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Abstract
We introduce coordinates of the rigid body (rotator) using mutual positions between
body-fixed and space-fixed reference frames. Wave functions that depend on such coordinates
can be treated as scalar functions of the group SU (2). Irreducible representations of the group
SU (2)× SU (2) in the space of such functions describe their possible transformations under
independent rotations of the both reference frames. We construct sets of the corresponding
group SU (2)× SU (2) Perelomov coherent states (CS) with a fixed angular momentum j of
the rotator as special orbits of the latter group. Minimization of different uncertainty relations
is discussed. The classical limit corresponds to the limit j → ∞. Considering Hamiltonians of
rotators with different characteristics, we study the time evolution of the constructed CS. In
some cases, the CS time evolution is completely or partially reduced to their parameter time
evolution. If these parameters are chosen as Euler angles, then they obey the Euler equations
in the classical limit. Quantum corrections to the motion of the quantum rotator can be found
from exact equations on the CS parameters.

PACS numbers: 03.65.Sq, 03.65.Fd

1. Introduction

Coherent states (CS) play an important role in modern
quantum mechanics due to their fundamental theoretical
importance and a wide range of applications, e.g. in
semiclassical description of quantum systems, in quantization
theory, in condensed matter physics, in radiation theory, in
quantum computations and so on (see e.g. [1]). Due to Glauber
and co-workers [2–4] (see also Klauder and Sudarshan [1])
there exists a well-developed scheme of constructing CS
for systems with quadratic Hamiltonians. Some non-trivial
generalizations of the Glauber approach are developed by
Klauder and Gazeau (see [6]). According to Perelomov [5]
(see also Perelomov [1]), one can construct some kind of CS
for systems with a given Lie group of symmetry. An important
example of Perelomov CS are CS of SU (N ) groups; see
[7–14] for SU (2) and [15, 16] for symmetrical representations
of SU (N ) with arbitrary N . However, physical applications
of the latter CS are not as well known as those of the
Glauber-type CS.

In this paper, we consider an important application of CS
of the SU (2) group in quantum theory of a rigid body (rotator

in what follows) and on this basis we study semiclassical
description of this system.

Basis elements of quantum theory of the rotator can
be found, e.g. in [18–20]. In its simple version, the theory
describes only the rotational motion of a many-particle system
that is tightly bound. The Hamiltonian of such a system reads

Ĥ =
1

2A1
Î2

1 +
1

2A2
Î2

2 +
1

2A3
Î2

3 , (1)

where Aa , a = 1, 2, 3 are the principal moments of inertia,
and Îa is projection of the angular momentum operator with
respect to the axes of the body-fixed reference frame (brf). The
most complete description of the quantum rotator in terms of
the discrete basis can be found in [21, 22].

Attempts to construct CS of the quantum rotator should
be mentioned; see [23–25]. These CS are parameterized by
three complex numbers. The total angular momentum j of
such CS was not fixed. Janssen’s CS [23] have the property
of mixing half-integer and integer quantum numbers. Morales
et al [24] had introduced a different set of CS following
closely the definition of Janssen; this set includes integer
quantum numbers only. Similar sets of CS were considered
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in [25]. However, the introduced CS did not solve the problem
of complete semiclassical description of the quantum rotator.

In this paper, we argue that the quantum rotator as
any extended object has to be described in terms of two
reference frames: brf and space-fixed reference frame (srf).
As a consequence, two types of CS have to be introduced.
According to the Perelomov scheme, they are orbits of the
highest weight of irrep of the SU (2)× SU (2) group. In
addition, it turns out that for semiclassical calculations, it is
convenient to construct CS with a fixed angular momentum
j . Then we study the time evolution of the constructed
CS for systems with a quadratic in generators Hamiltonian.
Finally, we consider the semiclassical limit. It is demonstrated
that exact quantum equations of the CS parameters are
reduced to the classical ones for big j . In the special case
of the fundamental representation ( j = 1/2), CS always
conserve their shape. However, in this case, equations for
CS parameters differ essentially from the corresponding
classical equations. In the appendix, we have placed some
basic formulae to avoid doubts in parameterization definitions
(unfortunately, in the literature different definitions are
used [21, 26, 28]) and usual confusion with the signs.

2. Quantum description of the rotator

2.1. Space-fixed and body-fixed reference frames

Positions of a rotator can be described by the rotation matrix
V =‖vi

a ‖ that belongs to the group SO(3)∼ SU (2). This
matrix relates two reference frames, one the brf associated
with the rotator and defined by the orthobasis ξ a and another
one the srf associated with the laboratory and defined by the
orthobasis ei ,

ξ a = vi
a ei . (2)

The matrix V is orthogonal, V T
= V −1.

We consider vi
a as coordinate set of the rotator. These

coordinates can be expressed via the Euler angles; see
equation (A.1) in the appendix. We also consider the left
index, which labels the lines of the matrix vi

a , as ‘external’,
the right, which labels the columns, as ‘internal’.

