WTDSoft

A

L KN

CBSoft014

Congresso Brasileiro de Software: Teoria e Pratica
28 de Setembro a 03 de Outubro de 2014
Maceio - Alagoas

Volume 02

Anais ISSN 2178-6097

WTDSoft 2014

IV WORKSHOP DE TESES E DISSERTACOES DO CBSOFT

COORDENADOR DO COMITE DE PROGRAMA
Eduardo Santana de Almeida - Universidade Federal da Bahia (UFBA)

COORDENACAO DO CBSOFT 2014

Baldoino Fonseca - Universidade Federal de Alagoas (UFAL)
Leandro Dias da Silva - Universidade Federal de Alagoas (UFAL)
Madrcio Ribeiro - Universidade Federal de Alagoas (UFAL)

REALIZACAO
Universidade Federal de Alagoas (UFAL)
Instituto de Computagdo (IC/UFAL)

PROMOCAO
Sociedade Brasileira de Computagao (SBC)

PATROCINIO
CAPES, CNPq, INES, Google

APOIO
Instituto Federal de Alagoas, Aloo Telecom, Springer, Secretaria de Estado do Turismo
AL, Maceié Convention & Visitors Bureau, Centro Universitario CESMAC e Mix Cdpia



Search-Based Mutation Testing para Programas
Concorrentes

Rodolfo Adamshuk Silva!, Simone do Rocio Senger de Souza!

nstituto de Ciéncias Mateméticas e de Computacao — Universidade de Sao Paulo
(ICMC/USP)
Caixa Postal 668 — 13.560-970 — Sao Carlos — SP — Brazil

{adamshuk,srocio}@icmc.usp.br

Projeto de Doutorado

Programa de Pés-Graduagao em Ciéncias de Computacao e Matematica
Computacional do ICMC-USP

Ano de ingresso no programa: 03/2013
Epoca prevista de conclusao: 02 /2017

Data da aprovagao da proposta de tese: Previsao de 15/09/2014
Sigla do evento do CBSoft relacionado: SBES

Resumo. O teste de software é uma atividade que busca garantir a
qualidade por meio da identificagcao de falhas no produto. Para a aplicagao
do teste de software, algumas técnicas sao utilizadas como, por exemplo, a
técnica estrutural, a funcional e a baseada em defeitos. Cada técnica possui
seus critérios para auxiliar na criagao dos casos de teste. Um dos critérios
da técnica baseada em defeitos € o teste de mutagao. FEste critério de teste
baseia-se nos enganos que podem ser cometidos pelos desenvolvedores de
software. O teste de mutagdo tem se mostrado eficaz para revelar defeitos,
porém, o seu alto custo compromete sua utilizacao, principalmente quando
sao considerados programas complexos. A Programac¢ao Concorrente € um
paradigma de desenvolvimento essencial para a construcao de aplicagoes
com o intuito de reduzir o tempo computacional em muitos dominios. Estas
aplicagoes tém novas caracteristicas como comunicacao, SiNCronizacao
e nao determinismo que precisam ser considerados durante a atividade
de teste. No contexto de programas concorrentes, novos desafios sao
mmpostos e precisam ser adequadamente tratados. Isso ocorre devido ao nao
determinismo e as diferentes sincronizagoes entre processos. Search-Based
Software Testing ¢ uma abordagem que vem sendo empregada para otimizar
a atividade de teste, aplicando meta-heuristicas para a solucao de problemas
complexos, como por exemplo, geracao de dados de teste. FEste projeto de
doutorado estd inserido nesse contexto, no qual se pretende investigar o
uso de Search-Based Software Testing para reducao do custo da aplicacao
do teste de mutagao no contexto de aplicacoes concorrentes.

Palavras-chave. Teste de mutagao, Search-Based Testing, Programagao
concorrente.



