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Abstract
The teaching of basic circuits in early undergraduate physics courses is
widespread and, to some extent, quite uniform. In most textbooks, the intro-
duction of resistors, capacitors and inductors is followed by their assemblage
into larger systems, together with mathematical calculations of charges and cur-
rents as functions of time. In this process, spatial features of circuits tend to be
omitted. Here, we argue that this kind of omission is not ‘natural’ but, rather,
should be justified in terms of internal time-scales operating in the system, in
the framework of the continuity equation. When space is brought back to the
discussion of circuits, a number of important physical features, absent in most
textbooks, emerge. Among them, one has a spatial uniformity of currents, the
existence of charges coating metallic surfaces, and the presence of charge dis-
tributions inside wires at the endings of resistors and coils. We believe that the
discussion of these qualitative issues with students could foster a more mature
and unified relationship with electromagnetism.

Keywords: circuits, Maxwell’s equations, time-scales, spatial features

(Some figures may appear in colour only in the online journal)
1. Introduction

Circuits are important in the teaching of basic electromagnetism. Although they may prove
to be useful in practice and even in laboratory situations, the subject is present in introduc-
tory courses mostly for conceptual reasons. Indeed, circuits provide an early instance in which
Maxwell’s equations and Ohm’s law, discussed previously in isolation, can be applied together
to a single class of problems. As such, they represent an important step towards maturity.
In undergraduate courses, circuits are usually discussed after an introduction to resistors R,
capacitors C, and inductors L, which are afterwards assembled using either their characteristic
voltages or energies and powers.

The assembling of these elements is a moment of synthesis, for their joint action gives rise to
time-dependent effects, such as electric oscillations, which were absent when they were taken
in isolation. In most syllabuses, oscillations are discussed earlier in mechanics courses, by
means of mass-spring systems, and circuits allow one to revisit mathematical techniques used
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to solve simple second order differential equations. So, in principle, circuits could be a nice
subject for a balanced blending of physics and mathematics. However, inspection of textbooks
[1-4] indicates a more formal bias.

The mathematical analogy between mechanical and electric oscillations is well known: a
mass m corresponds to L, a spring constant k corresponds to 1 /C, a displacement x corresponds
to a charge Q, and so on. In spite of this compelling logic, electric oscillations tend to be more
difficult to students than mechanical ones, suggesting reasons that go beyond mathematics.
We wonder whether this could derive from the fact that descriptions of circuits are somehow
more abstract than those of mass-spring systems. In particular, the variable x is rather tangible,
whereas Q is more abstract. In the framework of Maxwell’s equations, charges are internal
quantities, unrelated to space an time [5] and, as a consequence, mechanical oscillations are
formulated in familiar terms of both space and time, whereas just time is present in electric
oscillations.

The elimination of space from the discourse on circuits relies on a number of approxima-
tions and simplifications which most textbooks fail to mention. An important exception is The
Feynman Lectures on Physics [6], where the discussion of circuits at chapter 22 begins with the
warning: ‘even such a mundane subject, when looked at in sufficient detail, can contain great
complications’. The physics of simple circuits is indeed conceptually involved and simplified
mathematical treatments that skip spatial coordinates are not ‘natural’. Although reasonable,
they need justification in order to provide a coherent picture of electromagnetism.

Here, we discuss implications of bringing space back to the teaching of circuits. A first ques-
tion to be tackled concerns currents, which run through wires and other components located at
different places. In usual approaches, after solving the appropriate differential equation with
suitable initial conditions, one finds an electric current /() which depends just on time. Its does
not have spatial features and those that notice this are pushed into the striking conclusion that
the current is the same across any section of either wire or battery, with the obvious exception
of gaps in capacitors. This also holds for the time derivative of /(¢), indicating that changes
within the circuit, which is an extended object, are identical at points separated by a distance,
suggesting a kind of non-locality between causes and effects. The assumption that currents
in simple systems are spatially uniform corresponds to an approximation and can be justified.
This requires the use of the continuity equation describing charge conservation, complemented
by a discussion of time-scales which determine various effects in metallic conductors. And, as
we argue in the sequence, simple circuits correspond to quasi-electrostatic systems.

