
LETTER Communicated by Thomas Kreuz

Comparison of Different Spike Train Synchrony Measures
Regarding Their Robustness to Erroneous Data From
Bicuculline-Induced Epileptiform Activity

Manuel Ciba
manuel.ciba@th-ab.de
Robert Bestel
robert.bestel@mailbox.org
Christoph Nick
christoph.nick@web.de
Biomems Lab, University of Applied Science Aschaffenburg,
63743 Aschaffenburg, Germany

Guilherme Ferraz de Arruda
gui.f.arruda@gmail.com
ISI Foundation, 10126 Turin, Italy

Thomas Peron
thomaskaue@gmail.com
Institute of Mathematics and Computer Science, University of São Paulo,
São Carlos SP 13566-590, Brazil

Comin César Henrique
chcomin@gmail.com
Department of Computer Science, Federal University of São Carlos,
São Carlos SP 13565-905, Brazil

Luciano da Fontoura Costa
ldfcosta@gmail.com
Instituto de Física de São Carlos, University of São Paulo,
São Carlos SP 13566-590, Brazil

Francisco Aparecido Rodrigues
francisco.rodrigues.usp@gmail.com
Institute of Mathematics and Computer Science, University of São Paulo,
São Carlos SP 13566-590, Brazil

Christiane Thielemann
Christiane.Thielemann@th-ab.de
Biomems Lab, University of Applied Science Aschaffenburg,
63743 Aschaffenburg, Germany

Neural Computation 32, 887–911 (2020) © 2020 Massachusetts Institute of Technology
https://doi.org/10.1162/neco_a_01277

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/5/887/1865324/neco_a_01277.pdf by U
niversidade de São Paulo user on 26 M

arch 2021



888 M. Ciba et al.

As synchronized activity is associated with basic brain functions and
pathological states, spike train synchrony has become an important
measure to analyze experimental neuronal data. Many measures of
spike train synchrony have been proposed, but there is no gold standard
allowing for comparison of results from different experiments. This
work aims to provide guidance on which synchrony measure is best
suited to quantify the effect of epileptiform-inducing substances (e.g.,
bicuculline, BIC) in in vitro neuronal spike train data. Spike train data
from recordings are likely to suffer from erroneous spike detection, such
as missed spikes (false negative) or noise (false positive). Therefore,
different timescale-dependent (cross-correlation, mutual information,
spike time tiling coefficient) and timescale-independent (Spike-contrast,
phase synchronization (PS), A-SPIKE-synchronization, A-ISI-distance,
ARI-SPIKE-distance) synchrony measures were compared in terms of
their robustness to erroneous spike trains. For this purpose, erroneous
spike trains were generated by randomly adding (false positive) or
deleting (false negative) spikes (in silico manipulated data) from ex-
perimental data. In addition, experimental data were analyzed using
different spike detection threshold factors in order to confirm the robust-
ness of the synchrony measures. All experimental data were recorded
from cortical neuronal networks on microelectrode array chips, which
show epileptiform activity induced by the substance BIC. As a result of
the in silico manipulated data, Spike-contrast was the only measure that
was robust to false-negative as well as false-positive spikes. Analyzing
the experimental data set revealed that all measures were able to capture
the effect of BIC in a statistically significant way, with Spike-contrast
showing the highest statistical significance even at low spike detection
thresholds. In summary, we suggest using Spike-contrast to complement
established synchrony measures because it is timescale independent and
robust to erroneous spike trains.

1 Introduction

Synchrony is generally accepted to be an important feature of basic
brain functions (Engel, Fries, & Singer, 2001; Ward, 2003; Rosenbaum,
Tchumatchenko, & Moreno-Bote, 2014) and pathological states (Pare,
Curro’Dossi, & Steriade, 1990; Fisher et al., 2005; Truccolo et al., 2014; Ar-
nulfo et al., 2015). Measuring synchrony between neural spike trains is a
common method to analyze experimental data, such as recordings from in
vitro neuronal cell cultures with microelectrode arrays (MEA; Selinger, Pan-
crazio, & Gross, 2004; Chiappalone, Bove, Vato, Tedesco, & Martinoia, 2006;
Chiappalone, Vato, Berdondini, Koudelka-Hep, & Martinoia, 2007; Eisen-
man, Emnett, Mohan, Zorumski, & Mennerick, 2015; Flachs & Ciba, 2016)
or from in vivo experiments (Li, Doyon, & Dani, 2011). As an example for in
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Comparison of Spike Train Synchrony Measures 889

vitro neuronal cell cultures on MEA chips, Sokal, Mason, and Parker (2000)
reported that synchrony reliably increased due to the substance bicuculline
(BIC), while the usual applied quantification method “spike rate” increased
or decreased.

In order to quantify synchrony, many spike train synchrony measures
have been proposed based on different approaches. Some of them belong
to the class of timescale-dependent measures. This means that at the be-
ginning of the analysis, the user has to select the desired timescale (e.g.,
bin size) (Selinger et al., 2004; Cutts & Eglen, 2014). The second class con-
tains timescale-independent measures, which automatically adapt their
timescale parameter according to the data (Satuvuori et al., 2017; Ciba, Iso-
mura, Jimbo, Bahmer, & Thielemann, 2018). However, there is no gold stan-
dard for the evaluation of synchrony in experimental data. This is because
there is no common definition of synchrony between spike trains. To be
more specific, each synchrony measure can be considered as its own defini-
tion of synchrony, extracting different features from the data. This situation
is unsatisfactory because data interpretations are not comparable. There-
fore, it is desirable to have some guidance on which synchrony measure to
use for specific data.

