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Abstract

Characterization and analysis of sample surfaces with nanometer order topologies is essential to study properties such as
roughness, resistance, molecular arrangements, failure, among others. Therefore, in recent decades, atomic force micro-
scope (AFM) has become an essential tool, since it has the ability to get 3D nanometer order images of surfaces from some
predefined kind of interaction. In order to understand the dynamics and improve the operation of base-cantilever-tip-sample
AFM systems, several mathematical models were proposed in the literature. However, it seems that there is still a need of
representative and parametric models able to capture material and geometric properties of the cantilever beam and
piezoceramic base actuator. Hence, this work focuses on the development and analysis of a parametric model capable of
properly representing the dynamics of an AFM cantilever beam when subjected to realistic operation conditions, using a
finite element model for the cantilever beam and accounting for translational and rotational inertia of the probe tip and for
the piezoceramic actuator that excites and controls the beam motion. All material and geometrical properties for the system
(cantilever beam, probe tip and piezoceramic actuator) can be parametrized. Experimental SEM images and frequency
responses of a real AFM cantilever beam are used to verify the model and also to define its parameters with very
satisfactory results. A dynamic analysis of the cantilever beam when subjected to tip-sample nonlinear interaction forces is
performed to develop a proper reduced-order model. The interaction forces were modeled using Lennard Jones potentials.
Then, an analysis of the dynamic response of the cantilever beam for varying tip-sample initial distances is performed.
Besides the appearance of the expected nonlinear behavior due to the tip-sample interaction forces, it is observed that the
closer the sample is to the beam tip, the smaller is the tip displacement amplitude. Based on this observation, an analysis is
performed to assess the correlation between the tip displacement and the surface topology of a diamond sample with
satisfactory results.

Keywords Atomic force microscopy - Finite element method - Piezoceramic actuator - Cantilever beam -
Atomic interaction forces

1 Introduction

In Physics, Biology, Engineering and many others branches
of science, the nanoscale science is present studying how
nanosized particles properties are different from those of
large particles of the same substance [1]. It is also
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important to understand phenomena such as the interac-
tions between prostheses and bones in medicine, catalysis
of chemical reactions in industry, interactions between a
surface and the external environment, exchange of elec-
trons between neighboring atoms, their distribution and the
chemical substances between them [2]. For that, the char-
acterization and analysis of sample surfaces is essential to
study properties such as roughness, resistance, molecular
arrangements, failure, among others.

Before the invention of the scanning tunneling micro-
scope (STM) [3], this kind of analyses was not experi-
mentally possible. The invention of the STM opened a new
area in the microscopy field, namely scanning probe
microscopy, from which the atomic force microscope
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(AFM) is one of its most important tools. From this point of
view, the AFM working process has become a topic widely
studied in recent years [4, 5]. As shown in Fig. 1, in an
AFM system, the deflected tip of a flexible cantilever beam
reflects a laser beam that is detected by a photo-detector.
The position in which the laser beam gets to the photo-
detector follows the deflection of the cantilever beam,
which depends on the interaction between a probe tip on
the cantilever beam and the sample being analyzed. The
vibration amplitude of the cantilever beam, as measured by
the photo-detector, is then compared to a reference value
by a feedback control system that corrects the z-direction
position of the base such that the cantilever beam deflection
matches the reference value. The displacement of base can
then be considered as a measure of the height of the sample
surface at that point, relative to a reference value. By
scanning the sample surface point-by-point with this
technique, it is then possible to identify the topography of
the sample surface.

In order to understand the dynamics and improve the
operation of base-cantilever-tip-sample AFM systems,
several mathematical models have been proposed in the
literature to represent the system composed of cantilever
beam, probe tip and base excitation. Most of these models,
however, consider a system with one or two degrees-of-
freedom, using 1 or 2-dof spring-mass-damper system
[6-10] and focus mainly on the study of the tip dynamics.
A disadvantage of this approach is that material and geo-
metric properties of the cantilever beam and piezoceramic
base actuator, which are highly coupled to the tip motion,
are not easily accounted for. According to [11], modeling
and analysis of the AFM system is essential to improve its
operation. Another approach is to use continuous beam
models to represent the AFM cantilever beam, considering
Bernoulli-Euler [12-14] and Timoshenko [15, 16]
assumptions. Some of the disadvantages of these previous
approaches are that more complex beam geometries and
boundary conditions are not accounted for and it is more
difficult to perform parametric analysis and design. Some
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Fig. 1 Schematic representation of an AFM system (not in scale)
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recent research works put forward the need of a finite
element-based model, for different reasons, to enable their
analyses of an AFM system [17-20]. It becomes clear that
the added representativeness possibly brought by a finite
element model may increase significantly the computa-
tional cost of the dynamic analysis. This is particularly
important, since one of the important characteristics of the
AFM system is the nonlinear interaction between probe tip
and sample surface, which leads by itself to more expen-
sive analysis.

