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Abstract
Characterization and analysis of sample surfaces with nanometer order topologies is essential to study properties such as

roughness, resistance, molecular arrangements, failure, among others. Therefore, in recent decades, atomic force micro-

scope (AFM) has become an essential tool, since it has the ability to get 3D nanometer order images of surfaces from some

predefined kind of interaction. In order to understand the dynamics and improve the operation of base-cantilever-tip-sample

AFM systems, several mathematical models were proposed in the literature. However, it seems that there is still a need of

representative and parametric models able to capture material and geometric properties of the cantilever beam and

piezoceramic base actuator. Hence, this work focuses on the development and analysis of a parametric model capable of

properly representing the dynamics of an AFM cantilever beam when subjected to realistic operation conditions, using a

finite element model for the cantilever beam and accounting for translational and rotational inertia of the probe tip and for

the piezoceramic actuator that excites and controls the beam motion. All material and geometrical properties for the system

(cantilever beam, probe tip and piezoceramic actuator) can be parametrized. Experimental SEM images and frequency

responses of a real AFM cantilever beam are used to verify the model and also to define its parameters with very

satisfactory results. A dynamic analysis of the cantilever beam when subjected to tip-sample nonlinear interaction forces is

performed to develop a proper reduced-order model. The interaction forces were modeled using Lennard Jones potentials.

Then, an analysis of the dynamic response of the cantilever beam for varying tip-sample initial distances is performed.

Besides the appearance of the expected nonlinear behavior due to the tip-sample interaction forces, it is observed that the

closer the sample is to the beam tip, the smaller is the tip displacement amplitude. Based on this observation, an analysis is

performed to assess the correlation between the tip displacement and the surface topology of a diamond sample with

satisfactory results.

Keywords Atomic force microscopy � Finite element method � Piezoceramic actuator � Cantilever beam �
Atomic interaction forces

1 Introduction

In Physics, Biology, Engineering and many others branches

of science, the nanoscale science is present studying how

nanosized particles properties are different from those of

large particles of the same substance [1]. It is also

important to understand phenomena such as the interac-

tions between prostheses and bones in medicine, catalysis

of chemical reactions in industry, interactions between a

surface and the external environment, exchange of elec-

trons between neighboring atoms, their distribution and the

chemical substances between them [2]. For that, the char-

acterization and analysis of sample surfaces is essential to

study properties such as roughness, resistance, molecular

arrangements, failure, among others.

Before the invention of the scanning tunneling micro-

scope (STM) [3], this kind of analyses was not experi-

mentally possible. The invention of the STM opened a new

area in the microscopy field, namely scanning probe

microscopy, from which the atomic force microscope
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(AFM) is one of its most important tools. From this point of

view, the AFM working process has become a topic widely

studied in recent years [4, 5]. As shown in Fig. 1, in an

AFM system, the deflected tip of a flexible cantilever beam

reflects a laser beam that is detected by a photo-detector.

The position in which the laser beam gets to the photo-

detector follows the deflection of the cantilever beam,

which depends on the interaction between a probe tip on

the cantilever beam and the sample being analyzed. The

vibration amplitude of the cantilever beam, as measured by

the photo-detector, is then compared to a reference value

by a feedback control system that corrects the z-direction

position of the base such that the cantilever beam deflection

matches the reference value. The displacement of base can

then be considered as a measure of the height of the sample

surface at that point, relative to a reference value. By

scanning the sample surface point-by-point with this

technique, it is then possible to identify the topography of

the sample surface.

In order to understand the dynamics and improve the

operation of base-cantilever-tip-sample AFM systems,

several mathematical models have been proposed in the

literature to represent the system composed of cantilever

beam, probe tip and base excitation. Most of these models,

however, consider a system with one or two degrees-of-

freedom, using 1 or 2-dof spring-mass-damper system

[6–10] and focus mainly on the study of the tip dynamics.

A disadvantage of this approach is that material and geo-

metric properties of the cantilever beam and piezoceramic

base actuator, which are highly coupled to the tip motion,

are not easily accounted for. According to [11], modeling

and analysis of the AFM system is essential to improve its

operation. Another approach is to use continuous beam

models to represent the AFM cantilever beam, considering

Bernoulli–Euler [12–14] and Timoshenko [15, 16]

assumptions. Some of the disadvantages of these previous

approaches are that more complex beam geometries and

boundary conditions are not accounted for and it is more

difficult to perform parametric analysis and design. Some

recent research works put forward the need of a finite

element-based model, for different reasons, to enable their

analyses of an AFM system [17–20]. It becomes clear that

the added representativeness possibly brought by a finite

element model may increase significantly the computa-

tional cost of the dynamic analysis. This is particularly

important, since one of the important characteristics of the

AFM system is the nonlinear interaction between probe tip

and sample surface, which leads by itself to more expen-

sive analysis.