Introducing 2 × 2 matrices 4= σ aξ a and E = σ i ei , we
represent relation (2) in terms of the complex Cayley–Klein
parameters zi ,

4= Z† E Z , Z ∈ SU (2),

Z =

(
z1 z2

−z̄2 z̄1

)
, |z1|

2 + |z2|
2
= 1.

(3)

The Cayley–Klein parameters can be expressed via the Euler
angles ψ , θ , φ,

z1 = cos(θ/2) e−i(φ+ψ)/2, z2 = − sin(θ/2) ei(−φ+ψ)/2. (4)

Thus, there exists the correspondence V ⇔ z, such that
one can describe the rotator orientation by two complex
parameters zi , i = 1, 2.

One can consider two types of transformations: rotations
of the srf, which we call external transformations; and
rotations of the brf, which we call internal transformations. It
is obvious that the quantities {ei } transform as vectors under

the external transformations, whereas they remain unchanged
with respect to internal transformations (rotations of the
body). In contrast, the quantities {ξ a} remain unchanged with
respect to the external transformations, whereas they are
vectors under the internal transformations.

To describe transformations of the coordinates vi
a under

the two types of the above rotations, we represent equation (2)
as ξ = eV , considering ξ and e as columns composed from the
vectors ξ a and ei .An external transformation e′

= e3 changes
the matrix V as follows:

ξ = eV = e′3−1V = e′V ′
H⇒ V ′

=3−1V . (5)

An internal transformation ξ ′
= ξ3 changes the same matrix

as
ξ = ξ ′3−1

= eV H⇒ V ′
= V3. (6)

Thus, under external transformation 3 results in the left
multiplication of the matrix V by the matrix 3−1, whereas
an internal transformation3 results in the right multiplication
of the matrix V by the matrix 3.

If both transformations are made at the same time, we
call such a transformation the general transformation in what
follows, then the following change of the matrix V takes
place:

V ′
=3−1V3. (7)

Both the rotation matrices 3 and 3 can be parameterized
by the Euler angles. In the representation (7), generators are
given by the standard 3 × 3 matrices. In addition, the matrices
of generators of transformations (5) and (6) have the same
form (however, their action is different, being related to left-
and right-multiplication).

Let us consider general transformation (7) in terms of
complex matrices (3). It affects both the matrices 4 and E .
The change 4→4′ induced by internal transformations is
given by the matrices gr ∈ SU (2)int as follows:

4′
= (gr)

−14gr,

whereas a change E → E ′ induced by external
transformations is given by the matrices gl ∈ SU (2)ext:

E ′
= (gl)

−1 Egl.

As it follows from equation (3), an internal
transformation gr modifies the matrix Z as Z ′

= Zgr,
whereas an external transformation gl modifies the matrix Z
as Z ′

= g−1
l Z . The general transformation is a combination

of both transformations and changes the matrix Z according
to the rule

Z ′
= g−1

l Zgr, (8)

where

gl =

(
u1 u2

−ū2 ū1

)
, gr =

(
v1 v2

−v̄2 v̄1

)
. (9)

Obviously the general transformation

5(gl, gr) ∈ SU (2)ext × SU (2)int. (10)

2
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2.2. Wave functions of the rotator as functions on SU (2)
group

In quantum theory, wave functions depend on positions of the
system under consideration. As was demonstrated, positions
of the rotator can be described either by elements of the matrix
V or by two complex parameters z1,2, |z1|

2 + |z2|
2
= 1, that

constitute the matrix Z ∈ SU (2) according to equation (3). In
what follows, we consider the rotator state vectors as functions
of such matrices, 9 =9(Z), Z ∈ SU (2).

According to (8), general transformations (10) define a
representation T (gl, gr) of the group 5(gl, gr) in the space of
scalar functions 9(Z) (rotator wave functions)

T (gl, gr)9(Z)=9 ′(Z)=9(g−1
l Zgr). (11)

It is obvious that the generators of the representation T (gl, gr)

consist of the left generators Ĵi (A.2) of TL(gl) and the
right generators Ĵ R

a (A.3) of TR(gr) regular representations of
SU (2).

The straightforward calculation of the left and the right
generators (see the appendix) gives expressions (A.5), (A.6)
and the following standard commutation relations (below we
use the angular momentum measured in units of h̄, Ji = Ji/h̄,
Ii = Ii/h̄):

[ Ĵi , Ĵ R
a ] = 0, [ Ĵi , Ĵk] = iεikl Ĵl , [ Ĵ R

a , Ĵ R
b ] = iεabc Ĵ R

c .