This work focuses on the development and analysis of a
parametric model capable of properly representing the
dynamics of an AFM cantilever beam when subjected to
realistic operation conditions. For that, a finite element
model for the cantilever beam is proposed, based on Ber-
noulli-Euler assumptions, which accounts for translational
and rotational inertia of the probe tip, on one end (tip), and
for the piezoceramic actuator that excites and controls the
beam motion, on the other end (base). In order to verify the
model and also to define its parameters, experimental
scanning electron microscopy (SEM) images and fre-
quency responses of a real AFM cantilever beam are used.
Then, a reduced-order model was proposed and analyzed
aiming at reducing computational cost of subsequent
analyses. The minimum number of vibration modes to be
retained in the reduced model is determined based on
dynamic analyses of a cantilever beam subjected to non-
linear tip-sample interaction forces, which are modeled
using Lennard Jones potentials. Then, the dynamic
response of the cantilever beam for varying tip-sample
initial distances is analyzed. This study adds value to the
understanding and parametrization of the system dynamics,
which could help finding better operating conditions for a
given system (cantilever beam, probe tip, piezoceramic
actuator and sample to be analyzed).

2 Mathematical modeling

In this section, a mathematical model to represent the
dynamics of the AFM system, composed of a cantilever
beam, clamped to a piezoceramic actuator at its left end
and free at its right end, is presented. At the clamped end
(x = 0), a piezoelectric ceramic actuator, responsible for
the cantilever beam motion in z-direction, is considered. At
the free end (x = L), a tip mass, representing the probe tip,
and a point transversal force, representing the interaction
between probe and sample surface, are considered (Fig. 1).

The AFM cantilever beam is modeled using a standard
Bernoulli-Euler beam finite element model. The probe tip
is represented by a mass m, and rotary inertia /, at the beam
free end. At the clamped end, it is considered that the
cantilever beam is perfectly coupled with the piezoceramic
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actuator. The cantilever beam is considered to be homo-
geneous and uniform with length L, width by, thickness #;,
cross-sectional area and second moment of area, A, and I,
and made of an isotropic material with Young’s modulus
E;, Poisson’s ratio vy and mass density p,. The piezoce-
ramic actuator is considered to be a homogeneous and
uniform disk with thickness £, and radius r,, and made of
PZT-5H transversally isotropic material (Lead Zirconate
Titanate, Navy Type VI) with elastic stiffness coefficient
E

¢, piezoelectric coefficient e,,, and dielectric coefficient

68

P33
Lennard Jones Potentials is also considered. The probe tip
is initially set at an initial distance d from the sample

surface.

. At the free end, an interaction force f;, represented by

2.1 Finite element modeling of the cantilever
beam

Considering the standard Bernoulli-Euler hypotheses for a
slender beam in xz plane deflection, the displacements field
may be written as

ﬁ(x7y? Z7 t) = 7ZW/(.X./ t)'/ V(x7y7z7 t) = 07 W(x7y7z7 t) = w('x7 t)?
(1)

where w is the transverse displacement (in z-direction) and
w = Ow/0x is the cross-sectional rotation angle.

Based on these kinematic hypotheses, the only non-null
mechanical strain, that is the normal longitudinal strain &,
can be written from the usual strain-displacement relation
as

&, = 0u/Ox = —zw". (2)

Hermite cubic shape functions are assumed for the dis-
cretization of the transverse deflection w(x, f), along the
element length L., such that a two-node finite element with
two degrees-of-freedom (dof) per node, namely deflection
w; and cross-sectional rotation angle w; (i =1,2), is
obtained as shown in Fig. 2. The elementary dof column
vector u, is defined as

ue=[w wp owy wl, (3)

and the transverse displacement of the cantilever beam can
be written in terms of the elementary dof as

Wi W,

V\W'1 )

J

Fig. 2 Two-node/four-dof Bernoulli-Euler beam finite element

w(x, 1) = Ny(x)u. (7). (4)

Using (2), the normal strain can be discretized and
written in terms of the elementary dof as

&, = —zBsu,, with By = N/ (5)

The virtual variation of kinetic and potential energies may
be written in terms of the elementary nodal dof vector such
that

/5Tse dt = — / ou M, dr, U, = ouKzu,, (6)

where M, and K, are the elementary mass and stiffness
matrices of the cantilever beam defined by

LbC
E.I,B!B, dx.