According to Ohm’s law, a current in a wire derives from an internal resultant electric field
E,, and, if the former is spatially uniform, the same happens with the intensity of the latter.
This raises a forgotten issue. As the intensity of the electric field from a battery decreases
with the distance to its poles, the uniformity of |E,,| along the wire indicates the presence of
another electric field in the system. This other field is due to very thin layers of charges which
coat external metallic surfaces of the system and its most conspicuous action is to contribute
to keeping the flow of free electrons confined within metallic wires. In textbooks, the issue
of surface charges was discussed more than 50 years ago in the books by Sommerfeld [7] and
Jefimenko [8] and, more recently, hinted in reference [9] and extensively developed by Chabay
and Sherwood [10]. There is also an established literature on the subject dealing with models
and qualitative features and a relevant summary can be found in reference [11]. Theoretical
studies devoted to rather schematic situations also exist [12] and of special interest are the very
instructive pictures produced long ago by Jefimenko [8, 13].

A necessary feature of quasi-electrostatic systems is that the influence of a given element
spreads quasi-simultaneously to all parts of a circuit. In the case of batteries and capacitors, it is
well known that this is due to electrostatic fields associated with explicit charge distributions.
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The behaviour of inductors, on the other hand, is determined by Faraday’s law and is apparently
non-electrostatic. Nevertheless, they also give rise to quasi-electrostatic interactions, owing to
charges distributed inside the wires close to their endings. This justifies the procedure found
in many textbooks of using potential differences associated with isolated components to write
down equations describing circuits.

The discussion presented here regards qualitative aspects of the physics of simple circuits
[14] and complements usual approaches emphasizing calculations of charges and currents. We
feel that the presentation of these features to students may contribute to turn the subject less
abstract and more attractive. Also, by setting problems into a wider qualitative framework of
electromagnetism, one allows students to feel and enjoy the high coherence of the theory and,
hopefully, to incorporate it as part of their own scientific culture.

2. Battery and wire—steady currents

We begin by considering a very simple circuit, made just by a battery of electromotive force
(emf) &, and internal resistance Ry, attached to a wire of uniform cross section Sy, length ¢y,
and resistivity py, which also contains a small gap acting as a switch. The same battery and
wire are considered in all situations discussed and the resistivity, as a free parameter, can be
adjusted to produce the resistance R,, required by specific cases.

Switches, although usually unnoticed, convey interesting physics [15]. Indeed, in a short
article, Leon [16] acknowledges the contribution from the Italian physicist Gilberto Bernardini
to his education and recalls: ‘Over time, Bernardini and I learnt how to communicate and
I began to watch Gilberto. There was his habit of entering a dark room, pushing the light
switch: light. Pushing it again, off. On, off five or six times. Each time there would be a loud
“fantastico!” Why? He seemed to have this remarkable sense of wonder about simple things.’
A nice description of the physics underlying a similar phenomenon can be found in reference
[17].

A battery is a device which is always active, irrespective of being connected to a circuit
or not and its emf &, gives rise to a potential difference V}, between its poles, associated with
an electrostatic field Ey, extended allover space, as suggested in figure 1. As the value of Vj
calculated over a field line is constant, the average electric field decreases as the size of that line
increases. Except at the poles, the field Ey is close to that produced by two point-like charges
of opposite signs, kept apart by the length of the battery.

In our simple circuit, when the switch is open, the battery field Ey displaces free electrons
inside the wire and induces charge distributions on its surface. These, in turn, give rise to
another electrostatic field Eq, which is also present everywhere, but is especially intense around
the tips of the open gap. The fields E, and E are superimposed and, in all points inside the
metallic components, glve rise to a typical electrostatlc screening effect associated with the
condition EW = Eb + E = 0. As a consequence, there is no current in the circuit.