This work focuses on the development and analysis of a

parametric model capable of properly representing the

dynamics of an AFM cantilever beam when subjected to

realistic operation conditions. For that, a finite element

model for the cantilever beam is proposed, based on Ber-

noulli–Euler assumptions, which accounts for translational

and rotational inertia of the probe tip, on one end (tip), and

for the piezoceramic actuator that excites and controls the

beam motion, on the other end (base). In order to verify the

model and also to define its parameters, experimental

scanning electron microscopy (SEM) images and fre-

quency responses of a real AFM cantilever beam are used.

Then, a reduced-order model was proposed and analyzed

aiming at reducing computational cost of subsequent

analyses. The minimum number of vibration modes to be

retained in the reduced model is determined based on

dynamic analyses of a cantilever beam subjected to non-

linear tip-sample interaction forces, which are modeled

using Lennard Jones potentials. Then, the dynamic

response of the cantilever beam for varying tip-sample

initial distances is analyzed. This study adds value to the

understanding and parametrization of the system dynamics,

which could help finding better operating conditions for a

given system (cantilever beam, probe tip, piezoceramic

actuator and sample to be analyzed).

2 Mathematical modeling

In this section, a mathematical model to represent the

dynamics of the AFM system, composed of a cantilever

beam, clamped to a piezoceramic actuator at its left end

and free at its right end, is presented. At the clamped end

(x ¼ 0), a piezoelectric ceramic actuator, responsible for

the cantilever beam motion in z-direction, is considered. At

the free end (x ¼ L), a tip mass, representing the probe tip,

and a point transversal force, representing the interaction

between probe and sample surface, are considered (Fig. 1).

The AFM cantilever beam is modeled using a standard

Bernoulli–Euler beam finite element model. The probe tip

is represented by a mass mt and rotary inertia It at the beam

free end. At the clamped end, it is considered that the

cantilever beam is perfectly coupled with the piezoceramic

Controller Photo-detector

Laser

Sample

dwtPZT
actuator

z
x

Cantilever
Probe

Fig. 1 Schematic representation of an AFM system (not in scale)
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actuator. The cantilever beam is considered to be homo-

geneous and uniform with length Ls, width bs, thickness hs,

cross-sectional area and second moment of area, As and Is,

and made of an isotropic material with Young’s modulus

Es, Poisson’s ratio ms and mass density qs. The piezoce-

ramic actuator is considered to be a homogeneous and

uniform disk with thickness hp and radius rp, and made of

PZT-5H transversally isotropic material (Lead Zirconate

Titanate, Navy Type VI) with elastic stiffness coefficient

cEp33 , piezoelectric coefficient ep33 and dielectric coefficient

�ep33 . At the free end, an interaction force ft, represented by

Lennard Jones Potentials is also considered. The probe tip

is initially set at an initial distance d from the sample

surface.

2.1 Finite element modeling of the cantilever
beam

Considering the standard Bernoulli–Euler hypotheses for a

slender beam in xz plane deflection, the displacements field

may be written as

uðx; y; z; tÞ ¼ �zw0ðx; tÞ; vðx; y; z; tÞ ¼ 0; wðx; y; z; tÞ ¼ wðx; tÞ;
ð1Þ

where w is the transverse displacement (in z-direction) and

w0 ¼ ow=ox is the cross-sectional rotation angle.

Based on these kinematic hypotheses, the only non-null

mechanical strain, that is the normal longitudinal strain es1 ,
can be written from the usual strain-displacement relation

as

es1 ¼ ou=ox ¼ �zw00: ð2Þ

Hermite cubic shape functions are assumed for the dis-

cretization of the transverse deflection w(x, t), along the

element length Lse, such that a two-node finite element with

two degrees-of-freedom (dof) per node, namely deflection

wi and cross-sectional rotation angle w0
i (i ¼ 1; 2), is

obtained as shown in Fig. 2. The elementary dof column

vector ue is defined as

ue ¼ w1 w0
1 w2 w0

2½ �t; ð3Þ

and the transverse displacement of the cantilever beam can

be written in terms of the elementary dof as

wðx; tÞ ¼ NsðxÞueðtÞ: ð4Þ

Using (2), the normal strain can be discretized and

written in terms of the elementary dof as

es1 ¼ �zBsue;with Bs ¼ N00
s : ð5Þ

The virtual variation of kinetic and potential energies may

be written in terms of the elementary nodal dof vector such

thatZ
dTse dt ¼ �

Z
duteMse €ue dt; dUse ¼ duteKseue; ð6Þ

where Mse and Kse are the elementary mass and stiffness

matrices of the cantilever beam defined by

Mse ¼
Z Lse

0

qsAsN
t
sNs dx and Kse ¼

Z Lse

0

EsIsB
t
sBs dx:

ð7Þ

Assembling all finite elements along the beam length, it is

possible to write a global dof vector u, such that total

virtual variation of kinetic and potential energies are

written asZ
dTs dt ¼ �

Z
dutMs €u dt; dUs ¼ dutKsu; ð8Þ

where Ms and Ks are the global mass and stiffness

matrices.