When it comes to the analysis of experimental spike train data, the data
are likely to suffer from erroneous spike detection. For example, spikes
are missed as they are buried in noise (false negative) or noise is misinter-
preted as spikes (false positive). At low signal-to-noise ratios (SNR), even
advanced spike detection methods are affected by missed or misinterpreted
spikes (Lieb, Stark, & Thielemann, 2017).

Hence, a synchrony measure that operates on spike trains from experi-
mental data should be as robust as possible to such erroneous spike trains.

In order to develop guidance in analyzing epileptiform spike trains
from in vitro neuronal networks, the performance of different synchrony
measures was compared with the focus on robustness to erroneous spike
trains. Well-known timescale-dependent measures like cross-correlation
(CC), mutual information (MI), and spike time tiling coefficient (STTC),
and timescale-independent measures, like Spike-contrast, phase synchro-
nization (PS), A-SPIKE-synchronization, A-ISI-distance, A-SPIKE-distance,
and ARI-SPIKE-distance were applied to two types of data sets: in silico
manipulated data and experimental data.

The in silico manipulated data are based on the experimental data and
were used to simulate erroneous spike train data by randomly adding
spikes (false positive) or deleting spikes (false negative). As a require-
ment, the synchrony measures should be robust to added and deleted
spikes. The experimental data were recorded from primary cortical net-
works grown in vitro on MEA chips. Neuronal networks were exposed
to the γ -aminobutyric acid (GABAA) receptor antagonist BIC in order
to increase the synchrony level of the network activity. Spike detection
threshold factor was varied in order to vary the level of false-positive and
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890 M. Ciba et al.

false-negative spikes. The synchrony measures were tested for their ability
to find significant synchrony changes induced by BIC.

2 Material and Methods

2.1 Synchrony Measures. In this section, we briefly describe the syn-
chrony measures used in this study. To consider a wide range of synchro-
nization measures, we chose a representative group of linear and nonlinear
methods, as well as timescale-dependent and -independent methods. (For
a detailed definition see the respective original publication in the following
paragraphs.) Since there is no specific publication on how to apply MI and
PS to spike train data, their definitions are provided in the appendix.

We first look at timescale-dependent methods.

• Cross-correlation (CC)–based methods are probably most popular to
measure synchrony (Cutts & Eglen, 2014). Here we use a definition by
Selinger et al. (2004) that was proposed for in vitro experiments and
was also used by Chiappalone et al. (2006). According to the definition,
synchrony between two spike trains is measured by binning the spike
trains into a binary signal and then calculating the cross-correlation with-
out shifting the signals. Selinger et al. (2004) proposed a bin size of
500 ms and was able to detect synchrony changes in spinal cord cultures
mediated by the chemicals BIC, strychnin, and 2,3-dioxo-6-nitro-l,2,3,4-
tetrahydrobenzoquinoxaline-7-sulphonamide (NBQX). Due to the bin size
parameter, CC is timescale dependent. A bin size of 500 ms is also used in
this study (see section 2.4).
•Mutual information (MI) is a measure from the field of information the-

ory and is, in contrast to CC, able to capture nonlinear dependencies. In this
work, MI measures the synchrony between two spike trains by binning the
spike trains into binary signals and quantifying the redundant information
(Cover & Thomas, 2012). Therefore, this version of MI is timescale depen-
dent using a bin size of 500 ms (see section 2.4).
• Spike time tiling coefficient (STTC) measures the synchrony between two

spike trains and has been proposed by Cutts and Eglen (2014) as a spike
rate–independent replacement of the synchrony measure correlation index
by Wong, Meister, and Shatz (1993). Reanalysis of a study of retinal waves
using STTC instead of the correlation index significantly changed the re-
sult and conclusion (Cutts & Eglen, 2014). STTC is a timescale-dependent
measure as it needs a predefined time window �t in which spikes are con-
sidered synchronous. Referring to the work of Cutts and Eglen (2014), we
use a time window of 100 ms in this work (see section 2.4).

The timescale-independent methods follow:

• Phase synchrony (PS) measures the synchrony between spike trains in
two steps. The first step is to assign a linear phase procession from 0 and 2π
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Comparison of Spike Train Synchrony Measures 891

to every interspike interval (ISI). The second step is quantifying the com-
mon phase evolution of all spike trains via an order parameter defined by
Pikovsky, Rosenblum, Osipov, and Kurths (1997). PS is timescale indepen-
dent and, to the best of our knowledge, has not been systematically com-
pared with other measurements in studies of spike train synchrony yet and
has never been used to measure synchrony of neural spike trains.
• Spike-contrast is a timescale independent synchrony measure based on

the temporal “contrast” of the spike raster plot (activity versus nonactivity
in certain temporal bins). It not only provides a single synchrony value, but
also a synchrony curve as a function of the bin size—in other words, as a
function of the timescale (Ciba et al., 2018). Here, instead of the synchrony
curve, only the single synchrony value was used.
• A-SPIKE-synchronization is a timescale-independent and parameter-