When the gap is closed, the charges induced in its edges disappear, superficial densities
rearrange, the field Eq changes and a current / begins to flow very quickly. The fact that the field
E}, is independent of the switch stresses the rather important contribution of Eq to this problem.
Very shortly after the closing of the switch, the behaviour of the system becomes steady and
remains the same when observed at different times. This kind of time independence has a
number of related consequences. One of them is that the superficial charge distributions on the
metallic surfaces do not change and their field Eq is electrostatic. Consistently, the magnetic
field B produced by the current is constant and Faraday’s law does not yield non-conservative
contributions.
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-

Figure 1. Schematic battery surrounded by the electrostatic field Ey, created by charges
at its poles.

(a) (b)

Figure 2. A battery attached to a wire: (a) surface X, (b) hypothetical charge
concentrations.

Another consequence is the spatial uniformity of the current. To see this, we resort to the
law of charge conservation, described by the continuity equation

ﬁj.ﬁdzz—d%m, (1)
by

where X is a closed oriented surface, 7 its outward normal, f'is the current density over > and
Oin the charge contained in it. Applying this law with a surface cutting the wire of the circuit at
two different points, as in figure 2(a), there is a current /;, entering it at a given point and another
one Iy, leaving it somewhere else. If one assumes for a while that the current is not spatially
uniform, the continuity equation would yield Iy — Ly = —dQin/dt # 0, indicating that Qjy
changes with time, in contradiction with the fact that one is dealing with a steady situation.
Therefore one must have the condition I, = [, for any surface 3, which corresponds to a
spatially uniform current.

The continuity equation also points to another problem associated with the assumption
Lo # L. If the current were not spatially uniform, there would be an amount of charge of
a given sign accumulating in some region. As the circuit is neutral, there would also be an
amount of charge of opposite sign accumulating somewhere else, as suggested in figure 2(b).
One would then have a mechanism that produces charge concentrations at different points,
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which would increase the potential energy of the system. However, in actual systems, there is
a spontaneous trend towards the minimization of potential energy which, in a metal, is char-
acterized by a dispersion time-scale. If at a given instant ¢ there is a free charge density p(7)
inside a metal, its change rate is given by the continuity equation as

ap(t)__ﬂ_—:
“or V- )

Using Ohm’s law f: E /pw and Gauss’s law V.-E= p/€o, one gets the differential equation

op) __ p 3)
ot Pw €0 ’
whose solution is
p(t) = poe /Ta | with Ty = € py, 4)

where py is the value of p(¢) at t = 0. For typical metals, py, ~ 1078 Qmand Ty ~ 10~'?s. This
time-scale, which is rather short, determines the dispersion of free charges in excess through
the metal and, again, the continuity equation rules that the current entering any surface ¥ must
be the same as that leaving it.

The spatial uniformity of the current is important because it organizes the conceptual under-
standing of simple circuits. When the switch is on, the potential difference between the poles
of the battery is Vi, = Ry, &, /R, where

Pw Ly
Ry = 5
S, )
is the wire’s resistance, R = Ry, + Ry, and the time-independent current is
gb Vb
="~ = —. 6
R R, (6)

This current is driven by an electric field Ew existing inside the wire, which is related to the
current density j,, by Ohm’s law

- E,
Jw = —. (7)
Pw

As Jy is everywhere parallel to the wire, the same happens with E,,. The local orientation of
the wire is described by the unit vector 7;, associated with j,, and defined as

=L (8)

Ev= "4, ©)

The intensity of E, is the same allover the wire, both close to and far from the battery. This is
a remarkable conclusion, for it indicates that E\, cannot be identified with just Ey, the field the
battery produces and, again, stresses the important role played by the static charges distributed
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(a) (b) (©)

Figure 4. Circuits containing a battery attached to (a) circuit x, with a single wire; (b)
circuit y, with two kinds of wires; (c) circuit y, with a perfect wire 1 and wire 2 taken as
a resistor.

over the external surfaces of the wire, which give rise to the field E,. The details of E, depend
on the geometry of the wire and if this geometry changes, local values of Eq also change.
Nevertheless, if ¢y, is kept fixed, independently of the geometry chosen, the resultant field
Ew = E“b + Eq always fulfills equation (9).

