure that is the pullback of an invariant (para-) complex
structure on the base coadjoint orbit. The paper [27] considers symmetric contact structures
associated to parabolic geometries, which endow the Lie algebra of G with a so-called contact

rading; the flat models of such parabolic geometries correspond to our examples of conical
ype listed in Table 1. Further in [17,18] the authors study parabolic contact manifolds carrying
smooth system of symmetries and give conditions as to when such manifolds are fibered over
reflexion space in the sense of Loos; such spaces are related to our examples of non-conical

ype listed in Tables 5–8. Finally, we believe that the examples in Tables 2 and 4 are too simple
nd/or already known, but those in Table 3 are possibly new.
2



D. Alekseevsky and C. Gorodski Indagationes Mathematicae xxx (xxxx) xxx
Table 1
Symmetric contact spaces of an absolutely simple group G which are projectivized orbits of a
highest root vector (real adjoint varieties).

Cartan’s type g z WC Depth

AI slnR gln−2R π1 + πn−1 2
AIII sup,q up−1,q−1 π1 + πn−1 2
BDI sop,q sop−2,q−2 + sl2R π1 ⊗ π ′

1 2
CI spnR spn−1R π1 2
DIII so∗

2n so∗

2n−4 + so3 π1 ⊗ π ′

1 2
EI e6(6) sl6R π3 2
EII e6(2) su3,3 π3 2
EIII e6(−14) su1,5 π3 2
EV e7(7) so6,6 π6 2
EVI e7(−5) so∗

12 π6 2
EVII e7(−25) so2,10 π6 2
EVIII e8(8) e7(7) π7 2
EIX e8(−24) e7(−25) π7 2
FI f4(4) sp3R π3 2
G g2(2) sl2R 3π1 2

Table 2
Symmetric contact space of group G2(2) which is the projectivized orbit of a short root
vector.

g z WC VC Depth

g2(2) sl2R π1 + π1 + π1 π1 3

Table 3
Symmetric contact spaces of an absolutely simple G which are projectivized orbits of
an even nilpotent element.

(g, s + z) (V + W )C Depth Conditions

(sl3R, so1,2) 4π1 4 –
(su1,2, so1,2) 4π1 4 –
(sop,q , so1,2 ⊕ sop−1,q−2) π1 ⊗ π ′

1 2 p ≥ 1, q ≥ 2

Table 4
Symmetric contact spaces M = G/H with non-absolutely simple Lie groups G.

g s z (V + W )C Depth

sl2R ⊕ sl2R Diagonal 0 2π1 2
sl2C Normal real form 0 2π1 2

1.1. Summary of arguments and results

Since we are assuming the group G semisimple, we may identify the dual space g∗ of the
Lie algebra with the Lie algebra g via the Killing form and identify coadjoint orbits with adjoint
orbits. Then the class (1) is identified with the projectivization PAdGe = AdG(Re) ⊂ Pg of
the adjoint orbit of a nilpotent element e ∈ g, and contact manifolds in class (2) can then be
described in terms of one-dimensional bundles over non-nilpotent adjoint orbits.
3
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Table 5
Hermitian CR symmetric contact spaces G/H .

g k = h ⊕ R

sun sup ⊕ sun−p ⊕ u1
sup,n−p sup ⊕ sun−p ⊕ u1
so∗

2n sun ⊕ so2
so2n sun ⊕ so2
son son−2 ⊕ so2
son−2,2 son−2 ⊕ so2
spn(R) sun ⊕ so2
spn sun ⊕ so2
e6 so10 ⊕ so2
e6(−14) so10 ⊕ so2
e7 e6 ⊕ so2
e7(−25) e6 ⊕ so2
sop,1 sop−1 ⊕ R

Table 6
Pseudo-Hermitian CR symmetric contact spaces G/H .

g k = h ⊕ R

sup,q sur,s ⊕ sup−r,q−s ⊕ so2 (r > 0 and s > 0)
sl2n(R) sln(C) ⊕ so2
su∗

2n sln(C) ⊕ so2
so∗

2n sup,n−p ⊕ so2 (0 < p < n)
so∗

2n so∗

2n−2 ⊕ so2
sop,q sop−2,q ⊕ so2 (p > 2 and q > 0)
so2p,2q sup,q ⊕ so2 (p > 0 and q > 0)
spn(R) sup,n−p ⊕ so2 (0 < p < n)
spp,q sup,q ⊕ so2 (p > 0 and q > 0)
e6(−14) so2,8 ⊕ so2
e6(−14) so∗

10 ⊕ so2
e6(2) so∗

10 ⊕ so2
e6(2) so4,6 ⊕ so2
e7(7) e6(2) ⊕ so2
e7(−5) e6(2) ⊕ so2
e7(−5) e6(−14) ⊕ so2
e7(−25) e6(−14) ⊕ so2

Our starting point for the classification of semisimple symmetric contact spaces in class (1),
amely, those of projective type, is the Morozov–Jacobson theorem, which allows to include
nilpotent element e ∈ g into a standard basis (h, e, f ), called a sl2-triple, of a 3-dimensional

ubalgebra s. Denote by z = Zg(s) the centralizer of s, by Ng(s) = s + z the normalizer of s,
nd by q a reductive complement of Ng(s) in g. The stability subalgebra of the projectivized
rbit M = AdG(Re) ⊂ Pg can be written as

h = Ng(Re) = Rh + Re + z + V

here V = Zq(e) is the span of highest weight vectors in the s-module q. Denote by W the
dh-invariant complementary subspace to V such that q = V + W . Then g = h + m where

= R f + W is identified with the tangent space To M and W is identified with the contact
yperplane D . The semisimple element h defines a gradation g =

∑
gi where gi denotes
o i∈Z

4
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the i-eigenspace; the largest m such that gm
̸= 0 is called the depth of the gradation. We also

ay that e and the corresponding sl2-subalgebra s are odd (resp. even) if this gradation is odd
resp. even), which means that there exists (resp. does not exist) an odd number j with g j

̸= 0.
In the case in which the Lie algebra is absolutely simple, we prove the following theorem

which describes all symmetric contact spaces M = G/H which are projectivized orbits of odd
nilpotent elements. A depth 2 gradation

g = g−2
+ g−1

+ g0
+ g1

+ g2 (1)

is called a contact gradation if dim g±2
= 1 and the bilinear form g−1

× g−1
→ g−2

induced by the Lie bracket is non-degenerate. It is a real form of the canonical contact
gradation of the complex Lie algebra gC constructed from the regular 3-dimensional subalgebra
sC(µ) = Chµ + Ceµ + C fµ associated with a long root µ; this gradation is the eigenspace
decomposition of adhµ and (gC)2

= Ceµ, (gC)0
= Chµ + ZgC (sC(µ)). All contact gradations

on real simple Lie algebras are known and listed, for instance, in [17, Table 1].

Theorem 1.1. For an absolutely simple Lie algebra g and a contact gradation (1), the
projectivized orbit Me = AdG(Re) of the nilpositive element e ∈ g2 is a symmetric contact
space, and these manifolds exhaust all symmetric contact spaces which are projectivized orbits
of odd nilpotent elements if g is not of G2-type. For the normal real form of G2-type, the
projectivized orbit of the nilpositive element of the regular 3-subalgebra s(β) associated with
a short root β is also a symmetric contact space; the associated gradation has depth 3. The
complete list is given in Tables 1 and 2.

The projectivized orbits Me are called real adjoint varieties and have many remarkable
properties. The associated symmetric decomposition has the form

g = g+ + g− = (s + z) + (V + W ).

In particular, the corresponding manifold G/G+ is a symmetric para-quaternionic Kähler
space [2,12].

In case of the projectivized orbit of a long root vector, the z-modules V and W are isomor-
phic; in Table 1 we indicate the subalgebra z and the complexification of its representation on
g−1

= W , which is always of quaternionic type.
Throughout this paper, we indicate the (complex) representations by their highest weights

and denote the i th fundamental weight of a complex simple Lie algebra by πi (cf. [16, Table 1,
p. 224]).