1. Introdugao

Como um resultado dos avancos tecnoldgicos na area de hardware, por exemplo,
processadores multicore, a computacao distribuida faz-se cada vez mais presente
nos sistemas atuais. Com isso, a programagao concorrente estd tornando-se cada
vez mais popular no desenvolvimento de softwares modernos. Esse paradigma de
desenvolvimento é essencial para a construcao de aplicagoes capazes de reduzir o
tempo computacional em varios dominios, por exemplo softwares para processa-
mento de imagens, dinamica de fluidos, entre outros. Diferentemente dos programas
com caracteristicas sequenciais, a computagao distribuida envolve programas (ou
processos) concorrentes (ou paralelos) que interagem para resolver um determinado
problema. Essa interacao pode ocorrer de forma sincronizada ou nao, sendo que
esses programas podem ou nao concorrerem pelos mesmos recursos computacionais.

Teste de software é uma atividade de garantia de qualidade que visa a
identificar defeitos no produto em teste. A atividade de teste consiste em uma anélise
dinamica do produto e é uma atividade relevante para a identificagao e eliminacao de
defeitos que persistem. O teste de produtos de software envolve basicamente quatro
etapas: planejamento de testes, projeto de casos de teste, execugao e avaliacao dos
resultados dos testes [Myers et al. 2011]. Essas atividades devem ser desenvolvidas
ao longo do préprio processo de desenvolvimento de software e, para isso, um ponto
crucial é a selecao dos casos de teste que serao utilizados. Sabe-se que executar
todos os casos de teste possiveis a partir do dominio de entrada do produto em teste
é impraticavel e, portanto, critérios de teste sao definidos.

Os critérios de teste procuram estabelecer como selecionar casos de teste que
possuam alta probabilidade de encontrar a maioria dos defeitos com um minimo de
tempo e esforco. Um teste bem sucedido é aquele que consegue determinar casos
de teste para os quais o programa em teste falhe. Um dos critérios de testes da
técnica baseada em defeitos é o teste de mutacao. Este critério utiliza informacoes
sobre os enganos tipicos que podem ser cometidos no processo de desenvolvimento
para derivar casos de teste [Jia and Harman 2011]. Assim, os defeitos tipicos de um
dominio ou paradigma de desenvolvimento sao caracterizados e implementados como
operadores de mutagao que, durante a atividade de teste, geram versoes modificadas
(mutantes) do produto em teste (especificacdo ou implementagao, por exemplo).
A intencdo é auxiliar a selecao de casos de teste que demonstrem que os defeitos
modelados pelos operadores de mutacao nao estao presentes no produto em teste.
Um problema do teste de mutacao que impede que ele seja aplicado amplamente é
o alto custo computacional de executar o enorme niimero de mutantes com os casos
de teste, além do alto nimero de casos de teste necessdrios para alcancar um escore
de mutagao mais préximo de 1.0 [Jia and Harman 2011].

A atividade de teste no contexto de programas concorrentes é considerada
mais complexa quando comparada com a atividade de teste de programas sequen-
ciais. Além das dificuldades inerentes a atividade de teste, outras ocorrem devido,
principalmente, ao comportamento nao deterministico dessas aplicagoes, no qual
multiplas execuc¢oes de um programa concorrente com a mesma entrada podem
executar diferentes sequéncias de sincronizacao e podem produzir diferentes resulta-
dos. Cabe a atividade de teste, nesse cendrio, identificar se todas as sequéncias de
sincronizacao possiveis foram executadas e se as saidas obtidas estao corretas. Essa
caracteristica difere os programas concorrentes dos programas sequenciais e precisa



ser considerada durante a atividade de teste de software. Assim como os demais cri-
térios de teste, o teste de mutagao tem sido investigado para programas concorrentes
[Offutt et al. 1996, Silva-Barradas 1998, Bradbury et al. 2006, Silva 2013].

2. Motivagao e Objetivo

A busca por estratégias que visem a automatizacao de teste de software é constante
nao sé para o critério de mutacao, mas também para os outros critérios. Isso vem
acontecendo porque os programas a serem testados estao cada vez maiores e mais
complexos, tornando a atividade de teste mais custosa, em termos financeiros e com-
putacionais, e mais demorada. Até mesmo programas simples sdo custosos de serem
testados devido ao problema de explosao de casos de testes [Jia and Harman 2011].
Todavia, alguns desses problemas podem ser modelados matematicamente a fim de
serem resolvidos por meio da otimizacao matematica utilizando-se meta-heuristicas.
E nesse contexto que surgiu o conceito de Search-Based Software Testing (SBST)
que consiste no uso de técnicas de busca utilizando meta-heuristica (algoritmo
genético, por exemplo) para automatizar total ou parcialmente a atividade de teste
[McMinn 2011]. Técnicas de busca meta-heuristica sao arcabougos de alto nivel que
utilizam heuristicas para encontrar solugoes a problemas que envolvem combinagao
de resultados a um custo computacional aceitdvel [McMinn 2011]. Essas técnicas nao
sao algoritmos prontos, mas estratégias para a adaptacgao para problemas especificos.