A pedagogical example showing the importance of Eq is given in figure 3. As points A and
B are close together, one may expect the battery field Ey to be approximately the same at both.
However, the total field E\, points at opposite directions at A and B, an effect which highlights
the contribution of Ej,.

Let us now consider the two circuits shown in figures 4(a) and (b), labelled x and y. In circuit
x, the battery is attached to wire 1, of length ¢,,, uniform section Sy, and resistivity p;. In circuit
v, a part of the wire is replaced by another one, of length ¢,, cross section Sy, and resistivity

P2 > pi-
In both circuits, currents are uniform across any of their transverse sections and one has

o Vb Sw
P1 Ew
Vi Sw
I, =
Topi Uy =)+ by

I, , (10)

<I,. (11)

This result is interesting, for it shows that the insertion of wire 2 produces a change of
the current in wire 1, even at places distant from it, such as the point P shown in the figures.
According to Ohm’s law, this is due to local changes in the electric fields. In circuit x, |Ey| is
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Figure 5. Wire and Gaussian surface X around interface 1-2.

uniform all over the wire and given by

A
EWX = 7 12
Bl = 3 (12)

whereas in circuit y it is uniform over each section of the wire and reads
P1 Vo
p1 Uy — £2) + par br

PV
p1 by — )+ pr b

|Ewy‘1 = < ‘wa|’ (13)

|Ewyla = > |Eyql. (14)

These results mean that the electric field E,, inside the wire is discontinuous along the
interfaces between the two different metals and indicate the presence of charge distributions
there.

Assuming densities to be superficial, they can be evaluated using Gauss’s law. At interface
1-2, we adopt a Gaussian surface X as in figure 5, with outward normal 7. Using 71 - i1; = —1
in wire 1 and 71 - #1; = +1 in wire 2, we have

o - - oX
ﬁEwdE: [—|Ewy1\ + Bl & = 2L, (15)
3 €0

where Y is the area parallel to the interface. Thus, Gauss’s law yields

. (p2—p1) Vo
p1 by — )+ pa by’

o] = €0 |Ewya — Ewyl| = € (16)

with signs shown in figure 4(b). The corresponding charges |Q| = |o|Sy give rise to an elec-
trostatic field similar to that of a dipole, which exists both outside and inside the wire. It is
the action of this field at point P in circuit y that makes /, < I, there. As expected, this dipole
disappears when p, — p;.

If wire 1 is a very good conductor, we may consider the limit p; — 0 and equation (14) yields
Vi = |Ewy2\ ¢, for the potential difference between the endings of wire 2. One then recovers
the classical textbook situation, in which the whole resistance is encompassed into a resistor.
This result is instructive, because it shows that a resistor spreads its influence over a circuit
by means of electrostatic fields due to charges accumulated on its extremities, with densities
given by |o| = €9 V4 //>. In order to produce a feeling for the size of |o|, we assume V;, = 1.5V
and £, = 2.0 cm, typical of a laboratory resistor. This amounts to |o| = 6.6 x 107! C m~2
or, alternatively, to |o/e| = 4.1 x 10° electrons/m>. If the good conductor is made of copper,
whose density of free electrons is around n = 8.5 x 10?® electrons/m?, the deviation from the
average two-dimensional density is |o/e|/n*/3 ~ 2 x 107'° = 2/(ten billion). As stressed by
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Rosser [18], tiny amounts of charge in excess can give rise to large macroscopic effects. The
same holds for the case of forces between wires [19].