(12)
Let us turn to the physical interpretation of the left and right
generators. The operators Ĵk are projections of the angular
momentum in the srf. The projection Îa of the vector Ĵ =

( Ĵ1, Ĵ2, Ĵ3) on the unit vector ξ a of brf is given by the scalar
product

Îa = (Ĵ, ξ a)= Ĵkv
k
a . (13)

It should be noted that Ĵk and vk
a commute (rotation does not

affect components vk
a of vectors ξ a that are parallel to rotation

axis ek); see (A.7). The straightforward calculations give the
following result:

Îa = − Ĵ R
a , (14)

which means that the operators Îa coincide with the right
generators up to a sign. In turn, this means that the
commutation relations for the operators Îa differ by a sign
from the usual (12) commutation relations for the angular
momentum operators

[ Îa, Îb] = −iεabc Îc. (15)

The operators Îa can be considered as generators that
correspond to changed-by-a-sign rotation parameters.

The reason for such a difference in the commutation
relations can be easily seen in the example of the
two-dimensional rotator with the symmetry group SO(2)∼

U (1). The wave function ψ of such a rotator depends
only on the angle φ. The transformation of the function
z = eiφ is given by the multiplication on g = eiα

∈ U (1)
from the left, z′

= g−1z, or from the right, z′
= zg and

g−1zg = z. Thus, in the two-dimensional case, an external
rotation is equivalent to an inverse internal rotation if we
speak about the wave function transformation. Respectively,
the corresponding generators differ by the sign only,

Ĵ = −id/dφ, Ĵ R
= id/dφ and Ĵ R

= − Ĵ . This is a
consequence of the fact that the group U (1) is commutative.

However, in the three-dimensional case, where we
deal with the SO(3)∼ SU (2) group, such an interpretation
(see [18]) is not correct; the latter group is non-commutative
and a general external rotation is not equivalent to its inverse
internal rotation. If we suppose that such equivalence take
place, then 3−1V3= V or [3, V ] = 0. The latter holds only
in the case when 3 and V correspond to rotations about one
and the same axis. The difference between the generators
of the external and internal rotations is not reduced to the
difference in signs. However, angular momentum operators
in brf are Îa = − Ĵ R

a , and the difference in the commutation
relations is reduced to the sign change.

Let Ĵi be generators that correspond to the subgroup
SU (2)ext and Îa are generators that correspond to the
subgroup SU (2)int. Operators Ĵk are transformed as vectors
under SU (2)ext transformations and are invariants under
SU (2)int transformations, whereas the operators Îa are
transformed as vectors under the latter transformations and
are invariants under the SU (2)ext transformations.

As follows from equation (13), the square of the total
momentum is the same in both reference frames

Î2
=

∑
a

Ĵiv
i
a Ĵkv

k
a = Ĵ2. (16)

In the representation T (gl, gr), both subgroups act in the same
space of functions that depend on three real parameters (Euler
angles). One can see that there are three mutually commuting
operators

Ĵ3, Î3, Ĵ2
= Î2. (17)

We denote the common eigenfunctions of the operator set (17)
as | j mk〉,

Ĵ3| jmk〉 = m| jmk〉, − j 6 m 6 j,

Î3| j m k〉 = k| j m k〉, − j 6 k 6 j, (18)

Ĵ2
| j m k〉 = j ( j + 1)| j m k〉, 2 j = 0, 1, 2, . . . .

They correspond to rotator states with a given angular
momentum j and its z-projection m with respect to the srf
and z-projection k with respect to the brf.

As mentioned above, general transformations (8) belong
to the direct product SU (2)× SU (2). In the general case,
the irreps of SU (2)× SU (2) are characterized by eigenvalues
of two different Casimir operators Ĵ2 and Î2. However, in
the case under consideration, Ĵ2

= Î2, and rotator states are
labeled only by three numbers: the total momentum j and the
two projections m, k. This is a consequence of the fact that in
the case under consideration, the operators of both subgroups
act in the same space of functions depending only on three
parameters. In this space, only a part of representations of the
direct product SU (2)× SU (2) is realized; see the appendix.

The algebra of operators Ĵ R
a = − Îa has the same

commutation relations as the algebra of operators Ĵi , and
therefore, standard results of the angular momentum theory
hold true here. We obtain multiplets of dimension 2 j + 1,
where j is the integer or half-integer maximal value of
projection k = I3 to the fixed axis ξ 3.

3
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Thus, there are (2 j + 1)2 states with the same j . As is
known, explicit form of the states | j m k〉 is given by the
Wigner D-functions that are matrix elements of the irreps
T j (g) of the group SU (2) [20, 21]. Here we write the Wigner
D-functions via the Cayley–Klein parameters

〈z| j m k〉 = D j
m,k(z)=

√
( j + m)!( j − m)!( j + k)!( j − k)!

