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The evolution of a relativistic heavy-ion collision is typically understood as a process that transmutes the initial
geometry of the system into the final momentum distribution of observed hadrons, which can be described via a
cumulant expansion of the initial distribution of energy density and is represented at leading order as the well-
known eccentricity scaling of anisotropic flow. We extend this framework to include the contribution from initial
momentum-space properties, as encoded in other components of the energy-momentum tensor. We confirm the
validity of the framework in state-of-the-art hydrodynamic simulations of large and small systems. With this
framework, it is possible to separate the effects of early time dynamics from those of final-state evolution, even
in the case when the distribution of energy does not fully determine subsequent evolution, as for example, in
small systems. Specifically, we answer the question of when and how azimuthal correlations from the initial
state survive to the final state. In very small systems such as p-p, for example, initial momentum degrees of
freedom dominate over energy. Thus, even if the system forms a quark-gluon plasma that is well described
by hydrodynamics, the usual hydrodynamic picture of the transmutation of initial geometry to final momentum
anisotropy is broken. Nevertheless, we show that the hydrodynamic response to the full energy-momentum tensor
can be well understood in a similar manner as larger systems. Additionally, this framework elucidates the generic
features of the system’s evolution that are responsible for the impressive success of hydrodynamic simulations,

but which may still hold even in cases where hydrodynamics is not applicable.

DOI: 10.1103/PhysRevC.110.044909

I. INTRODUCTION

Relativistic heavy-ion collisions probe a diverse range of
exotic physical phenomena. While nominally governed by
the fundamental theories of the standard model of particle
physics, and especially quantum chromodynamics (QCD), it
is usually exceptionally difficult to make direct first-principles
computations to describe these phenomena. Instead, exper-
imental measurements can be used to inform our general
understanding of the underlying physics. That is, theoretical
descriptions of these complex dynamical processes inevitably
involve models or effective theories, with uncertain aspects
and parameters that are constrained by measured observables,
thus giving valuable insight into underlying physics. Due
to the complexity of the collision system, these observables
may be simultaneously sensitive to a large number of these
unknown parameters, and it can be difficult to isolate and con-
strain them individually. Because of this, it is of considerable
utility to characterize the dependence of observed quantities
on particular aspects of the underlying processes. In this way,
such effects can be separated and studied.

A notable example is the framework that directly relates
geometric properties of the collision system at early times
to the anisotropic momentum distribution of particles at the
end of the system evolution, expressed in relations such as the
famous eccentricity scaling of elliptic flow,

V2 = K2&2. (1)
Here V, is the elliptic flow—a particular (vector) measure

of the anisotropy of the final distribution of particles in a
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collision event. To the extent that this approximate relation
holds, it is proportional to the eccentricity—a particular (vec-
tor) measure of the initial spatial anisotropy &;, which contains
all relevant information from the early time state of the system
that determines the final elliptic flow. All relevant information
about the subsequent evolution of the system is then encoded
in the (scalar) response coefficient «,. Such a relation is now
understood as the leading order in a systematically improvable
expansion framework, with subleading contributions that can
clearly be seen in simulations [1,2]. Once established, these
types of relations can be very powerful. Their validity alone
gives nontrivial information about the behavior of the system.
Furthermore, this clean separation of effects makes it possible
to extract targeted information from experimental data [3].

Until now, this framework only contains information to
connect the initial geometry (via the initial distribution of
energy in the system) to the final particle distribution. Here we
propose to extend and generalize the framework to include the
effects of other degrees of freedom in the early time system,
which are also expected to contribute to final observables—
namely other components of the energy-momentum tensor
T"'. While these additional components are typically believed
to have subdominant contribution to measured observables
in typical heavy-ion collisions, it is important to characterize
their effects for several reasons:

(1) Since the initial stages of a collision are not well un-
derstood, it is not actually known for certain how large
or important these contributions are. It thus becomes

©2024 American Physical Society


https://orcid.org/0000-0002-3183-5508
https://orcid.org/0000-0002-9817-0272
https://orcid.org/0000-0002-0367-7055
https://ror.org/036rp1748
https://ror.org/047426m28
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.110.044909&domain=pdf&date_stamp=2024-10-21
https://doi.org/10.1103/PhysRevC.110.044909

SOUSA, NORONHA, AND LUZUM

PHYSICAL REVIEW C 110, 044909 (2024)

interesting to quantify their effects, in order to put
limits on their possible value.