As another interesting limit, we make p, — oo in equations (13) and (14), for this amounts
to transforming wire 2 into a kind of insulating gap. In this case, |Ewy\1 — 0, corresponding to
electrostatic equilibrium and the current in wire 1 vanishes, whereas charges of opposite signs
remain present at its tips. In case ¢, is small, this simulates a switch.

3. Time dependent currents

In circuits containing capacitors and inductors, currents become time-dependent and one needs
to consider the various different time-scales of the problem. One of them may be said to be
‘natural’ to a circuit because, in the SI (https://stacks.iop.org/EJP/41/055202/mmedia), one has
the dimensions: [R] = m?> kg s> A~2, [L] =m? kg s> A~2 and [C] = m~2 kg~ ! s* A%. The
combinations L/R, RC and V/L C have dimensions of time and, therefore, it is not surprising
that these time-scales T, occur naturally in calculations. For ordinary circuits, typical values of
R, L and Cyield T, ~ 107 s. Another relevant time-scale is set by f,, the plasma frequency of
the metal making the system. This frequency represents the threshold beyond which the masses
of free electrons in a metal begin to dominate the behaviour of the current and the usual Ohm’s
law no longer holds. For most metals, the scale of this frequency is above the visible spectrum,
around ~ 10" s~ It corresponds to times 7, ~ 107" s, much smaller than 7}, and can be
ignored, allowing Ohm’s law to be used safely. The last important time-scale is determined by
the speed of light c. According to classical electrodynamics, every time an electron is acceler-
ated in the circuit, it emits electromagnetic waves which carry this information to other parts
of the system. Assuming the circuit to have a typical size d ~ 10 cm, this gives rise to a time-
scale T. = d/c ~ 107 s, which rules the communication among its various parts by means of
electromagnetic waves.

As this discussion suggests, 7, is just too small and the relevant ratio is 7,,/T. ~ 10%, a
factor comparable to 1 h/1 s. It indicates that the various parts of the circuit have plenty of
time to influence themselves during the relatively slow time evolution associated with T),. In
this scenario, the circuit can be considered as being quasi-electrostatic. Strictly speaking, the
concept of potential applies to conservative fields only and should not be used to describe
circuits containing capacitors and inductors, where there are time-varying fields. Nevertheless,
the fact that 7, is large when compared to 7. opens room for a looser language and explains
the common practice of describing circuits in terms of potential differences.

4. Capacitor

We consider a circuit containing a pedagogical capacitor of capacitance C, made by two par-
allel plates of area A in the vacuum, kept apart by a distance d < /A, attached to the wire
with resistivity py, cross section Sy, length ¢, with a switch in the form of a small gap. The
resistance of the wire is given by equation (5) whereas the capacitance reads

60A

C =
d

a7

When the switch is open, as in figure 6(a), the charges on the plates, assumed to be +Q
and —Qy, produce a field Ec, which exists everywhere. It induces charge distributions over
all metallic surfaces, giving rise to a field £g. This situation is fully electrostatic and, for any

point inside the wire, the resultant field is EW = EC + Eq = 0, whereas for points outside them
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Jﬁ
X y

Figure 6. Circuit containing a capacitor and a wire: (a) open switch, (b) surface 3.

E = Ec +E, #0, in general. As the density of electrostatic energy is dU/dV = ¢ |E|?/2,
this energy is spread everywhere outside the metallic parts and the usual notion that the energy
Q?/2C of the system is stored in the region between the plates, although fair, is an approximate
one.

The closing of the switch allows a flux of electrons from the negative to the positive plate,
the system releases heat and eventually becomes neutral. At a given instant ¢, the amount of
charge Q(7) on a plate of the capacitor is

0(t) = Qpe "/kC. (18)

The charges +Q(f) and —Q(?) are located mostly in the inner sides of plates of the capacitor
and, according to Gauss’s law, give rise to a field Ecy(¢) in the vacuum region between them,
given by

Ea() = — 2 ok, (19)
€0 A

As the wire has a spatial extension, one must resort to the continuity equation to relate
equation (18) to the current running at any given point. Using equation (1) with the surface X
indicated in figure 6(b) and denoting by /(7) the current leaving it, one has

o dQ(t) o QO —t/RC
1(1) = &~ RC e . (20)
In this result, /(f) represents the current at the point where > crosses the wire, whereas Q(7)
is the charge inside 3. As it holds for any surface X, I(¢) is the same at all points of the wire,
irrespective of whether they are close or far from the capacitor. So, even time-dependent cur-
rents are spatially uniform in quasi-electrostatic circuits, since they follow the scale 7, and
vary slowly.