At x ¼ Ls, the cantilever beam is considered free to

move but with actuation of interaction forces that will be

properly modeled in the next section. At x ¼ 0, a sliding-

free boundary condition with w0ð0; tÞ ¼ 0 is considered for

the beam. Later on, the left-end transversal displacement

w(0, t) will be set as coincident to the PZT actuator lon-

gitudinal displacement upðtÞ. Figure 3 shows a schematic

representation of the cantilever beam coupled to the PZT

actuator in the clamped end.

2.2 Modeling of probe tip inertia and interaction
forces

To account for the probe tip inertia at the free end of the

cantilever beam, the deflection wðLs; tÞ and cross-sectional

rotation angle w0ðLs; tÞ of the beam tip are written as

function of the global dof vector, so that

w1 w2

w'1 w'2

Fig. 2 Two-node/four-dof Bernoulli–Euler beam finite element

w(x,t)
wt(t)

PZT

up(t)

z

x

ft(t)

Fig. 3 Schematic representation of the cantilever beam coupled to a

PZT actuator (not in scale)
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wðLs; tÞ ¼Lwu; w0ðLs; tÞ ¼ Lwxu with

Lw ¼ 0 � � � 0 1 0½ �; Lwx ¼ 0 � � � 0 1½ �:
ð9Þ

Substituting the last equation into the virtual variation of

translational and rotational kinetic energies of the probe tip

and defining mt and It as the mass and rotation inertia of the

probe tip, respectively, leads to an equivalent mass matrix

Mt to be added to the mass matrix of the cantilever beam.

The mass matrix Mt is written as

Mt ¼ Lt
wmtLw þ Lt

wxItLwx: ð10Þ

Hence, the total mass matrix of the cantilever beam,

including probe tip inertia, is defined as Mst ¼ Ms þMt.

The probe tip is subjected to attraction and repulsion

atomic forces due to the interaction between probe tip and

sample surface. This transversal force, defined as ft, is

accounted for in the finite element model through its con-

tribution to the virtual work done by external forces, that

reads

dW ¼ dwðLs; tÞft ¼ dutFt; ð11Þ

where the vector of nodal forces corresponding to the tip-

sample interaction forces is Ft ¼ Lt
wft.

In this work, the tip-sample interaction forces ft are

modeled using Lennard Jones potentials, which describes

the potential energy of the interaction between two mole-

cules or atoms accounting for attraction forces (dipole–

dipole, induced dipole–dipole, London interactions) and

repulsion forces. The model assumes that, as the distance

between the two entities diminishes, attraction forces are

induced up to an equilibrium distance, such that, for

smaller distances, repulsion forces overcome attraction

ones inducing the separation of the entities.

The interaction force ft is then written in terms of the

distance between tip and sample nearest atoms and also

physical and geometrical properties of tip and sample.

According to [21], it may be written as

ft ¼
H1Rt

180ðd þ wtÞ8
� H2Rt

6ðd þ wtÞ2
; ð12Þ

where d is the distance between probe tip and sample

surface for undeformed cantilever beam and wt ¼ wðLs; tÞ
is the tip transversal displacement (defined as positive

when moving away from the sample). H1 and H2 are the

Hamaker constants for the attractive and repulsive poten-

tials and Rt is the probe tip radius [12]. Figure 4 shows

graphically the interaction force in terms of the tip-sample

distance ðd þ wtÞ using parameters H1, H2 and Rt taken

from [12] and shown in Table 1.

2.3 Modeling of piezoceramic base actuator

The PZT piezoceramic actuator is modeled considering a

unidimensional longitudinal deformation (in z-direction).

