Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 273 (2025) 466473

www.elsevier.com/locate/procedia

XIII Latin American Algorithms, Graphs, and Optimization Symposium (LAGOS 2025)

How to go from partial to full retroactivity in detail

Cristina G. Fernandes®”, Felipe C. Noronha?

“Department of Computer Science, University of Sdo Paulo, Brazil

Abstract

The concept of retroactivity in data structures was introduced by Demaine, lacono, and Langerman. In their original paper on
retroactivity, they described a way to transform a partially retroactive data structure into a fully retroactive one. Their description
is focused on space savings, which require the use of a persistent version of the data structure in question. We focus on the case in
which one does not have or does not want to use a persistent data structure. We describe and analyze in detail how to implement
their transformation in this case. As a secondary contribution, using our strategy, we implemented a (halfway) retroactive data
structure for the incremental minimum spanning forest (MSF) problem, that we make available.

© 2025 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the Program Committee of LAGOS 2025.

Keywords: Retroactive data structures; incremental minimum spanning forest; link-cut trees

1. Introduction

Problems in dynamic graphs have many applications, as they can be used to model a variety of real situations
where the graph models a network of sorts that is changing over time. A subclass of these problems that are already
interesting and challenging are the so-called incremental problems, in which the considered graph is growing with
time, through the addition of edges.

The Minimum Spanning Tree problem consists of, given a connected graph G with costs on its edges, finding a
spanning tree of G with minimum cost. To describe the incremental version of this well-known problem, we consider
a generalization on graphs that are not necessarily connected. The Minimum Spanning Forest (MSF) problem consists
of, given a graph G with costs on its edges, finding a maximal spanning forest of G with minimum cost.

The incremental MSF is the problem of keeping track of an MSF in a graph on n vertices that is changing through
the addition of new edges with specified costs. We may assume the initial graph is empty. Frederickson [7] described
how to solve this problem efficiently using link-cut trees, and addressed the more general dynamic MSF, that also
allows deletion of edges. The cost per update of his method is O(y/n), where m is the number of edges in the graph at
the moment of the update.

* Corresponding author
E-mail addresses: cris@ime.usp.br (Cristina G. Fernandes)., felipe.castro.noronha@hotmail.com (Felipe C. Noronha).

1877-0509 © 2025 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the Program Committee of LAGOS 2025.

10.1016/j.procs.2025.10.333

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2025.10.333&domain=pdf

Cristina G. Fernandes et al. / Procedia Computer Science 273 (2025) 466—473 467

The concept of retroactivity in data structures was introduced by Demaine, lacono, and Langerman [3]. Its appli-
cations include practical situations where the respective data might be manipulated in imperfect ways, and once in a
while there is a need to correct some erroneous operation done, or to perform some operation that was forgotten.

A data structure usually gives support to updates and queries. Generally, the order in which the updates are per-
formed interferes with the state of the data structure. Consider a data structure that starts empty, and suffers a sequence
of updates, each with a time stamp that registers the time it occurred. The goal of retroactivity is to allow one to effi-
ciently manipulate this update sequence, and to answer queries not only on the current state of the data structure, but
also on the state of the data structure at any time ¢, that is, the state in which the data structure would be if we applied
only the updates in the sequence with time stamp at most ¢. Specifically, in the context of retroactivity, one wants to
be able to insert into the sequence an update with a time stamp ¢, possibly indicating a time in the past, and to remove
some update from the sequence, given its time stamp. We assume the time stamps are all distinct. Moreover, given a
time ¢, one would like to answer queries on the state of the data structure at time .

If one can efficiently answer only queries on the current state of the data structure, but not on its state at an arbitrary
time ¢, the data structure is said to be partially retroactive. In the literature, retroactivity is sometimes used to refer to
all variants of retroactivity, and the expression fully retroactive is then used to refer to an implementation that provides
the complete set of retroactive operations: insertion and removal of updates at any time, as well as answering queries
at any time.