As figure 6 suggests, the electric field Ec(t) is highly concentrated between the plates of the
capacitor, but its influence extends over the whole circuit. Indeed, during the time the switch
is closed, it is the joint action of EC and Eq, due to charges coating metallic surfaces, that
moves charges from one plate to the other. The resultant field Ew(t) = Ec(t) + Eq(t) is quasi-
electrostatic and satisfies Ohm’s law, equation (7). Using equations (8) and (20), we find

=2 dQO —1t/RC »

W) = ———— . 21

n = e @1

=3 dQO —1/RC ~

Ey(t) = ——— . 22
() KWE()Ae M] ( )
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Both |J,(r)| and |E,(r)| are spatially uniform inside the wire at each instant 7. The quasi-
electrostatic nature of the problem becomes clear when equations (19) and (22) are used to
write

. d -
|Ew(D)| = ™ |[Ecy(D)] (23)

since, for a closed path I' passing inside the wire and in the region between the plates of the
capacitor, this amounts to the condition

fﬁdvzfm@«m+waﬁmza (24)
T

even for time-dependent fields.

5. Inductor

‘We conclude by considering a schematic circuit with an inductor. A battery of emf &, is attached
to a wire of length /,,, cross section Sy, resistivity py, containing a switch in the form of a small
gap, which is closed at r = 0. A part of length /. of this wire is winded as a cylindrical coil
of radius a and total height & >> a, containing N loops, so that /. = N2ma. As the solenoid is
especially important in this discussion, it is convenient to divide the circuit into two parts by a
mathematical plane passing through points A and B and to call region 1 its left sector, which
includes the battery, the gap and the straight parts of the wire, whereas the coil is kept isolated
in region 2, as shown in figure 7.
This is a simple RL circuit, in which R = Ry, + Ry, with Ry, given by equation (5) and

N2 2
L= u, (25)
h
assuming self-induction to be dominated by the coil. The current in the circuit is given by
I(t) =0 fort <0, (26)

&b —Rt/L
= — — > 0.
1(?) R [1 e } fort >0 (27)

When the gap is open, just the fields Ey, produced by the battery and Eq, by the static charges
located over the metallic surfaces are present, which yield E,, = Ey + Eq = 0 inside the wire
and there is no current.

When the gap is closed, surface charges are redistributed, both the current /(f) and its mag-
netic field E(t) begin to vary and an electric field Emd due to self-induction becomes important.
The field B(7) extends to all regions encompassing the circuit, but it is much more intense
inside the solenoid. Therefore, a good point of departure for a simple description of the system
consists in neglecting B(1) outside the coil.

In the situation shown in figure 7, the current /(¢) in the coil is clockwise and, at a generic
instant # > 0, the magnetic field given by Ampere’s law reads

ém:_%ﬁmﬁr (28)
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>
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\
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y
X

(I

o8]

region 1 region 2

Figure 7. A cylindrical solenoid coupled to a battery; a plane passing through points A
and B divides the circuit into two sectors.

According to Faraday’s law, this magnetic field induces an electric field Eind, with circular field
lines concentric with the coil, oriented counterclockwise and with intensity

Nr dI(t

Eipad = “(; ; 4 % for r < a, (29)
Na? di(t

Eind = ’“L; = % for r > a, (30)

where r is the distance to the symmetry axis and I(¢) is given by equation (27). The direct
influence of Emd over the currents in regions 1 and 2 is quite different. In region 1 its field
lines cross metallic conductors at various oblique angles, affecting little the flow of the current
and contribute just to accumulate charges over the external surfaces of the wire. Recalling that
i1; is given by equation (8), in region 1 Eing - il ; 1s in average negligible and its effects can be
incorporated into E.