free coincidence detector (Satuvuori et al., 2017). It measures the simi-
larity between spike trains and is the adaptive generalization of SPIKE-
synchronization (Kreuz, Mulansky, & Bozanic, 2015). In the adaptive
versions, a decision is made if the spike trains are compared considering
their local or global timescale, which is advantageous for data containing
different timescales, like regular spiking and bursts.
• A-ISI-distance is a timescale-independent and parameter-free distance

measure (Satuvuori et al., 2017). It measures the instantaneous rate differ-
ence between spike trains and is the adaptive generalization of ISI-distance
(Kreuz, Haas, Morelli, Abarbanel, & Politi, 2007).
• A-SPIKE-distance is a timescale-independent and parameter-free dis-

tance measure (Satuvuori et al., 2017). It measures the accuracy of spike
times between spike trains relative to local firing rates and is the adaptive
generalization of SPIKE-distance (Kreuz, Chicharro, Greschner, & Andrze-
jak, 2011; Kreuz, Chicharro, Houghton, Andrzejak, & Mormann, 2013).
• ARI-SPIKE-distance is the rate-independent version of A-SPIKE-

distance (Satuvuori et al., 2017). It measures the accuracy of spike times
between spike trains without using the relative local firing rate. Some of the
original versions have already been applied to experimental neuronal data.
For example Andrzejak, Mormann, and Kreuz (2014) used ISI-distance
and SPIKE-distance and Dura-Bernal et al. (2016) used SPIKE-distance and
SPIKE-synchronization. Espinal et al. (2016) applied SPIKE-distance to sim-
ulated data.

In order to get a final synchrony value over all recorded spike trains,
synchrony between all spike train pairs was calculated and averaged. The
exception was of Spike-contrast, which already yields a single synchrony
value between all spike trains due to its multivariate nature.

Note that all synchrony measures are designed to provide a value be-
tween 0 (miminum synchrony) and 1 (maximum synchrony). Only CC and
STTC are able to yield negative values in case of anticorrelation. The dis-
tance measures A-ISI-distance, A-SPIKE-distance, and ARI-SPIKE-distance
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892 M. Ciba et al.

naturally provide values between 0 (minimal distance or maximum syn-
chrony) and 1 (maximum distance or minimum synchrony). Therefore,
their values were substracted from 1 to make the distance measures
comparable to the synchrony measures. The Matlab (MathWorks, Natick,
MA, U.S.A.) source codes of A-SPIKE-synchronization, A-ISI-distance,
A-SPIKE-distance, and ARI-SPIKE-distance were downloaded, along with
the cSPIKE tool.1 The Spike-contrast2 and MI3 Matlab source code also was
taken from online sources. STTC Python code was translated into Matlab
code.4 Matlab code for PS was specifically programmed for this work. All
Matlab functions and scripts used for this work are provided online.5

2.2 In Silico Manipulated Data. Two sets of in silico manipulated data
were generated featuring added spikes (false-positive spikes) and deleted
spikes (false-negative spikes). Because the measures CC, MI, and STTC are
timescale dependent, the in silico manipulated data are based on the exper-
imental data (see section 2.3) in order to obtain realistic timescales. In all,
10 recordings from 5 independent networks (N = 5) were used (5 without
and 5 with 10 μM BIC). Each recording had a length of 300 s and up to 60
active electrodes. The following procedures were applied for every active
electrode (active if at least 6 spikes per minute; see section 2.3.2) with X be-
ing the spike train of the original electrode and Y being the manipulated
spike train:

1. Added spikes. Spike train Y was generated by copying spike train X
and adding Nadd spikes to Y with temporal positions randomly as-
signed in the range of (0, 300] s. In case of identical spike times, new
random spike times were generated until all spike times were unique.
Depending on the manipulation level the number of added spikes
was

Nadd = L · 0.1 · NX, (2.1)

with NX being the number of spikes in spike train X and L being the
manipulation level in the range of L = [0, 0.1, 0.2 . . . 1] (L = 0: No ma-
nipulation, L = 1: 10% random spikes were added). For each L, 40 in-
dependent random manipulations (nmanipulated = 40) were performed
(see Figure 1b(1) for example spike trains).

2. Deleted spikes. Spike train Y was generated by copying spike train X
and deleting Ndelete randomly selected spikes from Y. Depending on

1
http://wwwold.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/cSPIKE.html.

2
https://github.com/biomemsLAB/Spike-Contrast.

3
https://de.mathworks.com/matlabcentral/fileexchange/28694-mutual-information.

4
http://neuralensemble.org/elephant/.