Demaine, Iacono, and Langerman [3] described fully retroactive versions of queues, doubly ended queues, priority
queue, union-find, and also a more efficient partially retroactive priority queue. They also described how to transform
a partially retroactive data structure into a fully retroactive one with an O(y/m) slowdown per update operation, where
m is the length of the update sequence. In general, assuming that certain known conjectures in complexity theory
hold, this slowdown is essentially tight [2]. The transformation is done, at first, by keeping O(y/m) versions of the
partially retroactive data structure. Under a condition that assures that there is an efficient persistent version of the
data structure in question, they show how to achieve a more effective space consumption without losing in the time
consumption. (A persistent data structure is a data structure that always preserves the previous version of itself when
it is modified [6].) Years later, Demaine et al. [4] provided a transformation from time-fusible partially retroactive data
structures into fully retroactive ones, with a logarithmic time slowdown per operation and applied this transformation
to obtain a more efficient fully retroactive priority queue.

It is known that a data structure used to solve a dynamic problem, such as the dynamic MSF problem, can be
used as a partially retroactive solution for the problem. For instance, an efficient data structure for the dynamic MSF
problem works as an efficient partially retroactive MSF solution: the insertions and removals of edges of the graph
are the updates, and the query is the cost of an MSF in the current graph. For partial retroactivity, addition or removal
of edges at any time ¢ can be made in the present version, and as addition and removal are the inverse of each other,
one achieves partial retroactivity. There are efficient implementations for dynamic MSF [10, 11], that assure O(lg4 n)
time amortized per operation, for simple graphs on n vertices. So the same bound per operation holds for the partially
retroactive MSF problem.

Recently, Henzinger and Wu [9] presented lower bounds for the time per operation of a fully retroactive data
structure for the MSF problem and for connectivity, under the OMv conjecture [8]. The lower bounds are in terms of
the number n of vertices of the graph: for any € > 0, there is no fully retroactive solution that takes O(n' =€) time per
operation for these problems. The authors also presented a fully retroactive data structure for connectivity, maximum
degree, and MSF in O(n) per operation.

The study of de Andrade Junior and Seabra [1] about retroactivity addresses the incremental MSF problem. In the
incremental MSF problem, the only update supported is the addition of edges. So the update sequence, in this case,
consists of a series of edge additions. To support full retroactivity, one would have to give support to the insertion of
new edge additions at any time, and also to the removal of an edge addition that occurred at some given time ¢. Their
implementation gives support to edge addition at any time ¢ and answers queries at any time ¢. It does not allow for
the removal of an edge addition from the update sequence, so we refer to this as a semi-retroactive incremental MSF
solution. (Roditty and Zwick [12], studying strong connectivity, considered yet another version of retroactivity that
was called incremental, where one is allowed to add an edge only at the present time, not in the past, but can remove
from the update sequence any edge addition, given its time stamp.)

468 Cristina G. Fernandes et al. / Procedia Computer Science 273 (2025) 466—473

The implementation of de Andrade Junior and Seabra is inspired on the aforementioned technique of Demaine,
Iacono, and Langerman [3, Theorem 5] for transforming partially retroactive data structures into fully retroactive ones.
This technique uses the idea of square-root decomposition, that breaks a time line of length m into 4/m checkpoints,
keeping the state of the data structure at these v/m checkpoints, as well as the whole sequence of updates. To answer
queries at an arbitrary time ¢, it computes what is the checkpoint previous to #, as close as possible to 7, and then it
temporarily applies, to the data structure of this checkpoint, the updates between the checkpoint and ¢, to be able to
answer the query properly. After answering the query, it rolls back these updates to recover the checkpoint state of the
data structure. For the purpose of their experimental study, de Andrade Junior and Seabra assumed the length m of
the time line was known from the start, and that the updates had time stamps from 1 to m, so they do not ever rebuild
the data structure. Also, as Frederickson [7], they used link-cut trees as the data structure for each checkpoint. This
leads to an amortized query and edge addition time of O(y/mIgn) in a graph with n vertices. The space used by their
implementation is ®(m+/m) because they used a collection of ®(/m) independent link-cut trees. Our initial goal in
this work was to improve de Andrade Junior and Seabra’s implementation, allowing the length of the update sequence
for the incremental MSF to grow arbitrarily, without increasing its running time or space consumption.

