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We employ an Einstein-Maxwell-Dilaton (EMD) holographic model, which is known to be in good
agreement with lattice results for the QCD equation of state with (2 + 1) flavors and physical quark masses,
to investigate the temperature and baryon chemical potential dependence of the susceptibilities,
conductivities, and diffusion coefficients associated with baryon, electric, and strangeness conserved
charges. We also determine how the bulk and shear viscosities of the plasma vary in the plane of
temperature and baryon chemical potential. The diffusion of conserved charges and the hydrodynamic
viscosities in a baryon rich quark-gluon plasma are found to be suppressed with respect to the zero net
baryon case. The transition temperatures associated with equilibrium and non-equilibrium quantities are
determined as a function of the baryon chemical potential for the first time. Because of the crossover nature
of the QCD phase transition even at moderately large values of the chemical potential, we find that the
transition temperatures associated with different quantities are spread in the interval between 130-200 MeV
and they all decrease with increasing baryon chemical potential.
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I. INTRODUCTION

The quark-gluon plasma (QGP) [1] produced in ultra-
relativistic heavy ion collisions [2—6] has been the focus of
intensive experimental and theoretical efforts in the last
years [7-9]. Due to the highly explosive nature of heavy
ion collisions, not only are the thermodynamical properties
in equilibrium relevant but one must also understand the
quark gluon plasma’s response to perturbations around
equilibrium, which is encoded in the behavior of transport
coefficients.

By varying the experimental conditions under which
heavy ion collisions take place it is possible to probe
different aspects of the QGP. For instance, at the LHC the
large center of mass energy /sy = 2.76-5.02 TeV of the
collisions produce a medium with very large temperature
(T) and small baryon chemical potential (up) such that
up/T < 1. On the other hand, the beam energy scan (BES)
program at RHIC [10] scans collision energies spanning
the interval /sy = 7.7-200 GeV, where it is expected
that uz/T ~ 1-3, and effects due to finite baryon density
become relevant. Indeed, one of the main goals of the BES
program at RHIC, and of other future projects such as the
CBM experiment at FAIR [11], the possible fixed target
experiments at RHIC [12], and experiments at the NICA
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facility [13], is to explore the baryon dense regime of the
QGP looking for possible experimental signatures of the
long-sought critical end point (CEP) of the QCD phase
diagram in the (T, ug) plane [14-20].

On the theoretical side, the main nonperturbative tool
available to study QCD thermodynamics in the deconfine-
ment/hadronization crossover region [21,22] at up =0 is
lattice QCD. Very recently, it has been shown by lattice
QCD simulations [22] that the contribution of charm
quarks to the QCD equation of state only begins to play
arole for temperatures 7' 2 300 MeV, while bottom quarks
only become relevant at much higher temperatures,
T zZ 600 MeV. Therefore, for the temperatures probed at
RHIC, FAIR, and NICA it is reasonable to consider just
the contribution of up, down, and strange quarks to QCD
thermodynamics. In such a scenario there are three U(1)
global symmetries associated with three conserved charges:
baryon charge, electric charge, and strangeness. In equi-
librium each one of these conserved charges is associated
with a corresponding chemical potential, yg, pg, and pg,
whose gradients in the plasma control the diffusion of these
conserved charges from higher density regions towards
regions where the density is lower. The chemical potentials
associated with each of the three lighter quarks, p,, uy,
and y;, are related to the ug, yi, and pug chemical potentials
as followsl; (see, for instance, Ref. [23]),

'Note that the coefficient in each Up,o.s in Eq. (1) is given by
the corresponding value of each conserved charge for a given
flavor.
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Under the experimental conditions realized in heavy ion
collisions, up > pug > py [23-27], one may consider for
the sake of simplicity that g # 0 while ug = puo = 0 (this
approximation should be valid as long up is not very
large). In fact, this was one of the configurations consid-
ered in Ref. [23] to compute the properties of (2 + 1)-
flavor QCD equation of state at O[(up/T)% in a lattice
setup using a Taylor expansion of the pressure, whose
expansion coefficients are conserved charge susceptibil-
ities. This assumption appears to be quite reasonable
considering that it was previously shown that a finite y ¢ has
only a very minimal effect on the charge susceptibilities and
the location of the critical point in a Nambu-Jona-Lasinio
(NJL) model [28].

A previous estimate of the QCD equation of state also at
O[(up/T)S] was presented in Ref. [29],> while the seminal
lattice work regarding the finite baryon density (2 + 1)-
flavor QCD equation of state at O[(up/T)* was first
published in Ref. [30]. Regarding conserved charge sus-
ceptibilities, results for the second order susceptibility x5
for (2 4 1)-flavor QCD in the continuum limit were first
presented in Ref. [31] and, more recently, results for ;(f
were given in Ref. [32] while ;(g was computed in Ref. [33].
According to Ref. [23], the lattice QCD equation of state at
finite pp, determined on the lattice via the Taylor series
procedure, is under control up to ug/T ~2.2 with no
signatures of a CEP being found in the scanned window
corresponding to 7 2 135 MeV and up < 600 MeV.

A key question concerning lattice QCD at finite temper-
ature and density is the determination of the hadronic
freeze-out line as a function of up. In recent years a strong
connection [34,35] between charge susceptibilities calcu-
lated using Lattice QCD and experimental measurements of
the moments of the distribution of net-charge, net-protons
[23,27], and net-kaons [36] has been explored in order to
determine the freeze-out line directly from first principles.
Even though experimental effects [37] such as efficiencies,
acceptance cuts, and inability to experimentally measure
neutral baryons are expected to play a role, recent works
have been exploring new methods to take them into account
in effective models [38—42].

*Reference [29] presented results for the equation of state
along isentropic trajectories in the (7, up) plane. Here we are
interested in comparing lattice results with holographic predic-
tions at some fixed values of up and/or ug/T, instead of fixed
S/Ng (where S is the entropy and N is the baryon number)
because S/Np is not conserved in the presence of viscosity.
Therefore, the analysis made in Ref. [23] is especially suited for
the study done here.
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Despite the enormous progress achieved using ab initio
lattice QCD calculations in the last decade, it is not clear if
reliable signatures of the QCD CEP in the (7T, ug) plane
will be found using lattice simulations in the near future.
Furthermore, another severe difficulty faced by lattice
calculations concerns the computation of real-time, trans-
port observables [43]. Relativistic hydrodynamics has been
enormously successful in describing experimental observ-
ables with a small shear viscosity to entropy density ratio
(7/s) and more recently with a bulk viscosity to entropy
density ratio ({/s) exhibiting a peak at some characteristic
temperature. At finite baryon densities diffusion coeffi-
cients of baryon number, electric charge, and strangeness
begin to play a role although at this point there have not yet
been any model calculations that included a nontrivial
temperature dependence of the electric charge and strange-
ness diffusion coefficients. Even at zero baryon density, most
of these transport coefficients have not yet been calculated
within the framework of Lattice QCD with physical quark
masses in the continuum limit and, yet, they are vital input
parameters in dynamical models of the QGP.