Pesquisas nessa area mostram que é promissora a aplicacao de Search-Based
no contexto de teste de software. As areas de aplicagao sao cinco: geracao de dados
de teste, selecao de casos de teste, priorizacao de casos de teste, testes nao funcionais
e testes funcionais. A geragao de dados de teste consiste em identificar um conjunto
de dados de entrada valido para um programa, que satisfaca um determinado critério
de teste com o objetivo de encontrar um dado de teste que faca o programa se
comportar diferentemente do esperado, revelando, assim, um defeito. A sele¢ao
de casos de teste consiste em escolher quais casos de teste devem ser aplicados
em um sistema [Maia 2009]. A priorizagdo de casos de teste trata da ordenacao
dos casos de teste de modo que os mais significativos sejam executados primeiro
[Maia et al. 2010]. Os testes ndo funcionais verificam caracteristicas do sistema nao
relacionadas a funcionalidades [Briand et al. 2004]. Por sua vez, os testes funcionais
verificam se a implementacao de uma aplicacao esta de acordo com sua especificagao
[Cohen et al. 2003].

O principal problema associado ao teste de mutacao estd no nimero de
mutantes gerados, sendo, na maioria das vezes, alto, fazendo com o que o custo
computacional também seja alto [Jia and Harman 2011]. Esse problema é agravado
quando se esta tratando de programas concorrentes, uma vez que, por causa do nao
determinismo, o programa possui diferentes sequéncias de sincronizagao que devem
ser exercitadas durante a atividade de teste. Isso faz com que a complexidade
computacional da execucao de todos os mutantes, a geragao de dados de teste
para matar todos os mutantes sejam altos [Jia and Harman 2011]. Outro problema
estd relacionado com a identificacdo dos mutantes equivalentes que é realizada pelo
testador e leva certo tempo para ser concluida, pois se deve analisar o programa
mutante, comparar com o programa original, para entao decidir se o mutante é
equivalente ou nao. Entao, quanto mais mutantes forem gerados, mais mutantes
terdao que ser analisados para identificar os equivalentes.



Devido ao alto custo da aplicacao do teste de mutacao, varias estratégias
vem sendo utilizadas para fazer com que o critério de mutacao possa ser utilizado de
maneira mais eficiente. As técnicas de redugao do custo do teste de mutagao podem
ser divididas em trés tipos: do fewer (reducao de ntimero de mutantes sem afetar
desempenho), do faster (procurar executar os mutantes o mais rapido possivel) e do
smarter (dividir o custo computacional ou evitar a execu¢ao completa ou guardar
informagoes do estado da execugao) [Offutt and Untch 2001].

Levando em consideragao os resultados ja obtidos em [Silva 2013], surgiu a
motivacao de investigar abordagens que proporcionem a diminui¢ao dos custos de
aplicagao do teste de mutacao (do fewer) para programas concorrentes. O objetivo
do projeto de doutorado é investigar e propor uma abordagem para a otimizagao do
teste de mutacao utilizando técnicas de Search-Based Software Testing. Os desafios
cientificos identificados neste projeto de doutorado estao relacionados ao uso de
SBST aplicado ao teste de mutacao. Além disso, tem-se a aplicacao de técnicas de
SBST no contexto de programas concorrentes, o que € considerado inovador, pois
essa técnica € pouco aplicada para resolver os problemas envolvendo teste nesse
contexto.