The case of the projectivized orbit of a short root occurs for g = g2(2) only; the situation is
summarized in Table 2.

The following theorem describes symmetric contact spaces of which are projectivized orbits
of even nilpotent elements in an absolutely simple Lie algebra g. For an even nilpotent element
e ∈ g and the corresponding sl2R-subalgebra s, the complexification sC is an sl2C-subalgebra
of gC whose adjoint action on gC admits irreducible components of odd dimension only, hence
it defines an SO3-structure on gC in the sense of Vinberg [25]. A symmetric contact space
which is the projectivized orbit of an even nilpotent element in g gives rise to an SO3-structure
on gC which is of symmetric type, in the sense that the normalizer NgC (sC) is a symmetric
subalgebra of gC. In this case we will prove that the dimensions of the irreducible components
of the adjoint action of sC on gC do not exceed 5 and hence the SO3-structure is in addition
short. In Section 5.2 we will refer to the classification of short SO3-structures on complex
simple Lie algebras in [25] and check which ones are of symmetric type to prove the following
theorem.
5
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Theorem 1.2. For an absolutely simple Lie algebra g, the symmetric contact spaces that
are projectivized orbits of even nilpotent elements of g are in bijective correspondence with
he isomorphism classes of short SO3-structures of symmetric type on gC. The complete list is

given in Table 3.

Some remarks about the table are in order. Recall that s + z embeds into g as a symmetric
subalgebra. The case p = q = 3 in Table 3 gives

(so3,3, so1,2 ⊕ so2,1) = (sl4R, sl2R ⊕ sl2R).

We have su∗

4 = sl2H = so5,1, su2,2 = so2,4, so2,2 = so1,2⊕so2,1, and so∗

4 = sk2H = so1,2⊕so3.
The following theorem explains the case of a non-absolutely simple Lie algebra, in which

he possibilities are very limited.

heorem 1.3. For a non-absolutely simple Lie algebra g, the only possible symmetric contact
paces that are projectivized orbits of a nilpotent element in g are described as follows:

(i) g = sl2R ⊕ sl2R, z = 0, g+ = s is the diagonal subalgebra and V + W is the
skew-diagonal.

(ii) g = sl2C, z = 0, g+ = s is the normal real form of g and V + W = is.

(cf. Table 4).

The last theorem describes all symmetric contact spaces M = G/H of a semisimple Lie
group G which are associated with non-nilpotent orbits (non-conical type). We prove that M is
a canonical contactization of a symplectic symmetric space [7]. More precisely, let (N , ω) be
a symplectic manifold. It is called quantizable if there exists a principal bundle π : P → M
with one-dimensional structure group A = R or S1 and connection θ such that dθ = π∗ω. The
contact manifold (M, ker θ ) is called a contactization of N , see [3].

Let N = AdGξ = G/K ⊂ g be a non-nilpotent adjoint orbit which is a symmetric
ymplectic manifold with symmetric decomposition g = k + p and symplectic form defined
y the adk-invariant closed 2-form ω(x, y) = d(B ◦ ξ )(x, y) := −B(ξ, [x, y]) for x , y ∈ p,
here B is the Killing form of g. Then ξ is semisimple and the centralizer K = ZG(ξ ) is

onnected. Let h be the B-orthogonal complement to ξ in k. Then h is a codimension one
deal of k. Assume that the connected subgroup H generated by h is a closed subgroup of K .
hen the principal A = K/H -bundle M = G/H → N = G/K is a contactization of N . In

act, the 1-form θ := B ◦ ξ is AdH -invariant and defines a contact form θ on M = G/H with
ssociated contact distribution D which is the invariant extension of the hyperplane p ⊂ To M .
e prove that every symmetric contact space M is of this form.

heorem 1.4. Let G be a connected semisimple Lie group with Lie algebra g and let
N = AdGξ = G/K be a (semisimple) adjoint orbit which is a symplectic symmetric space.
Assume that the B-orthogonal complement to ξ in k = Zg(ξ ) generates a closed subgroup of
he centralizer K = ZG(ξ ). Then N admits a contactization M = G/H which is a symmetric
ontact space of G. Conversely, every (semisimple) symmetric contact space of non-conical
ype arises in this way.

The semisimple symplectic symmetric spaces were introduced and classified by P. Bieli-
vsky [7]. Every simply-connected symplectic symmetric space of a connected semisimple Lie
roup is a direct product of symplectic symmetric spaces of simple Lie groups. The lists of all
ossible pairs (g, k) for g simple are given in Tables 5–8. The tables are organized and labeled
y the existing type of induced CR structure on the contact distribution of G/H .
6
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Table 7
Para-pseudo-Hermitian CR symmetric contact spaces
G/H .

g k = h ⊕ R

sln(R) slp(R) ⊕ sln−p(R) ⊕ R
su∗

2n su∗

2p ⊕ su∗

2n−2p ⊕ R
sun,n sln(C) ⊕ R
so∗

4n su∗

2n ⊕ R
sop,q sop−2,q ⊕ R
son,n sln(R) ⊕ R
sop,q sop−1,q−1 ⊕ R
spn(R) sln(R) ⊕ R
spn,n su∗

2n ⊕ R
e6(6) so5,5 ⊕ R
e6(−26) so1,9 ⊕ R
e7(7) e6(6) ⊕ R
e7(−25) e6(−26) ⊕ R

Table 8
CR symmetric contact spaces G/H with pseudo-Hermitian
and para-pseudo-Hermitian structures.

g k = h ⊕ R

sln(C) slp(C) ⊕ sln−p(C) ⊕ C
so2n(C) sln(C) ⊕ C
son(C) son−2(C) ⊕ C
spn(C) sln(C) ⊕ C
eC6 so10(C) ⊕ C
eC7 eC6 ⊕ C

2. Homogeneous contact manifolds of a semisimple Lie group

The main result of this work is a classification of symmetric contact spaces of semisimple
ie groups according to the following definition.

efinition 2.1. A homogeneous contact manifold (M = G/H,D) is called a symmetric
ontact space if there is an involutive contactomorphism of (M,D) that fixes the point o = eH ,
cts on the contact subspace D0 as minus identity, and normalizes G.

We first give a description of homogeneous contact manifolds (M = G/H,D) of a
emisimple Lie group G, which follows from the general construction of homogeneous contact
anifolds of a Lie group given in terms of coadjoint orbits [1]. In the semisimple case, we
ay use the Killing form to identify coadjoint orbits and adjoint orbits.
There are two types of homogeneous contact manifolds: manifolds of conical type (con-

tructed as the projectivization of a nilpotent orbit), and manifolds of non-conical type
constructed as homogeneous line bundles over a non-nilpotent adjoint orbit). We next describe
he structure of such manifolds.
7
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2.1. Manifolds of conical type

We describe the invariant contact structure on the projectivization M = PAdGe =

G/NG(Re) ⊂ Pg of a nilpotent orbit N = AdGe (that is, the orbit of a nilpotent element
∈ g). They are characterized as contact manifolds that have no invariant contact form. There

re only finitely many such manifolds for any semisimple Lie group G.
By the real version of the Morozov–Jacobson theorem [11], we can find elements h, f ∈ g

uch that (h, e, f ) is an sl2-triple in g, namely, the following bracket relations are satisfied:

[h, e] = 2e, [h, f ] = −2 f, [e, f ] = h.

enote by s the corresponding sl2R-subalgebra of g. Recall that the finite-dimensional
eal irreducible representations of sl2R are precisely the real forms of complex irreducible
epresentations of sl2C [20].