×

∑
nα

′ zn1
1 zn2

2 z̄n3
1 (−z̄2)

n4

n1!n2!n3!n4!
, nα ∈ Z+,

(19)

where summation over nα is restricted by the constraints

n1 + n2 + n3 + n4 = 2 j, −n1 − n2 + n3 + n4 = 2m,

− n1 + n2 + n3 − n4 = 2k, (20)

see [26]. In fact, only one of all nα is independent.
For the highest weights of the irreps of SU (2)ext or

SU (2)int, i.e. for m = ± j (functions of only one column of
the matrix (3) z1, z2 or z̄1, z̄2) or k = ± j (functions of only
one line of the matrix (3)) the summation is absent:

〈z| j m j〉 =

(
(2 j)!

( j + m)!( j − m)!

)1/2

z̄ j+m
1 (z2)

j−m,

(21)

〈z| j j k〉 =

(
(2 j)!

( j + k)!( j − k)!

)1/2

z̄ j+k
1 (−z̄2)

j−k .

The scalar product in the space of the functions 9(Z),
Z ∈ SU (2) is given by the integration over the Cayley–Klein
parameters with the invariant measure dµ(z),∫

9̄1(z)92(z) dµ(z),

dµ(z)=
1

8π2
δ(|z1|

2 + |z1|
2
− 1) d2z1d2z2

=
1

8π2
sin θ dθ dφ dψ. (22)

The wave functions in z-representation (19) are normalized
with respect to such a scalar product. In fact, these functions
represent the scalar product (22) of states |z〉 with a given
orientation and states | jmk〉 with a given angular momentum
and its projections.

Wave functions that do not depend on the angle ψ are
eigenfunctions of Î3 with the eigenvalue k = 0. In addition,
in this case the operators Ĵk (A.5) acquire the form of the
‘usual’ operators of angular momentum for a non-orientable
point particle, which depend only on the two angles θ and φ.
Such states are | j m〉 = | j m 0〉.

3. Coherent states (CS) of the rotator

3.1. Instantaneous CS

We construct CS as orbits in spaces of group irreps; see [5]
(see also Perelomov [1]). To construct CS with semiclassical
properties, we consider the variance that is invariant under the
general transformations (8) (i.e. changes of reference frames).

In states that corresponding to the discrete basis | j m k〉, we
have

1J 2
ext = 〈J 2

〉 − 〈J 〉
2
= j ( j + 1)− m2,

(23)
1J 2

int = 〈J 2
〉 − 〈I 〉2

= j ( j + 1)− k2

such that the complete variance reads

1J 2
6 =1J 2

ext +1J 2
int = 2 j ( j + 1)− m2

− k2. (24)

We chose the ratio

1J 2
6

2J 2
= 1 −

m2 + k2

2 j ( j + 1)
(25)

as the measure of the classicality (how close a quantum state
is to the corresponding classical state). The quantity (25) is
minimal and equal to 1/(1 + j) for states of discrete basis
| jmk〉 (19) with |m| = |k| = j and tends to zero as j → ∞.

Thus, for a given angular momentum j , the states | jmk〉

with |m| = |k| = j can be considered as semi-classical states.
The same holds true for states that can be obtained from the
states | jmk〉 after transformations (10). They have the same
value 1/(1 + j) for quantity (25).

We first consider separately the CS of groups SU (2)ext

and SU (2)int.
Applying the external transformations to the state

| j j j〉 = z̄2 j
1 , we obtain ‘left’ CS | j u j〉,

| j u j〉 = (u1 z̄1 + ū2z2)
2 j

=

j∑
m=− j

(
(2 j)!

( j + m)!( j − m)!

)1/2

u j+m
1 ū j−m

2 | j m j〉, (26)

where u1 = cos(γ /2) eiδ/2 and u2 = sin(γ /2) e−iδ/2. We stress
that these states are exactly the CS of the angular
momentum [8] (see also Perelomov [1]). However, in the
rotator case, the variables z1, z2 depend on three Euler angles
φ, θ , ψ , which are coordinates on the group SU (2), whereas
in the angular momentum CS they depend only on two
variables φ, θ , which are coordinates on the homogeneous
space SU (2)/U (1).

One can see that the state | j u j〉 is an eigenvector for the
projector Ĵn on the direction given by a unit vector n:

n = (sin γ cos δ, sin γ sin δ, cos γ ),
(27)

ni = σ
αβ

i ūαuβ,

i.e. Ĵn| j u j〉 = j | j u j〉.
The overlapping of two ‘left’ CS (26) one with the vector

n and another one with the vector n′ can be easily calculated

〈 j u j | j u′ j〉 = (cos(β ′/2))2 j . (28)

Here β ′ is the angle between the vectors n and n′.
In the limit j → ∞, the ‘left’ CS states | j u j〉 and

| j u′ j〉 are orthogonal if u 6= u′,

lim
j→∞

〈 j u j | j u′ j〉 = 0, u 6= u′.