Theorem 5 in [3] has two parts. In the first part, the authors are concerned with the running time, and describe
the above mentioned technique. At this point, they do not give details on how to keep the v/m checkpoints and the
data structures so that, after many insertions and removals of operations, at most (3/2)+/m operations occur between
consecutive checkpoints, with m changing during the process as the operations happen. The second part of the proof is
concerned with saving space, and describes how to rebuild the data structure from time to time to keep this invariant.
In order to save space, under the same time consumption, their technique uses a persistent version of the data structure
in this rebuilding process. There are sophisticated functional implementations of link-cut trees described in the litera-
ture [5], based on the use of the so called fingers. But we were not focused on the space savings, so we concentrated on
looking for a simple way to keep the v/m checkpoints and the link-cut trees so that, after many insertions and removals
of operations, at most (3/2)+/m operations occur between consecutive checkpoints, again with a variable m. We did
not find an efficient way along the lines of rebalancing of B-tree nodes, so we considered the rebuilding process. But
rebuilding from scratch a whole new collection of link-cut trees from time to time would extrapolate the amortized
time by operation. So, we came up with a simple way to use the previous version of the collection of independent
link-cut trees to build its new version.

Our main contribution is that our strategy can be applied in general, to transform any partially retroactive data
structure into a fully retroactive one, when one is not willing to use or does not have a persistent version of the
data structure in question to apply the space saving strategy from Theorem 5 in [3]. It achieves the same slowdown
in updates and queries that their technique. We applied our strategy to obtain the improvement we wanted on de
Andrade Junior and Seabra’s implementation. So, a secondary contribution is an implementation, whose code we
made available, of a semi-retroactive version for the incremental MSF, that supports addition of edges and queries at
any time, in amortized time O(y/m g n) per edge insertion and MSF cost query, and uses space ®(m+/m).

The remainder of the paper is organized as follows. In Section 2, we review the strategy of Demaine, Iacono, and
Langerman [3] to transform a partially retroactive data structure into a fully retroactive one. Section 3 contains the
description of the new proposed rebuilding step, its correctness proof, and its time complexity analysis. In Section 4,
we formalize the semi-retroactive incremental MSF and, for completeness, revise how it is implemented using the
proposed rebuilding approach. Final remarks are presented in Section 5.

2. From partial to full retroactivity: a brief review

Demaine, Iacono, and Langerman [3] described a way to transform a partially retroactive data structure into a fully
retroactive one. Their result considers that the data structures use the RAM model of computation, and work in the
pointer-machine model of Tarjan [14]. They also use, in their result, the so called rollback method, in which auxiliary
information is stored when certain updates are performed on the data structures, so that one can reverse these updates
if needed.

For the sake of completeness, we restate their result and describe their method. Then, in the next section, we
describe our simplified version of their result.

Cristina G. Fernandes et al. / Procedia Computer Science 273 (2025) 466—473 469

Theorem 2.1 (Theorem 5 in [3]). Let m denote the number of updates in the current update sequence. Any par-
tially retroactive data structure in the pointer-machine model with constant indegree, supporting T (m)-time retroac-
tive operations and Q(m)-time queries about the present, can be transformed into a fully retroactive data structure
with amortized ONm T (m))-time retroactive operations and ONm T(m) + Q(m))-time fully retroactive queries using
O(m T (m)) space.

They define vm checkpoints 74, ..., tym and maintain \/m versions Dy,..., D of the partially retroactive data
structure, where the structure D; contains all updates that occurred before time ¢;. Each #; is defined so that, when D;
was constructed, it contained the first iy/m of the m updates, for i = 1, ...,ym. They keep track of the entire sequence
of updates.