To describe the infinitesimal structure of such homogeneous manifolds, we introduce the
ollowing notation:

z = Zg(s) : the centralizer of s in g
V : the span of all highest weight vectors of

irreducible s-submodules of g other than s
W =

∑
i>0 adi

f V : the remaining weight spaces not contained in s

k = Zg(e) = Re + z + V : the centralizer of e in g
h = Ng(Re) = Rh + Re + z + V : the normalizer of the line Re in g

B : the ad-invariant symmetric bilinear form on
g, normalized so that B(e, f ) = 1.

ote that N = G/K and M = G/H as homogeneous spaces, where H = NG(Re) is a closed
ubgroup of G with Lie algebra h and K = ZG(e) is a closed codimension one subgroup of

H with Lie algebra k.
The subspace m = R f + W is a complementary subspace to h in g which is identified

ith the tangent space To M = g/h at the point o = eH , so that we have a (non-reductive)
ecomposition

g = h + m = (Rh + Re + z + V ) + (R f + W ). (2)

efinition 2.2. The decomposition (2) is called the canonical decomposition of g associated
to the sl2-triple (h, e, f ).

We denote by θ = B ◦ e the linear form on g dual to the vector e. Since H preserves θ up
o a multiple, the kernel ker θ = h+ W defines an H -invariant subspace D0 = (h+ W )/h ∼= W
f To M . We extend it to an invariant codimension one distribution D in M .

roposition 2.1. The distribution D is an invariant contact distribution on the manifold
M = G/H = PAdGe.

Proof. It is sufficient to check that dθ is not degenerate on W . We show that ker dθ = k.
ndeed, if x ∈ ker dθ , then

0 = dθ (x, g) = −θ (adxg) = (ad∗

xθ )(g)

which means that x ∈ Z (θ ) = Z (e) = k. □
g g

8
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2.2. Manifolds of non-conical type

We start with a characterization of a conical orbit.

emma 2.2 ([1]). Let G be a connected Lie group and let θ ∈ g∗ be a 1-form. Denote by k
the centralizer Zg(θ ). Then the coadjoint orbit N = Ad∗

G(θ ) is conical if and only if θ (k) = 0.

Proof. Let GRθ (resp. gRθ ) denote the normalizer of the line Rθ in G (resp. g). The action
f GRθ (resp. gRθ ) on Rθ defines a homomorphism ℓ : GRθ → R+ (resp. dℓ : gRθ → R). The

surjectivity of ℓ is equivalent to that of dℓ, so N is conical if and only if there exists z ∈ g
such that ad∗

z θ = θ .
On the other hand, the linear map Lθ : X ∈ g ↦→ ad∗

Xθ = −θ ◦ adX ∈ g∗ is skew-symmetric
in the sense that (Lθ X )Y = (Lθ Y )X for all X , Y ∈ g. It follows that im (Lθ ) = ann (ker Lθ ) =

ann (k). This shows that conicity of the coadjoint orbit through θ is equivalent to θ ∈ ann (k),
so we are done. □

Let G be a connected semisimple Lie group and fix θ ∈ g∗ such that N = Ad∗

G(θ ) ∼= G/K
is a non-conical orbit, where K = ZG(θ ). Then θ does not vanish identically on k, where
k = Zg(θ ) is the Lie algebra of K . Let

h = ker θ ∩ k.

As in Sub Section 2.1, one sees that k = ker dθ . It follows that

θ ([k, g]) = dθ (k, g) = 0

proving that h is a codimension one ideal of k. Let H be the associated connected subgroup
of K . If H is closed, then M := G/H is a homogeneous space which is the total space of a
1-dimensional bundle over N and which carries a natural contact structure:

Proposition 2.3. The 1-form θ defines an invariant contact form on the manifold M = G/H.

Proof. Since θ |h ≡ 0, θ induces a AdH -invariant element of g∗/h∗ ∼= (g/h)∗ = T ∗
o M ,

so a globally defined invariant 1-form on M . Note that dθ is the pull-back of the Kirillov–
Kostant–Souriau form on N ∼= G/K under G/H → G/K , so θ is a contact form on M ,
whose associated contact distribution is denoted by D. □

Denote by ξ the element of g dual to θ under the Killing form B. Note that ξ can be
B-isotropic, but we can choose η ∈ k \ h such that θ (η) = B(ξ, η) = 1, η generates a closed
subgroup C of K and K = C ⋊ H (the semi-direct product; compare [16, Thm. 3.1, p. 51]).
We may now write

g = k + p, k = h + Rη, (3)

where p is a subspace complementary to h in ker θ . Note that dθ is non-degenerate on p.

3. Symmetric contact manifolds of conical type

The main result of this section is Proposition 3.1 which reduces the problem of classification
of symmetric contact spaces of conical type of a semisimple Lie group G to the description
of sl2-subalgebras of symmetric type of the Lie algebra g. We will use the notation from

Section 2.1 and refer to the canonical decomposition (2).

9
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3.1. Gradation associated with an sl2-triple

The semisimple element h of an sl2-triple (h, e, f ) defines a gradation of the Lie algebra:

g =

∑
i∈Z

gi ,

where gi is the i-eigenspace of adh . The largest index m such that gm
̸= 0 is called the depth

f the gradation. The gradation is called odd if gi
̸= 0 for some odd i and even otherwise.

In our setting

g0
= z + Rh + W 0 where W i

= W ∩ gi

nd

V =

∑
i>0

V i where V i
= V ∩ gi .

efinition 3.1. Let g be a semisimple Lie algebra. Consider an sl2-triple (h, e, f ) of g and
he associated 3-dimensional subalgebra s.

(i) We say that (h, e, f ) and s are odd (resp. even) if the associated adh-gradation of g is
odd (resp. even);

(ii) We say that (h, e, f ) and s are of symmetric type if the normalizer Ng(s) is a symmetric
subalgebra, that is, the reductive decomposition

g = Ng(s) + q = (s + z) + (V + W )

is a symmetric decomposition. (Note that in this case the homogeneous manifold
G/NG(s), which is the space of all 3-dimensional subalgebras conjugate to s, is a
para-quaternionic Kähler symmetric space [2].)

The following proposition reduces the classification of contact symmetric spaces of conical
ype of a semisimple Lie group G to the description of sl2(R)-subalgebras of symmetric type
f the Lie algebra g.

roposition 3.1. The universal covering of the homogeneous contact manifold M = G/H =

dG(Re) ⊂ Pg of conical type is a symmetric contact space if and only if e can be included
n an sl2-triple of symmetric type.

Proof. Let M = G/H = AdG(Re) be a symmetric contact space which is the projectiviza-
ion of a nilpotent orbit and consider the canonical decomposition (2)

g = h + m = (Rh + Re + z + V ) + (R f + W ).

If (h, e, f ) is an sl2-triple of symmetric type, then

g = g+ + g− = (s + z) + (V + W )

nder an involution s. Let G̃ be the simply-connected Lie group with Lie algebra g, and H̃ the
onnected subgroup for h; it is known that H̃ = Z G̃(e)0 [11, § 6.1]. Now M̃ = G̃/H̃ (almost
ffective presentation) is a simply-connected homogeneous contact manifold of conical type
overing M . The involutive automorphism s of g integrates to an involutive automorphism of

G̃ which preserves the stability subgroup H̃ and hence induces an involutive contactomorphism
˜ ˜
f M fixing the point o and acting on Do as −1. Hence M is a symmetric contact space.

10
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Next we prove the converse statement. Assume that the universal covering M̃ of M
s a symmetric contact space. The symmetry at the basepoint of M̃ induces an involutive
utomorphism s of g with symmetric decomposition g = g+ + g− such that s[h] = h
nd W ⊂ g−.