3. Resultados e Contribuigoes

Com o objetivo de se ter uma visao ampla do contexto a ser estudado, uma revisao
sistematica foi conduzida com o objetivo encontrar trabalhos que aplicam técnicas de
meta-heuristica como forma de automatizar o teste de mutacao. Como a finalidade
de alcancar esse objetivo, foram formadas as seguintes questoes de pesquisa: Q1)
Em quais etapas do teste de mutacao SBST estd sendo aplicada? Q2) Quais as
técnicas de meta-heuristica estao sendo utilizadas no teste de mutacao? A conducgao
da revisao foi realizada levando em consideracao cinco maquinas de busca: IEEE
Xplore, ACM Digital Library, Science Direct, Springerlink e ISI Web of Knowledge.
A pesquisa retornou 195 trabalhos dos quais foram selecionados 55 artigos para a
leitura completa. Isso demonstrou a falta de trabalhos nessa area. Vale ressaltar que
nenhum dos artigos encontrados aplica SBST para teste de mutagao em programas
concorrentes, o que faz desta proposta de doutorado inovadora. A string de busca
e os critérios de exclusao com o nimero de trabalhos excluidos sao mostrados na
Figura 1.

String de Busca

(“mutation test” OR "mutation testing” OR "mutation-based test” OR "mutation based test” OR “mutation analysis” OR "program mutation”)
AND (“evolutionary” OR “heuristic” OR “search-based” OR “search based” OR "metaheuristic” OR "meta-heurisiic” OR “optimization”
OR “hill-climbing” OR “hill climbing” OR “simulated annealing” OR “tabu search” OR "genetic algorithms” OR “genetic programming”
OR “ant colony”}

Critério de Exclusdo Trabalhos Excluidos
Trabalhos que apresentam automatizacio do teste de mutacdo, mas sem a utilizacdo de uma meta-heuristica 43
Trabalhos que apresentam a utilizagdo de meta-heuristica para outros tipos de teste de software 20
Trabalhos que ndo apresentam teste de mutagdo nem SBST 11
Trabalhos que apresentam conceitos de teste de mutagio aplicados em experimentos utilizando SBST 12
Trabalhos que sejam anais de eventos ou que descrevam eventos 19
Total 111

Figura 1. String de busca e critérios de exclusao.

Respondendo Q1, SBST estd sendo aplicado para otimizar: a selecao de
operador de mutagao (1 trabalho), a geragao de dado de teste (39 trabalhos),



a geragao de mutante (12 trabalhos) e a geragdo de dado de teste e mutante
simultaneamente (3 trabalhos). Respondendo a segunda questao de pesquisa, dentre
os 15 trabalhos que apresentam abordagens para a reducao do nimero dos mutantes
utilizando SBST, as seguintes meta-heuristicas sao utilizadas: Genetic Algorithm (15
trabalhos), NSGA-II (4 trabalhos), Greedy Algorithm (2 trabalhos), Hill Climbing
(2 trabalhos), Immune Algorithm (1 trabalho) e Local Search (1 trabalho).

3.1. Trabalhos Relacionados

[May et al. 2003] apresenta uma abordagem inspirada no sistema imunoldgico do
corpo humano chamada Immune Algorithm. A funcao de aptidao é calculada para
o mutante observando o quao diferente foi a saida dada por ele em relacao a saida
do programa original. Para o dado de teste, a funcao de aptidao é calculada pelo
nimero de mutantes que foram mortos. Nos trabalhos de [Adamopoulos et al. 2004,
Assis Lobo de Oliveira et al. 2013] ¢ apresenta uma metodologia que utiliza o
conceito de co-evolugao para gerar mutantes e dados de teste utilizando Genetic
Algorithm. Em [Adamopoulos et al. 2004] a fungao de aptidao é calculada a partir
do escore de mutagao e em [Assis Lobo de Oliveira et al. 2013] ¢ a divisao entre o
nimero de mutantes mortos e o total de mutantes.

Em [Jia and Harman 2008] Genetic Algorithm e Hill Climbing sao uti-
lizadas para geracdo de mutantes. A funcao de aptidao é calculada pela
uniao do conjunto de casos de teste que mata o mutante, dividido pelo
conjunto de casos de teste, chamada de fragilidade do mutante. Nos
trabalhos de [Dominguez-Jiménez et al. 2009b, Dominguez-Jiménez et al. 2009a,
Dominguez-Jiménez et al. 2010, Dominguez-Jiménez et al. 2011] é apresentada
uma técenica utilizando Genetic Algorithm para a geracao de mutantes. A fun¢ao de
aptidao é calculada levando em consideracao se o mutante é morto ou nao pelo caso
de teste e quantos mutantes foram mortos pelo mesmo caso de teste.