When a retroactive operation is performed for time ¢, they perform the operation on all data structures D; with
t; > t, which costs O(y/m T(m)) time. When a retroactive query is made at time ¢, they find the largest i such that
t; < t, and perform on D; all updates from the current update sequence that have time between #; and ¢, keeping track
of auxiliary information for later rollback. Then they perform the query on the resulting structure, and rollback these
updates to restore the state of the structure D; previous to the query.

They assure that, at any time, between v/m /2 and (3/2)+/m updates have to be performed on D; to answer any query.
This implies that the time to answer a query is O(y/m T(m) + Q(m)). To achieve the O(m T (m)) space consumption,
the way they assure this is by rebuilding Dy, ..., Dz from time to time. Let m denote the number of updates in the
update sequence when the last rebuilding took place. In the beginning, m = 0. By assumption, the partially retroactive
data structure has constant indegree, so they use a persistent version of it, obtained according to Driscoll et al. [6].
After+/m /2 retroactive operations, they update the value of m and rebuild the persistent data structure from scratch in
time O(m T'(m)). When rebuilding the persistent data structure for the current number m of updates, they perform the
sequence of m updates on a fully persistent version of an initially empty partially retroactive data structure, and keep
a pointer D; to the version obtained after the first i/m updates, for i = 1, ...,+/m. The retroactive updates branch off a
new version of the data structure for each modified D;. The cost for the rebuilding is therefore O(m T (m)), which adds
an amortized cost of O(ym T (m)) per retroactive operation. They also argue that the space used is O(m T (m)).

3. Rebuilding process without a persistent data structure

In this section, we concentrate on the case in which one does not want to use a persistent data structure, or such a
structure is not available. We describe a rebuilding process that is as efficient, in terms of time, as the original one by
Demaine et al. [3], but that does not use a persistent version of the data structure in question.

We refer to a data structure that gives support to retroactive queries, and to retroactive insertions into the update
sequence, but not to removals, as a semi-retroactive data structure. This kind of data structure is obviously weaker
than a fully retroactive one, and is not comparable with a partially retroactive one, because the later gives support to
queries only at the present, and to retroactive insertions and removals on the update sequence. For semi-retroactive
data structures, we refer to retroactive updates, instead of retroactive operations, as only insertion of updates are
allowed.

We will describe two variants of the rebuilding process. The first one is simpler and serves to derive a semi-
retroactive data structure from a partially retroactive one. The second one serves to derive a fully retroactive data
structure from a partially retroactive one.

3.1. Semi-retroactivity

Our strategy follows the same idea of Demaine et al., but it does not rely on the use of a persistent version of
the data structure in question. Also, for semi-retroactivity, we propose the use of slightly different checkpoints and
rebuilding moments, that make it easier to implement and analyze the correctness of the strategy.

Let m denote the number of updates in the current update sequence. As we are considering semi-retroactivity, there
are no removals of updates, and m is also the number of retroactive operations that happened until now, that is, the
total number of retroactive updates.

We will use Dy to refer to an empty data structure, which is the initial state of the data structure, when m = 0.
We will rebuild the data structures Dy, D1, ..., D\/ﬁ every time m is a perfect square, that is, m = k? for a positive

470 Cristina G. Fernandes et al. / Procedia Computer Science 273 (2025) 466—473

integer k. Since (k+1)> —k? = 2k + 1, the data structures built when m = k> will be rebuilt after exactly 2k + 1 = @(y/m)
retroactive updates.

Let S be the list of updates when m = k>. Let S* be the list of subsequent 2k + 1 updates, that arrived after the
rebuilding that resulted in Dy, Dy, ..., Dy, and let S’ be the union of S and S *. Consider these lists sorted by the time
of the updates.