(2) Even if the effects are typically small, they may have
outsized effect in certain situations—e.g., specially
chosen observables or observables in certain systems
such as collisions between smaller ions.

(3) This may give additional insight into the framework
itself and the minimal requirements for its validity.
While it is inspired by (and usually tested with) hy-
drodynamic models, it may in fact be more general,
similar to how hydrodynamics itself may be valid
even far from equilibrium [4-6]. Thus, when we see
signatures of geometric scaling—or its generalization
here including momentum degrees of freedom—we
can better interpret the implications.

In Sec. II, we review this framework in its current form
and its derivation, being careful to specify the minimal as-
sumptions required. In Sec. III, we present an ansatz for the
inclusion of additional components of 7#"; namely, the mo-
mentum density and stress tensor. We provide some additional
motivation for this ansatz in Sec. IV. In Sec. V we test this
proposal using state-of-the-art hydrodynamic simulations. Fi-
nally, we summarize our conclusions and our outlook for the
future.

Notation. . We use natural units where 7 = ¢ = 1.

II. REVIEW: CUMULANT EXPANSION OF INITIAL
ENERGY DENSITY

The starting point is the assumption that knowledge of
the energy-momentum tensor at some time 7y is sufficient
to predict a particular observable of interest to some desired
accuracy. Specifically, we posit that

(1) the final momentum-space distribution function f
of particles in a collision event is a deterministic
functional of the energy momentum tensor 7*" and
relevant conserved currents {j/‘} at some time 1o,

dN
fP', T — 00) = EE = FIT™ &, w), [ & )]
(2)

It is typical to use a quantity such as rapidity y or pseudo-
rapidity n to characterize the momentum along the direction
of the beam, while the transverse momentum can be char-
acterized with a magnitude pr and azimuthal angle ¢,. The
dependence on angle can be nicely characterized by a Fourier
series

dN =

E——=N®,pr) Y Va(n, pre ", 3)
d’p

n=—0o0

where the anisotropic flow coefficients V, are two-

dimensional (2D) vectors, written here as a number in the

complex plane. Each rotational mode then has its own relation
Vo = Fu[TH (R, 10), {1, 70)}]. “

More specifically, we assume that this is a good approxima-
tion for describing a particular measurement, which may be

true even if the assumption does not hold more generally. We
note here that this assumption is not general—the evolution
of an arbitrary physical system can in principle depend on
an infinite number of initial quantum correlations, classical
functions, etc. The assumption that only the (expectation value
of) the energy-momentum tensor and conserved currents are
sufficient to determine the evolution of the system is highly
restrictive. Nevertheless, while this assumption is motivated
by the success of hydrodynamic simulations, the validity of
the hydrodynamic equations may not strictly be required.
Nor does the validity of hydrodynamics automatically mean
that it is a good assumption. For example any hydrodynamic
fluctuations that might be present are neglected. Likewise, it is
useful only to the extent that knowledge of some single-body
distribution function f(p*) is useful. Either multiparticle cor-
relations can be neglected, or are specified with their own
analogous relation.

The idea, then, is to characterize this “system response” JF
as precisely as possible. To do this, it is useful to first charac-
terize the initial condition, in a way that important information
can be separated from unimportant information.

The general principle that we use for this separation in-
vokes the presence of a hierarchy of length scales. We posit
that

(2) the structure of the initial conditions at small scales has
less importance for the determination of final observ-
ables than structure at larger scales.

As with the first assumption, Eq. (2), this is motivated by
hydrodynamics simulations—traditionally hydrodynamics is
thought of as a description of long-wavelength modes in a
system, such that short-wavelength modes are not relevant.
Again, this does not necessarily mean that the validity of
the framework is restricted to hydrodynamic systems, nor is
its applicability guaranteed by the validity of hydrodynamics.
Nevertheless, its success in describing simulations has already
proven its utility and suggests that the assumptions are justi-
fied, at least in typical applications.

This separation into a hierarchy of scales is naturally
achieved with a spatial Fourier transform of the initial-state
fields. To make this explicit we first make various approxi-
mations, which can later be relaxed. To start, we assume that
additional conserved currents (such as the baryon current) can
be neglected. This is typically a good approximation at the
highest collision energies, where chemical potentials are close
to zero in a large space-time region of the collision system. We
leave the study of conserved currents to future work.