(7)

Assembling all finite elements along the beam length, it is
possible to write a global dof vector u, such that total
virtual variation of kinetic and potential energies are
written as

Ly,
M,, = / pANN dx and Ky = /
0 0

/5T5dt: —/(5utMslidt7 SU, = du'K;u, (8)

where M; and K; are the global mass and stiffness
matrices.

At x = L;, the cantilever beam is considered free to
move but with actuation of interaction forces that will be
properly modeled in the next section. At x = 0, a sliding-
free boundary condition with w'(0,¢) = 0 is considered for
the beam. Later on, the left-end transversal displacement
w(0, ) will be set as coincident to the PZT actuator lon-
gitudinal displacement u,(r). Figure 3 shows a schematic
representation of the cantilever beam coupled to the PZT
actuator in the clamped end.

2.2 Modeling of probe tip inertia and interaction
forces

To account for the probe tip inertia at the free end of the
cantilever beam, the deflection w(Ly, t) and cross-sectional
rotation angle w'(Lg,t) of the beam tip are written as
function of the global dof vector, so that

iyl |wdt)

w(x,t)

1.0
PZT x

Fig. 3 Schematic representation of the cantilever beam coupled to a
PZT actuator (not in scale)
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w(Ly, t) =L,u, w'(L,t) = L,,u with
L,=[0 - 0 1 0], L.=[0 -~ 0 1].

©)

Substituting the last equation into the virtual variation of
translational and rotational kinetic energies of the probe tip
and defining m, and I; as the mass and rotation inertia of the
probe tip, respectively, leads to an equivalent mass matrix
M; to be added to the mass matrix of the cantilever beam.
The mass matrix M, is written as

Mf = LtvthW -+ LiVXItLWX‘ (10)

Hence, the total mass matrix of the cantilever beam,
including probe tip inertia, is defined as My = M + M,.
The probe tip is subjected to attraction and repulsion
atomic forces due to the interaction between probe tip and
sample surface. This transversal force, defined as f;, is
accounted for in the finite element model through its con-
tribution to the virtual work done by external forces, that
reads

SW = dw(Ly, 1)f;, = Su'F,, (11)

where the vector of nodal forces corresponding to the tip-
sample interaction forces is F, = L. f;.

In this work, the tip-sample interaction forces f; are
modeled using Lennard Jones potentials, which describes
the potential energy of the interaction between two mole-
cules or atoms accounting for attraction forces (dipole—
dipole, induced dipole—dipole, London interactions) and
repulsion forces. The model assumes that, as the distance
between the two entities diminishes, attraction forces are
induced up to an equilibrium distance, such that, for
smaller distances, repulsion forces overcome attraction
ones inducing the separation of the entities.

The interaction force f; is then written in terms of the
distance between tip and sample nearest atoms and also
physical and geometrical properties of tip and sample.
According to [21], it may be written as

H\R, HyR,

I 0@t w) 6w (12)

where d is the distance between probe tip and sample
surface for undeformed cantilever beam and w, = w(Ly, 1)
is the tip transversal displacement (defined as positive
when moving away from the sample). H; and H, are the
Hamaker constants for the attractive and repulsive poten-
tials and R, is the probe tip radius [12]. Figure 4 shows
graphically the interaction force in terms of the tip-sample
distance (d + w,) using parameters H;, H, and R, taken
from [12] and shown in Table 1.

@ Springer

Interaction force (nN)

I i

2 4 6 8 10 12 14 16 18 20

i I

Tip—sample distance (nm)

Fig. 4 Tip-sample interaction force in terms of tip-sample distance
using Lennard Jones Potentials

Table 1 Known material parameters and estimated geometrical
parameters based on SEM images for a real AFM cantilever

Parameter Symbol Value Unit
Cantilever beam

Length Ly 127 pm
Width by 33 pwm
Thickness hy 3.37 pm
Young Modulus E; 176 x 10° N m~2
Mass density Py 2330 kg m™3
Probe tip

Tip radius R, 150 nm
Base radius T 11.6 pm
Height hy 17.4 pm
Mass m 5.6 x 10712 kg
Rotation inertia I 234 x 10722 kg m?

