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GROUP IDENTITIES ON SYMMETRIC UNITS IN 
ALTERNATIVE LOOP ALGEBRAS 

EDGAR G. GOODAIRE AND CESAR POLCINO MILTES 

ABSTRACT. If o = E o,e is an element of an alternative loop ring RL, 
we denote by o 1 the element L o,e- 1 and call o symmetric if o 1 = o. 
In previous work, the authors have considered the possibility that the 
unit loop of RL satislies a group identity. Here, we assume merely that 
the symmetric units of RL (usually for Ra lield) satisfy a group identity. 

1. INTRODUCTION 

From a commutative, associative ring R with 1 and a. loop L, one forms 
the loop algebra RL precisely as if L were a group. The algebra RL is 
alternative if it satisfies the alternative laws 

(yx)x = yx2 and x(xy) = x2y. 

In the early 1980s, the existence of loop algebras that are alternative but 
not associative was established [Goo83, CG86] and since that time there has 
been quite a bit of research into the problems associated with such algebras 
and the underlying RA loops which produce them. A good place to find 
a discussion of some of these problems is (GJM96], which is also the best 
reference for RA loops and alternative loop algebras. Of note is the fact 
that an RA loop is Moufang and hence diassociative: subloops generated by 
two elements arc associative. In fact, if three elements of a Moufang loop 
associate in some order, then the subloop they generate is a group. 

Just as with group rings, the set of units {that is, invertible elements) 
in an alternative loop ring RL is closed under products and inverses and 
hence forms a (Moufo.ng) loop U(RL), the unit loop of RL, and this loop 
contains L. This observation makes it natural to ask how many properties 
of the loop L are inherited by U(RL). The answer is "not many." For 
example, L is solvable, nilpotent, FC, has the torsion product property and 
is torsion over its centre, but U(RL) rarely satisfies any of these conditions 
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[GM96b, GM96c, GM97, GM02, GMOl]. Generalizing all these concepts, 
the authors have recently considered the possibility that U(RL) satisfies a 
group identity (GM]. 

Let K denote the free group on a set of variables x1, x2, . .. and let 
w(x1,x2, ... ,xn) E K be a nonempty reduced word in K. We say that 
w = 1 is a group identity for a group G if w(g1, 92, . . . , Yn) = 1 for all 
g1 , g2 , • .. , 9n E G. We extend the notion of group identity to Mou fang loops 
with the following definition. 

Definition 1.1. A Moufang loop M satisfies a group identity if and only if 
there is a nonempty reduced word w = w(x1, x2) in the free group on two 
variables such that w(i1,i2) = 1 for all i1,i2 EM. 

The restriction to two generators here is actually artificial because of 
diassociativity and the fact that a free group on n generators can always be 
embedded in a free group on just two generators [Rob82, Theorem 6.1. l]. For 
example, any nilpotent Moufang loop satisfies a group identity in our sense. 
To sec this, let / = 1 be an identity (in a finite number of nonassociating 
variables) satisfied by a nilpotent Moufang loop L. Now view f as a word 
in the free group on these same variables and express f as a word w( x1 , x 2 ) 

in two variables. Suppose a and b are elements of L and apply w to the pair 
a, b. Since (a, b) is a group and it is nilpotent, w(a, b) = 1, so L satisfies the 
group identity w = l. 

Since Moufang loops arc inverse property loops, that is, (ab)-1 = b-1a-1 

for any a, b, the map a H a-1 is an involution (antiautomorphism of order 
2) and this extends linearly to an involution of the loop ring RL which we 
denote o-,..... o,1 .1 Thus, for o- = E °'ti E RL, a,1 = I; o-ee-1 . 

Call a unit o- symmetric if o-1 = o- and let u+(RL) be the set of symmetric 
units in an alternative loop ring RL. {Conditions under which this set is 
actually a loop are known (GM06].) In this paper, we suppose existence of 
a group identity on u+(RL) and begin with some basic results. 

Recall that a loop is Hamiltonian if it is not an abelian group and every 
subloop is normal. Throughout, we use Z(L) and Z(RL) to denote the 
centres of L and RL, respectively. 