Note that g−2
= R f +W −2. Since dθ is non-degenerate on W , we can find x ∈ W i , y ∈ W j

with i + j = −2 and −θ ([x, y]) = dθ (x, y) = −1. Now

s[x, y] = s( f + [x, y]W ) = s f − [x, y]W

and

[sx, sy] = [−x, −y] = f + [x, y]W

mplying that s f = f .
Since the ±1-eigendecomposition m = R f + W under s is adh-invariant, we see that adh

nd s commute on m, so

adh ◦ s = s ◦ adh = adsh ◦ s

s operators on m. Put z = h −sh ∈ Zh( f ) = z. Since z centralizes W and e, it also centralizes
V . Consider the adjoint action of z on s + V + W . The kernel n1 of this action is an ideal of

contained in h, thus n1 = 0. We have proved above that z ∈ n1, hence sh = h.
Now it follows from the theory of sl2-triples that se = e [16, Prop. 2.1, ch. 6, p. 194]. We

deduce that

s|s = id, and thus s(z) = z and s(V ) = V .

For 0 ̸= x ∈ V , we have 0 ̸= [ f, x] ∈ W so

−[ f, x] = s[ f, x] = [s f, sx] = [ f, sx]

implying that sx + x is an element of V that centralizes f , hence zero. This proves s|V = −1.
We have already shown that

g+ = s + z+ and g− = z− + V + W

where z = z+ + z− under s. It only remains to check that z− = 0.
We first claim that z+ + s + V + W is a subalgebra of g and

g = (z+ + s + V + W ) + z−

is a reductive decomposition; indeed this follows from

[V + W, V + W ] ⊂ [g−, g−] ⊂ g+ = s + z+

and

[z−, V + W ] ⊂ (V + W ) ∩ g+ = 0.

Next we can consider the kernel n2 of the adjoint representation of z+ + s+ V + W on z−. Of
ourse n2 is an ideal of g, and we have seen that it contains s + V + W . Since

B(z, s + V + W ) = B(z,Rh + W 0)

= B(z, ade(R f + W −2))

= B(adez,R f + W −2)
= 0,

he Killing orthogonal n⊥

2 is contained in z ⊂ h and thus n⊥

2 = 0. This implies z− = 0, as
esired. □
11
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4. Contact symmetric space associated with contact gradation of a semisimple Lie
algebra

Definition 4.1 (Čap-Slovak). A depth 2 gradation g = g−2
+ g−1

+ g0
+ g1

+ g2 of a real
(resp. complex) semisimple Lie algebra g is called a contact gradation (resp. complex contact
gradation) if

(a) dim g−2
= 1; and

(b) the skew-symmetric bilinear form g−1
× g−1

→ g−2 induced by the Lie bracket is
nondegenerate.

It turns out contact gradations can exist only on simple Lie algebras [10, Proposition 3.2.4].
A contact gradation defines a homogeneous manifold M = G/G≥0, where G is the

simply connected Lie group with the Lie algebra g and G≥0 the subgroup generated by the
non-negative subalgebra g≥0

= g0
+ g1

+ g2.

Proposition 4.1. The manifold M = G/G≥0 associated with a contact gradation is a
symmetric contact space.

Proof. The contact distribution D is defined as a natural extension of the isotropy invariant
subspace g−1 of the space g<0

= g−2
+ g−1 which is identified with the tangent space To M =

g/g≥0. Denote by s the involutive automorphism of g associated with symmetric decomposition
g = gev

+ godd
= (g−2

+ g0
+ g2) + (g−1

+ g1). It defines an involutive automorphism σ of the
Lie group G which preserves the subgroup G≥0. Then the transformation gG≥0

↦→ σ (g)G≥0

preserves the contact distribution D, fixes the point o and acts as −1 on D0, hence defines a
symmetry. □

4.1. Canonical contact gradation of a complex simple Lie algebra and adjoint variety

A complex simple Lie algebra g admits a canonical complex contact gradation associated
with a highest root (cf. [26, Theorem 4.2] or [10, Proposition 3.2.4]). Let g be a complex
simple Lie algebra with a Cartan subalgebra a and corresponding root space decomposition

g = a +

∑
α∈R

gα.

Let Π ⊂ R be a simple root system and R+ the associated system of positive roots. The highest
root µ ∈ R+ defines a contact gradation of g as follows. Denote by R0

= µ⊥
∩ R (resp.,

R0
+

= R0
∩ R+) the roots (resp., positive roots) orthogonal to µ with respect to the Killing

form, and set R1
= R+ \ ({µ} ∪ R0

+
). For a set of roots P ⊂ R we denote by g(P) =

∑
α∈P gα

the space which is the span of the root spaces associated with roots from P . Then

g = g−µ + g(−R1) + g(R0) + g(R1) + gµ

is a complex contact gradation which is called the canonical complex contact gradation
associated with the highest root. The associated (compact) complex homogeneous manifold
G/G≥0

= AdG[gµ] (here G is the simply-connected complex semisimple Lie group with Lie
algebra g) is the orbit of the highest weight line gµ in the projectivization Pg of the Lie algebra

and is called the adjoint variety (it is the only closed orbit of G in Pg.)

12
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4.2. Contact gradations of a real absolutely simple Lie algebra

Let g =
∑

j g
j be a gradation of a complex semisimple Lie algebra. It is the eigenspace

decomposition of the adjoint operator adh , where h ∈ g is the uniquely defined element of g
uch that adh |g j = j · id, called the grading element.

A real form gσ of g defined by an anti-involution (conjugate-linear involutive automorphism)
is called consistent with the gradation of g if it inherits a gradation gσ

=
∑

j (g
σ ) j or,

quivalently, σ (h) = h. Any gradation of gσ is induced by a gradation of g.

.2.1. The contact gradations of classical Lie algebras
Herein we describe the canonical gradations of the classical Lie algebras. At first, we

onsider the real and complex Lie algebras sln(K) = sl(V ), spm(K) = sp(V ), where K = R
r C and V = Kn , with n = 2m in the symplectic case. Consider the gradation

V = V −1
+ V 0

+ V 1
= Kp + V 0

+ Kq

here, in the symplectic case, ω is a symplectic form, p, q are isotropic vectors with ω(p, q) =

which span a nondegenerate subspace, and V 0 is its orthogonal complement. It induces a
ontact gradation of the Lie algebras g = sl(V ), sp(V ), where g j

= {A ∈ g, AV i
⊂ V i+ j

}.
In matrix notation with respect to the decomposition V = V −1

+ V 0
+ V 1, the gradation is

described as⎛⎝g0 g−1 g−2

g1 g0 g−1

g2 g1 g0

⎞⎠
ore precisely, it is given by

sl(V ) = Kp ⊗ q∗
+ (p ⊗ (V 0)∗ + V 0

⊗ q∗) (4)
+ s(Kp ⊗ p∗

+ gl(V 0) + Kq ⊗ q∗) + (q ⊗ (V 0)∗ + V 0
⊗ p∗) + Kq ⊗ p∗

nd

sp(V ) = S2V = Kp2
+ pV 0

+ (Kpq + sp(V 0)) + qV 0
+ Kq2.

e have identified sl(V ) with a codimension one subspace of V ⊗ V ∗ (the traceless endomor-
hisms of V ), and sp(V ) with the space S2V of symmetric bilinear forms on V ∗ using ω. We
enote by ab the symmetric product 1

2 (a ⊗ b + b ⊗ a), for a, b ∈ V . In the first case, the
rading element is h = −p ⊗ p∗

+ q ⊗ q∗ which is included into the sl2-triple

h, e = q ⊗ p∗, f = p ⊗ q∗.

n the second case the triple is

h = 2pq, e = −q2, f = p2.

Next we fix in the space V = Cn , where n > 2, a Hermitian metric γ of signature
k + 1, ℓ + 1) for k + ℓ > 0, such that the subspace V 0 is nondegenerate and orthogonal
o the space spanned by p, q with γ (p, q) = 1. Then the corresponding real form suk+1,ℓ+1
s consistent with the gradation of sl(V ). Relative to the decomposition V = Cp + V 0

+ Cq,
atrices from suk+1,ℓ+1 have the form⎛⎝λ + iµ −X∗

−
iα−

X+ A −
2iµ
k+ℓ

X−

∗

⎞⎠

iα+ −X

+
−λ + iµ

13
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where A ∈ suk,ℓ, λ, µ, α± ∈ R, X± ∈ Ck,ℓ and X∗
±

= γ (X±, ·) is the complex conjugate
ovector.