The internal (potential) energy Up of the actuator is rep-

resented by its electric enthalpy H, written in terms of the

normal longitudinal elastic strain ep3 and longitudinal

electric field Ep3 , such that

Fig. 4 Tip-sample interaction force in terms of tip-sample distance

using Lennard Jones Potentials

Table 1 Known material parameters and estimated geometrical

parameters based on SEM images for a real AFM cantilever

Parameter Symbol Value Unit

Cantilever beam

Length Ls 127 lm

Width bs 33 lm

Thickness hs 3.37 lm

Young Modulus Es 176� 109 N m�2

Mass density qs 2330 kg m�3

Probe tip

Tip radius Rt 150 nm

Base radius rt 11.6 lm

Height ht 17.4 lm

Mass mt 5:6� 10�12 kg

Rotation inertia It 23:4� 10�22 kg m2

Repulsive Hammaker constant H1 1:3956� 10�70 J m6

Attractive Hammaker constant H2 1:865� 10�19 J

PZT disk

Thickness hp 2 mm

Radius Rp 15 mm

Piezoelectric coefficient ep33 23.3 C m�2

Elastic coefficient cEp33 4:8309� 1010 N m�2

Dielectric coefficient �ep33 1:3� 10�8 F m�1

Mass density qp 7500 kg m�3
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dUp ¼ dHðep3 ;Dp3Þ ¼ dep3rp3 � dEp3Dp3 ; ð13Þ

combined to the following linear piezoelectric constitutive

equations

rp3 ¼ cEp33ep3 � ep33Ep3 ; Dp3 ¼ ep33ep3 þ �ep33Ep3 ; ð14Þ

where rp3 is the mechanical stress, Dp3 is the longitudinal

electric displacement, cEp33 is the effective elastic stiffness

coefficient (at constant electric field), ep33 is the effective

piezoelectric coefficient and �ep33 is the effective dielectric

permittivity (at constant strain).

Thus, the virtual variation of potential energy for the

PZT actuator may be written as

dUp ¼
Z

dep3c
E
p33
ep3 � dep3ep33Ep3

�

�dEp3ep33ep3 � dEp3�
e
p33
Ep3

�
dX:

ð15Þ

Since the actuator thickness is much smaller than its

diameter, uniform mechanical strain and electric fields

along the longitudinal (thickness) direction are considered.

Then, the longitudinal strain and electric field can be

written, respectively, as ep3 ¼ up=hp and E3 ¼ Vp=hp,

where up is the longitudinal displacement of the actuator at

the end fixed to the cantilever beam, hp is the actuator

thickness and Vp is the electric voltage applied to the

piezoceramic actuator.

Integration of (15) over the actuator’s volume leads to

dUp ¼ dupkpmup � dupkppVp � dVpkppup � dVpkpeVp;

ð16Þ

where kpm ¼ cEp33Ap=hp, kpp ¼ ep33Ap=hp and kpe ¼
�ep33Ap=hp are the effective elastic, piezoelectric and

dielectric stiffnesses of the piezoceramic actuator.

Since, in this work, the piezoceramic disk will only

serve as an actuator, it follows that the electric voltage Vp

is prescribed, so that dVp ¼ 0, and, thus, the virtual vari-

ation of potential energy is simplified to

dUp ¼ dupkpmup � dupkppVp: ð17Þ

The virtual variation of the kinetic energy of the actuator is

written asZ
dTp dt ¼ �

Z Z
d�upqp€�up dX dt; ð18Þ

Assuming that the actuator’s longitudinal displacement in

z-direction is �upðzÞ ¼ zup=hp and integrating over the

actuator volume yieldsZ
dTp dt ¼ �

Z
dup

mp

3
€up dt: ð19Þ

where mp ¼ qpAphp is the mass of the piezoceramic

actuator.

2.4 Equations of motion for the coupled system

Based on previous virtual variations of kinetic and poten-

tial energies and work done by external forces for the

cantilever beam and the piezoceramic actuator, the exten-

ded Hamilton’s principle for the coupled system may be

written asZ
dTs þ dTp � dUs � dUp þ dW
� �

dt ¼ 0; ð20Þ

where dTs and dUs are defined in (8), dW is defined in (11)

and dUp and dTp are defined in (17) and (19), respectively.

In order to couple the cantilever beam to the piezoce-

ramic actuator, it is considered that the displacement of the

cantilever beam at x ¼ 0, w(0, t), is equal to the displace-

ment of the piezoceramic actuator upper surface, upðtÞ,
such that upðtÞ ¼ wð0; tÞ ¼ LpuðtÞ, where Lp ¼ ½1 0 � � � 0�.
Then, substituting this expression of up in terms of u in

(17) and (19), leads to

dUp ¼ dutKpu� dutFp;

Z
dTp dt ¼ �

Z
dutMp €u dt;