Second, we neglect the longitudinal dependence of the
initial state. For information on this approximation and how
to relax it, see Refs. [7,8], whose methods can be similarly
applied to the results of this work.

It is usually assumed that the most important component of
the energy-momentum tensor is the energy density 7°°. The
goal of this work is to relax this assumption, which will be
done in the following section. For now, we finally have

Vi =FITT (XL, 10)], &)
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and we need to characterize only a single scalar field p, which
is a function of two spatial dimensions:

p(L) =T (xL). (6)

We take a two-dimensional Fourier transform to obtain a
cumulant! generating function W (k)

ME) = / d’x p(E) e ke, (7

In this way, the behavior of the generating function at small
k= |I€ | | represents properties of the initial condition at large
length scales, and vice versa. So we can naturally create a
hierarchical set of quantities as coefficients of a Taylor series,
expanded around k = 0

- 1 .
Wk =3 — Wonk"e "%, ®)

where we simultaneously decompose the coefficients into ro-
tational modes via Fourier series in angle ¢. (Recall that k
is the magnitude of the Fourier variable k 1, while ¢y is its
azimuthal orientation.)

Therefore, the initial density is fully characterized by the
discrete set of cumulants W, ,,, which are cleanly ordered in
terms of the length scales they represent. In fact, cumulants
with smaller m represents larger scales, and are more impor-
tant for determining the final V,, according to ansatz 2.

In addition, they are separated into rotational modes la-
beled by n, which will aid in constructing estimators for
V.., which also have specific rotation properties. Specifically,
if the system is rotated by some azimuthal angle, ¢ —
¢ + &, then

Vi, — Vpe™,
Wy = Wyme™. )

We note also that the cumulants constructed this way are
translation invariant,” like the momentum-space observables
V... These properties will make it simpler to construct estima-
tors with the correct symmetries.

So finally we can formally write the system response as
a function of cumulants (rather than a functional of the ini-
tial density), with the sensitivity of the response ordered by
index m

dN
E— = Wim)), 10
p FUWm}) (10)
0 0
3Wim > BWi,,,r form < m'. (1D

Note that this is not the same as assuming that the initial den-
sity has the property W, ,, > W, . It is instead a statement
about the system response to the initial conditions.

'The language of cumulants is borrowed from probability theory
by analogy—if p were a probability density, then W, ,, would be a
cumulant in a more traditional sense.

>The exception is W) = (x + iy) which represents the energy-
weighted center of the system and contains all existing information
about absolute position.

In general each cumulant is a dimensionful quantity, which
must be compared with some scale in order to construct
estimators for the (dimensionless) flow coefficients V,. In
principle a collision system can have a number of relevant
scales. However, for a given collision system (and especially
in a fixed centrality interval) many of the scales do not vary
greatly. So in practice it suffices to make the simple and
natural choice of the transverse size R of the system as defined
by the lowest cumulant

R? =Woo = (%1 — @0)el)e. (12)
with the brackets representing an energy-weighted average
[d?x - T (XL)

f dzxLTTT()_Cl)

()= (13)

We can then define dimensionless quantities for the
anisotropic (n # 0) cumulants

_ ‘/Vn,m
‘?n,m = — Rm .

(14)

Finally, we posit that

(3) the system response f({s,.,}) can be expressed as a
power series in the anisotropy coefficients &, .

Thus, in the end, we have a systematic double expansion,
with terms ordered in importance according to the power
series,® as well as the value of m in each factor &,,,. One
cannot only determine a leading order estimator for each har-
monic V,, but also systematically improve it with higher-order
corrections.

The most familiar estimator is for V,. The lowest cumulant
with 7 # 0 has m = 2,* and so the leading order estimator is
a linear relation with a single power of the lowest cumulant
withn = 2:

Véeso =K22822 (15)
b g id\\2
e = ety .
(lrei® — (rei)|®)p
centered (r262i¢>E
— 17
K2 (72>E > (17)

where the last line is written in a centered coordinate system
with (x)g = (y)g = 0, and an unimportant numerical factor
has been absorbed into the definition of «;. To leading order,
all relevant information about the initial state is contained in
€2, while all relevant information about the system response
to this initial state is contained in the response coefficient .
The next correction is either the next-order linear term &, 4
or nonlinear terms with m < 4 such as 8%’3 (m = 3) or even
82,2|82,2|2 (which involves only m = 2 cumulants but is order
three in the power series). The general principles of the cumu-
lant expansion do not dictate which type of correction is more
important but must be verified for the system in question.