4
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The corresponding relative uncertainties (25) tend to
zero and we obtain semi-classical states with the angular
momentum j and rotation axis given by the angles α and β.

Applying the internal transformations to the state
| j j j〉 = z̄2 j

1 , we obtain ‘right’ CS | j j v〉 of the rotator

| j j v〉 = (v̄1 z̄1 + v2(−z̄2))
2 j

=

j∑
k=− j

(
(2 j)!

( j + k)!( j − k)!

)1/2

v̄
j+k
1 v

j−k
2 | j j k〉, (29)

where v1 = cos(γ /2) eiδ/2 and v2 = sin(γ /2) e−iδ/2.
The state | j jk〉 has definite projection k on the axis ξ 3

of brf. Respectively, CS | j j v〉 is the state with the maximal
projection k = j of the angular momentum on the direction

ν = (sin γ cos δ, sin γ sin δ, cos γ ), νi = σ
αβ

i v̄αvβ,

i.e. CS | j j v〉 is an eigenvector of the projector Îν on the
direction ν defined by the angles γ, δ in the brf

Îν | j j v〉 = j | j j v〉.

In the classical theory, if brf coincides with the principal
axis frame of the rotator, then Ia = h̄ Ia = Aaωa , where Aa are
principal inertia momenta and ωa are components of angular
velocity. The quasiclassical rotation vector or angular velocity
is then defined with components

ωa = A−1
a h̄〈 Îa〉 (30)

and for CS (29) we have ωa = A−1
a j h̄νa .

In the general case, when we apply the general
transformations (10) to the state | j j j〉, we obtain CS | j u v〉
of the rotator that can be expressed in terms of the Wigner
D-functions (19)

| j u v〉 = (u1v̄1 z̄1 + ū2v̄1z2 + ū2v2z1 + u1v2(−z̄2))
2 j

=

j∑
m,k=− j

(2 j)!
√
( j + m)!( j − m)!( j + k)!( j − k)!

× u1
j+m ū j−m

2 v̄
j+k
1 v

j−k
2 | j m k〉 (31)

The states | j u v〉 are characterized by projections j of angular
momentum on the axis n in srf and on the axis ν in brf. At
fixed j , these states possess minimal invariant variance (24)
1J 2

6 = 2 j .

3.2. Time evolution of rotator CS euler equations

Due to the spatial isotropy, the Hamiltonian of a free rotator
cannot depend explicitly on the rotator orientation and is,
therefore, an ‘external’ invariant. Such a Hamiltonian can
depend on the combination of the left generators Ĵk , which
is the Casimir operator Ĵ2. In addition, it can be a function of
the operators Îa , which are ‘external’ invariants.

For a completely symmetric rotator, not only the external
transformations, but also each of the internal transformations
are symmetry transformations of the Hamiltonian; in this,
case the symmetry group is SO(3)× SO(3). In the case
of the axial symmetry, there exists internal symmetry with

respect to the right rotations about the ξ 3-axis (with the
generator Î3); in this case the symmetry group is SO(3)×
SO(2). This symmetry corresponds to an additive quantum
number k. Finally, in the case when all three inertia momenta
are different (there is no internal symmetry), the internal
transformations with generators Îa are not Hamiltonian
symmetries and the symmetry group is SO(3).

Thus, a symmetry with respect to external
transformations (or an external symmetry) is interpreted
as a symmetry of the embedding space, in which the
rotator is placed, and a symmetry with respect to internal
transformations (or an internal symmetry) is interpreted as a
symmetry of the rotator itself.

Let us consider the time evolution of the rotator CS. We
chose the rotator Hamiltonian in the following form:

Ĥ = h̄2

(
1

2A1
Î 2
1 +

1

2A2
Î 2
2 +

1

2A3
Î 2
3

)
+ U, (32)

where Ab are principal inertia momenta, brf coincides with
the principal axis frame and U is the rotator potential energy,
which in the general case depends on the rotator position. In
classical theory, the rotator motion is described by the Euler
equations

Aaω̇a = εabc Abωbωc + Ka, (33)

where Ka = i ÎaU is the torque.
Our aim here is to obtain equations for CS evolution in

term of angular velocity ωa (30) and to compare them with
Euler equations.

Consider first the Hamiltonian of the axial-symmetric
(A1 = A2 = A) free rotator

Ĥ =
1

2
h̄2

(
1

A
Ĵ 2 +� Î 2

3

)
, �=

(
1

A3
−

1

A

)
. (34)

States with a given energy are eigenvectors of the
operators Ĵ 2 and Î3, in particular, these are both states of
the discrete basis | j m k〉 and the ‘left’ CS | j u j〉 (26). If
initial states are the states | j m k〉 or | j u j〉, the time evolution
modifies them only by phase factors. The time evolution of
initial states that are not eigenvectors for the operator Î3 is
more complicated. As an example, one can mention the ‘right’
CS | j j v〉 (29).