ð21Þ

where Kp and Mp are the stiffness and mass matrices of the

piezoceramic actuator and Fp is an equivalent electrome-

chanical (piezoelectric) force vector due to electric voltage

applied to the piezoceramic actuator, such that

Kp ¼ kpmL
t
pLp; Mp ¼ ðmp=3ÞLt

pLp; Fp ¼ Lt
pkppVp:

ð22Þ

Therefore, accounting for (21) in (20), leads to the fol-

lowing equations of motion for the coupled system

M€uþ D _uþKu ¼ Ft þ Fp; ð23Þ

where M ¼ Mst þMp and K ¼ Ks þKp are global mass

and stiffness matrices for the coupled system (actua-

tor/cantilever/probe). The two external force vectors Ft and

Fp stand for the tip-sample interaction force and elec-

tromechanical force induced by the voltage applied to the

actuator, respectively. In addition, a damping matrix D will

be defined a posteriori to approximate all existing damping

sources.
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3 Model reduction, damping estimation
and model validation

In order to reduce the computational cost of subsequent

numerical analyses, a modal reduction is considered to

reduce the system dimension. For that, an analysis was

performed to evaluate the minimum number of vibration

modes that are required in order to properly represent the

system response under operational conditions. In addition,

a model updating and validation was carried out using

geometrical properties of a real AFM cantilever beam,

including probe tip, obtained via scanning electron

microscopy (SEM), and of piezoceramic actuators nor-

mally used in AFMs, and, also, frequency responses of the

cantilever beam obtained from experimental tuning of a

real AFM. These data were used to compare experimental

and numerically predicted fundamental resonance fre-

quency and damping factor and, therefore, to fine-tune

model parameters and, thus, obtain a more representative

model.

3.1 Model reduction using modal truncation

The reduced model is obtained by projecting the equations

of motion of the coupled system into a reduced (truncated)

modal basis. The modal basis is obtained considering the

cantilever beam coupled to the piezoceramic actuator, but

with no voltage applied, that is Fp ¼ 0, and without non-

linear interaction between tip and sample, that is Ft ¼ 0.

An undamped modal basis is considered and, for that, the

system damping is neglected at this point to yield real

natural frequencies and vibration modes. Therefore, the

following eigenvalue problem is considered

ð�x2
jMþKÞ/j ¼ 0;with j ¼ 1; . . .;N: ð24Þ

Then, the nodal displacements are written in terms of the

corresponding modal coordinates related to the N first

vibration modes, such that

u �
XN
j¼1

/jqj: ð25Þ

Considering a mass normalization of the eigenvectors /j,

such that /t
jM/j ¼ 1, the equations of motion projected

onto the modal basis are written as

€qj þ 2njxj _qj þ x2
j qj ¼ /t

jFt þ /t
jFp; ð26Þ

where the modal damping factors nj were estimated from

the experimentally obtained frequency response of a real

AFM cantilever beam.

3.2 Damping estimation, parameters
acquisition, model updating and model
verification

In order to verify the proposed model, the material and

geometrical properties as well as the resonance frequency

and frequency response of a real cantilever was obtained in

collaboration with the Thin Films Laboratory of the Insti-

tute of Physics of the University of São Paulo. Two dif-

ferent devices were used to perform this characterization, a

nanoscope IIIa digital instruments atomic force microscope

(AFM) and a Jeol 6460LV scanning electronic microscope

(SEM). Using the AFM and performing the cantilever

tuning with frequencies varying from 100 to 500 kHz, it

was possible to obtain its resonant frequency response.

Applying the half power bandwidth method (� 3 dB) in the

frequency response, as shown in Fig. 5, it follows that

x0 ¼ 225:46 kHz, x1 ¼ 225:10 kHz and

x2 ¼ 225:73 kHz. Then, the modal damping factor n can

be estimated as,

n ¼ x2 � x1

2x0

¼ 0:0014: ð27Þ

Independently, the quality Q-factor of the cantilever

beam is provided by the AFM as Q ¼ 358 and, since

n ¼ 1=2Q ¼ 0:0014, the cantilever beam damping factor is

verified. Therefore, this damping factor value will be used

in the following simulations.

On the other hand, with the help of SEM images, as

shown in Figs. 6 and 7, the geometric properties of the

cantilever beam and probe tip were estimated.

From the SEM images presented in Figs. 6 and 7, the

cantilever beam was considered to have a uniform rectan-

gular cross section and the probe tip was approximated as a

uniform cone, both being made of a single piece of uniform

material. Besides the geometric properties obtained from

the SEM images, in order to fine-tune the experimentally
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Fig. 5 Half power bandwidth method to estimate the equivalent

damping factor
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obtained fundamental resonant frequency of the system, a

numerical update of the tip cone base radius and height (rt
and ht) and of the actuator disk’s radius and height (rp and

hp) was performed. The tip-sample interaction properties,

H1 and H2, were taken from [12] and, along with other

identified parameters, are shown in Table 1.