Since there are no ab initio QCD calculations of these
transport coefficients, it is not known at the moment if there
is a clear hierarchy among the inflection points (or some
other characteristic value of temperature) of each respective
transport coefficient. Furthermore, it is not clear if the
minimum of #/s(T) should correspond to the peak in
¢/s(T) or if they occur at different temperatures. In fact,
due to the crossover nature of the QCD phase transition it is
more likely that each transport coefficient experiences the
change in degrees of freedom (i.e., from hadrons to quarks
and gluons) at different temperatures. This is the case for
several quantities computed in equilibrium at zero chemical
potential, such as the inflection point of the second order
baryon susceptibility and the peak of the trace anomaly,
though it is not known how these transition temperatures
change as a function of 5.

By focusing on the tasks of computing finite 1z observ-
ables and transport coefficients, one finds oneself in a corner
of theory space that is currently incredibly challenging for
first principles lattice QCD simulations. Consequently,
complementary theoretical approaches, such as effective
models and the holographic gauge-gravity duality [44—47]
may be useful to give physical insight into such problems.

While initially focused on studying the top-down con-
formal plasma of N' = 4 super Yang-Mills (SYM) theory
[48,49], which is profoundly different from the real-world
nonconformal QGP (see [50] for a discussion), recently the
gauge-gravity duality has been employed to “engineer”
bottom-up holographic models that closely mimic the
physics of the QGP around the crossover [51-65]. The
main idea of Ref. [51] (see also [66—-68] for the case of
pure glue gauge theories) consists in deforming the strongly
coupled quantum field theory, defined at the boundary of a
5-dimensional asymptotic anti-de Sitter (AdS) spacetime,
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by considering a relevant operator in the gauge theory dual
to a massive dilaton-like field in the bulk. The dilaton
potential is then engineered in such a way to emulate
equilibrium properties of (2 + 1)-flavor QCD at pup = 0.
According to the holographic dictionary, at finite temper-
ature the spacetime backgrounds that are solutions of
Einstein’s equations comprise a black hole in the bulk
and the free parameters of the gravity action may be
dynamically fixed by solving the equations of motion
for the bulk fields with the requirement that the holographic
equation of state at up = 0 matches the corresponding
lattice QCD results.

Furthermore, chemical potentials associated with differ-
ent globally conserved Abelian charges may be included in
the holographic model by adding to the gravity action
different Maxwell-like vector fields, which then define an
Einstein-Maxwell-Dilaton (EMD) model. The coupling
between the Maxwell and the dilaton fields may be then
dynamically fixed by matching some holographically
computed second order susceptibility to the corresponding
lattice QCD result (for baryon, electric charge, and/or
strangeness susceptibilities) at up = 0 [55]. Recently, an
anisotropic version of the holographic EMD model com-
prising an external magnetic field (B) at zero chemical
potential has also been studied in [63,64]. Both the isotropic
EMD model at finite 7 and pp from Refs. [60—62] and the
anisotropic EMD model at finite 7 and B from Refs. [63-65],
were found to give results that are in good quantitative
agreement with a large set of physical observables calculated
within lattice QCD in Refs. [30-32,69-71] and [72-77],
respectively.

In the present work, we focus on the calculation of
several transport coefficients relevant for the physics of the
QGP across the (T, ug) plane. In Sec. II, we briefly review
the main features of the holographic EMD model used in
Ref. [60] and its thermodynamic properties. We also
present in this section the comparison between the holo-
graphic equation of state at finite up and the recent lattice
results from Ref. [23] at O[(up/T)®] with up #0 and
us = po =0. In Sec. Il we discuss the transport of
conserved charges in the hot and baryon rich QGP by
computing the susceptibilities, conductivities, and diffusion
rates for the baryon (subsection III A), electric charge
(subsection III B), and strangeness (subsection III C) sec-
tors. The results in III C are the first calculations in the
literature concerning the transport of strangeness and how
it is affected by finite baryon density effects across the
crossover phase transition. The results reviewed in
subsections III A and III B were originally obtained in
Refs. [61,62], respectively, and are only included here for
completeness. In Section IV we evaluate the temperature
and baryon chemical potential dependence of the bulk
viscosity in the hot and baryon dense QGP, while a hybrid
quasiparticle-holographic estimate providing a temperature
dependent profile for the shear viscosity coefficient is
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presented in the Appendix. In Sec. V we obtain the up
dependence of the transition temperatures extracted from
characteristic points of different equilibrium and transport
observables calculated in the aforementioned sections. We
close the paper in Sec. VI with a discussion of the main
results derived in this work.

We use in this paper natural units where i = kg = c = 1
and a mostly plus metric signature.

II. BRIEF REVIEW OF THE EMD MODEL
AND ITS THERMODYNAMICS

The holographic EMD model at finite temperature and
baryon density used here is discussed in detail in Ref. [60]
(we invite the interested reader to check this reference for
the technical aspects and details about the numerics). The
bulk EMD action reads,

1 )

__/ds
)

where k% = 87zGs5 is the 5-dimensional gravitational con-
stant, ¢ is the dilaton field with potential V(¢), AJ is the
Maxwell field associated with the baryon sector, and f5(¢)
is the coupling function between ¢ and Aff . The charged,
spatially isotropic and rotationally invariant black hole
Ansatz we employ for the bulk EMD fields is given by

|: ( ) V(¢) fB(¢)( ;w)

2 2A(r) 2 pp, dr?
ds? = A [=h(r)dr* + dX?] + —

h(r)’
¢p=¢(r). AP

= ABdx' = ©(r)dt, (3)
with the boundary of the asymptotically AdSs spacetime
placed at r — oco. Also, the black hole horizon is given by the
largestroot of 4(ry) = 0 and the radius of the asymptotically
AdSs background is set to unity for simplicity.

Once V(¢) and fp(¢) are specified, one may obtain
numerical solutions for the background functions A(r),
h(r), ¢(r), and @(r) by following the steps discussed in
Ref. [60]. Each possible solution of the EMD equations
of motion is generated by choosing different values for the
pair of initial conditions (¢(ry), ®'(ry)), specified at
the black hole horizon, and then numerically integrating
the coupled system of differential equations for the
EMD model towards the boundary. From the far from
the horizon, near-boundary behavior of these background
functions one may extract the needed ultraviolet expansion
coefficients used in the holographic calculation of physical
observables of the gauge theory at the boundary. Each black
hole solution numerically generated corresponds to a
different physical state of the gauge theory with definite
values of temperature, baryon chemical potential, entropy
density (s), and baryon charge density (pp), obtained
according to the following relations,

014032-3



ROMULO ROUGEMONT et al.
A DA

= N B = ——— N
477’.4);/” hga.r i‘/” hga.r

_ (I)gaIA3
Pp = — 3/7 .
R

In Eq. (4), the ultraviolet expansion coefficients hg‘l,
O, @ and ¢, are obtained from the near-boundary
asymptotics of the EMD fields [55], A(r) =~ a(r), h(r) ~ hE",
P(r) ~ s, and D(r) ~ DT 4 OLre=200),
a(r) =r/y/h* + AR and v =4 — A, with A being the
scaling dimension of the gauge field theory operator dual to
the bulk dilaton field. The quantity A is a scaling factor with
dimensions of energy needed to convert observables com-
puted on the gravity side to field theory units in MeV [59,60].