Now we describe the canonical gradation of complex orthogonal and real pseudo-orthogonal
ie algebras so(V ) where V = Cn or Rk+2,ℓ+2 with k + ℓ > 0. Using the metric g in V , we

dentify so(V ) with the space Λ2V of bivectors. The gradation of so(V ) is induced by the
radation V = V −1

+ V 0
+ V 1 of V where V ±1 are isotropic 2-dimensional subspaces such

hat V −1
+ V 1 is non degenerate and V 0 is its orthogonal complement. Then

so(V ) = Λ2V = Λ2V −1
+ V −1

⊗ V 0
+ (V −1

⊗ V 1
+ so(V 0)) + V 0

⊗ V 1
+ Λ2V 1

s a contact gradation . We denote by p, p′ a basis of P := V −1 and by q , q ′ the dual basis of
Q = V 1

≃ (V −1)∗. Note that P ⊗ Q ≃ gl(P) ≃ gl(Q) and g0
≃ gl2(K) ⊕ so(V 0). The grading

lement is h = 2(q ∧ p + q ′
∧ p′). It is included into sl2 triple

h, f = 2(p ∧ p′), e = −2(q ∧ q ′)

hich corresponds to the graded subalgebra Kp ∧ p′
+ Kh + Kq ∧ q ′ of the graded algebra

o(P + Q), isomorphic to so4(C) for K = C and so2,2 for K = R.
Finally, in case V = Cn with n = 2m there is a further real form so∗

2m of the Lie
lgebra so(V ) consisting of the elements preserving a nondegenerate skew-Hermitian form.
he gradation of so∗

2m is induced by the gradation of V as above, and so(P + Q) is isomorphic
o so∗

4.

.3. Classification of real simple Lie algebras which admit a contact gradation

Here we describe all real simple Lie algebras which admits a contact gradation. Note that
contact gradation in a real or complex semisimple Lie algebra g is a fundamental gradation,

.e. the negative subalgebra g<0 is generated by g−1. Any fundamental gradation of a complex
emisimple Lie algebra g is associated with a subset Π 1 of the system of simple roots Π and
efined by the condition that deg gα = 1 for α ∈ Π 1 and deg gα = 0 for α ∈ Π \ Π 1 [5].

The following result by Djoković (see [13] or [4, Prop. 3.8] or [5, §6.2]) gives a description
f all gradations of a real form gσ of a complex semisimple Lie algebra g in terms of Satake
iagrams.

roposition 4.2. Let g be a complex semisimple Lie algebra with a gradation defined by Π 1

nd let gσ be a noncompact real form defined by a Satake diagram. Then gσ is consistent with
he gradation if and only if all nodes in the Satake diagram associated with roots from Π 1 are
hite and there is no curved arrow which connects a root from Π 1 with a root which is not in
1.

The contact gradation of g is defined by the set Π 1 which consists of the simple roots αi
ssociated with fundamental weights πi which appear in the decomposition of the highest root

in terms of fundamental weights. For example for An , µ = π1 + πn and Π 1
= {α1, αn}.

ollowing [21], we write down the decomposition of the highest root in terms of fundamental
eights for all complex simple Lie algebras in Table 9.
Using Djoković’s criterion (Proposition 4.2) and analyzing the list of Satake diagrams of

eal absolutely simple Lie algebras, we deduce:

roposition 4.3. The contact gradations of the classical noncompact real absolutely simple

ie algebras are exhausted by the contact gradations of slnR, n > 2, suk+1,ℓ+1, k + ℓ > 0,

14
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Table 9
Highest roots for complex simple Lie algebras.

A1 2π1
An (n ≥ 2) π1 + πn
Bn (n ≥ 2) π2
Cn (n ≥ 3) 2π1
Dn (n ≥ 4) π2
E6 π6
E7 π6
E8 π1
F4 π4
G2 π2

spnR, n > 1, sok+2,ℓ+2, k + ℓ > 0, and so∗

2m , m > 2, described in Section 4.2.1. Each
exceptional noncompact real absolutely simple Lie algebra admits a unique contact gradation,
up to conjugation, with the exception of the Lie algebras E I V and F I I , which admit no
contact gradations.

5. Classification of sl2(R)-subalgebras of symmetric type in an absolutely simple Lie
algebra g

Definition 5.1. An sl2(R)-subalgebra s of a real semisimple Lie algebra g is called regular if
its complexification sC is a regular 3-dimensional subalgebra s(µ) associated with some root
µ (with respect to a Cartan subalgebra of gC). Here s(µ) is spanned over C by an sl2-triple
(hµ, eµ, fµ), where eµ, fµ are root vectors. In this case may assume that s is spanned over R

y (hµ, eµ, fµ).

Assume that s is a regular sl2(R)-subalgebra of a real absolutely simple Lie algebra g,
panned by the sl2-triple (h, e, f ), such that sC = s(µ), where µ is a long root of gC with
espect to some Cartan subalgebra. Then the associated gradation of g has the form

g = g−2
+ g−1

+ g0
+ g1

+ g2,

where g2
= Re, g−2

= R f and g0
= Rh + z, where z is the centralizer of s. This is a contact

radation and s is an sl2(R)-subalgebra of g of symmetric type, with symmetric decomposition

g = geven
+ godd

= (s + z) + (V + W ),

here V = g1, W = g−1.
Any two roots of the same length in a complex simple Lie algebra are conjugate by an

nner automorphism, so the classification of regular sl2(R)-subalgebras of an absolutely simple
ie algebra g amounts to the description of anti-linear involutions (real forms) of the complex
imple Lie algebra gC that preserve a regular 3-dimensional subalgebra s(µ); here µ is a fixed
oot of gC in the simply-laced case, but it can be either a fixed long root or a fixed short root
n the multiply-laced case.

.1. Case of odd sl2(R)-subalgebras

Let s be an odd sl2(R)-subalgebra of symmetric type of an absolutely simple Lie algebra
. We prove that s must be a regular subalgebra. By assumption, the Killing orthogonal
15
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decomposition g = Ng(s) + q is a symmetric decomposition. Moreover, the adh-gradation
=

∑
i g

i is odd, that is, g j
̸= 0 for some odd j .

emma 5.1. Ng(s) = s+ z = geven
= g−2

+g0
+g2, with g−2

= R f , g2
= Re, and q = godd .

Proof. Owing to the fact that gi is the i-eigenspace of adh , we have

Ng(s) = s + z ⊂ R f + g0
+ Re ⊂ g−2

+ g0
+ g2

⊂ geven

and then 0 ̸= godd
⊂ q. Since [godd , godd ]+godd is a non-trivial ideal of the simple Lie algebra

g, it coincides with g. This shows that Ng(s) = geven
= [godd , godd ] and godd

= q. □

Proposition 5.2. An odd sl2(R)-subalgebra s of symmetric type must be regular. Moreover:

a. if g not of type G2, then the complexification sC is of the form s(µ), where µ is a long
root of gC with respect to some Cartan subalgebra, and hence the associated gradation
of g is a contact gradation (of depth 2);

b. if g is of type G2 and sC = s(µ) for a short root µ, then the associated gradation of g
has depth 3.

Proof. Let (h, e, f ) be an sl2-triple spanning s. Then h is a semisimple element of g and
belongs to a Cartan subalgebra a, which is necessarily contained in Zg(h) = g0. Owing to
Lemma 5.1, g0

= Rh + z. Now e is a root vector of gC with respect to aC, say associated to
the root µ. Then f is a root vector associated to −µ. This already proves that s is a regular
subalgebra.