3The convergence properties of this series are not known. We
assume that it is, at least, an asymptotic series.
“See the Appendix for more details about the cumulant expansion.

044909-3



SOUSA, NORONHA, AND LUZUM

PHYSICAL REVIEW C 110, 044909 (2024)

For V3, the expansion is similar. There is no possible term
involving only m = 2 cumulants (note that to have the correct
rotation property, the sum of n values must add to 3, so we
need at least one odd cumulant in each term’). So the leading
estimator is again linear,

VY = 35833 (18)

((re' — (re®)))i

=— . - 19
e — (re?) )i 1

centered (r3 93i¢>E
—K3 (r2>2/2 N (20)

where a centered coordinate system is again defined by
(r®)g = 0. Corrections again include possible linear (e35)
and nonlinear (e.g., £ 2 3) contributions.

Other predictors can be more complicated. For Vj, for
example, one can have a linear estimator €44, Which is or-
der m = 4, or a quadratic estimator 3 ,. Each possible term
is lower in one part of the double expansion and higher in
the other, and it is not obvious which is more important in
a particular system. In general, both contributions can be
important [1].

As a summary, by making three independent assertions
(labeled 1-3 above), we were able to construct a systematic
expansion for estimating the flow coefficients V,,, representing
the rotational modes of the final particle spectrum. It is useful
to note a few important properties of the resulting estimators:

(a) The symmetries are manifest:

(1) Translation invariance. The flow coefficients V,
are translation invariant, as are the building block
cumulants W, ,,,,

(ii) Rotations. Each cumulant, as well as each product
of cumulants, have a well-defined rotation prop-
erty [see Eq. (9)] that can be matched with the
relevant flow harmonic.

(b) The terms are ordered in importance (according to
hypotheses 2 and 3), so that the estimator can be sys-
tematically improved to arbitrary order.

III. ANSATZ FOR INCLUDING ADDITIONAL
COMPONENTS OF T#*

In addition to the initial geometric distribution of energy,
the final-state momentum distribution of particles can also
depend on momentum degrees of freedom in the initial state.
Hydrodynamic evolution, for example, depends on the en-
tire energy-momentum tensor as initial conditions for the
equations of motion. We therefore would like to relax the
assumption made in Eq. (5) of Sec. II, and include other
components of the energy-momentum tensor 7/".

Our proposal is to include the additional effects at the level
of the scalar field p of Eq. (6). That is, we write

p(1) =T (F) —ad TG + B39, TV (x) (21

Recall that W, | represents the center of the system and is not an
appropriate estimator for V,,. The lowest translation-invariant cumu-
lant withn = 1is W, 3.

and construct a cumulant expansion exactly as before, follow-
ing Eqgs. (7) through (14) without alteration and constructing
estimators as an ordered power series in the generalized ec-
centricities &,

The new contributions each come with an associated (di-
mensionful) response coefficient that encodes information
about the system response to these aspects of the initial
conditions—o« gauges the importance of momentum density
relative to the energy density while 8 represents the relative
importance of initial transverse stress. As with the coefficients
k that multiply each term in a given estimator, these new
coefficients should depend only on the subsequent evolution
of the system rather than any aspect of the initial state.

To illustrate the results of this we list the lowest-order
estimators for elliptic and triangular flow. We first define the
notation

U=T"™+iT"?, (22)

C =T —T%+2T7, (23)
[d*x - U

Yy =l 24

G = T 24)

_ deXJ_"'C()-éJ_)

(e = —f P TG0 (25)

so that U is a complex representation of momentum density
while C is a complex representation of (the two degrees of
freedom of) the traceless part of the 2D stress tensor. Note
that, unlike the brackets of Eq. (13), these subscripted brackets
do not represent weighted averages but just convenient ratios
that show up in the final cumulants.