Lemma 1.2. If L is a Hamiltonian Moufang 2-loop (possibly associative} 
and R is any commutative, associative ring with 1, then u+(RL) .rn.tisfies 
the group identity ( u, v) = 1. 

Proof. Let L be a Hamiltonian Moufang 2-loop. Then L = L 1 x E is the 
direct product of an elementary abclian 2-group E and a loop £ 1 which is 
the Cayley loop if L is not associative (Nor52] , [GJM96, Theorem II.4.8] 
and the quaternion group of order 8 otherwise (see, for example, (Hal59, 
Theorem 12.5.4], for a proof of this classical theorem). Thus, the centre of 

1 Tn group rings, the map a - o 1 is denoted o - a·, but since alternative loop rings 
have a canonkal (an<l <lifforcnt) involution o -+ o· (see Section 4), we use U instead of • 
for the involution of central interest here. 



GROUP IDENTITIES ON SYMMETRIC Ul\'1TS 3 

L consists precisely of the elements of L that have order 2. With s the unique 
nonidentity commutator of L, we note also that the inverse of a noncentral 
element P. is sP.. Now the set of symmetric elements of RL is spanned by 
loop elements of order 2 and ring clements of the form P. + e-1, e </:. Z ( L). In 
particular, every symmetric unit is a linear combination of elements central 
in L and ring clements of the form f. + e-1 = (1 + s)f., £ </:. Z(L). Such 
elements are conjugacy class sums of RL and these span the centre of RL 
(GJM96, Corollary Ill.1.5]. SoU+(RL) ~ Z(RL) and the result follows. D 

2. THE FINITE CASE 

The questions we explore in this paper have been considered in the context 
of group rings by various authors (GSV98, SV06]. Here is a ihcorem of 
A. Giambruno, S. K. Sehgal and A. Valenti we will use later. 

Theorem 2.1. (GSV98] Let F be a field of characteristic p ~ 0, pf 2, and 
let G be a finite group. Thw u+ ( FG) satisfies 11 group identity if and only 
if the set P of p -elements of G is a normal subgroup of G and G / P is an 
abelian group or a Hamiltonian 2-group. 

For alternative loop rings that arc not associative we have an analogous 
result. The proof requires the fact that for any prime p, the set Lp of p­

elcmcnts in an RA loop L is a normal subloop of L and central if p is odd 
(CG86, proof of Theorem 6], [GJM96, Proposition V.1.1]. 

Theorem 2.2. Let F be a field of characteristic p ~ 0 and let L be a finite 
RA loop. Then u+ (FL) satisfies a group identity if and only if 

(I) p = 2, or 
(2) L is a Hamiltonian 2-loop, or 
(3) p is odd, L = Lp x L2, and L2 is a Hamiltonian 2-loop. 

Proof. If p = 2, U(FL) is nilpotent (GM97] and hence satisfies a group 
identity. If L is a Hamiltonian 2-loop, u+ (FL) satisfies a group identity by 
Lemma 1.2. Let F be a field of odd characteristic p and suppose L = Lp x L2 
with £2 Hamiltonian. Then FL = F Lp[L2] is a loop ring of 1 2 over a central 
coefficient ring and Lemma 1.2 says that u+ (FL) satisfies a group identity. 
This gives the theorem in one direction. 

Now assume that u+(FL) satisfies a group identity and that char F = 
p ;I: 2. Take a, x E L with ax f xa and let z be an element of prime 
order q f p. Then G = (a ,x,z) is a finite nonabelian group and u+(FG) 
satisfies a group identity. If p = 0, the set P of p-elements is {l} and 
G = G/P is a Hamiltonian 2-group by Theorem 2.1. It follows that Lis a 
Hamiltonian 2-loop. If p > 0, then Pis central (because pis odd), so G/ Pis 
nonabelian and hence a 2-group. So q = 2 and we learn that the only primes 
dividing ILi are 2 and p. Normality of Lp and £2 shows that L = Lp x L2. 
Applying Theorem 2.1 to the associative subloop of £2 generated by two 
noncommuting elements, we see that L2 is Hamiltonian. D 
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3. TORSION LOOPS 

In this section, L is a torsion loop that is not necessarily finite. As before, 
our results both use and extend a theorem about group algebras. 