When m = k?, a rebuilding occurred and D; becomes the partially retroactive data structure with the first ik updates
in S fori = 0,1,...,k. The retroactive queries and subsequent 2k + 1 retroactive updates in §* are treated as in
Section 2. When m reaches (k + 1)?, it is time to rebuild the data structures. The idea is quite simple. Let Dy and D/ be
two new empty data structures and let D, , refer to the current D; fori = 0, 1,...,k — 1. Disregard Dy. Lett; =] = 0
and, for i = 2,...,k + 1, let ¢/ be the time of the last update in D. For i = 1,...,k + 1, apply to D’ the updates
in S’ after #; so that D] stores exactly i(k + 1) updates. The resulting Dy, D1, ..., D,’(41 are the new versions of the data
structures for S”’.

The key fact that assures that this works is the following.

Lemma 3.1. Fori=0,1,...,k—1, every update in D; is within the first (i + 2)(k + 1) updates for the sequence S’ of
updates.

Proof. When m = k?, the data structure D; contained the first ik updates in S. Let #; be the time of the last update in
D; at that moment. Since then, the 2k + 1 updates in S* occurred, and any of them that had time 7 < ; was applied
to D;. Because ik + 2k + 1) < ik + i + 2k + 2 = (i + 2)(k + 1), even if all the 2k + 1 updates in S * were applied to D;,
all updates in D; would be among the first (i + 2)(k + 1) updates in S”. O]

Note that the statement does not hold with i + 1 in the place of i + 2. During the rebuilding, the number of updates
applied to D; to get D/ , is at most (i + 2)(k + 1) —ik = 2k +2 +i < 3(k + 1), fori = 0,1,...,k — 1. The number
of updates applied to D] is exactly k + 1. That is, within the rebuilding, O(k) = O(y/m) updates are applied to obtain
each D’.

3.2. Full retroactivity

To achieve full retroactivity, we must also give support to removals of updates from the update sequence. For
this, we are not able to use the perfect squares as the moments of rebuilding, because the possible length of the update
sequence is not anymore related to the number of retroactive operations done so far. The length of the update sequence
might grow and shrink over time. So the strategy is more similar to the original one of Demaine et al. [3].

Let m be the number of updates in the update sequence S at the moment of a rebuilding that resulted in the partially
retroactive data structures Dy, D1, . .., Dy, where k = [Vm]. Let k = [¥m]. Then D; contains the first ik updates in S,
fori=1,...,k— 1, and Dy contains all updates in S'. We refer to the updates in S as old.

Let{=1iftm=0and { =2k—1if m > 1. After { retroactive operations, that now might be insertions or removals
of updates, we will rebuild the data structures. Let m’ be the number of updates in the current sequence S’ after these
¢ operations are performed. Let k' = [Vm’'] and k' = [V |.

Claim 3.2. & — k| < 1.

Proof. If m=0,thenm’ =m+1=1,andk’ =1 =k + 1. So suppose that m > 1, and note thatm — € < m’ < m + £.
Then Vm — € <Vm’. Butm — € = m — 2k — 1) > m — 2/m +1 = (\m —1)?, because m > 1. Hence Vm — £ > m —1,
which implies that kK’ > [Vm — €] > |[\m—1] = k—1. Similarly,\/n7 <Vm+Candm+€ =m+2k—1 <m+2ym+1 =
(Vm +1)2. Thus Vm + € <+/m +1, which implies that kX’ < [Vm + €| < |[\Vm+1] =k + 1. O

If kK > k, then ik + 2k — 1 < ik’ + 2k’ — 1 < (i + 2)k’. Hence all the ik old updates that were not removed are within
the (i + 2)k’ first updates in S”, even if all the at most 2k — 1 new updates inserted are before ;.

If ¥ = k— 1, then m’ < m, which means that at most k — 1 of the 2k — 1 operations that occurred since the last
rebuilding are insertions. Also, as k¥’ < k’ + 1, we only need to use D; to obtain D, for i +2 < k’, which means that
i<k -2<k.So,ik+k—1=ilk'+1)+k' =G+ DK +i<@+2)k'.