The relevant cumulants are then

Wa o o (rPe?) p—2a(re®)y — 28(1)c — ((re?) g — a(1)y)?,

(26)
Wsz o (Pe™)p — 3a(rre®)y — 6B(re?)c — ((re)g
—a(1)y)BLr*e™) e — 2a(re?)y —2B(1)c]
—2[(re”)g — a(l)y]), 27)

and the final estimators are constructed as in the previous sec-
tion, from Eq. (13). A more detailed derivation of cumulants,
including numerical factors is shown in the Appendix.

As before, we can always simplify these expressions with
a judicious choice of coordinate center. For example, one can
choose a coordinate system where Wy | = (re’) — a(l)y =
0. Note that if the net momentum is not zero, then (1)y # O,
and this is not the same center of coordinates where (re’?) = 0
that simplifies the expression for the denominator R. This
coordinate center is then also dependent on response coeffi-
cient «v. Typically, however, the net transverse momentum is
negligible, so the two choices of coordinate center coincide.
Nevertheless, the recentered estimators can then be written as

(est) (r*e??)g — 2a(re)y — 2B(1)c
Vz = —K2 - - 5
(Ire'® — (re*)g|*)E
(Pe)p = 3a(r’e)y — 6B(re)c
(Irei® — (rei®) |3k

; (28)

VN = i, (29)
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In this form one can more easily see the role of the response
coefficients «,, «, B, and the factors that represent properties
of the initial state. It is interesting to compare the contribution
from initial transverse stress to elliptic flow, to the quantity
known as “momentum eccentricity,” which has been used in
the past as a proxy for elliptic flow itself at the end of the
system’s evolution [9] and recently as an initial-state estimator
for elliptic flow [10]:

[ d?x (T —T?)
Ep = .
P [ d2x (T + Tw)

One can see that it almost coincides with the term (1)¢ in the
estimator proposed here.

With this ansatz we have retained all the important prop-
erties of the estimators listed at the end of the previous
section (manifest symmetries and systematic improvability),
as well as one additional desired property. While the energy
density is nonzero anywhere there is matter, this is not true for
momentum and stress, which can be large in principle but can
also be negligible. Therefore we expect that if we uniformly
rescale momentum density or stress to zero, its contribution
to the final anisotropic flow should vanish. This is in contrast
with the case of energy density, where a uniform rescaling
should not necessarily result in a vanishing anisotropic flow.
The proposed framework has this property, and in addition is
well behaved in the case where net momentum vanishes.

We finally note that this proposal, in order to have all
the generic properties that one expects for a good predictor,
is quite restrictive. Specifically, while each term in an esti-
mator in the original framework comes with an independent
unknown response coefficient, only two additional response
coefficients have been added here, and a single value for each
of the two coefficients should correctly describe all azimuthal
harmonics, and any higher-order corrections. This is a very
restrictive condition, which can be used to test the validity of
the framework. We return to this in Sec. V.

(30)

IV. A THOUGHT EXPERIMENT

This ansatz has all the expected and desired properties
for the construction of estimators, including systematic im-
provements, and we see that there is evidence from numerical
simulations that the leading-order estimators predict well the
results of hydrodynamic simulations. However, it may not be
obvious where it comes from. In this section we illustrate why
Eq. (21) represents a natural quantity to consider by way of
the following example:

Consider the case where at some time 7y there are no
off-diagonal elements of the energy-momentum tensor, so that
the initial energy density alone is sufficient to predict the final
particle distribution in a given event. As reviewed in Sec. II,
we can make accurate predictions of the final flow coefficients
by performing a cumulant decomposition of the initial energy
density p = T*"(1p), and making ratios to construct estima-
tors.

Now imagine that we do not know exactly what is 7y, and
so we want to construct estimators from the state of the system
at some time that might be slightly different, T = 9 4+ §t. The
final particle distribution is the same, and so the estimators

constructed at time 7 should be close to those that we know
work at time .

That is, we want cumulants of the energy density at time
79, but written in terms of quantities at time 7. Using local
conservation of energy we can write

i 1
arTTT('L') = —aiT”(‘[) — anTTW — T _— ;TTT (31)

[

1

—[T"(t) = T ()] (32)

8t

So our generating function can be written as

p(EL) =T (70) (33)
x4 .

~ <1 + —)T”(r) +6819;T™(t) + 18tT" (7).

T

(34)

Here we assume an approximate boost invariance to neglect
the derivative of the longitudinal momentum density 9,77".