Theorem 3.1. [GSV98] Let F be a field and G a torsion group with FG 
semiprime. Then u+(FG) satisfies a group identity if and only if G is 
abelian or a Hamiltonian 2-group. 

In Theorems 4.2.12 and 4.2.13 of Passman's classic text [Pas77], one can 
find necessary and sufficient conditions for a group l\lgebra FG over a field 
F to be semiprime. In characteristic 0, FG is always semiprime whereas 
in positive characteristic p, it is necessary and sufficient that G contain no 
finite normal subgroups of order divisible by p. The situation is exactly 
the same for RA loops [GJM96, Corollary VI.3.8] so, if an alternative loop 
algebra FL is semiprime and G is a group or a loop contained in L, then 
FG is also semiprime, in all characteristics. 

This is a key idea used in the proof of our extension of Theorem 3.1 to 
alternative loop algebras. 

Theorem 3.2. Let F he a field and L a torsion RA loop with FL semiprime. 
Then u+(FL) satisfies a group identity if and only if L is a Hamiltonian 
2-loop. 

Proof. Lemma 1.2 gives the result in one direction. For the other, assume 
that u+ (FL) sat.is fies a group ident.ity, t.ake any a, x E L which do not 
commute and let z be a central element. Then G = (a, x, z) is a nonabelian 
torsion group and FG is semiprime. By Theorem 3.1, G is a Hamiltonian 
2-group and it follows that L is a Hamiltonian 2-loop. D 

4. NONTORSJON LOOPS 

In this final section, we consider RA loops with no finiteness restrictions 
whatsoever and present theorems concerning the symmetric units of alter­
nat.ive loop algebras over fields and also over t.he ring Z of rational integers. 
Our results make reference to the torsion elements of a loop L. If L is RA, 
this set forms a locally finite subloop which is finite if Lis finitely generated 
[GM95, Lemma 2.1], [GM96a, Lemma 1.4], [GJM96, Lemma VIII.4.1). 

For group rings over the integers, Giambruno, Sehgal and Valenti have 
shown that if u+(ZG) satisfies a group identity, then any torsion subgroup 
H of G is either abelian or a Hamiltonian 2-group and every subgroup of H 
is normal in G [GSV98, Theorem 4] . This helps us to characterize RA loops 
whose symmetric units {in ZL) satisfy a group identity. 

Theorem 4.1. Let L be an RA loop. Then the following are equivalent: 

{1) u+(ZL) satisfies a group identity. 
(2) U(ZL) satisfies a group identity. 
(3) For evenJ finitely generated group G ~ L, U(ZG) .,atisfies n. group 

identity. 
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(4) The torsion subloop T of L is either an abelian group or a Hamil-
tonian 2-loop, and every subloop of T is normal in L. 

When any, and hence all, of these conditions is satisfied, U(ZG) satisfies 
the identity (u2,v2 ) = 1. 

Proof. The equivalence of (2), (3) and (4) is known and each implies that 
(u2, v2 ) = 1 is a group identity [GJM96, Corollary XII.2.9). Since (1) is an 
obvious consequence of (2), we have only to establish that (2) follows from 
(1), so assume that u+(ZL) satisfies a group identity. Lett ET, the torsion 
subloop of L, and suppose xt ,f, tx for some x E L. Let t0 E T be any central 
element. The subloop G = (to, t, x) is a group because to, t and x associate 
and u+(ZG) satisfies a group identity, so the result of Giambruno et al 
mentioned earlier tells us that both t and to are 2-elements and x-1tx E (t). 
In an RA loop, as with groups, the last observation shows that every subloop 
ofT is normal in L [GJM96, Corollary IV.1.11]. In particular, every subloop 
of T is normal in T so, if this is a group, the result for groups shows that 
T is either abelian or a Hamiltonian 2-group whereas, if T is not a group, 
then it is a Hamiltonian Moufang 2-loop. D 

Now we consider loop algebras over a field. In the associative case, Sehgal 
and Valenti have a helpful result. 