Cristina G. Fernandes et al. / Procedia Computer Science 273 (2025) 466—473 471

Hence, we can proceed essentially as in the previous subsection. Let Dj and D} be two new empty data structures
and let D/, refer to the current D; fori =0, 1,...,k" — 1. Disregard Dy. Let 7 = #{ = O and, fori = 2,...,k’, let t] be
the time of the last update in D}. Fori = 1,...,k" -1, apply to D] the updates in S” after ¢/ so that D stores exactly ik’
updates, and apply to D, all the updates in §” after #;,. The resulting Dy, D1, ..., D;, are the new versions of the data
structures for S’.

Note that, within the rebuilding, the number of updates we perform on D/ is k", the number of updates we perform
on D, ism’ —m < 2k" — 1, and, for 2 < i < k" — 1, we perform at most ik’ — (i = 2)k +2k — 1 = i(k' = k) + 4k -1 <
i+4k— 1<k +4k -2 < 5k’ + 2 updates. For every i, this number is O(k") = owm).

The time to execute a retroactive operation remains the same, despite the change in the number of opera-
tions between rebuildings. Let m and /m be the number of updates in the sequence at the last rebuilding and
when an operation is done, respectively. For a retroactive insertion or removal of an update, the amortized time is
OWm T(m)) = OoWm T(m)). Let k = |vm] and € = 2k — 1. Because m — £ < in < m + £, we have that k = OWm). For
a retroactive query, the number of updates applied to the appropriate D; and rolled back is O(k) = O(V7), so the time
is O(m T(m) + Q(m)).

As for the space used by our strategy, assuming that the space used by the partially retroactive data structure is
linear, each D; uses space O(ik), and thus the total space used by Dg, Dy, ..., Dy is ®(m~/m). The space used by
Demaine et al. [3] strategy, that relies on a persistent data structure, is O(m T'(m)), where T(m) is the time for a
retroactive update in the partially retroactive data structure.

4. Semi-retroactive incremental MSF

The approach of de Andrade Junior and Seabra [1] for the semi-retroactive incremental MSF solution offers support
to the following interface:

e add_edge(u, v, w, t): add to the graph G, at time ¢, an edge of cost w and endpoints « and v;
o get_msf(?): return a list with the edges of an MSF of G at time ¢.

To implement this, one needs to keep an incremental MSF, which, in this case, is a partial retroactive data structure.
Its interface is pretty similar to the semi-retroactive version, and the only difference is that we drop the argument
for time ¢ in both the edge addition and query operations. This can be implemented using link-cut trees [13] as an
underlying structure for maintaining the current MSF. Specifically, every time a new edge uv is added, we can check
in the link-cut trees if this new edge would form a cycle with the stored forest. If not, then we proceed to add it to the
forest. Otherwise, we find an edge e with maximum cost on the path between u and v in the stored forest, and if the
cost of the new edge uv is smaller than the cost of e, we remove e and add uv to the forest. Also, when a query for
MSF is performed, we simply return all the edges currently stored in the link-cut trees.

Following on, to implement the semi-retroactive version of the incremental MSF, as described in Section 2, the
idea of square-root decomposition is used to divide the time line of length m in blocks of size v/m. Because of the
restrictions imposed by de Andrade Junior and Seabra — that m is known beforehand and that each operation time
is an integer in the interval [1, m] — it is possible to avoid rebuilding, and to build these v/m blocks right up front,
as the first step in the structure initialization. Each of these blocks is defined by a checkpoint #; such that #; = i+/m,
with i € [1,4/m]. Then, each checkpoint ¢; is followed by a respective incremental MSF D;, where D; has all the edge
insertions that took place before the moment #;,. An empty incremental MSF D is also used.

From that, the implementation of de Andrade Junior and Seabra follows as expected. The operation
add_edge(u, v, w, t) is performed by adding the respective edge to each D; such that t < t;, for i € [1,4/m]. The
get_msf(7) consists of finding the largest i such that #; < 7, and then performing all the insertions that take place
between #; and ¢ on D;. After that, it is possible to return the current MSF stored in D; and then roll back these last
performed insertions. The empty incremental MSF Dy is used when ¢ is smaller than ¢,.