5
https://github.com/biomemsLAB/SynchronyMeasures-Robustness.
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Figure 1: Comparison of different synchrony measures regarding their robust-
ness to erroneous spike trains. (a) Spike trains recorded from 60 electrodes with
10 μM BIC. Each line represents the spike train of one electrode (only first 15 s
of 300 s are displayed). (b) Same as panel a but with maximum manipulation
level applied (left: simulation of false-positive spikes; right: simulation of false-
negative spikes). Ten different recordings were used to generate the in silico ma-
nipulated data (for details, see section 2.2). (c) Sum of synchrony deviation over
all manipulation levels (denoted as total deviation of the normalized synchrony,
TDNS; see equation 2.5). The lower the TDNS value of a synchrony measure, the
more robust it is to spike train manipulation.
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894 M. Ciba et al.

the manipulation level, the number of deleted spikes was

Ndelete = L · 0.9 · NX, (2.2)

where NX is the number of spikes in spike train X and L is the manipu-
lation level in the range of L = [0, 0.1, 0.2, . . . 1] (L = 0: No manipula-
tion, L = 1: 90% of all spikes were deleted). Note that the maximum
range was restricted to 90% of NX as some of the tested synchrony
measures were not defined for empty spike trains. For each L, 40 in-
dependent random manipulations (nmanipulated = 40) were performed
(see Figure 1b(2) for example spike trains).

A single synchrony value was then calculated for every recording (N =
10) and every random manipulation (nmanipulated = 40). Overall, for every
manipulation level, 400 synchrony values were calculated per synchrony
measure.

Because some of the synchrony measures differ in terms of their min-
imum value for Poisson spike trains with equal rate (e.g., 0.295 for
SPIKE-distance and 0.5 for ISI-distance (Kreuz et al., 2013)), they could not
be compared directly. Therefore, synchrony values of each measure were
rescaled to their lowest possible synchrony value defined as synchrony of
a data set made of Poisson spike trains YL,random at the manipulation level L.
The number of spikes in YL,random was equal to the number of spikes in YL

(being the manipulated spike train Y at the manipulation level L) to account
for the spike rate dependence of some synchrony measures, as reported in
Cutts and Eglen (2014). The scaling was done with

s′
L = sL − s̄L,random

1 − s̄L,random
, (2.3)

where sL is the synchrony value at a manipulation level L, s̄L,random is the
mean synchrony value of the data set consisting of Poisson spike trains
YL,random, and value 1, representing the largest possible synchrony value (all
synchrony measures were able to yield 1 for identical spike trains). As 10
different recordings with different synchrony level were used, all synchrony
values were normalized, allowing us to calculate the mean over all record-
ings and all random realizations. The normalization was done with

s′′
L = s′

L

s′
L=0

, (2.4)

where s′
L=0 is the synchrony of the orginal spike train (manipulation level

L = 0) and s′′
L is the normalized synchrony value. All normalized syn-

chrony values of all recordings and all random realizations taken together
are denoted as s′′

L,all . In order to ease the comparison among the different
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Comparison of Spike Train Synchrony Measures 895

synchrony measures, the total deviation of the normalized synchrony
(TDNS) over the manipulation level was calculated as

TDNS =
1∑

L=0

std(s′′
L,all ), (2.5)

where std() is the standard deviation. The lower the TDNS, the more robust
the synchrony measure against the spike train manipulation procedure.

2.3 Experimental Data.

2.3.1 Cell Culture and Electrophysiological Recordings. Experimental data
used for this study were recorded from primary cortical neurons (Lonza
Ltd., Basel, Switzerland) harvested from embryonic rats (E18 and E19). Cell
cultivation followed a modified protocol based on Otto, Goertz, Fleischer,
and Siebler (2003). Briefly, vials containing 4 ×106 cells were stored in liq-
uid nitrogen at −196◦C. After thawing, cells were diluted drop-wise with
prewarmed cell culture medium and seeded at a density of 5000 cells/mm2

onto Poly-D-Lysine and Laminin coated (Sigma Aldrich, St. Louis, U.S.A.)
microelectrode arrays (60MEA200/30iR-Ti, Multichannel Systems MCS
GmbH, Reutlingen, Germany). Twice a week, half of the medium was re-
placed with fresh, prewarmed medium.

Neuronal signals were recorded extracellularly at a sampling rate of 10
kHz outside the incubator at −37◦C employing a temperature-controller
(Multichannel Systems MCS). For drug-induced increase of network syn-
chronization, BIC (Sigma Aldrich Co.) was applied to the neuronal cell
culture after 21 days in vitro (div) at a concentration of 10 μM. BIC is a
competitive antagonist of the GABAA receptor. Since it blocks the inhibitory
function of GABAA receptors, its application yields an increased incidence
of synchronized burst events (Jungblut, Knoll, Thielemann, & Pottek, 2009;
see Figures 2b and 2c). Neuronal activity was recorded for 5 minutes before
and 5 minutes during the application of BIC.

2.3.2 Spike Detection. Raw data were stored for offline spike detection
with DrCell, a custom-made Matlab software tool, developed by Nick et al.
(2013). After applying a high-pass filter with a cutoff frequency of 50 Hz,
spikes were separated from noise using a threshold-based algorithm, with
a threshold calculated by multiplying the standard deviation of the noise by
a factor of 5 (or, more precisely, −5, as only negative spikes were used for
analysis). As soon as the raw signal underran the threshold, the time of the
minimum voltage value was defined as a spike time stamp (see Figure 2a).
Additionally, in order to alter the level of false-positive and false-negative
spikes, spike detection was conducted using threshold factors of 4, 6, and 7.
For subsequent spike train analysis, only electrodes with more than 5 spikes
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896 M. Ciba et al.