As mentioned in the introduction, the free parameters
of the holographic model are dynamically fixed by solving
the EMD equations of motion at yp = 0 (corresponding
to the initial condition @' (ry) = 0) with the constraint that
the holographic equation of state and baryon susceptibility
match the corresponding lattice results for QCD with (2 + 1)
flavors and physical quark masses from Refs. [30,31],
respectively, which gives [60],

B 273

S =
2 43/v’
K5¢A

(4)

where

V() = —12cosh(0.606¢) + 0.703¢> — 0.1¢*

10.0034¢°,
sech(1.2¢) — 0.69)  2¢~100
I5(d) = 3sech(0.69) 3
k2 =125  A=831MeV. (5)

The corresponding results are shown in Fig. 1.

The results displayed in Fig. 1 are not predictions of the
holographic EMD model but rather, as discussed above,
they were used to fix the free parameters of this bottom-up
construction to generate black hole solutions which are now
able to mimic equilibrium properties of the QGP at up = 0.
Indeed, with the parameters in Eq. (5) fixed by using lattice
QCD inputs at up = 0, one may employ the EMD model to
obtain predictions for the physics of the QGP at finite up
and calculate a large set of physical observables across the
(T, pug) phase diagram [60-62].

In Ref. [60] this model’s holographic prediction for the
equation of state at finite baryon density was compared
with lattice QCD results at O[(up/T)?] from Ref. [30],
and the results are shown in Fig. 2. We also present here for
the first time, in Fig. 3, the comparison between the full
holographic EMD equation of state at finite uz computed in
this model and the very recent lattice QCD results truncated
at O[(ug/T)%) from Ref. [23]. In both comparisons, one
can see an overall reasonable agreement between the
EMD and lattice QCD equations of state in the (T, up)
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FIG. 1. Holographic thermodynamics at yp = 0 compared to
lattice results from Refs. [30,31]. (a) Pressure. (b) Speed of sound
squared. (c) Trace anomaly. (d) Baryon susceptibility.

plane. By refining the holographic parameters used in the
up = 0 calculation one should be able to achieve a much
better agreement with lattice results (and fix, for instance,
the disagreement between our trace anomaly and the lattice).
Such a refined (and time consuming) analysis is, however,
beyond the scope of the current paper and it will be presented
elsewhere in a separate study.
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FIG. 2. Holographic equation of state at finite baryon chemical
potential compared to lattice results computed at O[(ug/T)?]
from Ref. [30]. (a) Pressure. (b) Speed of sound squared. (c) Trace
anomaly.

III. TRANSPORT OF CONSERVED CHARGES

In this section we discuss the transport of conserved
charges in the hot and baryon rich QGP by computing
the susceptibilities, conductivities, and diffusion rates for
baryon charge, electric charge, and strangeness.

A. Baryon sector

For the sake of completeness, we briefly review the
results originally obtained in Ref. [61] for the baryon
susceptibility, baryon conductivity, and baryon diffusion
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FIG. 3.
potential compared to lattice results computed at O[(ug/T)
from Ref. [23]. (a) Entropy density. (b) Baryon charge density.

Holographic equation of state at finite baryon chemical
‘]

in the (7', ug) plane. For the present work we have improved
our numerics, which allowed us to access a wider range of
values in the (T, up) plane than previously done in Ref. [61].

The generalized nth order baryon susceptibility is given

by,

d'p 0" 'py
B p— p— N 6
)(2 8/4% 6/4;';_1 ( )

and we are interested here in the second order baryon
susceptibility, whose results in the (7, ug) plane are dis-
played in Fig. 4.

In order to compute the baryon conductivity we follow
the discussion in Ref. [56] and consider linear disturbances
of the EMD fields around the backgrounds in Eq. (3). Since
these finite temperature and baryon density backgrounds
are isotropic and rotationally invariant, by taking a plane
wave Ansatz for the EMD field perturbations with fre-
quency @ and zero spatial momentum, k = 0, the resulting
EMD disturbances may be combined to construct gauge
and diffeomorphism invariant variables which fall into
different representations of the SO(3) symmetry group
of spatial rotations. There is a singlet, from which one may
obtain the bulk viscosity ({) of the dual plasma (as we are
going to do in subsection IV), a triplet, from which one can
compute the baryon conductivity (as we do below), and a
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FIG. 4. Holographic baryon susceptibility. (a) Surface plot as a
function of T and pp. (b) Curves as functions of 7 for different

values of ip.

quintuplet, from which one obtains the shear viscosity (;7).3
Since these gauge and diffeomorphism invariant combina-
tions fall within different representations of SO(3), they
cannot mix at the linear level and each one of these
perturbations will satisfy a decoupled equation of motion.*
As discussed in [56], due to SO(3) symmetry, each spatial
component of the Maxwell field perturbation, @, satisfies
the same decoupled differential equation and, therefore, we
may take without loss of generality, a = a,, such that the
corresponding equation of motion reads [56],

W) 1) T
ma*nwﬁ(ﬁ()
o2A(r) { W?

o i @R |at) 0. ()

a"(r) + [2A/(r) +

h(r)

In the case of the EMD construction discussed here, the
holographic shear viscosity calculated in the traceless graviton
channel, associated with the SO(3) quintuplet, is given by the
usual result /s = 1/4z. However, in the Appendix we are going
to use a different route to compute a “phenomenological holo-
graphic” shear viscosity, which provides in a simple way a
temperature dependent profile for /s similar to what is expected
to occur in the real-world QGP.

*At finite spatial momentum, however, this would no longer be
valid since in this case the perturbations would be only classified
in terms of an SO(2) symmetry group.
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FIG. 5. Holographic baryon conductivity. (a) Surface plot as a
function of T and pp. (b) Curves as functions of T for different

values of up.

One may then numerically solve Eq. (7) over the EMD
backgrounds with in-falling wave condition at the black
hole horizon, normalizing the vector perturbation to unity at
the boundary, and plug in the result into the following
holographic Kubo formula for the baryon conductivity in the
EMD model expressed in physical units [56,61] (discarding
the usual delta function that appears in translationally
invariant systems at finite density [78]),
A B fp($)e Imla(r @)d (1, 0)]

op = — im ;
B 2K§¢114/U w0—0 10}
(8)

where hfg(¢)e* Im|a*a’] is a conserved flux in the radial
direction, such that (8) may be evaluated at any value of
the holographic coordinate r. The results for the baryon
conductivity as a function of (T, ug) are shown in Fig. 5.
Finally, we now consider the evaluation of the baryon
diffusion, Dg, which controls the fluid response to inhomo-
geneities in the baryon charge density [79]. As discussed in
Ref. [80], for black brane backgrounds such as ours the
baryon diffusion may be calculated using Nernst-Einstein’s

relation,

Dy =—%. (9)
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FIG. 6. Holographic baryon diffusion. (a) Surface plot as a
function of T and py. (b) Curves as functions of 7T for different
values of pg.