The Schrödinger equation for states with a definite
angular momentum j has the form

ih̄
∂9(z, t)

∂t
=

1

2
h̄2
[

A−1 j ( j + 1)+� Î 2
3

]
9(z, t). (35)

Here, the case j = 1/2 is special. In such a case Î 2
1 = Î 2

2 =

Î 2
3 = 1/4 (in the spinor representation j = 1/2 generators

satisfy both the commutation relations (15) and the
anticommutation relations

{ Îi , Îk} =
1

4
δik,

see details in [27]). That is why the rhs of equation (35) takes
the form

1

2

[
A−1 j ( j + 1)+� Î 2

3

]
91/2(z, t)=

1

8
(3A−1 +�)91/2(z, t)

=
1

4

(
1

A
+

1

2A3

)
91/2(z, t).
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Thus, in this special case the time evolution of any initial state
changes it only by a phase factor

91/2(z, t)= exp

[
−ih̄

(
1

A
+

1

2A3

)
t

4

]
91/2(z, 0).

Let us choose the rotator CS | j j v〉 (29) as the initial
state. In the general case, its evolution with time changes the
form of the wave packet (spreading of the wave packet) and
parameters of the CS. Consider first the spreading problem.
To this end, we make the change of the wave function 9(z, t)
by the one 9̃(z, t):

9̃(z, t)=9(z, t) exp

[
−

i

h̄

j ( j + 1)

2A
t

]
. (36)

The new function 9̃(z, t) satisfies the following equation:

ih̄
∂9̃(z, t)

∂t
=
�

2
Î 2
3 9̃(z, t). (37)

Let us suppose that the CS does not change its form such that
the time evolution changes only the parameter v, i.e. there
exist solutions of equation (37) of the form | j j v(t)〉

9̃(z, t)= | j j v(t)〉 = [v̄1(t)z̄1 + v2(t)(−z̄2)]
2 j .

Then equation (37) takes the form

2i j
[
v̄′

1 z̄1 + v′

2(−z̄2)
]

[v̄1 z̄1 + v2(−z̄2)]

=
�

2

{
j ( j − 1/2) [v̄1 z̄1 − v2(−z̄2)]

2 + j [v̄1 z̄1 + v2(−z̄2)]
2} .
(38)

Decomposing the right and the left sides of equation (38)
in powers of zk , we obtain three equations (for the case
j = 1/2 two equations, and for states with v1(0)= 0 or
v2(0)= 0 only one equation). In the general case these three
equations are inconsistent, which means that in the general
case solutions of equation (35) cannot be written as | j j v(t)〉.
(For semisimple groups, the only Hamiltonians that are linear
in group generators or are functions of Casimir operators
preserve CS form; for solvable groups such Hamiltonians
may contain some bilinear combinations of the generators that
form a simple algebra, see [17].)

However, one can construct solutions that are close in a
sense to the CS. To this end, we represent the wave function
9̃(z, t) in the following form:

9̃(z, t)=

∑
k

ck(t)| j j k〉,

(39)

ck(0)=

(
(2 j)!

( j + k)!( j − k)!

)1/2

v̄
j+k
1 v

j−k
2 .

At t = 0, the corresponding state 9(z, t) from (36) is
CS, 9(z, 0)= | j j v〉. Substituting the function (39) into
equation (37), we obtain

ck(t)= ck(0) exp

(
−

i

2h̄
k2�t

)

such that

9(t)= exp

[
i

h̄

j ( j + 1)

2A
t

]∑
k

ck(0)

× exp

(
−

i

2h̄
k2�t

)
| j j k〉. (40)

The function 9̃(z, t) is periodic with the period T0 =

4π h̄�−1. Thus, in the time instants nT0 the wave function
9(z, t), which differs from 9̃(z, t) by a phase factor, again
takes the form of a CS. This means that the variance 1I 2 is
not growing and the wave packet is not spreading with time.

Let us consider mean values 〈 Îi 〉 in the time-dependent
CS | j j v(t)〉 (29). Suppose that the time evolution is due to
the Hamiltonian (32). Then we have

d

dt
〈 Îa〉 =

i

h̄
〈[Ĥ , Îa]〉

= h̄
∑

j

εabc 1

2Ab
〈 Îb Îc + Îc Îb〉 +

1

h̄
Ka . (41)

To find explicit expressions for the mean values entering
equation (41), we use the fact that the operators Îb can be
expressed via the operators T̂ β

α = aα∂/∂aβ , a1 = z̄1, a2 =

−z̄2,

Î1 = T̂ 1
2 + T̂ 2

1 , Î2 = i(T̂ 1
2 − T̂ 2

1 ), Î3 = T̂ 2
2 − T̂ 1

1

and Q-symbols of the operators T α
β (v̄, v)= 〈T̂ α

β 〉 and

(T α
β T γ

δ )(v̄, v)= 〈T̂ α
β T̂ γ

δ 〉 that were calculated in [10, 16]

T α
β (v̄, v)= 2 j v̄αvβ,

(T α
β T γ

l )(v̄, v)= 2 j (2 j − 1)v̄α v̄γ vβvδ + 2 j v̄αvδδ
γ

β .