Figure 2: Exemplary illustration of the experimental data. (a) Signal recorded
from one MEA electrode (50 Hz high-pass filtered). Thresholds are displayed
for the lowest (4) and highest (7) threshold factors used for spike detection. The
higher the threshold factor, the fewer spikes are detected. (b) Rasterplot of the
spontaneous activity of one MEA chip without BIC (only first 60 s of 300 s are
shown). (c) Same as panel b but with 10 μM BIC. Spontaneous activity was
recorded with a 60 electrode MEA chip at 23 div. Compared to the native state,
the administration of 10 μM BIC increased the level of synchrony.

per minute were considered active and used for analysis (Novellino et al.,
2011).

2.3.3 Statistical Analysis. Since it is known that BIC causes an increase
of network synchrony in cortical neurons in vitro (Sokal et al., 2000; Chi-
appalone et al., 2007; Eisenman et al., 2015), a one-tailed statistical test was
applied. More specifically, a paired t-test was applied under the null hy-
pothesis that BIC does not increase synchrony. The lower the p-value, the
lower the probability that there is no synchrony change and, hence, the bet-
ter the synchrony measure’s sensitivity to BIC.

2.4 Parameter Choice. As the synchrony measures CC, MI, and STTC
depend on a timescale parameter that directly influences the synchrony
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Comparison of Spike Train Synchrony Measures 897

Figure 3: Influence of the parameter choice on the statistical significance of the
experimental data. The synchrony measures CC, MI, and STTC depend on a
parameter that has to be chosen by the user. For each synchrony measure, the
experimental data described in section 2.3 were analyzed using different param-
eter values. After that, a t-test was applied to the data with the null hypothesis
that synchrony values of the data with BIC are lower than or equal to synchrony
values of the data without BIC. In this work, a bin size of 500 ms was used for
CC and a dt of 100 ms for STTC (red squares), values that were suggested in
their original publications (Selinger et al., 2004; Cutts & Eglen, 2014). For MI,
the same bin size as for CC was used due to the identical binning procedure.

definition, an appropriate parameter value had to be chosen. Therefore, we
analyzed the experimental BIC data using different parameter values and
conducted a statistical hypothesis test. The lower the p-value, the higher
the probability that an increase in synchrony occurred. Parameter values
that lead to low p-values are therefore desirable (given that BIC results in
increased level of synchrony). CC, proposed by Selinger et al. (2004), chose
a bin size of 500 ms, which also gave reasonable low p-values in our anal-
ysis (see Figure 3). Even if smaller bin sizes yielded lower p-values in our
data, we stuck to the predefined 500 ms. For MI, we also chose a bin size of
500 ms as for smaller bin sizes, the p-value improved only slightly. The pa-
rameter dt of STTC was set to 100 ms according to the original publication
from Cutts and Eglen (2014). Note that in our cortical data, a larger dt value
would improve the p-value only slightly.
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898 M. Ciba et al.

3 Results

3.1 Comparison of Synchrony Measures for in Silico Manipulated
Data. For added spikes, the robustness of measures was studied by ran-
domly adding false-positive spikes to the basic signals. For a robust syn-
chrony measure, low sensitivity to false-positive spikes is desirable, as such
noise may falsify the results. As displayed in Figure 1c(left). Spike-contrast
was most robust to false-positive spikes indicated by the small TDNS value
of around 1, closely followed by A-ISI-distance and ARI-SPIKE-distance.
MI showed by far the largest synchrony deviation indicated by a TDNS
value of around 17.

For deleted spikes, a similar picture occurs after increasingly deleting
spikes in order to simulate false-negative spikes, as robustness to false-
negative spikes was required. In Figure 1c(right), the results of synchrony
measure dependency to false-negative spikes are shown. Here, MI and
Spike-contrast were most robust to false-negative spikes yielding the small-
est TDNS value of around 2. STTC and A-SPIKE-synchronization showed
the largest TDNS value of around 14.

3.2 Comparison of Synchrony Measures for Experimental Data. In ad-
dition to the evaluation with in silico manipulated data, all synchrony mea-
sures were applied to experimental data recorded from cortical neurons by
MEA chips with and without the application of 10 μM BIC. Figure 4a shows
the absolute synchrony values for each synchrony measure and for all dif-
ferent cell cultures (N = 5), before and after the application of BIC. Gener-
ally all measures showed a significant synchrony increase due to the BIC ap-
plication with p-values of 5% and below, where A-SPIKE-synchronization,
A-ISI-distance, and A-SPIKE-distance failed to reach the high significance
level of 1%.