Em [Blanco-Munoz et al. 2011] Genetic Algorithm é utilizado para a geragao
de mutantes e a funcao de aptidao é calculada pela fragilidade do mutante. Em
[Schwarz et al. 2011] é definida uma abordagem que utiliza Genetic Algorithm para
encontrar um conjunto de mutantes que tenham um alto impacto e que estejam
espalhados por todo o cédigo. A funcao de aptidao é calculada pelo impacto que o
mutante tem com relacao aos outros mutantes.

No trabalho de [Omar et al. 2013] sao aplicadas as meta-heuristicas Genetic
Algorithm e Local Search para encontrar mutantes de ordem superior (HOM)
mais dificeis de serem mortos. Em [Harman et al. 2010] sao aplicados Genetic
Algorithm, Hill Climbing e Greedy Algorithm para geracao de HOMs. Para
ambos os trabalhos, a funcao de aptidao é calculada pela diferenca entre as falhas
encontradas no HOM e as falhas encontradas nos mutantes que compoe o HOM. Em
[Langdon et al. 2009a, Langdon et al. 2009b, Langdon et al. 2010] é apresentada
uma abordagem que utiliza NSGA-II para a geragao de mutantes. NSGA-II nao
calcula funcao de aptidao.

3.2. Abordagem Proposta

O objetivo deste trabalho é diminuir o custo relacionado a aplicacao do teste de
mutacao no contexto de programas concorrentes. Para isso, estd sendo investigado
o uso de meta-heuristicas para a geracao de mutantes. A partir desse objetivo,



duas perguntas puderam ser feitas: 1) Como o teste de mutagdo pode ser
otimizado? e 2) Quais as possibilidades de utilizagdo de SBST no contexto de
teste de mutacao e programacao concorrente? Para responder essas perguntas,
primeiramente foi conduzida uma revisao sistemética com o objetivo de identificar
trabalhos que utilizam SBST para otimizar o teste de mutacao sem focar em
programas concorrentes. Com isso, pode-se ter uma ideia das pesquisas na area
de teste de mutacao.

Com os trabalhos publicados nessa drea, pode-se observar que ha a motivacao
de diminuir o custo do teste de mutacao por meio de trés abordagens diferentes:
1) selecao de operador de mutacao, 2) geracao de dado de teste, 3) geragao de
mutante. Observou-se que grande parte dos trabalhos utilizavam a meta-heuristica
Genetic Algorithm, que utiliza uma funcao de aptidao para atribui valores aos
mutantes dependendo de quao bons eles sao com relagao ao resultado de otimizagao
que se quer alcancar. Levando em consideracao as funcoes de aptidao, nao
foi encontrada nenhuma que utilizasse a frequéncia de mutacao para avaliar um
mutante. Entao, essa foi a motivacao para desenvolver um experimento para avaliar
se a frequéncia de execucao de mutantes pode ser uma boa alternativa para ser
utilizada, posteriormente como fungao de aptidao em um Genetic Algorithm.

A frequéncia de execucao calcula a quantidade de dados de teste que fazem
com que o ponto onde had a mutagao no programa mutante seja executado. Um
importante ponto a se observar é a quantidade de mutantes vivos com uma alta
frequéncia de execucao. Segundo [Bottaci 2001], para demonstrar a presenga de
uma falha em um mutante (matar o mutante) é necessario que a execugao do caso de
teste alcance o ponto de mutagao (condigao de alcangabilidade), o valor da expressao
modificada deve mudar o estado do programa mutante quando comparado com o
programa original (condigao de necessidade) e essa diferenga no estado precisa ser
propagada até a saida (condic¢ao de suficiéncia). Com isso, um mutante que possui
uma grande frequéncia de execugao pode ser um possivel mutante equivalente (nao
satisfazendo a condigdo de necessidade) ou ndo hd um caso de teste que o faga
gerar uma saida diferente da apresentada pelo programa original (nao satisfazendo
a condigao de alcangabilidade).