The holographic results for the baryon diffusion are shown
in Fig. 6, from which one can see that the diffusion of
baryon charge is suppressed by the presence of a nontrivial
baryon chemical potential. This is consistent with the
presence of a CEP in the holographic model at higher
baryon densities, since the baryon diffusion is expected to
vanish at the CEP [81].

B. Electric charge sector

For the sake of completeness, we briefly review the
results originally obtained in Ref. [62] for the electric
charge susceptibility, electric conductivity, and electric
charge diffusion in the (7, up) plane.

As mentioned in the Introduction, under the experimental
conditions realized in heavy ion collisions, ug > ps > g,
and as a first approximation, we may consider the electric and
strangeness sectors as probes over the finite up black hole
backgrounds discussed before. This means that we are going
to take pg = pup =0, which may be accomplished by
considering the probe Maxwell actions,

1
S =g | OVTOELR. (10)
where X = Q or S. In this subsection, we consider the electric
charge sector as a probe on top of the finite yz backgrounds in
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Eq. (3). Thus, the background value of the Maxwell field Afj)
vanishes and the probe action (10) with X = Q is only
nontrivial if we consider fluctuations of A,?, which is all that
is needed to compute the transport of electric charge.

In order to fix the electric coupling function f(¢) in the
probe action (10), we evaluate the following integral on top
of the EMD backgrounds [55,62],

B s/T3
16729 (0) [ dre™A ) £ (b(r))

2
T2

(1o = 0) . (1)

with the requirement that it matches the lattice QCD results
for the electric charge susceptibility at vanishing chemical
potential from Ref. [31]. With this, one may fix,

fo(#) = 0.0193 sech(—100¢) + 0.0722 sech(1077¢),
(12)

with the corresponding results shown in Fig. 7(a).

By using the membrane paradigm [80], one derives the
following holographic Kubo formula for the -electric
conductivity in the EMD model (already expressed in
physical units) [62],

fold A(ry)
6y = %ﬁrm);}{” A, (13)

As before, the electric charge diffusion may be calculated
using Nernst-Einstein’s relation by dividing the electric
conductivity by the electric susceptibility.

In Figs. 7(b) and 7(c) we show the EMD predictions for
the electric conductivity and electric charge diffusion at
up = 0 compared to lattice QCD results from Ref. [71].
These holographic results at vanishing baryon density
constitute an update of the results first published in
Ref. [82], which were based on an older version of the
holographic model (without chemical potential). We note
that the EMD results for the electric conductivity of the
QGP, which are predictions of the model, are much closer
to the lattice QCD results from Ref. [71] than many other
models available in the literature; for comparisons between
different models, see for instance Fig. 6 of Ref. [83] and
Fig. 4 of Ref. [84]. We must also remark that there is room
for further improvements in the agreement between the
EMD predictions for the electric conductivity and charge
diffusion and the corresponding lattice results from
Ref. [71], once the latter are refined by taking the
continuum limit and by considering physical quark masses
(as in the case of the lattice inputs used to fix the free
parameters of the EMD model).

In Figs. 8, 9, and 10 we show the EMD results for the
electric charge susceptibility, conductivity, and diffusion at
finite baryon chemical potential, respectively. As in the
case of the baryon diffusion, also the diffusion of electric

014032-7



ROMULO ROUGEMONT et al.

0.6

0.5

0)/T?

°
N

X3(T,ug
=)
w

o [1112.4416]

100 200 300 400 500
T [MeV]
(a)

0.020

)T

0.015

MB=

= 0.010

O'Q(T

0.005

o [1412.6411]

0.000 .
100 150 200 250 300 350 400

T [MeV]
(b)

0.35
S 030 1 |
1l ’
[14]

S 025
= 0.20
o

Q 0.15 P
F 010

0.05 L
100 150 200 250 300 350 400

T [MeV]
(c)

o [1412.6411]

FIG. 7. Holographic electric charge transport at yz = 0 com-
pared to lattice results from Refs. [31,71]. (a) Electric charge
susceptibility. (b) Electric charge conductivity. (c) Electric charge
diffusion.

charge is found to be suppressed as one increases the
baryon density of the medium.

C. Strangeness sector

We consider for the first time how the transport of
strangeness in the QGP near the crossover transition is
affected by a nonzero baryon chemical potential. The
strangeness sector is especially interesting in light of the
p/x puzzle at the LHC [85] where it has been suggested
that there are possibly missing strange resonances when
compared to lattice QCD [86,87] and/or there could be a
flavor hierarchy of chemical freeze-out temperatures
[36,88]. Recent work [89] has also looked into the
dynamics of strangeness and found that strange hadrons
(with the exception of A’s) generally freeze-out sooner than
light hadrons. Thus, understanding how strongly strange-
ness diffuses throughout the quark gluon plasma, especially
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FIG. 8. Holographic electric charge susceptibility. (a) Surface
plot as a function of T and ug. (b) Curves as functions of T for
different values of ug.

at finite baryon densities, could help shed further light on
such topics.

As done in the previous section, we begin by fixing the
coupling function f5(¢) between the bulk fields ¢ and A3
by solving the integral in Eq. (11) (with the change Q — )
with the constraint that the holographic result for the
strangeness susceptibility at up = 0 matches the corre-
sponding lattice QCD result from Ref. [31]. As in the case
of electric charge, we remark that strangeness effects are
onlg included here in the probe limit. By doing so, one can
fix,

Fs(#) = 1.282sech(0.8¢) — 0.282sech(50¢),  (14)

with the corresponding results displayed in Fig. 11.

The calculation of the strangeness conductivity and
diffusion proceeds as in the previous section by changing
fo(#) = fs(¢), and the EMD predictions for the strange-
ness susceptibility, conductivity and diffusion at finite

One consequence of the overall normalization chosen for the
couplings f5(¢). fo(¢). and fs(#) in Egs. (5), (12), and (14),
respectively, is that at high temperatures (compared to upz) the
diffusion rates for the conserved charges converge approximately
to the same value obtained in the SYM plasma [90] (which is
independent of the choice of «2).
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FIG. 12. Holographic strangeness susceptibility. (a) Surface
plot as a function of T and ug. (b) Curves as functions of T for
different values of up.

baryon density are shown in Figs. 12, 13, and 14,
respectively. We note that, compared to the baryon and
electric charge sectors, the diffusion of strangeness is
much more robust to the presence of a nontrivial baryon
density, especially for temperatures above the crossover
transition. However, also in this case the diffusion of
conserved charge is suppressed by the baryon chemical
potential, although the effect is very small. Overall, we
observe a general suppression of diffusion of conserved
charges through the medium as the baryon density of the
plasma is increased, with such effect being stronger in the
baryon sector and considerably weaker in the strangeness
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different values of up.

sector. As mentioned before, a more complete investiga-
tion of finite density effects on the transport of conserved
charges would require to go beyond the probe limit in the
electric and strangeness sectors. Such a study is much
more challenging from a numerical point of view than the
calculations performed here and it is left to a future
investigation.