In order to alter the level of false-positive and false-negative spikes in
the experimental data, different spike detection threshold factors (4 to 7)
were applied, where low thresholds are likely to correspond to additional
false spikes (false positive) and high thresholds to missed spikes (false neg-
ative). Increasing the threshold factor is comparable to deleting spikes from
the spike train, as already done in the in silico manipulated data evaluation
(see section 3.1). For the in silico manipulated data, the synchrony mea-
sures STTC and A-SPIKE-synchronization were most sensitive to deleted
spikes. This behavior was also evident within the experimental data (see
Figure 5). As the spike detection threshold factor increased, STTC and A-
SPIKE-synchronization lose their statistical significance (above 5% level),
while all others remained stable, indicating statistical significance (below
5% level). Spike-contrast yielded the highest statistical significance across
all tested threshold factors and was the only measure that still indicated
a statistical significance (at 5% level) at the smallest threshold factor of 4,
where a high level of noise spikes is assumable.
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Comparison of Spike Train Synchrony Measures 899

Figure 4: Results of the application of different timescale-dependent and
timescale-independent synchrony measures to a set of experimental data. Ex-
perimental data were recorded from cortical cell cultures on MEA chips (N = 5)
in the absence and presence of 10 μM BIC. (a) Absolute synchrony values of each
synchrony measure for data without BIC (white circles) and with BIC (gray cir-
cles). (b) P-values for each synchrony measure from a one-tailed paired t-test
assuming an increase in synchrony. The lower the p-value, the better the syn-
chrony measure’s ability to capture the effect of BIC. The gray ellipse marks
synchrony measures that were not able to indicate high significant effects be-
low p-values of 1%. Spike detection threshold factor was 5.
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900 M. Ciba et al.

Figure 5: Influence of the spike detection threshold on the statistical signifi-
cance of the experimental data. Synchrony and the statistical significance of the
experimental data were analyzed as in Figure 4, applying different thresholds to
detect spikes from the recorded signals. The higher the spike detection thresh-
old factor, the less noise was detected, but also more real spikes were missed.
The lower the p-value, the better the synchrony measure’s ability to capture the
effect of BIC.

4 Discussion and Conclusion

In this work, we compared different spike train synchrony measures
regarding their robustness to false-positive and false-negative spikes in
epileptiform signals. Such robustness is particularly relevant for exper-
imental data with error-prone spike detection, especially at low signal-
to-noise ratios. Representative synchrony measures were chosen from
different categories such as timescale-dependent (CC, MI, STTC) or
timescale-independent (Spike-contrast, PS, A-SPIKE-synchronization,
A-ISI-distance, A-SPIKE-distance, ARI-SPIKE-distance). In order to per-
form a comparison, we proposed a procedure based on a set of in silico
manipulated spike trains with defined manipulation of features. Two data
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Comparison of Spike Train Synchrony Measures 901

sets were generated based on experimental data by adding spikes, rep-
resenting noise (false positive), and deleting spikes, representing missed
spikes (false negative). Synchrony of the experimental data was increased
by applying BIC to cortical in vitro networks. The code and data used in
this work are publicly available (see section 2.1).

For the in silico manipulated data, the results showed that Spike-contrast
was the most robust to added spikes and very robust to deleted spikes. All
other measures showed comparable high robustness for added or deleted
spikes but not for both cases. Furthermore, CC, MI, and Spike-contrast work
with binned spike trains, which explains their robustness to deleted spikes
as long as bursts (many spikes occurring within a small time period) are
still present in the data (see Figure 1b(2)). A binned spike train will almost
not change if only some spikes are deleted from a burst and if the bin size
and burst duration are similar. As Spike-contrast automatically adapts its
bin size to the data, it is preferable to CC and MI for exploratory studies,
where the timescale is not known beforehand.

For the experimental data, all synchrony measures captured the syn-
chrony increase mediated by BIC in a statistically significant way (below
a p-value of 5%). However, there were differences in performance as the
synchrony measures CC, MI, PS, Spike-contrast, and ARI-SPIKE-distance
yielded values leading to a high statistical significance below p-values of
1%. Note that for CC, the proposed bin size of 500 ms was used, but smaller
bin sizes of around 300 ms would have overperformed Spike-contrast (see
Figure 3). Referring to our assumption that the lower the p-value, the bet-
ter the synchrony measure (defined in section 2.3), it must be taken into
account that this assumption is controversial since the actual synchrony in-
crease (ground truth) is not known for the experimental data. Thus, a syn-
chrony measure that overestimates the synchrony increase mediated by BIC
would incorrectly lead to a low p-value.

For small sample sizes, as in our experiment (N = 5), parameter-free
statistics like the Wilcoxon signed-rank test are generally used to avoid
assumptions about population distribution. Application of the Wilcoxon
signed-rank test to our data yielded almost identical p-values for all syn-
chrony measures (data not shown). In contrast, the t-test used in this work
resulted in different p-values for each synchrony measure. So it also de-
pends on the choice of statistical test whether the choice of synchrony mea-
sures affects the final results.

Considering the results of the in silico manipulated data, the mea-
sures CC, MI, Spike-contrast, and ARI-SPIKE-distance were most robust
to deleted spikes (false-negative spikes). These synchrony measures also
showed the best performance in the experimental data, which suggests
that robustness to false-negative spikes correlates with the ability to quan-
tify synchrony changes in experimental data. If so, it would also im-
ply that the experimental data used in this work were more affected by
false-negative spikes than by false-positive spikes. In other words, more
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spikes were missed than noise was misinterpreted as spikes. This behav-
ior could be used to draw conclusions about the quality of an experi-
mental spike train from the rank of the p-values of different synchrony
measures.