O experimento tem como objetivo analisar os mutantes mais executados
com o proposito de verificar quantos sdo equivalentes ao programa original. A
hipétese nula diz que todos os mutantes com uma maior frequéncia de execugao
e que permanecem vivos sao equivalentes. A hipdtese alternativa diz que ha um
conjunto de mutantes que possuem uma frequéncia alta, porém nao sao equivalentes
ao programa original. Esse experimento esta em desenvolvimento e consiste em
aplicar o teste de mutacao utilizando a ferramenta Proteum em programas escritos
na linguagem C e identificar os mutantes equivalentes. O objetivo é verificar se os
mutantes equivalentes sao os mutantes com maior frequéncia de execucgao e quantos
mutantes mortos tem uma alta frequéncia de execuc¢ao. Com isso, espera-se refutar
a hipotese nula e poder afirmar que ha um conjunto de mutantes que possuem uma
frequéncia alta, porém nao sao equivalentes ao programa original, podendo usar essa
medida como fun¢ao de aptidao no Genetic Algorithm. Os resultados desse estudo
irao propiciar o estabelecimento de uma proposta de reducao de custo do teste de
mutacao, empregando técnicas de meta-heuristica que posteriormente sera aplicada
no contexto de programacao concorrente.



Referéncias

[Adamopoulos et al. 2004] Adamopoulos, K., Harman, M., and Hierons, R. M.
(2004). How to overcome the equivalent mutant problem and achieve tailored
selective mutation using co-evolution. In IN GECCO (2), VOLUME 3103 OF
LECTURE NOTES IN COMPUTER SCIENCE, pages 1338-1349. Springer.

[Assis Lobo de Oliveira et al. 2013] Assis Lobo de Oliveira, A., Gonyalves
Camilo-Junior, C., and Vincenzi, A. (2013). A coevolutionary algorithm
to automatic test case selection and mutant in mutation testing. In Evolutionary
Computation (CEC), 2013 IEEE Congress on, pages 829-836.

[Blanco-Munoz et al. 2011] Blanco-Munoz, E., Garcia-Dominguez, A,
Dominguez-Jimenez, J., and Medina-Bulo, 1. (2011). Towards higher-order
mutant generation for ws-bpel. In e-Business (ICE-B), 2011 Proceedings of the
International Conference on, pages 1-6.

[Bottaci 2001] Bottaci, L. (2001). A genetic algorithm fitness function for mutation
testing. In SEMINAL’2001 — First International Workshop on Software Engine-
ering using Metaheuristic INnovative ALgorithms, Toronto, Ontario, Canada.

[Bradbury et al. 2006] Bradbury, J. S., Cordy, J. R., and Dingel, J. (2006).
Mutation operators for concurrent Java (J2SE 5.0). In Proceedings of the Second
Workshop on Mutation Analysis, pages 11-20, Washington, DC, USA.

[Briand et al. 2004] Briand, L. C., Labiche, Y., and Shousha, M. (2004). Perfor-
mance stress testing of real-time systems using genetic algorithms. Technical
report, Carleton University.

[Cohen et al. 2003] Cohen, M. B., Gibbons, P. B., Mugridge, W. B., and Colbourn,
C. J. (2003). Constructing test suites for interaction testing. In Proceedings of
the 25th International Conference on Software Engineering, pages 38—48.

[Dominguez-Jiménez et al. 2011] Dominguez-Jiménez, J., Estero-Botaro, A.,
Garcia-Dominguez, A., and Medina-Bulo, I. (2011). Evolutionary mutation
testing. Information and Software Technology, 53(10):1108 — 1123.

[Dominguez-Jiménez et al. 2009a] Dominguez-Jiménez, J. J., Estero-Botaro, A.,
Garcia-Dominguez, A., and Medina-Bulo, 1. (2009a). Gamera: An automatic
mutant generation system for ws-bpel compositions. Web Services, Furopean
Conference on, pages 97-106.

[Dominguez-Jiménez et al. 2010] Dominguez-Jiménez, J. J., Estero-Botaro, A.,
Garcia-Dominguez, A., and Medina-Bulo, I. (2010). Gamera: A tool for ws-bpel
composition testing using mutation analysis. volume 6189 of Lecture Notes in
Computer Science, pages 490-493.