D. Brief summary of BSQ conductivity and diffusion

A prime motivation for this work was to obtain the
temperature and baryon chemical potential dependence of
0;/T,where i = B, S, Q, which may then be used in future
relativistic hydrodynamic models that include the effects
of these three conserved charges in the evolution of the
plasma. Such models would be instrumental to investigate,
in a realistic manner, the observable consequences of
the presence of the critical end point in the QCD phase
diagram, which is one of the primary tasks of the Beam
Energy Scan Theory (BEST) collaboration.

However, there are other questions that can be answered
by studying these transport coefficients. For instance, a larger
o;/T indicates that the current associated with the transport
of this conserved charge is larger (also, in a gas, one may say
that the mean free path between these interactions is larger).
When one looks at the BSQ magnitudes of ¢;/T, one can
clearly see that in our calculations there is a hierarchy
between the three transport coefficients such that strangeness
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FIG. 14. Holographic strangeness diffusion. (a) Surface plot as
a function of T and pp. (b) Curves as functions of T for different
values of up.

is the largest, followed by baryon number and electric charge.
Though the magnitude of the strangeness conductivity has
not yet been compared to lattice QCD results, we do see that
the electric conductivity is quite a bit smaller than the baryon
conductivity found here. Additionally, in Sec. V we will
study the inflection points of the conductivities compared to
their associated susceptibilities as a method of understanding
the difference in transition temperatures between equilibrium
and out-of-equilibrium properties.

IV. BULK VISCOSITY

In this section we turn our attention to the holographic
calculation of the bulk viscosity in the hot and baryon dense
QGP described by the EMD holographic model.

In [91,92], effects from the bulk viscosity transport
coefficient, £, were included in event-by-event hydrody-
namics and state-of-the-art hydrodynamic models [93,94]
have shown that this coefficient is an important ingredient
in the description of heavy ion experimental data. For
instance, in the calculations performed in [93] a profile for
the bulk viscosity peaking at the crossover allowed for a
simultaneous agreement with experimental data for differ-
ent physical observables. A similar profile was later used in
the Bayesian analysis performed in [94], which confirmed
the role played by bulk viscosity in comparisons to
experimental data. However, at the moment it is not clear
how the different assumptions regarding the many model

014032-10



DYNAMICAL VERSUS EQUILIBRIUM PROPERTIES OF ...

parameters that enter in these complex simulations affect
the magnitude and the location of the peak of {'/s extracted
from model comparisons to data. In fact, the small {/s
found in the very recent Bayesian analysis done in [95] is
different than the result found in Ref. [96], which made
different assumptions regarding the location of the peak of
the bulk viscosity.

In this subsection we calculate the 7" and up dependence
of the bulk viscosity in the EMD model of Ref. [60]
used here.’

In the holographic EMD setup at finite baryon density
the bulk viscosity is associated with the gauge and diffeo-
morphism invariant combination of the EMD fields trans-
forming as a singlet under SO(3), which we denote by H.
The equation of motion for this scalar perturbation is given
by [56],

H”(l’) + |:4A’(r) +hl(r) 2¢”(}’) _2A//(r):| H’(i’)

h(r) — ¢'(r)  A'(r)
e—ZA(r)wz "(r "y (o
% +h(<><<>¢<>>

WE ) A 0
e—ZA(r)
"(r) ! _ '(r (r 2
g BN O 8) = Fa D ()@ 07
x H(r) = 0. (15)

One numerically solves Eq. (15) over the EMD back-
grounds with in-falling wave condition at the black hole
horizon, normalizing the scalar perturbation to unity at the
boundary. Then, one plugs in the solution into the follow-
ing holographic Kubo formula for the dimensionless ratio
between the bulk viscosity and the entropy density [56],

MO () (1) (r)H ()
wA'(r)?

,  (16)

where e*h¢/?Im[H*H']/A’* is a conserved flux in the
radial direction such that (16) may be evaluated at any value
of r. At finite baryon density, the relevant combination
entering in hydrodynamics is {7/ (e + p), which reduces to
the ratio /s at ug = 0. The results for the bulk viscosity as
a function of (7', ug) are shown in Fig. 15. One notes that
the bulk viscosity is reduced with increasing baryon density
and, thus, one may say that there is an overall suppression
of hydrodynamic viscosity coefficients in the medium due
to a nonzero baryon chemical potential, since the same
effect is observed in the shear viscosity (discussed in the
Appendix). The bulk viscosity develops a peak in the
crossover (contrary to the shear viscosity which has a
minimum there). Interestingly enough, we note that the

oA previous estimate in an older version of the EMD model,
constructed using as phenomenological inputs now outdated
lattice results for the QCD equation of state at pp =0, was
originally presented in Ref. [56].
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FIG. 16. {/s(T) at ug = 0 compared to a recent study using
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relativistic hydrodynamics calculations to experimental data.

magnitude of the bulk viscosity and its 7 dependence is
somewhat similar to the result of a recent Bayesian analysis
[95] shown in Fig. 16. The small value of {/s found in our
calculations here is, however, not compatible with the
profile used in previous model comparisons to data done
in [93,94,96], which required an order of magnitude larger
values of bulk viscosity.

V. TRANSITION TEMPERATURES

The crossover transition observed at low baryon density
in (2 + 1)-flavor lattice QCD calculations with physical
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quark masses is not a genuine phase transition since the
derivatives of the pressure are continuous functions
[21-23]. In other words, the change from hadronic degrees
of freedom in the HRG phase to partonic degrees of
freedom in the QGP phase proceeds continuously, as a
crossover, instead of a true phase transition. In the region of
the QCD phase diagram where this qualitative change in
the relevant degrees of freedom of the system takes place,
some physical observables still display fast variations as
functions of temperature, which may be characterized by
inflection points or extrema. Consequently, instead of
displaying a definite critical temperature that characterizes
all the different observables (as it would be the case, for
instance, in a first order phase transition), in the case of a
crossover one may only define a band of transition temper-
atures and investigate how a set of observables, for instance
the fluctuation of conserved charges, vary along that band.

Recently, much attention has been paid to the equilib-
rium observables known as susceptibilities because
strangeness has a higher transition temperature compared
to light hadrons/quarks by at least 15 MeV [88], which may
indicate that strange degrees of freedom not only hadronize
at a higher temperature but could also reach chemical
freeze-out earlier on than light hadrons.

Within our holographic model, we are uniquely able to
explore both the equilibrium observables (such as suscep-
tibilities and other thermodynamic quantities) as well as the
out-of-equilibrium observables i.e., the transport coeffi-
cients. Bayesian methods [97] have been employed in
recent years to more thoroughly understand the temperature
dependence and now finite baryon chemical potential
dependence [98] of shear and bulk viscosity. However,
there is no guidance from ab initio calculations to the
placement of the transition temperatures of transport
coefficients and how they should correlate with their
relevant equilibrium observables. For instance, previous
work has suggested that the temperature dependence of the
bulk viscosity should be connected with the derivative of
the trace anomaly [99]. For instance, here we are uniquely
in the position to test exactly how closely connected the
bulk viscosity is with the trace anomaly in a realistic
manner and can also see if the BSQ conductivity transport
coefficients are closely correlated with their corresponding
BSQ susceptibilities determined in equilibrium.