As already mentioned, there were some synchrony measures whose re-
sults of the in silico manipulated data and experimental data did not corre-
late. This suggests that robustness to false-positive or false-negative spikes
is not the only factor to effectively capture synchrony changes in experimen-
tal data. Factors like robustness to temporal nonstationarity of the record-
ing could also be different among the synchrony measures. For instance,
PS, A-SPIKE-distance, ARI-SPIKE-distance, A-ISI-distance, and A-SPIKE-
synchronization are more adaptive to changes in timescales inside a spike
train as they dynamically define their timescales considering nearby spikes.
In contrast, CC, MI, STTC, and Spike-contrast use equally spaced timescales
along the entire spike train duration.

Overall, for our specific data set, Spike-contrast was the only timescale-
independent measure being robust to noise (false-positive spikes) as well
as missed spikes (false-negative spikes). This desirable performance was
confirmed by the ability of the Spike-contrast measure to detect biochem-
ically induced synchrony with high significance, even for different spike
detection threshold factors. It should be mentioned that the measures
A-SPIKE-synchronization, A-ISI-distance, A-SPIKE-distance, and ARI-
SPIKE-distance are able to produce a synchrony profile over time, which
complements the synchrony profile over the timescale of Spike-contrast.

We suggest including the Spike-contrast synchrony measure in syn-
chrony studies of epileptiform experimental neuronal data sets in addition
to established synchrony measures.

Appendix: Synchrony Measure Description

A.1 Mutual Information. MI measures how two random variables X
and Y are related (Cover & Thomas, 2012) and is based on the concept of
entropy, a fundamental concept in information theory (Shannon & Weaver,
1948; Cover & Thomas, 2012). The Shannon entropy (Cover & Thomas,
2012) of a random variable X is defined as

H(X ) = −
∑

i

px(i) log(px(i)), (A.1)

where px(i) = P(X = i) and the log function is taken to base 2 (see Figure 6a
for an example calculation). H(X ) measures the uncertainty about a random
variable X. The conditional entropy quantifies the information necessary to
describe the random variableY given that the information about X is known
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Comparison of Spike Train Synchrony Measures 903

Figure 6: Example entropy calculation of two spike trains and illustration of the
mutual information (MI) measure. (a) Two different spike trains are binned in
a binary way, resulting in X and Y. Each value is considered a character build-
ing the alphabet of the signal. The probability of each character is obtained by
dividing its incidence by the length of the signal. The entropy of each signal
(H(X), H(Y)) is calculated using equation A.1 with the probabilities given above.
(b) Visualization of the mutual information I(X;Y) using the joint entropy
H(X,Y), the entropies H(X), H(Y), and conditional entropies H(X|Y), H(Y|X) cal-
culated in equation A.4. The mutual information value I(X;Y) increases with
increasing synchrony between signal X and Y.

(Cover & Thomas, 2012). Formally, it is defined by

H(Y|X ) ≡
∑
x∈X

p(x) H(Y|X = x)

=
∑
x∈X

⎛
⎝p(x)

∑
y∈Y

p(y|x) log
1

p(y|x)

⎞
⎠

= −
∑
x∈X

∑
y∈Y

p(x, y) log p(y|x)

= −
∑

x∈X,y∈Y

p(x, y) log p(y|x)

=
∑

x∈X,y∈Y

p(x, y) log
p(x)

p(x, y)
. (A.2)
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MI is defined as

I(X;Y) =
∑
y∈Y

∑
x∈X

p(x, y) log
(

p(x, y)
p(x) p(y)

)
. (A.3)

Additionally, the MI can be expressed in terms of the entropy and the
conditional entropy of random variables X and Y as

I(X;Y) = H(X ) − H(X|Y)

= H(Y) − H(Y|X )

= H(X ) + H(Y) − H(X,Y)

= H(X,Y) − H(X|Y) − H(Y|X ). (A.4)

Aside from the analytic expressions, it is possible to interpret those quanti-
ties graphically, as depicted in Figure 6b. MI is more general than the corre-
lation coefficient and quantifies how the joint distribution p(x, y) is similar
to the products of marginal distributions p(x)p(y) (Cover & Thomas, 2012).
Compared to the cross-correlation measure, mutual information also cap-
tures nonlinear dependencies.

For comparison, the value of mutual information needs to be normal-
ized. Many possible approaches have been proposed (Cover & Thomas,
2012), such as

M(X;Y) = I(X;Y)
min [H(X ), H(Y)]

, (A.5)

because I(X;Y) ≤ min [H(X ), H(Y)] and, consequently, 0 ≤ M(X;Y) ≤ 1.
This formulation has been used before in the context of neuronal signal
analysis (Bettencourt, Stephens, Ham, & Gross, 2007; Bettencourt, Gintau-
tas, & Ham, 2008; Ham et al., 2010). Another possible normalization is the
so-called symmetric uncertainty (Witten & Frank, 2000), defined as

M∗(X;Y) = 2
I(X;Y)

H(X ) + H(Y)
, (A.6)

where 0 ≤ M∗(X;Y) ≤ 1. In this work the latter normalization was used as
it performed better than the first one when applied to the experimental data
(data not shown).