Taking into account the expression (30) for angular
velocity ωa of the rotator in terms of CS parameters, we obtain
the following equation:

Aaω̇a =
2 j − 1

2 j
εabc Abωbωc + Ka . (42)

For j = 1/2 the CS are stabile and their evolution is
reduced to the change of CS parameters according to the
equation

Aaω̇a = Ka

and the precession is absent; at Ki = 0 the only phase of the
wave function is changing with time.

Equation (42) can be interpreted as quantum version of
the Euler equations for the classical rotator (33). They differ
from the classical equations by the factor (2 j − 1)/2 j in the
rhs. Note that for small j , this factor differs from its classical
value 1 essentially. This difference results in slowdown of
the rotator precession. This factor tends to its classical value
1 as j → ∞. Thus, ( j)−1 can be considered as a small
dimensionless parameter that provides the classical limit.
Remembering that ( j)−1

= h̄J −1, we see that in the problem
under consideration, as in many other quantum mechanical
problems, formal decompositions in the Planck constant can
be interpreted as semiclassical decompositions.

6
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Let ωcl
a obey classical Euler equations (33) and we

present solution of equation (42) in the form ωa = ωcl
a +

1ωa + O(( j)−2), where 1ωa are quantum corrections of the
order ( j)−1. Then these corrections satisfy the set of linear
first-order differential equations

Aa1ω̇a = −(2 j)−1 Aaω̇
cl
a + εabc Ab(1ωbω

cl
c +ωcl

b 1ωc).
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Appendix

The orientation of a three-dimensional rotator is determined
by a 3 × 3 orthogonal matrix, V ∈ O(3), composed of the
coefficients of a re-decomposition of the bases (srf and brf),
see section 2 . If both systems {ei } and {ξ a} are right or left, the
matrix V ∈ SO(3) depends on three real-valued parameters,
which can be chosen as the Euler angles:

V =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


×

cosψ − sinψ 0
sinψ cosψ 0

0 0 1



=


[

cosφ cosψ cos θ
− sinφ sinψ

][
− sinφ cosψ − cosφ

× sinψ cos θ

]
cosφ sin θ[

sinφ cosψ cos θ
+ cosφ sinψ

] [
cosφ cosψ

− sinφ sinψ cos θ

]
sinφ sin θ

− cosψ sin θ sinψ sin θ cos θ

 .
(A.1)

To find generators of an arbitrary irrep of SO(3), one has
to examine representations in the space of functions on the
group, i.e. functions f (φ, ψ, θ) of the rotator orientation.

The left regular representation TL(g) acts in the space
of functions f (q), q = q(φ, ψ, θ) ∈ SO(3), on the group as
follows:

TL(gl) f (q)= f ′(q)= f (g−1
l q), gl ∈ G, (A.2)

which corresponds to a change of the srf; see (5), whereas the
right regular representation TR(g) acts in the same space as
follows:

TR(gr) f (q)= f ′(q)= f (qgr), gr ∈ G, (A.3)

which corresponds to a change of the brf; see (6). The
decomposition of the left (and right) regular representation
contains any irrep of the group.

Each set of the left and right transformations forms the
group SO(3). Since these two transformation sets commute
with each other, we can consider them as the direct product
5= SO(3)× SO(3). The transformations from 5 act in the

space of functions depending on three parameters (on the
rotator orientation) as follows:

T5(gl, gr) f (q)= f (g−1
l qgr)= f ′(q). (A.4)

For Hermitian generators that correspond to the
one-parameter subgroup ω(t) in the left TL(g) (A.2) and right
TR(g) (A.3) regular representations, we obtain, respectively:

Ĵω f (q)= − i lim
t→0

f (ω−1(t)q)− f (q)

t
,

Ĵ R
ω f (q)= −i lim

t→0

f (qω(t))− f (q)

t
.