Figure 8 presents both experimental and numerical fre-

quency responses, using the identified geometrical and

material properties. It is possible to observe that the peaks

are very similar, with nearly coincident resonance fre-

quency. First, it was desired to match the resonance fre-

quency, regardless of the bell shaped curve. The peak

frequency obtained via experimental tuning of a real AFM

was 225.46 kHz, and the peak frequency obtained via

numerical simulation is 225.47 kHz, which means that the

relative error between them is 0:0044%. It is then con-

cluded that the considered geometric and material model

parameters are representative of the studied real AFM and,

therefore, they will be used in the following analyses.

3.3 Analysis of the minimum number
of vibration modes to be retained
in the reduced model

In this section, an analysis of the number of vibration

modes that should be retained in a reduced-order model, in

order to properly capture the dynamic behavior of the

system, is performed. For that, an excitation through the

PZT actuator, in the form of a sinusoidal applied electric

voltage Vp ¼ ~VpsinðxtÞ with ~Vp ¼ 8:8V and

x ¼ 202:92 kHz is considered. These values of frequency

and amplitude of the drive voltage were chosen to simulate

real AFM operation, were excitation frequency is near the

fundamental resonance and excitation amplitude is set

based on a target tip free amplitude. In order to evaluate the

need of a number of vibration modes when subjected to the

nonlinear tip-sample interaction, the frequency response

function of the probe tip displacement was evaluated for

different tip-sample initial distances d. Notice that it is

expected that the tip-sample interactions should increase by

diminishing the tip-sample distances.

Figure 9 shows the frequency responses of the probe tip

for different tip-sample initial distances

(d ¼ f90; 88; 84; 63g nm) and when considering increasing

number of vibration modes retained in the reduced-order

model. Since the system becomes nonlinear for smaller tip-

sample initial distances, the frequency response was

obtained using fast Fourier transform (FFT) of the time

response under the sinusoidal excitation by the PZT actu-

ator. It is noticeable that, within the frequency range con-

sidered (100–600 kHz), three peaks can be easily observed

for the higher tip-sample distance, except for the model

with only one vibration mode. The second and third peaks

are due to the first and second resonance frequencies of the

system, whereas the first peak is due to the excitation

frequency. That is why, when considering only the first

vibration mode in the reduced model, the third peak is not

observed. Moreover, the more the tip-sample distance is

Fig. 6 Bottom view of SEM image of a real AFM cantilever beam

Fig. 7 Lateral view of SEM image, zoomed at the probe tip region, of

a real AFM cantilever beam
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reduced, the more important becomes the nonlinear inter-

action between vibration modes, because of the increasing

effect of the tip-sample interaction forces.

This leads to both a disturbance of the frequency

response curves and also a modification of the displace-

ment distribution along the beam span. For the latter rea-

son, the reduced-order model with only the first vibration

mode was not able to account for the local deformation of

the beam tip and did not converge even for relative high

tip-sample distances (88 nm). The same behavior was

observed for the other reduced models, such that the two

modes model stopped converging for tip-sample distances

smaller than 84 nm, and the three modes model stop con-

verging for tip-sample distances smaller than 63 nm. With

four vibration modes, the model converged even for very

low tip-sample distances (smaller than 1 nm), and, thus, it

is suggested that a reduced-order model with the first four

vibration modes is satisfactory and shall be used for fol-

lowing analyses.

4 Analyses of the coupled system response

4.1 Effect of tip-sample initial distance
on the cantilever response

The goal of this section is to analyze the dynamic response

of the cantilever beam when tip-sample initial distance d is

diminished. Furthermore, it will be possible to observe the

effect of the intermolecular tip-sample interaction forces on

the system behavior.

Mode 1

Modes 1-2

Modes 1-3

Modes 1-4

Fig. 9 Frequency responses of the probe tip under excitation through the PZT actuator for different tip-sample initial distances and when

considering up to four vibration modes in the reduced-order model. From left to right: d ¼ f90; 88; 84; 63g nm
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As shown in Fig. 10a, for tip-sample initial distances

equal to, or higher than, d ¼ 100 nm, in which cases the

cantilever is considered to be free from the intermolecular

forces, the cantilever beam tip displacement present max-

imum and minimum amplitudes of 87 and � 82 nm,

respectively, at the transient, given the considered sinu-

soidal base excitation amplitude. When in steady-state

regime, the oscillation varies from � 42 to 44 nm. By

reducing the tip-sample initial distance to d ¼ 40 nm

(Fig. 10b) and d ¼ 20 nm (Fig. 10c), it is possible to

observe that the minimum amplitude is clearly constrained

by the tip-sample initial distance. It is also noticeable that

the maximum amplitude is also reduced and the transient

higher amplitudes disappear faster. However, the steady-

state response is much less uniform indicating the more

important effects of the nonlinearities.