In order to estimate the MI between two spike trains, both spike trains
were transformed into binary binned signals. A spike train i is binned as
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Comparison of Spike Train Synchrony Measures 905

xi(t) =

⎧⎪⎪⎨
⎪⎪⎩

1, if spike train i shows at least one spike in
time interval t to t + �t

0, if spike train i shows no spike in time
interval t to t + �t

, (A.7)

using a bin size �t = 500 ms and t = 0�t, 1�t, 2�t, . . . (also see Figure 6a).
The choice of the bin size of 500 ms is justified in section 2.4).

A.2 Phase Synchronization. Since synchronization processes are re-
lated to rhythm adjustment, it is natural to introduce the concept of phase
of an oscillator, a quantity that increases by 2π within an oscillation cycle
and determines unambiguously the state of a periodic oscillator (Pikovsky,
Rosenblum, & Kurths, 2003). For instance, consider a harmonic oscillator
described by the variable x(t) = A sin(ω0t + φ0). In this case, ω0 denotes the
angular frequency, which is related to the oscillation period ω0 = 2π/T, A is
the amplitude of oscillation, and the quantity φ(t) = ω0t + φ0 is the phase of
this oscillator. Two or more oscillators are synchronized when they present
the same phase evolution (Pikovsky et al., 2003).

The measurement of the synchronization level of self-sustained oscilla-
tors can be done by considering the phases as rotating points in the unit
cycle of the complex plane (Pikovsky et al., 2003; Strogatz, 2000). If an oscil-
lator has a phase φ(t), its trajectory in the complex plane is described by the
vector eiφ(t). For instance, if two oscillators have phases φ1(t) = φ2(t) = φ(t),
they will have the same trajectory in the complex plane, and thus the mod-
ulus of the resultant vector will be |eiφ1(t) + eiφ2(t)|/2 = 1, meaning that the
oscillators are perfectly synchronized. Now suppose a population of N in-
teracting phase oscillators whose phases are described by the variable φi(t),
i = 1, . . . , N. The synchronization order parameter is defined as (Strogatz,
2000)

reiψ (t) = 1
N

N∑
j=1

eiφ j (t), (A.8)

where ψ (t) is the average phase of the system at time t. When r ≈ 0, the
phases are distributed uniformly over [0, 2π ] corresponding to the asyn-
chronous state. When r ≈ 1 the phases rotate together, corresponding to a
fully synchronized state (see Figure 7).

Neurons can also be considered as self-sustained oscillators (Arenas,
Díaz-Guilera, Kurths, Moreno, & Zhou, 2008) and are often modeled as
integrate-and-fire oscillators, where the rhythmic quantity is the rate at
which spikes are fired. The synchronization process in this case is the adjust-
ment of the spiking patterns: if two interacting integrate-and-fire oscillators
discharge their spikes jointly, they are synchronized. Therefore, in order to
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906 M. Ciba et al.

Figure 7: Example for distribution of phase vectors eiφ(t) in complex plane.
(a) Randomly distributed phase vectors over [0, 2π ], implying r ≈ 0; in other
words, the oscillators are completely asynchronous. (b) Regime of partial syn-
chronization; phase vectors of some oscillators are grouped in a synchronous
cluster equivalent to r > 0. (c) Strongly synchronized state, where all oscilla-
tors group into a single synchronous cluster rotating with average frequency �;
thus, r ≈ 1.

quantify the synchronization between interacting integrate-and-fire oscil-
lators, the phases associated with the respective spike signals have to be
defined.

The time series recorded by an electrode can be considered as a sequence
of point events taking place at time tk, with k = 1, 2, . . . , Nspikes. The time in-
terval between two spikes can be treated as a complete cycle. In this case,
the phase increase during this time interval is exactly 2π . Hence, the values
of φ(tk) = 2πk are assigned to the times tk, and for an arbitrary instant of
time (tk < t < tk+1), the phase is considered a linear interpolation between
these values (Pikovsky et al., 2003; Neiman, Silchenko, Anishchenko, &
Schimansky-Geier, 1998; Pikovsky et al., 1997; Tass et al., 1998; Hu & Zhou,
2000), as

φ(t) = 2π
t − τk

τk+1 − τk
+ 2πk. (A.9)

This method can be applied to any process containing time series of spikes,
and it is widely used in the study of synchronization in neuronal dynamics
(Pikovsky et al., 2003). Figure 8 exemplifies the calculation of phases φ(t) of
two spike signals and their respective sum of the phase vectors eiφ(t) in the
complex plane.

For a system composed of N oscillators, the instant phase synchroniza-
tion is quantified by the order parameter defined in equation A.8. However,
to quantify the level of synchronization of the neurons, we consider the av-
erage over the recorded time,
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Comparison of Spike Train Synchrony Measures 907

Figure 8: Example of phase vector construction. (a) φ1(t) and (b) φ2(t) are cal-
culated using the respective spike signals according to equation A.9. (c) Super-
position of temporal evolution of phases and (d) phase vectors eiφ1(ti ), eiφ2(ti ) as
well as the resultant vector at time t = ti, r · eiφr (ti ) = (eiφ1(ti ) + eiφ2(ti ) )/2.

r̄ =
〈∣∣∣∣∣∣

1
N

N∑
j=1

eiφ j (t)

∣∣∣∣∣∣
〉

t

, (A.10)

where 〈· · ·〉t stands for the temporal average and N stands for the number
of electrodes used to compute the order parameter.
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