Theorem 4.2. [SV06, Theorem 4) Let F be an infinite field, Ga nontorsion 
group with torsion elements the set T and suppose FG is semiprime. If 
u+(FG) sati.~fies a group identity then 

(1) if char F = p > 2, then T is an abelian p'-group {that is, all elements 
of T have order relatively prime to p); 

(2) if char F = 0, then T is an abelian group or a Hamiltonian 2-group; 
(3) all idempotents of FT are central in FG. 

A few preliminary remarks will help the reader with our proof of the 
alternative analogue. An RA loop L has a unique nonidentity commuta­
tor/associators, which is necessarily central and of order 2. The map£,_. e• 
where 

e· = {e if e is central 
sf. otherwise 

is an involution of L that extends linearly to an involution of any loop ring 
RL (which we continue to denote *). Now L contains a group G of index 2 
and so we have L = GU Gu for any u EL\ G. Thus elements of RL have the 
form x+yu, where x and y are in the group ring RC, and (x+yu)" = x•+sy. 
It is known that an element of RL is central if and only if it is invariant 
under *, so we obtain a very useful test for centrality: x + yu is central if 
and only if x• = x and sy = y. This material is quite basic to the theory of 
RA loops and can be found, for example, in Section III.4 of [GJM96). 

Theorem 4.3. Let F be an infinite field of characteristic p :::: 0. If p = 0, 
assume also that F contains no solutions to x2 + y2 + z2 + w2 = -1. Let 
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L be an RA loop with torsion subloop T i L and suppose FL is semiprime. 
Then the following are equivalent: 

( 1) u+ (FL) satisfies a group identity. 
(2) (a) p > 2 and T is an abelian p1-group; 

{b) p = 0 and T is an abelian gro1Lp or a (possibly associative) 
Hamiltonian 2-loop; 

( c) if G ~ L is a group with torsion subgroup T( G), then all idem­
potents of FT(G) are central in FG. 

(3) p = 2 or every idempotent of FT is central in FL. 

In the casep i 2, ifU+(FL) satisfies a group identity, it satisfies (u,v) = l. 

Proof. Assume (1), that u+(FL) satisfies a group identity, an<l lct t1,t2 E 
T. Since g2 is central for any g E L and since L contains an element of 
infinite order, the centre of L contains an element a of infinite order. Let 
H = (t1,t2,a) be the group generated by t1, t2 and a. The symmetric units 
of F H satisfy a group identity so, if p > 2, Theorem 4.2 says that the 
torsion of H is an abelian p'-group. Thus t1t2 = t2t1 and these clements 
have order prime to p. It follows that T is commutative, hence associative 
(GM96b), (GJM96, Corollary IV.2.4) and a p'-group. If p = 0 and Tis not 
commutative, we may assume t1t2 =f t2t 1. This time Theorem 4.2 says that 
H is a Hamiltonian 2-group, so T is a Hamiltonian 2-loop. Now let G ~ L 
be a group. Then u+(FG) satisfies a group identity so, appealing again to 
Theorem 4.2, we learn that all idempotents of FT(G) are central in FG. 
This establishes {2). 