The tip-sample interaction forces for these three tip-

sample initial distances are shown in Fig. 11. Since

attraction and repulsion forces are of very different mag-

nitudes, they are shown separately. However, it is their sum

that acts on the cantilever beam tip and, thus, induces the

nonlinearities observed in the tip displacement responses.

For comparison purposes, the plot scales are the same for

the three tip-sample initial distances. For d ¼ 100 nm,

small attraction forces are hardly noticeable during the

transient regime, while repulsion forces are negligible

(Fig. 11a). By decreasing the tip-sample initial distance to

d ¼ 40 nm (Fig. 11b) and d ¼ 20 nm (Fig. 11c), these

forces become clearly observable and not only during

transient regime. Notice that repulsion forces are much

higher, specially when the tip-sample distance decreases to

very small values (smaller than 2 nm). Nevertheless, for

small tip-sample initial distances, the attraction forces are

always active and, thus, influencing the dynamic response

of the cantilever.

For comparison purposes, Fig. 12 presents a compilation

of all time histories as the tip-sample initial distance

decreases. As previously observed, it is noticeable that

while d decreases, the transient region disappears and the

displacement amplitude gets smaller and unsymmetrical,

with a flattening on the negative region, showing that the

tip starts to get very close to the sample surface.

It is also worthwhile to analyze the effect of the tip-

sample interaction forces on the frequency response of the

cantilever beam tip. As in the previous section, this was

done using FFT of the time responses shown in Fig. 10.

Also as previously shown, for higher tip-sample initial

distances (d ¼ 100 nm, Fig. 13a), where tip-sample

(a) (b) (c)

Fig. 10 Time response of the tip displacement using four-mode reduced model for different tip-sample initial distances. From left to right,

d ¼ f100; 40; 20g nm

(a) (b) (c)

Fig. 11 Time response of the tip-sample attraction and repulsion forces for different tip-sample initial distances. From left to right,

d ¼ f100; 40; 20g nm
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interaction forces are much smaller and, thus, negligible,

three different peaks are clearly observed. The first being

due to the excitation frequency and the others due to the

first two resonant frequencies. As the tip-sample initial

distance is diminished to d ¼ 40 nm (Fig. 13b) and

d ¼ 20 nm (Fig. 13c), other peaks and distributed noise

appear in the frequency response. The presence of multiple

harmonics due to the nonlinearities suggests that it is

important to account for more than one vibration mode

(more than one degree-of-freedom) in the reduced-order

model [22, 23]. For instance, for d ¼ 20 nm, the only clear

response peaks are due to excitation frequency and its

multiples, which highlights the effect of interaction forces

in the system behavior. A similar analysis was performed

for other values of tip-sample initial distance and it is

shown in Fig. 14.

4.2 Estimation of sample surface topology
from cantilever tip amplitudes

In this section, it is proposed to use the time response of the

cantilever beam tip amplitudes to estimate a sample surface

topology. Although the intention is not to replicate the

operation of a real AFM, since here there is no base

repositioning feedback control, this analysis allows to

check if there is enough correlation between tip amplitude

response and tip-sample initial distance. For that, the

analysis was based on a real topological surface of a dia-

mond sample, shown in Fig. 15, that was obtained using

the real AFM previously cited. The sample surface was

scanned using 512� 512 points of observation over the

sample area of 150� 150lm2, leading to a point-to-point

distance of 2.91 nm. In addition to the image, the data

corresponding to the surface heights used to generate the

topological image was also obtained and reset to heights

ranging from � 431 to 625 nm.

It is known that to obtain this image, among other

things, the AFM device has used a feedback controller to

maintain the cantilever tip amplitude oscillation constant,

but, even without such control system, the main idea here is

to reproduce a small area of the surface shown in Fig. 15

by performing point-to-point simulations using the

reduced-order model proposed in this work. For that, a

small region of the sample, represented by a mesh of 32�
32 measurement points, was considered.