In the following, the type of transition temperature used
depends on the behavior of the quantity of interest. For
instance, the position of the minimum of #7/s(T') (discussed
in the Appendix) is chosen as its transition temperature
whereas {/s(T) has a clear peak that is chosen as its
transition temperature. Other quantities such as the sus-
ceptibilities and conductivities do not have a peak or
minimum but do have a clear inflection point, which is
then chosen as its corresponding transition temperature.
The one quantity where two separate points are taken is the
trace anomaly that has a peak at a high temperature (larger
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than all other equilibrium transition temperatures) but also
has an inflection point at a temperature in the midst of all
other transition temperatures.

In Fig. 17 we display the holographic EMD result for the
crossover lines of several equilibrium and transport quan-
tities, constructed using the values of their characteristic
points (inflection points and extrema), as a function of ug. In
Fig. 17(a) one can see that the crossover lines constructed
following the inflection point of s /7 and the dip in ¢2 as a
function of up are much more similar to the curve traced out
by the inflection point of the trace anomaly than by the curve
associated with the peak of the same quantity. In Fig. 17(b)
we show the crossover lines across pp associated with the
minimum of the phenomenologically constructed shear
viscosity and the peak of the bulk viscosity.

One can see that the crossover line defined by the peak of
the bulk viscosity is much more similar to the curve
associated with the inflection point of the trace anomaly
than the curve traced out by its maximum. However, it would
be misleading to associate the peak of {/s directly with
(e — 3p)/T* since the peak of {/s remains roughly 10 MeV
higher than the inflection point of (¢ —3p)/T* while the
peak of {/s is also roughly 20 MeV lower than the peak of
(e — 3p)/T*. These results strongly highlight the importance
of overcoming lattice QCD issues to directly calculate
transport coefficients since some assumptions about the
temperature dependence of the transport coefficients may
prove to be wrong. Furthermore, they clearly demonstrate
that Bayesian analysis techniques to extract transport coef-
ficients should not assume one single temperature for the
inflection point or extrema of transport coefficients but rather
it appears that the bulk viscosity may be constrained within
the (rather large) bounds given by the trace anomaly.

On the other hand, it is interesting to note that the
crossover line given by the minimum of #7'/(e + p) across
up, extracted here from the jet quenching parameter, as
explained in the Appendix, involves much larger temper-
atures starting around 200 MeV at zero baryon density with
a steep fall toward lower temperatures with increasing pp.
If one takes these estimates for the hydrodynamic viscosity
crossover lines and applies them in hydrodynamic calcu-
lations, this would correspond to simulations in which the
minimum of the shear viscosity at uz = 0 occurs far from
the typical values of the switching temperature T, ~
150 MeV [94]. This points to an interesting interplay
between shear and bulk viscosities during the hydrody-
namic evolution of such a plasma: as the system cools down
from the high temperatures achieved in the initial state
toward 7'~ 200 MeV, the bulk viscosity remains small and
nT/(e + p) < 1/4x and, thus, the plasma in this regime
displays nearly perfect fluid response to spatial inhomo-
geneities. Below T ~ 160 MeV, 7/s starts to increase and
the particle number changing processes that take place
within hadronization contribute to generate a peak in the
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up. (c) Comparison between the transition temperatures associ-
ated with conserved charges extracted from second order sus-
ceptibilities (equilibrium) and their respective conductivities
(transport) as a function of pp.

bulk viscosity, which however still remains smaller than the

shear viscosity in the model presented here.

Clearly, further study is needed to investigate the
consequences of the results discussed above. Our results
for the high transition temperature of n7T/(e+ p) are
especially surprising, which indicates either that the
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correlation between ¢ and #/s(T) is not as strong as
previously thought or that this relationship is, indeed,
correct but that the transition temperature of #n/s(T) is
much higher than previously thought. While the high
transition temperature of n/s(7) may be surprising we
also see a large flat region through the entirety of the
crossover as shown in Fig. 19, which seems to be consistent
with current Bayesian analyses. Perhaps this is not surpris-
ing in light of the success of many hydrodynamic models
that use a constant 77/s. The holographic picture would then
provide an 7/s(T) dependence that only sees an increase
of 77/s in the purely hadronic region as well as at very high
temperatures. Otherwise 7/s(T) would be more or less flat
throughout most of the temperature regime that current
experiments can explore.

In Fig. 17(c) we show the crossover lines (obtained from
inflection points) associated with the second order suscep-
tibilities of conserved baryon, electric, and strangeness
charges and compare them with their corresponding con-
ductivities. Such a comparison provides a way to gauge
how transport coefficients (which involve real time non-
equilibrium dynamics) feel the change of degrees of free-
dom that takes place in the crossover region, which has
been usually studied using only quantities defined in
equilibrium such as the susceptibilities of conserved
charges. In our calculations there is a clear split between
the crossover line associated with % /T2 and that of 65/T,
while for the other conserved charges equilibrium and
out-of-equilibrium crossover lines are not very separated.
Moreover, in the baryon sector one can see that the
transport coefficient op feels the change in degrees of
freedom around the transition already at higher temper-
atures than its equilibrium counterpart y%. This suggests
that as the system cools down, baryon transport switches
off earlier in the evolution than one would expect using as
an estimate the longer time it takes for the system to achieve
the lower x5 transition temperature. The same does not
occur for the other conserved charges where the crossover
lines obtained from equilibrium quantities provide a good
estimate for the electric and strangeness conductivity
transition temperatures. A detailed analysis of the interplay
between the 7" and up dependence of the susceptibilities
and the conductivities of the QGP’s conserved charges, and
their potential effects on its evolution, may be performed
using hydrodynamics augmented by the inclusion of the
effects of B, S, and Q conserved currents.

We note that we expect some differences to arise when
calculations are further improved beyond only finite yp but
also simultaneously include nonzero pg and uy. While one
expects that in heavy ion collisions y, remains quite small
evenatlarge ug, iy > 0 could induce some small corrections

on )(ZQ and 6. Additionally, 45 should not be nearly as small
as p g and, thus, the most logical next step would be to include
the backreaction of the strangeness conserved charge in our
model. However, this presents significant numerical chal-
lenges that are beyond the scope of this paper.
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Finally, we note that all the lines that define the crossover
region computed here bend toward lower temperatures and
that the width of this band shrinks from 7'~ 140-200 MeV
to T~ 130-170 MeV when up goes from 0 to 400 MeV.
It is expected that all the curves in Fig. 17 will converge to
the same point at the CEP of the model, which can only
occur at much larger values of xp that go beyond the range
considered in this paper.