1.3956 x 10770 T m®
1.865 x 10719 J

Repulsive Hammaker constant H,

Attractive Hammaker constant H»

PZT disk

Thickness hy, 2 mm
Radius R, 15 mm
Piezoelectric coefficient e 233 Cm™
Elastic coefficient ch 4.8309 x 10" N m™
Diclectric coefficient e 13x10°® Fm!
Mass density Pp 7500 kg m3

2.3 Modeling of piezoceramic base actuator

The PZT piezoceramic actuator is modeled considering a
unidimensional longitudinal deformation (in z-direction).
The internal (potential) energy U, of the actuator is rep-
resented by its electric enthalpy H, written in terms of the
normal longitudinal elastic strain ¢g,, and longitudinal

electric field E,,, such that
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0Uy, = 0H &y, Dp,) = 06p,0p, — OE,, Dy, (13)

combined to the following linear piezoelectric constitutive
equations

o E _ &
Op; = cp33 Eps — epssEP37 Dl’3 = Cps;fps + 61’33

Ey,  (14)

where o), is the mechanical stress, D,,, is the longitudinal
electric displacement, cf}s is the effective elastic stiffness
coefficient (at constant electric field), e,,, is the effective
piezoelectric coefficient and ¢, is the effective dielectric
permittivity (at constant strain).

Thus, the virtual variation of potential energy for the
PZT actuator may be written as

_ . E _ Se
oU), = / (5‘3173%338193 08p,€py; Ep,

(15)
—OE, epnp, — OE,, e;BEp3> dQ.

Since the actuator thickness is much smaller than its
diameter, uniform mechanical strain and electric fields
along the longitudinal (thickness) direction are considered.
Then, the longitudinal strain and electric field can be
written, respectively, as ¢,, =u,/h, and E3 =V,/h,,
where u,, is the longitudinal displacement of the actuator at
the end fixed to the cantilever beam, h, is the actuator
thickness and V), is the electric voltage applied to the
piezoceramic actuator.

Integration of (15) over the actuator’s volume leads to

o0U, = dupkpmuty — 0upkypVy, — 6Vpkppity — 6V,kpe V),

(16)
= cli}A,,/h . kpyp = epAp/h, and k=

A,,/hp are the effective elastic, piezoelectric and

where  ky,,
6;;33
dielectric stiffnesses of the piezoceramic actuator.

Since, in this work, the piezoceramic disk will only
serve as an actuator, it follows that the electric voltage V),
is prescribed, so that 6V, = 0, and, thus, the virtual vari-
ation of potential energy is simplified to

o0U, = Supkpmuty — Outpk,, V. (17)

The virtual variation of the kinetic energy of the actuator is
written as

/5T,,dt: —//5ﬁpppiipd£2dt, (18)

Assuming that the actuator’s longitudinal displacement in
z-direction is i,(z) = zu,/h, and integrating over the
actuator volume yields

/5Tpdt: —/5up%iipdt. (19)

where m, = p,A,h, is the mass of the piezoceramic
actuator.

2.4 Equations of motion for the coupled system

Based on previous virtual variations of kinetic and poten-
tial energies and work done by external forces for the
cantilever beam and the piezoceramic actuator, the exten-
ded Hamilton’s principle for the coupled system may be
written as

/(5Ts + 0T, — 0U; — 6U, + 6W) dr = 0, (20)

where 67T, and U, are defined in (8), W is defined in (11)
and 6U, and 67, are defined in (17) and (19), respectively.

In order to couple the cantilever beam to the piezoce-
ramic actuator, it is considered that the displacement of the
cantilever beam at x = 0, w(0, ¢), is equal to the displace-
ment of the piezoceramic actuator upper surface, u,(),
such that u,(t) = w(0,¢) = L,u(¢), where L, = [1 0--- 0].
Then, substituting this expression of u, in terms of u in
(17) and (19), leads to

0U, = ou'K,u — 6u'F,, /(3Tp dr = — / Su'M,u dt,
(1)

where K, and M,, are the stiffness and mass matrices of the
piezoceramic actuator and F, is an equivalent electrome-
chanical (piezoelectric) force vector due to electric voltage
applied to the piezoceramic actuator, such that

K, = kLiL,, M, = (m,/3)L\L,, F, = L\k,,V,.
(22)

Therefore, accounting for (21) in (20), leads to the fol-
lowing equations of motion for the coupled system

Mii +Du+ Ku=F, +F,, (23)

where M = M; +M,, and K = K, + K, are global mass
and stiffness matrices for the coupled system (actua-
tor/cantilever/probe). The two external force vectors F, and
F, stand for the tip-sample interaction force and elec-
tromechanical force induced by the voltage applied to the
actuator, respectively. In addition, a damping matrix D will
be defined a posteriori to approximate all existing damping
sources.