Consider the root decomposition of gC with respect to aC. Note that each (gi )C = (gC)i for
̸= 0 is a sum of root spaces. Fix an ordering of the roots that puts h into the Weyl chamber.

Then µ is a positive root. Denote the depth of the adh-gradation of g by m. If α̃ denotes the
highest root, then the highest root space (gC)α̃ ⊂ (gm)C. Recall that adk

f [(gC)α̃] = (gC)α̃−kµ if
α̃ − kµ is a root. The main observation now is that the length of the µ-chain of roots through
α̃ can be at most 4, and it equals 4 if and only if gC is of G2-type and µ is a short root
[9, ch. VI, §1, no.3].

If the depth m = 2, from Lemma 5.1 we see that

g = g−2
+ g−1

+ g0
+ g1

+ g2,

where

g−2
= R f, g0

= Rh + z, g2
= Re,

so µ is the highest root.
If m ≥ 3, then V = gm and adk

f : (gm)C → (gm−2k)C is injective for k : 1, . . . , m. By the
main observation above, this implies that m = 3, g is of G2-type and µ is a short root. □

Proof of Theorem 1.1. The projectivized adjoint orbit of a nilpositive element of a contact
gradation is a symmetric contact space due to Proposition 4.1.

Conversely, in view of Proposition 3.1 we need to classify odd sl2(R)-subalgebras of g of
symmetric type.

Owing to Proposition 5.2, the contact gradations of real absolutely simple Lie algebras
described in Proposition 4.3 exhaust all the possibilities, unless we are in case G2.

In the case of the normal real form g = g2(2) we check that the sl2(R)-subalgebra associated
to a short root is of symmetric type and odd. Let α̃ and β be the highest root and highest

C C
short root of g with respect to a , respectively, where a is a Cartan subalgebra of g. Then the

16
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normalizer Ng(s(β)) = s(β) + s(α̃) coincides with Ng(s(α̃)), which is already known to be a
ymmetric subalgebra of g. Hence s(β) is of symmetric type. Moreover V + W = 2Sym3(R2)
s an s(β)-module, which says that the eigenvalues of adh are ±3, ±1, that is, s(β) is odd. We
btain Tables 1 and 2. □

.2. Case of even sl2(R)-subalgebras

Let s be an even sl2(R)-subalgebra of symmetric type of an absolutely simple Lie algebra
. We prove here that the complexification sC defines a short SO3-structure on gC in the sense
f E. Vinberg [25].

By assumption, the Killing orthogonal decomposition g = Ng(s) + q is a symmetric
ecomposition. Moreover, the adh-gradation g =

∑
i g

i is even, that is, g j
= 0 for all odd

j . Although s need not be regular, we will see that it is not far from being regular by means
f the following concept.

efinition 5.2. An even sl2(R)-subalgebra s of a real semisimple Lie algebra g, spanned by an
l2-triple (h, e, f ), will be called short if the eigenvalues of the endomorphism adh belong to the
et {0, ±2, ±4} or, equivalently, irreducible submodules of the ads-module g have dimensions
, 3 or 5.

If s is a short even sl2(R)-subalgebra of a real semisimple Lie algebra g, then the
omplexification sC clearly is a short SO3-structure on gC in the sense of Vinberg [25].

roposition 5.3. An even sl2(R)-subalgebra s of symmetric type of an absolutely simple Lie
lgebra g is short.

Proof. Let (h, e, f ) be a sl2-triple spanning s. We shall prove that the adh-gradation of g
as depth at most 4.

In fact, the simplicity of g implies [g−, g−] = g+. Moreover we may assume that the adjoint
action of g+ on g− is irreducible. Indeed, otherwise the simplicity of g implies that there is
n adg+

-irreducible decomposition g− = g(1)
+ g(−1) such that g = g(−1)

+ g(0)
+ g(1) defines a

gradation of depth 1, where g(0)
= g+ [23, App., Lem. 2 and comments thereafter]. Since sl2C

is a factor of g(0)
⊗ C, the classification of gradations of complex simple Lie algebras (e.g.

[10, p. 297]) gives that (g ⊗ C, g+ ⊗ C) = (sln+1C, s(gl2C ⊕ gln−1)), but in this case the
gradation induced by the semisimple element of sl2C is not even.

Denote by s the span of (h, e, f ) and consider the canonical decomposition (2). The adjoint
action of g+ = s⊕ z on g− is irreducible. Since z must preserve the s-isotypical decomposition
of g−, there must be only one isotypical component, that is g− = V + W = Pm + · · · + Pm
as an ads-module, where Pm = Symm(R2) is the real irreducible representation of sl2(R) of
dimension m + 1.

Owing to the contact condition, for every 0 ̸= w0 ∈ W 0 there exists w−2 ∈ W −2 such that
[w0, w−2] = f ∈ s ⊂ g+. If m ≥ 6, then we reach a contradiction to the Jacobi identity in g as
follows. Let 0 ̸= w−4 ∈ W −4. The Lie bracket [w−4, [w0, w−2]] = [w−4, f ] ∈ W −6 is nonzero.
However, [w−4, w0] and [w−4, w−2] are weight vectors of weights −4 and −6, respectively,
lying in g+

= s + z; hence they are zero. This contradicts the Jacobi identity applied to w−4,
w0, w−2. Therefore m = 2 or m = 4, as desired. □

Proposition 5.4. There are no even sl2(R)-subalgebras of symmetric type in an absolutely

simple Lie algebra g of exceptional type.
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Table 10
Short structures on exceptional Lie algebras and their centralizers.

gC I ndex of sC dim(sC ⊕ ZgC (sC))

gC2 4 3

f4C
4 11
8 17

eC6
4 19
8 17

eC7

4′ 38
8 20
3′′ 55
7 17

eC8
4′′ 81
8 31

Proof. Let s be an even sl2(R)-subalgebra of symmetric type of g. In view of Proposition 5.3,
there is an induced short SO3-structure on gC. We shall see however NgC (sC) can never be a
symmetric subalgebra of gC, reaching a contradiction.

Recall that NgC (sC) = sC ⊕ ZgC (sC). We run through the classification of short structures
on exceptional complex simple Lie algebras given in [25, §2.2] and, in each case, use
[14, Table 21] to determine dim ZgC (sC). We obtain Table 10; the index refers to the Dynkin
index of the 3-dimensional Lie subalgebra as listed in [14].

From the classification of Berger [6], we immediately see that dim sC ⊕ ZgC (sC) is not the
dimension of a symmetric subalgebra. □

Proof of Theorem 1.2. Owing to Propositions 5.3 and 5.4, it suffices to run through the cases
of complex simple Lie algebras gC of classical type; from the list of symmetric subalgebras,
select those that contain an ideal isomorphic to sl2C; and check which of those induce a short
SO3-structure on gC.

Recall the classification of short SO3-structures on a classical Lie algebra gC [25, p. 257].
In case gC = slnC, an SO3-structure is determined by an n-dimensional representation
ρ : sl2C → slnC, which in turn is characterized by the dimensions n1, n2, . . . of its irreducible
components, which must have all the same parity. The SO3-structure is short if and only if
ll the ni ’s do not exceed 3. The same holds for gC = sonC (resp. gC = spnC), with the
ddendum that the number of ni ’s equal to 2 (resp. 3) must be even. In Table 11, for each

classical complex simple Lie algebra, and for each symmetric subalgebra containing sl2(C) as
n ideal, we list ρ and check Vinberg’s criterion for a short SO3-structure.

Table 11 contains the list of symmetric subalgebras of classical complex simple Lie algebras
f the form sl2(C) ⊕ z (cf. [6]) and an indication of whether the sl2(C)-factor defines a short
O3-structure.