Now assume statement {2) and p I 2. We prove that every idempotent 
of FT is central in FL. This is known to be the case if p > 0 or T is abelian 
(GM) so we assume that p = 0 and Tis a Hamiltonian 2-loop. Replacing T by 
the subloop generated by the support of an idempotent in FT, if necessary, 
we may assume that Tis finitely generated and hence finite [GM95, Lemma 
2.1), (GM96a, Lemma 1.4), (GJM96, Lemma VIII.4.1]. Thus T = T1 x E 
is the direct product of an abelian 2-group and a subloop T1 which is Q, 
the quaternion group of order 8, if T is associative, and the Cayley loop 
M16(Q) otherwise. {See the proof of Lemma 1.2 for appropriate references.) 
Thinking of FT as the loop algebra of T1 with coefficients in FE, it is basic 
that FE is the direct sum of copies of F, so FT is the direct sum of copies 
of FT1. In characteristic 0, FQ ~ 4FEB(F,-l, -1), where (F, -1,-1) is the 
quaternion algebra over F, and F(M16(Q)) = SF EB (F, -1, -1, -1) where 
(F, -1, -1, -1) is the Cayley-Dickson algebra over F [GJM96, Corollaries 
VII.2.3 and VII.2.4). Since x2 +y2 +z2 +w2 = -1 has no solutions in F, this 
quaternion and this Cayley-Dickson algebra are division algebras [GJM96, 
Theorem 1.3.4). This already shows that every idempotent of FT is central 
in FT, but we want centrality in FL. Since every idempotent in FT is the 
sum of primitive idempotents, to obtain such centrality, it suffices to show 
that the primitive idempotents of FT are central in FL. 
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First we show that all elements of FE arc central in FL by showing 
that E is central in L. So take x E L and 1 f e E E. Then G = (x, e} 
is a group and, by hypothesis, every idempotent of FT(G) is central in 
FG. The main theorem of [CM88] says that x-1ex is a power of e, so 
x-1 ex = e. Thus e is central and we may complete the proof by showing 
that the primitive idempotents of FT1 are central in FL. This task is 
straightforward because these idempotents appear in the literature [GM96a]. 
Presenting Q = (a, b I a4 = 1, b2 = a2 ), the five primitive idempotents of 
FQ are 

e1 = i(l +a+ a 2 + a3 + b +ab+ a 2 + a3b) 

e2 = .:(1 +a+ a2 + a3 
- b - ab - a

2 
- a3b) 

8 

e3 = .:(1 - a+ a2 
- a3 + b - ab+ a2b- a

3b) 
8 

e4 = .:(1 - a+ a2 
- a3 

- b + ab - a2b + a3b) 
8 

es= .:(1 - a2
) 

8 
where f is the identity of F which, as an idempotent of FE, is central in 
FL. Since e; = e; for each i, each e; is central in FL. The nine primitive 
idempotents of F[M16(Q)] are es and the eight elements 

ej1 = i(l + u)e1 and e;2 = i(l -u)e;, 

j = 1, 2, 3, 4. As before, each f is central in FL. Since e;; = x + yu, with 
x, y E FQ, x* = x and sy = y, each e;; is also central. This establishes (3). 

Finally we assume statement (3) and prove (1). If p = 2, U(FL) is 
nilpotent [GM97, Theorem 3.2] and hence satisfies a group identity. Thus 
the subset u+ (FL) satisfies a group identity too. So assume p f= 2 and every 
idempotent of FT is central in FL. 

We are going to show that symmetric units commute, so we may assume 
that L is finitely generated and hence that T is finite. In this case, FT 
is the sum of simple algebras which are fields and quaternion algebras if 
Tis associative, and fields and Cayley-Dickson algebras otherwise [GJM96, 
Corollary Vl.4.8]. Since every idempotent of FT is central in FT, all simple 
components are division rings, D;. Using (GJM96, Lemma XIl.1.1), we 
conclude that any unit u of FL can be written in the form'£, d.;,f;, d.;, ED;, 
f; E £. Thus ud = '£,e;-1c:t; so, ifu is symmetric, e;-1J; = d.;,f; for each i. It 
follows that e'f has support in FT, so f; E T and u E FT. If p > 0, Tis 
an abelian group [GM96a, Theorem 2.3] and if p = 0, T is a Hamiltonian 2-
loop [GM96a, Theorem 3.3]. In either case, symmetric units of FT commute 
(using Lemma 1.2 in the Hamiltonian case) . The proof is complete. D 

Remark 4.4. It is pleasant to compare the equivalence of (1) and (3) in 
Theorem 4.3 with a previous result of the authors which states that the full 
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unit loop U(FL) satisfies a group identity if and only if p = 2 or T is an 
abelian group and every idempotent of FT is central in FL [GM]. 
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