@ Springer
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3 Model reduction, damping estimation
and model validation

In order to reduce the computational cost of subsequent
numerical analyses, a modal reduction is considered to
reduce the system dimension. For that, an analysis was
performed to evaluate the minimum number of vibration
modes that are required in order to properly represent the
system response under operational conditions. In addition,
a model updating and validation was carried out using
geometrical properties of a real AFM cantilever beam,
including probe tip, obtained via scanning electron
microscopy (SEM), and of piezoceramic actuators nor-
mally used in AFMs, and, also, frequency responses of the
cantilever beam obtained from experimental tuning of a
real AFM. These data were used to compare experimental
and numerically predicted fundamental resonance fre-
quency and damping factor and, therefore, to fine-tune
model parameters and, thus, obtain a more representative
model.

3.1 Model reduction using modal truncation

The reduced model is obtained by projecting the equations
of motion of the coupled system into a reduced (truncated)
modal basis. The modal basis is obtained considering the
cantilever beam coupled to the piezoceramic actuator, but
with no voltage applied, that is F, = 0, and without non-
linear interaction between tip and sample, that is F; = 0.
An undamped modal basis is considered and, for that, the
system damping is neglected at this point to yield real
natural frequencies and vibration modes. Therefore, the
following eigenvalue problem is considered

(~*M +K)¢; = 0,withj = 1,...,N. (24)
Then, the nodal displacements are written in terms of the

corresponding modal coordinates related to the N first
vibration modes, such that

N
u~ Z b4 (25)
j=1

Considering a mass normalization of the eigenvectors ¢;,
such that gb}Mqu = 1, the equations of motion projected
onto the modal basis are written as

G + 280G + w7q; = OIF, + $iF,, (26)

where the modal damping factors ¢; were estimated from
the experimentally obtained frequency response of a real
AFM cantilever beam.

@ Springer

3.2 Damping estimation, parameters
acquisition, model updating and model
verification

In order to verify the proposed model, the material and
geometrical properties as well as the resonance frequency
and frequency response of a real cantilever was obtained in
collaboration with the Thin Films Laboratory of the Insti-
tute of Physics of the University of Sdo Paulo. Two dif-
ferent devices were used to perform this characterization, a
nanoscope IIla digital instruments atomic force microscope
(AFM) and a Jeol 6460LV scanning electronic microscope
(SEM). Using the AFM and performing the cantilever
tuning with frequencies varying from 100 to 500 kHz, it
was possible to obtain its resonant frequency response.
Applying the half power bandwidth method (— 3 dB) in the
frequency response, as shown in Fig. 5, it follows that
o = 225.46 kHz, w; = 225.10 kHz and
w, = 225.73 kHz. Then, the modal damping factor ¢ can
be estimated as,

y_ W2 — W

Independently, the quality QO-factor of the cantilever
beam is provided by the AFM as Q = 358 and, since
¢ =1/20 = 0.0014, the cantilever beam damping factor is
verified. Therefore, this damping factor value will be used
in the following simulations.

On the other hand, with the help of SEM images, as
shown in Figs. 6 and 7, the geometric properties of the
cantilever beam and probe tip were estimated.

From the SEM images presented in Figs. 6 and 7, the
cantilever beam was considered to have a uniform rectan-
gular cross section and the probe tip was approximated as a
uniform cone, both being made of a single piece of uniform
material. Besides the geometric properties obtained from
the SEM images, in order to fine-tune the experimentally

Normalized tip displacement (dB, ref. 1nm)

220 222 224 226 228 230
Frequency (kHz)

Fig. 5 Half power bandwidth method to estimate the equivalent
damping factor
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126.7 um

LFF-IFUSF

Fig. 6 Bottom view of SEM image of a real AFM cantilever beam

38kY

&
).