VI. DISCUSSION

Employing a phenomenological bottom-up holographic
EMD model we train over 10000 holographic black holes
to reproduce lattice QCD results at up = 0. We began
by showing that the predictions of the holographic EMD
model for the QGP equation of state are in good agree-
ment with the latest lattice results [23] for the QCD
equation of state with (2 4 1) flavors and physical quark
masses at finite temperature and baryon density. For the
first time we look not only at quantities sensitive to baryon
charge but also explore strangeness and electric charge
conservation through the calculation of electric and strange-
ness charge susceptibilities, conductivities, and diffusion
coefficients. As we also pointed out, the EMD results for the
electric conductivity of the QGP are still within reasonable
agreement with the available lattice QCD results for this
quantity.

Regarding the phenomenological applicability of the
EMD model predictions for the QCD phase diagram, as it is
well known, any holographic calculation performed in the
classical (supergravity) limit of the gauge/string duality, as
is the case of the EMD model, cannot describe the weakly
coupled ultraviolet regime of QCD (gauge/gravity models
have strongly coupled ultraviolet fixed points and do not
display asymptotic freedom). Therefore, for phenomeno-
logical applications, our calculations should be restricted to
the strongly coupled infrared regime of QCD, which is
actually the case realized close to the crossover transition
region and the main focus of the present work.

We observed an overall suppression of the diffusion of
conserved charges and hydrodynamic viscosities in the
plasma with increasing baryon density. Regarding the
suppression of conserved charges, such an effect is more
noticeable in the baryon sector while being very small for
the strangeness sector.

The lattice QCD results presented in [31] show that the
inflection point associated with x5 is at a larger temperature
than the one found from y%. Given that % is dominated by
the light flavors, this suggests that the strangeness sector
may hadronize and reach chemical freeze-out at a higher
temperatures than the light sector [88]. Our results do
indicate that the strangeness susceptibility generally has an
inflection point at higher temperatures than the baryon
susceptibility at finite densities, see Fig. 17(c). However,
close to up = 0 the relationship is flipped, which may be
due to the particular choice in the parameters used in fg(¢)
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for the calculation of y3.” This provides a new constraint to
be considered in future work. Also, it will be interesting to
check if the inflection point of the strangeness conductivity
remains smaller than the inflection point associated with
the baryon conductivity.

Furthermore, we studied how the hydrodynamic shear
and bulk viscosities in this model vary with 7" and pup.
By mixing a quasiparticle relation between the shear
viscosity and the jet quenching parameter with a holo-
graphic calculation of the latter, we estimated the temper-
ature and baryon chemical potential dependence of the
shear viscosity transport coefficient in a phenomenological
manner that fits within current expectations from Bayesian
analysis. Our 7/s(T) may be useful in realistic hydro-
dynamic simulations where 7/s is not a constant and, in
fact, the profile we found for this phenomenologically
extracted shear viscosity displays a minimum at the cross-
over transition temperature, as expected on theoretical
grounds, and is indeed also close in magnitude to some
profiles already used in hydrodynamic simulations. The
bulk viscosity, on the other hand, displays a (small) peak
at the crossover and it remains smaller than the shear
viscosity. Both hydrodynamic viscosities were found to be
suppressed with increasing baryon density, which give
support to the picture suggested in [100] that the hot and
baryon rich QGP formed in low energy heavy ion collisions
at RHIC may be even closer to perfect fluidity than its
upg = 0 counterpart.

One clear conclusion from this work is that there is a
need for the development of new experimental observables
that are sensitive to the BSQ conserved currents. Unlike the
shear and bulk viscous transport coefficients that affect
the entire QGP fluid as a whole, the BSQ conductivities
directly affect a subset of variables within the fluid
description that are related to the corresponding conserved
charge (and some subsets are affected by multiple con-
ductivities). For instance, one could compare the current of
neutral pions (that should be unaffected by these conduc-
tivities) to that of E baryons that carry electric charge,
strangeness, and baryon number and look for some
systematic differences. It is important to note here that
while the shear and bulk viscosities are suppressed at larger
baryon chemical potentials, the magnitude of the conduc-
tivities either remain the same or are enhanced at finite up,
which implies that not only the pressure gradients are being
smoothed out by viscosity but that there is also a significant
smoothening of the gradients of the chemical potentials
associated with the conserved charges at finite density.
The implications of this effect to the dynamical evolution of
the hot and baryon rich QGP are now being investigated
using state-of-the-art simulations (e.g., [101]).

"By comparing the curves in Figs. 1 and 11, one can see that in
our black hole model ;(g has a softer slope compared to the lattice
QCD results than our corresponding calculation for y5.
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We also computed the temperature crossover band as a
function of up from characteristic temperature points
(inflections and extrema) of the physical observables
(defined either in equilibrium such as susceptibilities or
near equilibrium quantities such as conductivities) calcu-
lated in the present work. The crossover region bends to
lower temperatures and its width shrinks as one increases
the baryon density. The expectation is that the crossover
band should shrink to a point at the CEP, at which a second
order phase transition takes place. Other aspects related to
critical phenomena in the QCD phase transition, computed
in the context of a holographic EMD model, will be
investigated in a future work.

Overall, our results establish a framework for studying
both equilibrium and out-of-equilibrium quantities at finite
baryon densities. A better understanding of the transition
temperatures can provide deeper insight into the crossover
nature of the QCD phase transition and provide a basis for
further phenomenological studies. Clearly, some of the new
questions brought up by the current work may only be
completely answered using first principles calculations,
which are still beyond reach due to the Fermi-sign problem.
Until then, the type of holographic black hole engineering
procedure used here to match equilibrium lattice QCD
results at 4z = 0 and then make predictions for observables
at finite pp, as well as for transport coefficients, may
provide a useful alternative route to unravel some of the
new properties of the hot and baryon dense QGP formed in
heavy ion collisions.

ACKNOWLEDGMENTS

R. R. acknowledges financial support by Fundacdo Norte
Riograndense de Pesquisa e Cultura (FUNPEC). R.C.
acknowledges financial support by the Sao Paulo
Research Foundation (FAPESP) under FAPESP Grant
No. 2016/09263-2. J. N. acknowledges financial support
by FAPESP and Conselho Nacional de Desenvolvimento
Cientifico e Tecnolégico (CNPq). This material is based
upon work supported by the National Science Foundation
under Grant No. PHY-1513864 and by the U.S. Department
of Energy, Office of Science, Office of Nuclear Physics,
within the framework of the Beam Energy Scan Theory
(BEST) Topical Collaboration. The authors gratefully
acknowledge the use of the Maxwell Cluster and the
advanced support from the Center of Advanced
Computing and Data Systems at the University of Houston.

APPENDIX: SHEAR VISCOSITY

One of the biggest discoveries in the field of heavy-ion
collisions is the nearly perfect fluidlike nature of the QGP.
Early results derived within holography for the shear
viscosity of strongly coupled plasmas [102] propelled
the field forward such that the first relativistic viscous
hydrodynamical models were developed [103]. However,
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to this day a clear understanding of the temperature
dependence of #/s(T) has remained elusive.

In this Appendix, with the aim to obtain a temperature
dependent /s(T) in a simple way, we estimate the T and
up dependence of the shear viscosity for the hot and baryon
dense QGP by using a phenomenological hybrid approach
that mixes a quasiparticle relation between the shear
viscosity and the jet quenching parameter [104] (see also
[105]) with EMD holography.