Finally, we collect real forms of (sl3C, so3C), (sl4C, so4C) and (sonC, so3C⊕ son−3C) that
ive examples and obtain Table 3. □

. Short sl2-subalgebras of symmetric type in non-absolutely simple, semisimple Lie
lgebras

Assume that the Lie algebra g is not absolutely simple, i.e. the complex Lie algebra gC is
ot simple.
18
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Table 11
Classical complex simple Lie algebras and their symmetric subalgebras.

gC Symm subalg sl2C is an ideal ρ Short SO3-struct

slnC
sonC

Only if n = 3 n1 = 3 Yes
or n = 4 n1 = n2 = 2 Yes

s(glk ⊕ gln−kC) Only if n ≥ 3, k = 2 n1 = 2, n2 = · · · = nn−2 = 1 No

spnC (n ≥ 4 even) No – –

sonC
sokC ⊕ son−kC

Only if k = 3 n1 = 3, n2 = · · · = nn−3 = 1 Yes
or k = 4 n1 = n2 = 2, n3 = · · · = nn−4 = 1 No

gln/2C (n ≥ 6 even) No – –

spnC
spkC ⊕ spn−kC Only if k = 1 n1 = 2, n2 = · · · = n2n−2 = 1 No

glnC (n ≥ 3) No – –

Proposition 6.1. If g is semisimple but not simple, then the only sl2-triple of symmetric type
s the triple (h + h′, e + e, f + f ′) associated with the diagonal subalgebra (sl2R)d of the
ie algebra g = sl2R ⊕ sl′2R. Here z = 0, g+ = s = (sl2R)d and the associated canonical
ecomposition (2) is

g = (R(h + h′) + R(e + e′) + 0 + R(e − e′)) + (R( f + f ′) + (R(h − h′) + R( f − f ′))).

Proof. Let s be an sl2R-subalgebra of symmetric type of g. Then g = g+ + g− under an
involution s of g, where g+ = s + z and z is the centralizer of s in g. There is an s-invariant
decomposition g = g1 ⊕· · ·⊕gr into a direct sum of ideals, where for each i = 1, . . . , r , either
he Lie algebra gi is simple, or gi = d ⊕ d is a sum of two copies of a simple Lie algebra

and s(x, y) = (y, x) for (x, y) ∈ d ⊕ d. For each i , there is an involutive decomposition
i = (gi )+ + (gi )− under the restriction of s.

Consider the projection πi : g → gi and put si := πi (s). Since s does not centralize nonzero
elements in g−, si ̸= 0 for all i and hence, by simplicity of s, πi defines an isomorphism
s ∼= si . Upon this identification, we can now write

s = {(x, . . . , x) ∈ s1 ⊕ · · · ⊕ sr | x ∈ s}.

The centralizer

z = Zg(s) = Zg1 (s1) ⊕ · · · ⊕ Zgr (sr )

and Zgi (si ) ∩ si = {0} for all i . Since s is a proper subset of s1 ⊕ · · · ⊕ sr in case r ≥ 2, the
condition g+ = s ⊕ z forces r = 1.

Since g = g1 is assumed non-simple, g = d ⊕ d where d ∼= g+ is simple. Since g+ = s ⊕ z
is a sum of ideals, this implies z = 0 and d = s ∼= sl2R, as we wished. □

Proposition 6.2. If g is a complex simple Lie algebra viewed as real, then the only sl2-triple
f symmetric type is the triple (h, e, f ) associated with the real subalgebra sl2R of the Lie
lgebra sl2C. The associated canonical decomposition (2) is given by

sl2(C) = (Rh + Re + 0 + R(ie)) + (R f + (Rih + Ri f ))

Proof. Denote by J the ad-invariant complex structure on g, and denote by s the involutive

automorphism that defines g = g+ + g−. The complex structure s Js is also ad-invariant, so
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simplicity of g implies that s Js = ±J . This means J either commutes or anti-commutes with s.
n the former case, Jg+ = g+ so Js would be a simple ideal of g+ = s + z. Since s ∩ Js is

a complex subalgebra of s and s admits no non-trivial complex subalgebras, we would have
Js ⊂ z. However, this is a contradiction because z centralizes Js and Js is not Abelian.

We have seen that J anti-commutes with s, so Js ⊂ g− and s ⊂ Jg− ⊂ g+ = s+ z. Recall
hat the adjoint action of s admits no trivial components in g−, and hence none on Jg−. It
ollows that s = Jg−.

The ad-invariance of J also implies that J z ⊂ z, so z = J z ⊂ g+ ∩g− = 0. We have proved
hat g = s + Js is the complexification of s ∼= sl2R. □

Note that the symmetric pairs (sl2C, sl2R) and (sl2R⊕sl2R, sl2R) given in Propositions 6.1
nd 6.2 have the same complexification and in a certain sense are dual one to the other; the
esults of these propositions are collected in Table 4.

. Symmetric contact manifolds of non-conical type

In this section, we prove Theorem 1.4. We first recall some facts about symplectic symmetric
paces and refer to [7] for more details on them.

.1. Symplectic symmetric spaces

A symplectic symmetric space is a connected affine symmetric manifold endowed with a
ymplectic structure which is invariant under the geodesic symmetries. The transvection group

G of a symplectic symmetric space N (i.e. the connected group generated by the geodesic
symmetries) acts transitively on N . The symmetry at the basepoint normalizes G and induces
on its Lie algebra g an involution s and hence a symmetric decomposition g = k + p into
the ±1-eigenspaces. The symplectic structure at the basepoint yields an adk-invariant non-

egenerate 2-form ω on p, and the triple (g, s, ω) is called a symplectic symmetric Lie algebra.
Conversely, every symplectic symmetric Lie algebra gives rise to a unique, up to isomorphism,
simply-connected symplectic symmetric space.

7.1.1. Symplectic symmetric spaces of a semisimple Lie group
Let N = G/K be a simply-connected symplectic symmetric space of a connected

semisimple Lie group G, where K is connected. The Whitehead lemmas imply that the invariant
symplectic form can be written as dθ for a unique θ ∈ g∗, where d is the Chevalley coboundary
operator. This element is dual under the Killing form to an element ξ in the center of k. It
follows that N decomposes as a product G1/K1 × · · · × Gk/Kk , where the G i are simple Lie
groups, Ki = K ′

i · Z (Ki ), K ′

i is a semisimple Lie group, the center Z (Ki ) ∼= T 1, R or C×, and
ξ = ξ1 + · · · + ξk , where ξi ∈ Z (ki ) is non-trivial. Moreover, N is an equivariant symplectic
covering of the adjoint orbit of ξ in g.

7.1.2. Symplectic symmetric spaces of a complex simple Lie group and graded Lie algebras
of depth one

Let G be a complex simple Lie group with Lie algebra g. Fix a Cartan subalgebra and an
ordering in the set of associated roots R. Denote the system of simple roots by Π . Recall that
the Dynkin mark of a simple root α ∈ Π is its (necessarily positive, integral) coefficient in
the expression of the highest root as a linear combination of simple roots. Each α ∈ Π with
Dynkin mark 1 defines a gradation of depth one

g = g−1
+ g0

+ g1
= g(−R ) + g(R ) + g(R )
1 0 1
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where ξ =
1
2 hα is the grading element, hα is the coroot, R0 = {β ∈ R | B(β, α) = 0} and

R1 = R+
\ R0. It turns out that every gradation of depth one of g arises in this way, up to

onjugation ([10, §3.2.3]; see also [26]). The associated symmetric decomposition

g = k + p = geven
+ godd

= g0
+ (g−1

+ g1)

efines a complex symmetric space G/K with complex symplectic structure defined by the
dk-invariant 2-form ω = d(B ◦ ξ ), whose kernel is k.

.1.3. Realifications of complex symplectic symmetric spaces
Let N = G/K be a complex symplectic symmetric space with symplectic form ω as in

ection 7.1.2. Then N can be considered as a real manifold with real invariant symplectic
tructure ωr

= aℜω + bℑω, where a, b ∈ R, a2
+ b2 > 0, and it becomes a (real) symplectic

ymmetric space.