LFF-IFUSP

Fig. 7 Lateral view of SEM image, zoomed at the probe tip region, of
a real AFM cantilever beam

obtained fundamental resonant frequency of the system, a
numerical update of the tip cone base radius and height (r,
and ;) and of the actuator disk’s radius and height (r, and
hy) was performed. The tip-sample interaction properties,
H; and H,, were taken from [12] and, along with other
identified parameters, are shown in Table 1.

o

—— Experimental [
-+ Numerical

|
(4]

L
o

Normalized tip displacement (dB, ref. 1nm)
|
>

|
N
o

220 222 224 226 228 230
Frequency (kHz)

Fig. 8 Comparison between experimental data and numerical
simulations

Figure 8 presents both experimental and numerical fre-
quency responses, using the identified geometrical and
material properties. It is possible to observe that the peaks
are very similar, with nearly coincident resonance fre-
quency. First, it was desired to match the resonance fre-
quency, regardless of the bell shaped curve. The peak
frequency obtained via experimental tuning of a real AFM
was 225.46 kHz, and the peak frequency obtained via
numerical simulation is 225.47 kHz, which means that the
relative error between them is 0.0044%. It is then con-
cluded that the considered geometric and material model
parameters are representative of the studied real AFM and,
therefore, they will be used in the following analyses.

3.3 Analysis of the minimum number
of vibration modes to be retained
in the reduced model

In this section, an analysis of the number of vibration
modes that should be retained in a reduced-order model, in
order to properly capture the dynamic behavior of the
system, is performed. For that, an excitation through the
PZT actuator, in the form of a sinusoidal applied electric
voltage ~ V, = V,sin(wr)  with V,=88V  and
o = 202.92 kHz is considered. These values of frequency
and amplitude of the drive voltage were chosen to simulate
real AFM operation, were excitation frequency is near the
fundamental resonance and excitation amplitude is set
based on a target tip free amplitude. In order to evaluate the
need of a number of vibration modes when subjected to the
nonlinear tip-sample interaction, the frequency response
function of the probe tip displacement was evaluated for
different tip-sample initial distances d. Notice that it is
expected that the tip-sample interactions should increase by
diminishing the tip-sample distances.

Figure 9 shows the frequency responses of the probe tip
for different tip-sample initial distances
(d = {90, 88,84,63} nm) and when considering increasing
number of vibration modes retained in the reduced-order
model. Since the system becomes nonlinear for smaller tip-
sample initial distances, the frequency response was
obtained using fast Fourier transform (FFT) of the time
response under the sinusoidal excitation by the PZT actu-
ator. It is noticeable that, within the frequency range con-
sidered (100-600 kHz), three peaks can be easily observed
for the higher tip-sample distance, except for the model
with only one vibration mode. The second and third peaks
are due to the first and second resonance frequencies of the
system, whereas the first peak is due to the excitation
frequency. That is why, when considering only the first
vibration mode in the reduced model, the third peak is not
observed. Moreover, the more the tip-sample distance is

@ Springer
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Fig. 9 Frequency responses of the probe tip under excitation through the PZT actuator for different tip-sample initial distances and when
considering up to four vibration modes in the reduced-order model. From left to right: d = {90, 88, 84,63} nm

reduced, the more important becomes the nonlinear inter-
action between vibration modes, because of the increasing
effect of the tip-sample interaction forces.

This leads to both a disturbance of the frequency
response curves and also a modification of the displace-
ment distribution along the beam span. For the latter rea-
son, the reduced-order model with only the first vibration
mode was not able to account for the local deformation of
the beam tip and did not converge even for relative high
tip-sample distances (88 nm). The same behavior was
observed for the other reduced models, such that the two
modes model stopped converging for tip-sample distances
smaller than 84 nm, and the three modes model stop con-
verging for tip-sample distances smaller than 63 nm. With
four vibration modes, the model converged even for very
low tip-sample distances (smaller than 1 nm), and, thus, it

@ Springer

is suggested that a reduced-order model with the first four
vibration modes is satisfactory and shall be used for fol-
lowing analyses.

4 Analyses of the coupled system response

4.1 Effect of tip-sample initial distance
on the cantilever response

The goal of this section is to analyze the dynamic response
of the cantilever beam when tip-sample initial distance d is
diminished. Furthermore, it will be possible to observe the
effect of the intermolecular tip-sample interaction forces on
the system behavior.
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Fig. 10 Time response of the tip displacement using four-mode reduced model for different tip-sample initial distances. From left to right,

d = {100,40,20} nm

As shown in Fig. 10a, for tip-sample initial distances
equal to, or higher than, d = 100 nm, in which cases the
cantilever is considered to be free from the intermolecular
forces, the cantilever beam tip displacement present max-
imum and minimum amplitudes of 87 and — 82 nm,
respectively, at the transient, given the considered sinu-
soidal base excitation amplitude. When in steady-state
regime, the oscillation varies from —42 to 44 nm. By
reducing the tip-sample initial distance to d =40 nm
(Fig. 10b) and d =20 nm (Fig. 10c), it is possible to
observe that the minimum amplitude is clearly constrained
by the tip-sample initial distance. It is also noticeable that
the maximum amplitude is also reduced and the transient
higher amplitudes disappear faster. However, the steady-
state response is much less uniform indicating the more
important effects of the nonlinearities.