[Dominguez-Jiménez et al. 2009b] Dominguez-Jiménez, J. J., Estero-Botaro, A.,
and Medina-Bulo, 1. (2009b). A framework for mutant genetic generation for
ws-bpel. volume 5404 of Lecture Notes in Computer Science, pages 229-240.

[Harman et al. 2010] Harman, M., Jia, Y., and Langdon, W. (2010). A manifesto for
higher order mutation testing. In Software Testing, Verification, and Validation
Workshops (ICSTW), 2010 Third International Conference on, pages 80-89.

[Jia and Harman 2008] Jia, Y. and Harman, M. (2008). Constructing subtle faults
using higher order mutation testing. In Source Code Analysis and Manipulation,
2008 Eighth IEEE International Working Conference on, pages 249-258.

[Jia and Harman 2011] Jia, Y. and Harman, M. (2011). An analysis and survey of
the development of mutation testing. Software Engineering, IEEE Transactions
on, 37(5):649-678.



[Langdon et al. 2009a] Langdon, W., Harman, M., and Jia, Y. (2009a). Multi
objective higher order mutation testing with genetic programming. In Testing:
Academic and Industrial Conference - Practice and Research Techniques, pages
21-29.

[Langdon et al. 2009b] Langdon, W. B., Harman, M., and Jia, Y. (2009b). Multi
objective higher order mutation testing with gp. In Proceedings of the 11th Annual
conference on Genetic and evolutionary computation, pages 1945—1946.

[Langdon et al. 2010] Langdon, W. B., Harman, M., and Jia, Y. (2010). Efficient
multi-objective higher order mutation testing with genetic programming. J. Syst.
Softw., 83(12):2416-2430.

[Maia et al. 2010] Maia, C. L. B., do Carmo, R. A. F., de Freitas, F. G., de Campos,
G. A. L., and de Souza, J. T. (2010). Automated test case prioritization with
reactive GRASP. Adv. Soft. Eng., pages 2:1-2:13.

[Maia 2009] Maia, Camila Loiola Brito, d. C. R. A. F. d. F. F. G. d. C. G. A.
L. d. S. J. T. (2009). A multi-objective approach for the regression test case
selection problem. In Proceedings of Anais do XLI Simposio Brasileiro de Pesquisa
Operacional, pages 1824—-1835.

[May et al. 2003] May, P., Mander, K., and Timmis, J. (2003). Software vaccination:
An artificial immune system approach to mutation testing. In Timmis, J., Bentley,
P., and Hart, E., editors, Artificial Immune Systems, volume 2787 of Lecture Notes
in Computer Science, pages 81-92. Springer Berlin Heidelberg.

[McMinn 2011] McMinn, P. (2011). Search-based software testing: Past, present
and future. In International Workshop on Search-Based Software Testing (SBST
2011), pages 153-163.

[Myers et al. 2011] Myers, G. J., Sandler, C., and Badgett, T. (2011). The Art of
Software Testing. Wiley Publishing, 3rd edition.

[Offutt and Untch 2001] Offutt, A. J. and Untch, R. H. (2001). Mutation testing for
the new century. chapter Mutation 2000: Uniting the Orthogonal, pages 34-44.
Kluwer Academic Publishers, Norwell, MA, USA.

[Offutt et al. 1996] Offutt, A. J., Voas, J., and Payne, J. (1996). Mutation operators
for Ada. Technical report.

[Omar et al. 2013] Omar, E., Ghosh, S., and Whitley, D. (2013). Constructing
subtle higher order mutants for java and aspectj programs. In Software Reliability
Engineering (ISSRE), 2013 IEEE 24th International Symposium on, pages
340-349.

[Schwarz et al. 2011] Schwarz, B., Schuler, D., and Zeller, A. (2011). Bree-
ding high-impact mutations. In Software Testing, Verification and Validation
Workshops (ICSTW), 2011 IEEE Fourth International Conference on, pages
382-387.

[Silva 2013] Silva, R. A. (2013). Teste de mutagao aplicado a programas concorrentes
em mpi. Mestrado, ICMC, Instituto de Computagao e Matematica Computacio-
nal, USP.

[Silva-Barradas 1998] Silva-Barradas, S. (1998). Mutation analysis of concurrent
software. PhD dissertation, Dottorato di Ricerca in Ingegneria Informatica e
Automatica, Politecnico di Milano.