Inside the wire of the coil, on the other hand, the field Emd is always along it and opposite
to the current, being given by

o poNa di(r) .
Eig=— — ;. 31
nd 2h dr G
Using equations (27) and (25) and recalling that /, = N2ma, this result is rewritten as
= &
Eina = _ e R YL ﬁj. (32)

Thus, the field Emd is effective only in region 2 and influences the behaviour of the current
I(¢) just there. This is a general feature, since magnetic fields concentrated within solenoids
tend to restrict the influence of induced electric fields to its metallic loops. This may seem to
contradict the fact that one is dealing with a low time-scale T}, and, consequently, with a current
which is spatially uniform. Indeed, in the present instance, /() must be the same in regions 1
and 2, even if Emd is effective only in the latter.

In the case of an inductor, the spatial uniformity of the current on the circuit derives from
an interesting mechanism. When a coil is present in a circuit, changes of B(t) in its interior are

1
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accompanied by a small but important accumulation of charges across the section of the wire
in the vicinity of points A and B. In the present case, these charges are Q(#) > 0 around A and
Op(H) = —Qa(®) < 0 around B, amounting to an ephemeral electric dipole. The electric field
Edip(t) of this dipole exists allover space, both inside and outside the conductors and tends to
decrease the current in region 1 and increase it in region 2. It is this mechanism that ensures
the uniformity of the current over the circuit.

Inside metallic conductors, the resultant electric field Ew is related to the current density fw
by Ohm’s law, equation (7) and, using equations (5) and (27), for both regions, we get

- - & Ry _
(0] = [Ewa0] = 22 [1 =L (33)

Inside the wire in region 1, the field is written as
Evi) = [Bo + Eq) + Eap(0)] - ;5 (34)
whereas in region 2, inside the wire of the coil, we have
Eva(t) =| By + B + Eap(0) + Ena®)| - 1y
—|Bo + Eq) + Eap(0)] - t; + Eina0. (35)

Comparing equations (34) and (35), we learn that [Eb + Eq + Edip] - i1 is discontinuous at the
transition between regions 1 and 2, indicating the existence of a charge distribution inside the
wire around point A. Assuming it to be a two-dimensional interface, its charge density o5 can
be derived from Gauss’s law, using the same Gaussian surface > shown in figure 5. Using
in-it;=—1inregion 1 and# - it; = +1 in region 2, we write

ﬁﬁ'ﬁdz = [—‘Eb +Eq +Edip|1 + ‘Eb +Eq+ﬁdip|2 ZH
3

OA E”
b

= [~Ba-ity] 3 = (36)
€0
Y being the area parallel to the interface. Recalling equation (32), we find
&

oA = €0 Eing = € g—b e RUL. 37)
Very close to the interface, the field E, created by this charge distribution is given by

7 Ein ~ . .

Epro1 = — d it; inregion 1, (38)

- Ei ~ . .

Eproy = —&—Tmi itj, inregion 2. (39)
This field is opposite to the current in region 1. In region 2, as the field Emd = —Ejyq i1 1s also

present, the effect of the charge distribution at the interface A is to make E Aol = E A2 T+ E"ind,
allowing the current to be continuous. Concerning point B, the same type of reasoning yields
op = —oa, as expected in a neutral wire. As the charges at points A and B are equal and
opposite, their effects inside the wire in region 1 tend to boycott the effects produced by the
battery, weakening the current in that sector while it lasts.
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The maximum charge density occurs at t =0 and, for & = 1.5 V and a cylindrical
coil with radius @ =2 cm and 1000 loops, having /. ~ 125 m, equation (37) yields
|o| = 1.1 x 107> C m~2, which corresponds to |o/e| = 0.7 x 10° electrons/m?. In the case of
copper, the relative deviation from the two-dimensional density is | /e|/n*/? ~ 3.4 x 10714,