Let us choose one-parameter subgroups as follows:

ω1 =

1 0 0
0 cos t sin t
0 − sin t cos t

 , ω2 =

cos t 0 − sin t
0 1 0

sin t 0 cos t

 ,

ω3 =

 cos t sin t 0
− sin t cos t 0

0 0 1

 .
The transformations ω−1

k (t)q correspond to rotations about
the axes ea , whereas qωk(t) correspond to rotations about the
axes ξ a . The straightforward calculations yield the following
expressions for generators of the external transformations:

Ĵ1 = − i

(
cosφ

sin θ

∂

∂ψ
− sinφ

∂

∂θ
− cosφ cot θ

∂

∂φ

)
,

Ĵ2 = − i

(
sinφ

sin θ

∂

∂ψ
+ cosφ

∂

∂θ
− sinφ cot θ

∂

∂φ

)
,

Ĵ3 = − i
∂

∂φ
(A.5)

and

Ĵ R
1 = − i

(
cosψ

sin θ

∂

∂φ
− sinψ

∂

∂θ
− cosψ cot θ

∂

∂ψ

)
,

Ĵ R
2 = i

(
sinψ

sin θ

∂

∂φ
+ cosψ

∂

∂θ
− sinψ cot θ

∂

∂ψ

)
,

Ĵ R
3 = i

∂

∂ψ
(A.6)

for the generators of the internal transformations.
It is easy to see that all the internal generators commute

with all the external generators. This follows from the
associativity of the group multiplication: in the product
g−1qh, the result does not depend on whether one multiplies
q first from the right or from the left.

The following commutation relations hold:

[ Ĵi , v
j
a] = iεi jkv

k
a, [ Ĵ R

a , v
i
b] = iεabcv

i
c, (A.7)

where v j
a are elements of matrix V (A.1).

It should be noted that the quantities Ĵ R
a are invariant

under the external transformations; however, they transform

7
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as vector components under the internal transformations. In
turn, Ĵk are ‘external’ vectors and ‘internal’ invariants.

In terms of the Euler angles, expressions for
generators (A.5) and (A.6) as well as the composition
law look quite complicated. It is more simple to use the
Cayley–Klein parameters (4) that are transformed under
the spinor representation of the group SU (2)∼ SO(3).
By introducing 2 × 2 matrices, E = σ i ei and 4= σ aξ a ,
equation (2), which gives the relation between srf and brf, can
be represented in the following form:

4= Z† E Z , Z†
= Z−1,

Z =

(
z1

1 z1
2

z2
1 z2

2

)
=

(
z1 z2

−z̄2 z̄1

)
∈ SU (2). (A.8)

Rotations of srf (5) and brf (6) correspond to transformations
in terms of unitary matrices U and U

Z ′
= U † ZU , U, U ∈ SU (2)

and therefore, according to (A.8), elements of the matrix Z
have two kinds of spinor indices: the left one (external) and
right one (internal).

The coordinates x i of the vector x = x i ei change under
the external transformations according to the relation

X ′
= U † XU, X = σi x

i , (A.9)

where the 2 × 2 matrices U and −U correspond to the same
transformation.

Using equation (A.9) and the relation U = σ2Uσ2, it is
easy to see that σ αk β = (σk)

α
β is an invariant tensor under

SU (2). A consequence of the unimodularity of the matrix U
is the existence of the invariant antisymmetric tensor εαβ =

−εβα , ε12
= ε21 = 1. This fact allows one to lower and rise

the spinor indices, zα = εαβ zβ , zα = εαβ zβ .
In terms of the variables zαa and derivatives ∂a

α = ∂/∂zαa ,
the external and internal generators take the form

Ĵk =
1

2
(σk)

a
bzβa∂

a
β , Îk = − Ĵ R

k =
1

2
(σk)

a
bz b
α ∂

α
a .

An explicit form of the states | j m k〉 is given by
polynomials of 2J th degree placed in the following tables:

j = 1/2 :

m k −1/2 1/2

−1/2 z1 z2

1/2 z̄2 z̄1

j = 1 :

m k −1 0 1

−1 (z1)
2 z1z2 (z2)

2

0 z1 z̄2 z1 z̄1−z2 z̄2 z̄1z2

1 (z̄2)
2 z̄1 z̄2 (z̄1)

2

. (A.10)

The polynomial of second degree (1/2)zβaz a
β = z1 z̄1 +

z2 z̄2 = 1, being absent from (A.10), is a group invariant.

A scalar product, defined by integration with the invariant
measure dµ(z) on the group SU (2) (22), allows one to
verify the orthogonality of the states (A.10) and obtain the
normalization coefficients. The functions (A.10) are Wigner
functions (19) for j = 1/2 and 1.

For the sake of clarity, the figure shows the weight
diagrams of representations with j = 1/2 and 1. For the left
transformations, one mixes the states horizontally, and for
the right transformations, vertically. In particular, at j = 1,
considering only the left or only the right transformations
(respectively, at fixed eigenvalues Î3 and Ĵ3), we obtain two
different sets of three equivalent irreps (in the general case,
the number of equivalent irreps in the expansion will be
obviously equal to the dimension of this irrep). However, if
one examines both kinds of transformations at the same time,
then all the nine states with m, k = −1, 0, 1 turn out to be
related by the rising and lowering operators Ĵ±, Î±. That is,
the diagram of states of a rotator with a fixed total momentum
j coincides with the weight diagram of the representation T j, j

of the direct product SU (2)× SU (2).
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