The tip-sample interaction forces for these three tip-
sample initial distances are shown in Fig. 11. Since
attraction and repulsion forces are of very different mag-
nitudes, they are shown separately. However, it is their sum
that acts on the cantilever beam tip and, thus, induces the
nonlinearities observed in the tip displacement responses.
For comparison purposes, the plot scales are the same for

small attraction forces are hardly noticeable during the
transient regime, while repulsion forces are negligible
(Fig. 11a). By decreasing the tip-sample initial distance to
d =40 nm (Fig. 11b) and d =20 nm (Fig. 11c), these
forces become clearly observable and not only during
transient regime. Notice that repulsion forces are much
higher, specially when the tip-sample distance decreases to
very small values (smaller than 2 nm). Nevertheless, for
small tip-sample initial distances, the attraction forces are
always active and, thus, influencing the dynamic response
of the cantilever.

For comparison purposes, Fig. 12 presents a compilation
of all time histories as the tip-sample initial distance
decreases. As previously observed, it is noticeable that
while d decreases, the transient region disappears and the
displacement amplitude gets smaller and unsymmetrical,
with a flattening on the negative region, showing that the
tip starts to get very close to the sample surface.

It is also worthwhile to analyze the effect of the tip-
sample interaction forces on the frequency response of the
cantilever beam tip. As in the previous section, this was
done using FFT of the time responses shown in Fig. 10.
Also as previously shown, for higher tip-sample initial

the three tip-sample initial distances. For d = 100 nm,  distances (d = 100 nm, Fig. 13a), where tip-sample
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Fig. 11 Time response of the tip-sample attraction and repulsion forces for different tip-sample initial distances. From left to right,
d = {100,40,20} nm
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Fig. 12 Compilation of time responses of the probe tip displacement
for different tip-sample initial distances

interaction forces are much smaller and, thus, negligible,
three different peaks are clearly observed. The first being
due to the excitation frequency and the others due to the
first two resonant frequencies. As the tip-sample initial
distance is diminished to d =40 nm (Fig. 13b) and
d =20 nm (Fig. 13c), other peaks and distributed noise
appear in the frequency response. The presence of multiple
harmonics due to the nonlinearities suggests that it is
important to account for more than one vibration mode
(more than one degree-of-freedom) in the reduced-order
model [22, 23]. For instance, for d = 20 nm, the only clear
response peaks are due to excitation frequency and its
multiples, which highlights the effect of interaction forces
in the system behavior. A similar analysis was performed
for other values of tip-sample initial distance and it is
shown in Fig. 14.

4.2 Estimation of sample surface topology
from cantilever tip amplitudes

topology. Although the intention is not to replicate the
operation of a real AFM, since here there is no base
repositioning feedback control, this analysis allows to
check if there is enough correlation between tip amplitude
response and tip-sample initial distance. For that, the
analysis was based on a real topological surface of a dia-
mond sample, shown in Fig. 15, that was obtained using
the real AFM previously cited. The sample surface was
scanned using 512 x 512 points of observation over the
sample area of 150 x 150um?, leading to a point-to-point
distance of 2.91 nm. In addition to the image, the data
corresponding to the surface heights used to generate the
topological image was also obtained and reset to heights
ranging from — 431 to 625 nm.

It is known that to obtain this image, among other
things, the AFM device has used a feedback controller to
maintain the cantilever tip amplitude oscillation constant,
but, even without such control system, the main idea here is
to reproduce a small area of the surface shown in Fig. 15
by performing point-to-point simulations using the
reduced-order model proposed in this work. For that, a
small region of the sample, represented by a mesh of 32 x
32 measurement points, was considered.