Before doing that, let us remind the reader of the well-
known fact that in isotropic, rotationally and translationally
invariant holographic backgrounds with at most two deriv-
atives in the gravity action the holographic shear viscosity
ratio is given by #/s = 1/4x [102,106,107], which is
known as the KSS value (higher order derivatives in the
gravity action change this result, as shown in [108,109]).
This small value (when compared to perturbative estimates
[110,111]) is remarkably close to the value used in recent
hydrodynamic simulations of the spacetime evolution of
the QGP that simultaneously match different experimental
data from heavy ion collisions, #/s ~ 0.095 [93]. On the
other hand, it is also clear that the shear viscosity in QCD
cannot be a constant since the small value favored by
hydrodynamic simulations in the crossover region must
increase at higher temperatures, eventually converging to
the perturbative QCD results [110,111]. Moreover, at lower
temperatures #7/s is expected to also increase and reach
hadron resonance gas (HRG) model values [100,112-114].
Therefore, a realistic temperature dependent profile for /s
in QCD should display a dip around the crossover transition
temperature, 7. [112,115,116].

In Ref. [117] it was shown that a nontrivial 7 dependence
for n/s in the gauge-gravity correspondence may be
obtained by considering higher order curvature corrections
in a holographic setting with a dilaton profile breaking
conformal symmetry in the infrared. While the dilaton field
in the EMD model breaks conformal invariance in the
infrared, we have not considered higher order curvature
corrections in the present work, a task we postpone for the
future due to the fact that it is still not clear how one should
phenomenologically fix the new free function which would
enter the EMD model once higher order curvature correc-
tions are taken into account.

The route we are going to follow here to estimate a
nonconstant profile for the shear viscosity to entropy density
ratio is considerably simpler and makes use of the quasi-
particle relation discussed in Ref. [104], involving /s and
the jet quenching parameter ¢ [118], on top of the holo-
graphic EMD black hole backgrounds discussed before. This
quasiparticle relation may be written as follows [104],

n I

sT g
The jet quenching parameter for the present EMD model
at finite baryon density was computed already in Ref. [60]

(A1)
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by evaluating the following integral on top of the numerical
black hole backgrounds in Eq. (3),

q A "
\/j’;T3 © Jr e_m¢<’)‘3A(’) ’

"H h(r)[hg"=h(r)]

where 4, is ’t Hooft coupling.
By using the suggested relation given in Eq. (A1), the
following thermodynamic identity,
e+ p=Ts+ ugps, (A3)
and by imposing that #/s(T) should flow to the KSS value
(1/47) in the conformal limit of very high temperatures,8
we consider here the following hybrid “phenomenological
holographic” formula for the shear viscosity at finite

temperature and baryon density in the strongly coupled
regime,

nT 7' PIB3/4 VAT /g
e+p  AI[5/4] 141t

, (A4)

where the dimensionless combination /2,7°/§ is to be
evaluated using Eq. (A2). We remark that the specific
hybrid formula (A4) we proposed above lies within the
broader conjecture done in [118] for the strongly coupled
regime, since the 't Hooft coupling 1, in holographic
calculations must be large.

Note that at finite baryon density the relevant observable
entering in hydrodynamics is 7/ (e + p), which reduces to
the ratio n/s at ug =0 [100,119]. The corresponding
results for this “phenomenological” holographic estimate
of the shear viscosity of the QGP are shown in Fig. 18. It is
interesting to note that the temperature profile estimated for
the shear viscosity through this hybrid quasiparticle-holo-
graphic approach is actually similar to some profiles used in
current hydrodynamic simulations (see, for instance, the
orange curve in Fig. 1 of Ref. [120]). We also note that the
ratio involving the shear viscosity is reduced with increas-
ing baryon density, which indicates that the QGP becomes
closer to its perfect fluid limit in the baryon dense regime (a
similar conclusion was reached within a kinetic approach to
a hadronic gas in [100]). Additionally, this has an interest-
ing consequence for the v, to v3 relationship at the beam
energy scan and it favors a shorter lifetime of the QGP as
argued in [121].

A comparison of our results for n/s(T) at uz = 0 to the
extracted n/s(T) parameters determined using a Bayesian
analysis [94] is shown in Fig. 19. One can see that our

¥This is so because for the black hole backgrounds considered
here the dilaton vanishes at the boundary. Note also that the
gamma functions in Eq. (A4) come from the conformal limit of
the holographic jet quenching parameter [60,118].
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FIG. 18. “Phenomenological" holographic shear viscosity ratio.

(a) Surface plot as a function of 7" and p. (b) Curves as functions
of T for different values of pp.
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FIG. 19. Estimate for#/s(T) at ug = 0 (solid line) compared to
the result of a Bayesian analysis [94] involving comparisons of
relativistic hydrodynamics calculations to experimental data.

results appear to be within their uncertainty band. Our
n/s(T) exhibits a relatively flat upward slope in the QGP
phase but has a steeper slope in the hadron gas phase.
Most relativistic hydrodynamic work demonstrates that
the hadron gas region and the crossover region can be
reasonably well-constrained by theory versus experimen-
tal data comparisons. However, the high temperature
region is exceedingly difficult to constrain in the same
manner with current experimental data [122,123].
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Finally, we must remark that the dip obtained for /s(T)
in our hybrid approach is not artificial, since the EMD
model actually predicts that the dimensionless jet quench-
ing parameter §/T> displays a peak near the crossover.
Rather, the minimum for this phenomenological calculation
of /s(T) follows when one assumes that the quasiparticle
relation [104] between 7/s(7) and the jet quenching
parameter can be extrapolated to the strong coupled regime.
Even though it is not known at the moment how much
such an extrapolation is justified, given our ignorance with
respect to the actual values of transport coefficients in
QCBD, this kind of weak to strong coupling extrapolation is
commonly employed in the field. Moreover, it may very
well be that the simple hybrid formula proposed above in
Eq. (A4) does give a very similar profile for n/s(T) as the
one which we would obtain by considering higher order
curvature corrections in the EMD setup, once the new free
function which would appear in the model in this case is

PHYSICAL REVIEW D 96, 014032 (2017)

adequately fixed by some phenomenological input. There
are hints that this may be in fact the case, since qualitatively
similar profiles for /s(T) (displaying a dip and approach-
ing the KSS result from below at very high 7') have been
already considered in [117] by taking into account higher
order curvature corrections in an Einstein-dilaton model at
zero baryon density.9 The explicit check of this claim,
however, is left for a future work since, as mentioned
before, at present we have no clear guide on how to fix this
extra free function in a phenomenologically adequate way.

°In [117], however, they considered a holographic model for a
pure gluon plasma instead of a model for the QGP. More
important, the extra free function comprised in the model due
to the higher order curvature corrections was not fixed by any
phenomenological inputs from QCD, instead, they considered
many different trial profiles for this function and studied how they
change the corresponding profile for the temperature dependent
shear viscosity.
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