Although this discussion involves a number of simplifying assumptions, such as a long
cylindrical coil with the associated neglecting of magnetic fields outside it, a sharp division
of the circuit into two regions and two-dimensional charge distributions at points A and B, its
main qualitative features are general and remain valid for other systems containing inductors.
The most remarkable of them is, as pointed out by Feynman [6], that an inductor spreads its
influence over a circuit by means quasi-electrostatic interactions and one is entitled to talk
about potential differences between it tips.

6. Overview

Simple circuits are important in early physics education because they provide concrete appli-
cations of basic electromagnetism and, also, for allowing training on simple differential
equations. Treatments of the subject in the literature tend to be rather uniform and, once Ohm’s
law is used to define the quantity R and Maxwell’s equations are used to derive the quantities
C and L, fields are usually suppressed from the discussion. The discourse is then narrowed to
manipulations of charges Q and currents /, in a framework provided by R, L, C, and an external
time 7. Realistic drawings of circuits are replaced by symbolic representations and space is no
longer mentioned.

We suggest here that the elimination of space from the presentation of circuits is not natural
and can be justified by the various time-scales inherent to systems with metallic components.
There are at least four such scales, associated with their characteristic times: Ty ~ 10719 s,
for the dispersion of excess charge concentrations inside metals, 7, ~ 10715 s, for plasma
oscillations limiting the validity of Ohm’s law, T, ~ 1079 s, for radiation interactions within
the circuit and 7,, ~ 107¢ s, for effects directly associated with R, L, and C. As T, is much
larger than the other ones, in some situations it becomes the only relevant scale.

As stressed by Feynman [6], when just T}, is relevant one is dealing with an ‘almost static
approximations of Maxwell’s equations’. However, this information deserves little room in
the literature. Together with the continuity equation, the quasi-electrostatic picture supports
the assumption that currents in circuits are spatially uniform. Moreover, it allows one to under-
stand why specific paths are followed by free electrons running within metallic components.
Wires do not have rigid impermeable external walls and are not similar to water pipes. Instead,
they convey the flow of free electrons with the help of charge densities lying on their external
surfaces and, accordingly, a proper description of a circuit should acknowledge the field Eq
they produce. When a uniform current is flowing, Ohm’s law in the form ]’W = Ew / pw ensures
that the intensity |E“W\ of the resultant field driving it is also spatially uniform. This feature is
independent of the shape of the wire considered and requires the field Eq to be explained.

In the quasi-electrostatic picture, all elements of a circuit contribute quasi-simultaneously
to the behaviour of the current at all its points. Batteries accumulate charges at their poles,
wires are covered by thins layers of charges, capacitors contain charges on their plates, whereas
both resistors and inductors have charges distributed inside the wires close to their endings. All
these charges give rise to quasi-electrostatic fields, which spread out over the circuit, producing
quasi-simultaneous nets of mutual influences. This justifies another tacit procedure found in
textbooks, that of describing circuits in terms of potential differences associated with isolated
components.

13
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7. Conclusion

Introductory presentations of simple circuits found in university textbooks rely tacitly on the
assumption that their behaviour is quasi-electrostatic and tend to concentrate narrowly on cal-
culations of charges and currents as functions of time, using R, L, and C as free parameters. The
discussion presented here affects very little these quantitative approaches. However, even if the
mathematical determination of quasi-electrostatic fields present in a circuit may be expected
to be very difficult and beyond the scope of basic physics courses, their qualitative aspects are
well within reach of students. The qualitative restoration of both space and fields into peda-
gogical discussions of circuits can make them less abstract, more realistic, and therefore, more
instructive. Most important, the ensuing images of nature may motivate students and invite
them to derive joy from the ‘sense of wonder about simple things’ allowed by physics.
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