Again, we know that a decomposition of this generating
function gives a good estimation of the final flow. In particu-
lar, we note that the divergence of the transverse momentum
density ;7% appears naturally as an additive contribution to
the generating function.

Next, we can use the conservation of momentum to relate
the momentum density to the stress tensor

. , . 1 .
3T (t)=—8,;,T(t)—38,T" — =T" (35)
’ T
1 .
~ S—[T”(r) —T"(10)] (36)
T
~ T*(1)/s7, 37)
. . 1 .
= Sra,-T“(r) ~ —8,~8jT” — —aiT“. (38)
T

So considering a higher order in §; we can replace some or
all of the divergence term with an expression involving the
divergence of the transverse stress 7":

ot
pEL) ~ (1 —+ T)T”(T) + 8tT" (1)

8 ; .
+ 5T<7/ - %)8,-T”(t) — (1 —y)8t%9;9;T",
(39)

for some value of 0 < y < 1.

Except for the term involving longitudinal pressure 777,
the generating function indeed takes the form of our
ansatz (21).

From this exercise we can make a few observations. In
general, it will not be the case that the system is dominated
by energy density at a time infinitesimally close to the con-
sidered initial time (if ever). But, nevertheless, it serves as
an illustration of why the three particular terms of our ansatz
(21) can naturally appear in an additive combination—while
the different components of 7" can rapidly vary individually,
conservation of energy and momentum ensure that a sum
of this form evolves more slowly and forms a more stable
function from which to construct final-state estimators.
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We also note that this argument suggests that incorporating
the longitudinal pressure 77" could result in an even better
estimator. However, we note that this quantity is nonzero even
in previous studies that do not consider initial momentum
degrees of freedom. Since the energy density alone predicts
very accurately the final flow in this case, we can guess that the
anisotropy of 7" is typically highly correlated with 77, and
so including it may not significantly improve flow estimators.
In any case, in this work we focus on including momentum
degrees of freedom, and so we leave to future work the effect
of initial longitudinal pressure.

V. NUMERICAL VALIDATION

To test the proposed flow estimators in various collision
systems, we perform state-of-the-art hydrodynamic simula-
tions of Pb-Pb, p-Pb, and p-p collisions, as performed at the
CERN Large Hadron Collider (LHC). For initial conditions
we use the [P-Glasma model [11,12], which provides a full
(2D) energy-momentum tensor that can be used to initial-
ize hydrodynamic evolution, simulated with MUSIC [13]. All
hydrodynamic parameters were taken from a comprehensive
Bayesian analysis [14]. The hydrodynamic stage is followed
by the UrQMD hadronic afterburner [15,16], with oversampled
events to accurately reconstruct the underlying particle distri-
bution in every hydrodynamic event.

In each simulated event, one can compare the initial-state
estimator V") (k,, o, B) proposed here with the actual flow
harmonic calculated from produced hadrons V,,. A natural way
to quantify the event-by-event success of the estimator is to
compute the Pearson correlation coefficient between the two
quantities [17]:

Re{V, V(e07)
O, p) = ———2 L, (40)

(Va2 [ V))
where in this section the angle brackets are defined as
1
(o) = Z 41

Nevents

events

A maximal value of Q, = 1 implies a perfect estimator in
every event V,, o« V(") while a value of zero means they have
no (linear) correlation, indicating a very poor estimator.

The estimators (28) depend on the usual response coeffi-
cients k,, associated with the response of each harmonic to
the initial energy distribution, as well as two new response
coefficients that represent the (relative) importance of initial
momentum « and stress S to the hydrodynamic response.
However, the coefficient «,, is only an overall multiplicative
factor, and so it does not affect the correlation coefficient [it
cancels in the numerator and denominator of Eq. (40)].

To determine the best value of «,, we introduce the event-
by-event error of the estimator of each harmonic

%_n(Knv a, ﬂ) = Vn - V,EESt)(Km a, ,3) (42)

We can choose «,, to minimize the rms error of that respective
harmonic over all the events in a centrality class. Using the

notation
Ve, @, B) = K £a(a, B), (43)
the optimal value for a fixed & and g is then
Re(V,e,)
kn(a, B) = ——— 44)
’ (leal?)