The considered simulation procedure is schematically

represented in Fig. 16 and consisted on deducing the height

of sample surface in a particular xy point, zi;j, with i 2
½1;m� and j 2 ½1; n� over the m� n measurement points,

from a reference tip-sample initial distance, d. Notice that

the scheme depicted in Fig. 16 is out of scale to allow

observation of the variables involved, while the probe tip

height may be more than 1000 times larger than the sample

height. Then, the actual tip-sample initial distance to be

considered in the simulations is defined as d � zi;j. There-

fore, when the cantilever is vibrating, the distance between

the probe tip and sample surface may be written as

dwt ¼ d � zi;j þ wt: ð28Þ
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Fig. 12 Compilation of time responses of the probe tip displacement

for different tip-sample initial distances

(a) (b) (c)

Fig. 13 Frequency response of the probe tip displacement calculated using four-mode reduced model for different tip-sample initial distances.

From left to right, d ¼ f100; 40; 20g nm
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where wt is the absolute tip deflection of the cantilever

beam.

The small sample surface, covering an area of

87:89nm2, considered in the present simulation is repre-

sented by a 32� 32 matrix of surface heights ranging from

� 30 to 24 nm, depicted in Fig. 17a. For each one of the

measurement points, a simulation was performed to obtain

the time response of the cantilever beam tip considering a

tip-sample initial distance of d ¼ 38:5 nm, which was

manually tuned to obtain a satisfactory topology charac-

terization. As previously presented, the tip-sample initial

distance was reduced by the height of the measurement

point to simulate the presence of the cantilever tip over that
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Fig. 14 Frequency response of the probe tip displacement for different tip-sample distances

Fig. 15 Topological surface of a

diamond sample obtained using

a Nanoscope IIIa Digital

Instruments AFM

d

zi,j

dwt

-wt

P
ZT

Fig. 16 Schematic representation of the procedure to obtain the

sample topological surface (out of scale)
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particular point. The simulation was performed for a time

span of 3 ms considering 1024 time samples. Then, the

root-mean-square (RMS) of the time response of the can-

tilever beam tip was evaluated.

Considering that the closer the tip is to the sample, the

smaller should be the tip displacement amplitude; it is

proposed that the RMS amplitude could correlate to the

measurement point height, as it is observed in what fol-

lows. For that, a surface representing the negative of the

RMS amplitude of the cantilever tip was plotted and is

shown in Fig. 17b. Therefore, the higher the measurement

point height, the closer it is to the beam tip, the smaller is

the tip displacement amplitude and, thus, the higher is the

negative of the RMS amplitude. Indeed, this is what one

can notice in Fig. 17b.

A comparison of Fig. 17a, b allows to conclude that they

represent a very similar topology, specially in terms of

contours with peaks and valleys at the same position.

Without a pre-calibration, it is not possible though to infer

on the actual heights from the RMS amplitudes. Never-

theless, the numerous similarities allow to obtain a quite

good perspective of the original image (surface topology).

5 Conclusions and future works

This work focused on the development and analysis of a

parametric model capable of properly representing the

dynamics of an AFM cantilever beam when subjected to

realistic operation conditions. This was done using a finite

element model for the cantilever beam, based on Ber-

noulli–Euler assumptions, accounting for translational and

rotational inertia of the probe tip, on one end (tip), and for

the piezoceramic actuator that excites and controls the

beam motion, on the other end (base). All material and

geometrical properties for the system (cantilever beam,

probe tip and piezoceramic actuator) can be parametrized.

Experimental SEM images and frequency responses of a

real AFM cantilever beam were used to verify the model

and also to define its parameters with very satisfactory

results. An analysis of the dynamics of the cantilever beam

when subjected to tip-sample nonlinear interaction forces

was performed to assess the minimum number of vibration

modes to be retained in a reduced-order model. For that,

the interaction forces were modeled using Lennard Jones

potentials. Using time- and frequency-domain analyses, it

was possible to conclude that at least four vibration modes

should be retained.

Then, with the help of the proposed reduced model, an

analysis of the dynamic response of the cantilever beam for

varying tip-sample initial distances was performed. Besides

the appearance of the expected nonlinear behavior due to

the tip-sample interaction forces, it was observed that the

closer the sample is to the beam tip, the smaller is the tip

displacement amplitude. Based on this observation, an

analysis was performed to assess the correlation between

the tip displacement and the surface topology of a diamond

sample with satisfactory results.

The analyses presented in this work add value to the

understanding and parametrization of an AFM system

dynamics, which could help finding better operating con-

ditions for a given system (cantilever beam, probe tip,

piezoceramic actuator and sample to be analyzed). Future

work will be directed to further studies on the nonlinear

Fig. 17 Selected region of topological surface of a diamond sample: a obtained via AFM and b reconstructed using cantilever beam tip

deflections from numerical simulations
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behavior of the system, scale effects on the system

dynamics and the inclusion of a positional control law to

enable the simulation of realistic operating conditions of

AFM systems.
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