The considered simulation procedure is schematically
represented in Fig. 16 and consisted on deducing the height
of sample surface in a particular xy point, z;;, with i €
[1,m] and j € [1,n] over the m x n measurement points,
from a reference tip-sample initial distance, d. Notice that
the scheme depicted in Fig. 16 is out of scale to allow
observation of the variables involved, while the probe tip
height may be more than 1000 times larger than the sample
height. Then, the actual tip-sample initial distance to be
considered in the simulations is defined as d — z;;. There-
fore, when the cantilever is vibrating, the distance between
the probe tip and sample surface may be written as

In this section, it is proposed to use the time response of the dwi = d = zij + wi. (28)
cantilever beam tip amplitudes to estimate a sample surface
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Fig. 13 Frequency response of the probe tip displacement calculated using four-mode reduced model for different tip-sample initial distances.

From left to right, d = {100,40,20} nm
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Fig. 15 Topological surface of a
diamond sample obtained using
a Nanoscope Illa Digital
Instruments AFM
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Fig. 16 Schematic representation of the procedure to obtain the
sample topological surface (out of scale)
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where w; is the absolute tip deflection of the cantilever
beam.

The small sample surface,
87.89nm?, considered in the present simulation is repre-
sented by a 32 x 32 matrix of surface heights ranging from
—30 to 24 nm, depicted in Fig. 17a. For each one of the
measurement points, a simulation was performed to obtain
the time response of the cantilever beam tip considering a
tip-sample initial distance of d = 38.5 nm, which was
manually tuned to obtain a satisfactory topology charac-
terization. As previously presented, the tip-sample initial
distance was reduced by the height of the measurement
point to simulate the presence of the cantilever tip over that

covering an area of
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Fig. 17 Selected region of topological surface of a diamond sample: a obtained via AFM and b reconstructed using cantilever beam tip

deflections from numerical simulations

particular point. The simulation was performed for a time
span of 3 ms considering 1024 time samples. Then, the
root-mean-square (RMS) of the time response of the can-
tilever beam tip was evaluated.

Considering that the closer the tip is to the sample, the
smaller should be the tip displacement amplitude; it is
proposed that the RMS amplitude could correlate to the
measurement point height, as it is observed in what fol-
lows. For that, a surface representing the negative of the
RMS amplitude of the cantilever tip was plotted and is
shown in Fig. 17b. Therefore, the higher the measurement
point height, the closer it is to the beam tip, the smaller is
the tip displacement amplitude and, thus, the higher is the
negative of the RMS amplitude. Indeed, this is what one
can notice in Fig. 17b.

A comparison of Fig. 17a, b allows to conclude that they
represent a very similar topology, specially in terms of
contours with peaks and valleys at the same position.
Without a pre-calibration, it is not possible though to infer
on the actual heights from the RMS amplitudes. Never-
theless, the numerous similarities allow to obtain a quite
good perspective of the original image (surface topology).

5 Conclusions and future works

This work focused on the development and analysis of a
parametric model capable of properly representing the
dynamics of an AFM cantilever beam when subjected to
realistic operation conditions. This was done using a finite
element model for the cantilever beam, based on Ber-
noulli-Euler assumptions, accounting for translational and
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rotational inertia of the probe tip, on one end (tip), and for
the piezoceramic actuator that excites and controls the
beam motion, on the other end (base). All material and
geometrical properties for the system (cantilever beam,
probe tip and piezoceramic actuator) can be parametrized.

Experimental SEM images and frequency responses of a
real AFM cantilever beam were used to verify the model
and also to define its parameters with very satisfactory
results. An analysis of the dynamics of the cantilever beam
when subjected to tip-sample nonlinear interaction forces
was performed to assess the minimum number of vibration
modes to be retained in a reduced-order model. For that,
the interaction forces were modeled using Lennard Jones
potentials. Using time- and frequency-domain analyses, it
was possible to conclude that at least four vibration modes
should be retained.

Then, with the help of the proposed reduced model, an
analysis of the dynamic response of the cantilever beam for
varying tip-sample initial distances was performed. Besides
the appearance of the expected nonlinear behavior due to
the tip-sample interaction forces, it was observed that the
closer the sample is to the beam tip, the smaller is the tip
displacement amplitude. Based on this observation, an
analysis was performed to assess the correlation between
the tip displacement and the surface topology of a diamond
sample with satisfactory results.

The analyses presented in this work add value to the
understanding and parametrization of an AFM system
dynamics, which could help finding better operating con-
ditions for a given system (cantilever beam, probe tip,
piezoceramic actuator and sample to be analyzed). Future
work will be directed to further studies on the nonlinear
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behavior of the system, scale effects on the system
dynamics and the inclusion of a positional control law to
enable the simulation of realistic operating conditions of
AFM systems.
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