The rms error in this case can be written as

(e, BIP) = (IVal®) — ko (e, B)Jen(er, B)IP),  (45)

In Fig. 1, we show O, and Q3 in simulated Pb-Pb, p-Pb,
and p-p systems for various choices of response coefficients
a and B. The choice @« = = 0 corresponds closely to the
usual eccentricity, which neglects momentum degrees of free-
dom in the hydrodynamic initial condition. We can see that,
in large systems, this eccentricity already gives an excellent
estimator for the final flow coefficient, event-by-event, with
0,(0,0) >~ 1 for most centralities. However, in smaller col-
lision systems the usual eccentricity becomes less and less
accurate as a predictor for final flow, such that Q,,(0, 0) is gen-
erally below 0.4 in proton-proton collisions. This is consistent
with the results of Ref. [10], which found that momentum
degrees of freedom can become more important than spatial
eccentricity in smaller systems.

We also show in Fig. 1 the Pearson correlation coeffi-
cients for the full estimators when the response coefficients
are tuned to maximize each harmonic individually, which we
notate as O (a7, B2) and Qs(s, B3). We can see that unlike
the usual eccentricities the proposed estimators are excellent
in all cases, achieving Q> > 0.9 and Q3 > 0.7 even in low-
multiplicity p-p collisions.

‘We note, however, that our framework does not have inde-
pendent response coefficients for each harmonic but instead
shares a single set of new coefficients «, . Therefore, an
important nontrivial test of the proposed estimator is whether
all harmonics are compatible with the same value of « and
B. One way to test this is to compute @, with the optimal
values of & and B for a different harmonic—i.e., Q> (w3, B3)
and Q3(ay, B2). These are also shown in Fig. 1. Remarkably,
the estimators still give an excellent description of the simula-
tion results, giving very strong evidence of the validity of the
proposed framework.

Finally, we define a harmonic-summed rms error

(&, BP) = (1E2(a, BIP) + (IE3(er, IIF),  (46)

which we can minimize by choosing optimal values @ and B.
We show Q,(@, B) and Q3(&, B) in Fig. 1. One can see that
we still have an excellent estimator in all cases.

For further illustration we define a sort of likelihood func-
tion, which quantifies how good the estimator is for various
values of o and B, using the energy-only estimator as a refer-
ence (¢ = B =0),

2
(I€ (e, BI )). @7

(16(0,0)[%)

The likelihood is maximized when the error is minimized,
with an exponential decrease when the error becomes large.

E(O{, ﬂ) = exp <_
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FIG. 1. Pearson correlation coefficient Q,(«, 8) (40) between final flow V, and flow estimators Vfl“’ ) constructed from initial energy-
momentum of hybrid hydrodynamic simulations with [P-Glasma initial conditions. Response coefficients (o,, 8,) and (a3, B3) are the values
that minimize the error (45) (and maximize Q,) for each harmonic, respectively, while values (&, B) maximize the harmonic-combined
error (43). 0,(0, 0) represents the usual energy-only estimator, for reference, while Q,(«, 0) and Q,(0, §) neglect only the initial stress
or momentum density, respectively, to quantify the importance of each individual contribution. Error bars are statistical, estimated from a

jackknife resampling.

In Fig. 2, we show a contour plot of L(«, 8) in central
collisions along with the maximal point (&, 8) and the points
that optimize each individual harmonic, (a2, B2), (o3, B3).

It is interesting to know which contribution is more
important—the anisotropy due to initial stress, or that of the
spatial distribution of the initial momentum density (at least
in this particular model of IP-Glasma + hydro). We test this
in Fig. 1 by plotting Q,(0, 8) and Q,(&,0). We see that
neglecting the momentum density (setting @ = 0) has a much
smaller effect than the initial stress, which seems to be the
dominant momentum-space hydrodynamic response except
for low-multiplicity proton-proton collisions, where momen-
tum density becomes dominant.

VI. CONCLUSIONS

We proposed a systematically improvable framework for
estimating final flow coefficients V,, in relativistic heavy-ion
collisions from the initial energy-momentum tensor. This ex-
tends previous work which only considered the initial energy
(or entropy) density, and instead estimators are derived that
consider the system response to these additional aspects of
the early time state of the system. Similarly to how the system
response to the initial distribution of energy is contained in
coefficients for each harmonic «,, the additional information
about the system response to these other aspects of the initial

condition is contained in only two additional response coeffi-
cients, o and 8.