.1.4. Real forms of symplectic complex symmetric spaces
Let N = G/K be a real symplectic symmetric space of an absolutely simple Lie group G

ith symmetric decomposition

g = k + p.

The symplectic form corresponds to an adk-invariant 2-form ω on g with ker ω = k. Moreover,
ω is the differential of an adk-invariant 1-form θ which can be written as θ = B ◦ ξ for some
semisimple element ξ in the center of k such that adξp = p. Let x , y ∈ pC be eigenvectors
with respective eigenvalues λ and µ. Then [x, y] ∈ kC is an eigenvector with eigenvalue
λ + µ = 0. This shows that adξ has only two eigenvalues ±λ, where λ ̸= 0 is either real
or purely imaginary. In either case we get a gradation of depth 1

gC = kC + pC = (gC)0
+ ((gC)−1

+ (gC)1),

whose grading element d is 1
λ
ξ or i

λ
ξ . Moreover, the Lie algebra is the real form of gC defined

y an anti-involution σ such that σ (d) = ±d. We say that g is consistent with the depth 1
gradation of gC.

Conversely, if we are given a real form gσ of a complex simple Lie algebra g, defined by an
anti-involution σ which is consistent with a depth one gradation of g in the sense it preserves
the grading element d up to sign, then the symmetric decomposition g = k + p restricts to a
symmetric decomposition gσ

= kσ + pσ and the element ξ ∈ gσ equal to d or i · d defines
an adkσ -invariant 2-form ω = d(B ◦ ξ ) on gσ , with kernel kσ . The corresponding symmetric
manifold N = Gσ /K σ is a symplectic symmetric space with symplectic form induced by ω.

7.2. Symmetric contact spaces of non-conical type as 1-dimensional bundles over symplectic
symmetric spaces

Let (M = G/H,D) be a homogeneous contact manifold of a connected semisimple Lie
group G which is the total space of a 1-dimensional bundle over N = G/K as in Section 2.2.
Assume (M,D) is a symmetric contact space, so there exists an involutive automorphism s of
g that preserves h and induces −1 on D.
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Proposition 7.1. There exists a symmetric decomposition

g = k + p

under s, where

k = h + Rη

and η is a nonzero element in the center of k. Moreover, D is the G-invariant extension of p
nd there exists an adk-invariant symplectic structure on p given by dθ , where θ ∈ g∗, so that
g, s, dθ ) is a symplectic symmetric Lie algebra. Finally, η generates a central closed subgroup

of K and K = C × H (direct product).

Proof. Recall that

g = k + p, k = h + Rη,

here k is the centralizer of θ ∈ g∗, h = ker θ ∩ k is a codimension one ideal of k and θ (η) = 1
cf. (3)). Since s must preserve the contact structure, s∗θ = c θ for some c ̸= 0, and the
nvolutivity forces c = ±1. Now s is a semisimple automorphism of g that preserves ker θ and
= ker dθ , so we can choose the subspace p to be s-invariant.

We have ker θ = h + p so p induces the distribution D and s|p = −1. Let ξ ∈ g be the
lement dual to θ under the Killing form B. Then

0 = θ (h + p) = B(ξ, h + p). (5)

lainly, ξ ∈ Zg(ξ ) = Zg(θ ) = k, so ξ lies in the center of k.
We already know that sξ = ±ξ . Non-degeneracy of dθ on p gives x , y ∈ p such that

θ (x, y) = −1 and then

s[x, y] = s(η + [x, y]p + [x, y]h) = sη − [x, y]p + (s[x, y])h

nd

[sx, sy] = [−x, −y] = η + [x, y]p + [x, y]h

mplying that sη = η. Hence s∗θ = θ and sξ = ξ . It also follows that

B(η, p) = 0. (6)

Write g = g+ + g− and h = h+ + h− under s. Note that g+ = h+ + Rη is a reductive
ubalgebra of g (this follows for instance from [24, Lemma 20.5.12]) and g− = h− + p,
er θ = h+ + g−. Since [k, g] ⊂ h, we have [h−, g+] ⊂ h−. Therefore we can change p,
f necessary, so that p is in addition adg+

-invariant.
We next claim adξ : p → p is an isomorphism. In fact, if adξ x = 0 for some x ∈ p, then

θ (x, p) = B(adξ x, p) = 0 implying x = 0 by nondegeneracy of dθ on p.
It is clear that B is nondegenerate on g+ ⊂ k. Next, note that [h−, p] ⊂ g+ and

B([h−, p], g+) = B(p, [h−, g+]) ⊂ B(p, h−) = B(adξp, h−) = B(p, adξh−) = 0, since
centralizes h. We have proved that [h−, p] = 0. It follows that there is a symmetric

ecomposition

g = (g+ + p) + h−.

his argument also shows that
B(h, p) = B(h, adξp) = B(adξh, p) = 0. (7)
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Denote by n3 the kernel of the adjoint action of g+ +p on h−; this is an ideal of g that contains
ξ + p. Using (5)–(7), we deduce that

n⊥

3 ⊂ p⊥
∩ ξ⊥

= (h + Rη) ∩ (h + p) = h,

nd hence n⊥

3 = 0, owing to the effectiveness of the presentation M = G/H . Finally n3 = g
nd thus h− = 0, so that we arrive at

g = k + p,

ymplectic involutive Lie algebra, where k = h + Rη = g+ and the symplectic structure on
= g− is induced by dθ (x, y) = −B(adξ x, y) for x , y ∈ p. Since k = g+ is a reductive

ubalgebra of g, k = [k, k] ⊕ Z (k), where Z (k) denotes the center of k, [k, k] ⊂ h, and η can be
hosen in the center of k and to generate a closed subgroup of G. □

The next example shows that ξ and η in Proposition 7.1 do not have to coincide.

xample 7.1. Consider the complex Lie algebra sl2(C) with its standard basis (h, e, f ). Its
illing form Bc satisfies Bc(h, h) = 8 and Bc(e, f ) = 4 with other values zero. Let g denote

he realification of sl2(C). The Killing form of g is B = 2ℜBc. We obtain a symmetric contact
pace of non-conical type by choosing ξ = λh ∈ g, where 0 ̸= λ ∈ C. In fact g = k + p is a
ymmetric decomposition, where k = Ch, p = Ce + C f and h = R(µh), where ℜ(λµ) = 0.
ote that ξ is B-isotropic if and only ℜ(λ2) = 0; in that case, η ̸= ξ .

Proof of Theorem 1.4. Let N = AdGξ be a symplectic symmetric space as in the statement.
hen N = G/K , where K is connected, and there exists a symmetric decomposition g = k+p
nder an involution s. Moreover the symplectic structure on N is induced from the AdK -
nvariant form given by the restriction to p of ω = dθ , where θ ∈ g∗ is dual to ξ under the
illing form B of g. Let h = ker θ ∩ k (h is also the B-orthogonal of ξ in k) and consider the

ssociated connected subgroup H of K . It turns out H is a codimension one normal subgroup
f K . By assumption, H is closed in K , so M = G/H is the total space of a principal K/H -
undle over N . The 1-form θ defines an invariant contact structure on M which is the invariant
xtension of the hyperplane p ⊂ To M . The involution s preserves h and θ , thus it induces
contactomorphism of M . Moreover, it induces −1 on D = (ker θ )/h and hence M is a

ymmetric contact space.
The converse follows from Proposition 7.1. □

emark 7.2. In cases dim Z (k) = 1 or dimC Z (k) = 1 (i.e. g is absolutely simple or complex
imple; such cases are exactly those listed in Tables 5–8), H is closed for any choice of

∈ Z (k); in the first case, in addition, η can be taken to be a multiple of ξ . In general,
H is closed if and only if H ∩ Z (K )0 is closed; a sufficient condition is that there exists a
on-compact (closed) one-parameter subgroup of K not contained in H .
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