Using state-of-the-art hybrid hydrodynamic simulations
with IP-Glasma initial conditions we found that, while the
usual eccentricities become poor estimators in smaller col-
lision systems, our estimators remain excellent, even at
lowest order in the smallest proton-proton collision systems.
Remarkably, estimators for different harmonics defined si-
multaneously with the same values of response coefficients
o and B still provide an excellent description of simulation
results, providing powerful evidence of not only the utility of
the estimators, but also of the correctness of the framework as
a whole.

These results have several important implications. First is
the practical matter that full simulations are computationally
costly. Knowing that one is able to accurately predict final-
state observables by calculating only the early time condition
of the system can potentially save a significant amount of
computing time. Beyond this, it provides insight into how
different aspects of the initial condition manifest in final ob-
servables, perhaps allowing for clean separation of initial-state
properties, as done with the usual eccentricity estimators in
large collision systems.

Finally, the success of this framework provides some in-
sight into the meaning of the success of hydrodynamic models
in heavy-ion collisions. While inspired by hydrodynamics, the
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FIG. 2. The “likelihood” function, Eq. (47), as a function of re-
sponse coefficients « and B for the 5%-highest multiplicity events in
three collision systems—p-p, p-Pb, and Pb-Pb. The optimal single-
harmonic values (w, B), (a3, B3) have similar likelihood to the
harmonic-combined optimal value (&, B), giving powerful evidence
for the proposed framework.

clearly stated postulates underlying the framework may well
be more general, and it will be interesting to see whether other

physical models also satisfy the postulates, and whether the
various aspects of the “collective” paradigm of high-energy
nuclear collisions are more general than hydrodynamics itself.
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APPENDIX: LIST OF CUMULANTS

We take the 2D Fourier transform of the generating func-
tion Eq. (21),

(k) = /dle[T” — ik T™ — Bkik; TV e~ %% (A1)

and expand in a Maclaurin series around |k | = 0. Assuming
a hierarchy of importance of length scales, we truncate at
SOmMe maximum 772,

Max

R 1
plkn) = — X_;)pmwk)k'". (A2)

To separate rotation modes, we decompose its Maclaurin
coefficients in a Fourier series with respect to azimuthal

angle (¢):

1 Minax

p(l-él) = % Z Z pn,mkme_in¢k-

" m=0n=—m

(A3)

The general moment can thus be expressed as

27 (—i)"m! / 2 m_ing
Prm = Sy | 4 e T
() ()

_ (X(%)r(m_l)ei(n_le _ a(%)r(’"—”e"(”H)"’U*
= B )(mgr-nyr e

= Bl DB

— B Ym-myr "D T ], (A4)
where T is the following trace written as
T=T"+T7. (AS)

Note, however, that the trace does not contribute to the leading
estimators, where n = m.

To obtain translation-invariant cumulants, we define a log-
arithmic function of p(¥,):

W (k1) = In[p(k,)],

and, similarly, we expand it in Maclaurin and Fourier series

(A6)

Minax

Wk)=>" i W, ke

m=0n=—m

(A7)
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Then, some of the lowest cumulants can be written as

Wi = SP1gre)s — ety (AS)
»wz=ﬁjfuﬂﬂﬂg—2mew—2mnc

— ((re)g —a(1)y)], (A9)
%3=£1XUP#%E—3mﬂﬁ%U—6mM”k

—((re?)g — a(l)y)
x (3((r*e®) g — 2a(re®)y —2p(1)c)
—2({re")g — a(l)y)H)].

Cumulants of higher order have a rapidly increasing num-
ber of terms. We include a few here, simplified by writing in

(A10)

terms of moments p,, ,,:

3(_1)3 3 ip i —i¢

Wis = 3 [(r e¥)p — 2a(re®)y —4B(re”"%)c
—4B(re)r — p2op-1.1 — 2p02011 + 207 10-1.1],

(A11)

(_l)4 i i _i

Wia = 6 [(r4e4¢)E — 4a(r3e 3¢)U — 12,3(r2e 2¢>C
—4p33p1.1 — 303, + 1202007 — 6011, |, (A12)
(_l)s i i _i

Wss = —5 [(FPe®?) g — Sa(r*e™)y — 208(re )¢

+20p3303 5 — 6002207 1 +5(603 5 — paa) P
— 10022033 + 2497 1. (A13)
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