Now, let us take a look at the time consumption of this approach. Recall that n denotes the number of vertices of the
graph, and therefore in the link-cut trees. First of all, the query for the edges in the link-cut trees costs O(n), and all the
other routines used from the link-cut trees have an amortized cost of O(log n) per operation. For the add_edge routine,
in the worst case, we have to add one new edge to each D;, hence its amortized time consumption is O(y/m log n).

472 Cristina G. Fernandes et al. / Procedia Computer Science 273 (2025) 466—473

Finally, the time consumption of the get msf is O(n ++/m log n), because of the updates that need to be applied and
rolled back, and the query for the edges in a versions of the link-cut trees.

The development of the idea presented in this paper was driven by the desire to overcome the limitations in de
Andrade Junior and Seabra’s solution for the semi-retroactive MSF problem. The main difference is that we implement
the rebuilding steps, and hence we do not restrict the amount of operations or their time range. The rebuilding steps
are implemented following the approach presented in Section 3.1. Edge insertions and queries are treated similarly to
their implementation, but now the checkpoints change during the process, as the rebuildings happen.

To emphasize the simplicity of the rebuilding step, we present below the idea in pseudocode, using the notation
from Section 3.1. The procedure receives an integer k, a sequence D with the link-cut trees Dy, .. ., Dy, the sequence
t where ¢ is the last time stamp of an edge in D; for i = 0,...,k, and the current sequence S with (k + 1) edge
addition pairs (e, s), stored for instance in a balanced binary search tree with the time stamp s as key. It returns the
new block size k + 1, the sequence D’ with the link-cut trees Dy, ..., D}, and the sequence ¢ where £] is the last
time stamp of an edge in D} for i = 0,...,k + 1. In this pseudocode, for a pair p = (e, s) in S, we use p.time to refer
to s. The procedure NEWINCREMENTALMSF returns a new data structure representing a spanning forest with no edges.
It takes O(1) time in our implementation. The procedure KTH(S,) returns the element in S with the ith smallest key,
in time O(log k), because S has O(k?) elements. The procedure ADDEDGES(S, #, t7, F') updates the MSF stored in F
considering the addition of all edges in § with time stamp more than #; and at most #;. It takes time O(log k + ¢logn),
where ¢ is the number of edges added.

Algorithm 1 Rebuilding procedure

1: function reBuLD(k, D, 1, S)

2 Djy < NEWINCREMENTALMSF()

3 D} < NEWINCREMENTALMSF()

4: fori —2tok+1do

S: D: — D,

6 end for

7 t1 <0 > sentinel
8 t, <0

9: fori — 1tok+1do
10: p < KTH(S, i(k + 1)) > i(k + 1)th edge in §
11: l‘l{ «— p.time > time stamp of the i(k + 1)th edge in S
12: ADDEDGES(S, ti_», 1/, D7)
13: end for
14: returnk + 1,D’, ¢

15: end function

The running time is dominated by the insertion operations on the incremental MSFs. As argued in Section 3.1, this
process will execute O(m) such operations and, because each of these operations has an amortized cost of O(log n), the
total amortized cost of REBUILD is O(m log n). This cost, distributed over the @(y/m) operations that take place between
two rebuildings, adds an O(y/m log n) amortized consumption time per operation.

5. Final remarks

During our study of the work of de Andrade Junior and Seabra, we noticed that they did not really implement full
retroactivity, because their implementation does not allow for removals from the update sequence. Even though the
problem considered is incremental, a fully retroactive version of the problem requires the ability to remove a previous
addition from any point in the update sequence, a capability their implementation lacks.

Note that a version allowing for the removal of edge additions should not be confused with an implementation of a
retroactive dynamic MSF. A dynamic structure for an MSF not only allows for the maintenance of edge additions but
also edge removals in the update sequence.

Cristina G. Fernandes et al. / Procedia Computer Science 273 (2025) 466—473 473

Our current implementation also does not give support to removals of edge additions. The removal of an edge
insertion with time stamp ¢ from the update sequence requires the removal of this edge from each data structure D;
such that 7 < ;. However, since the data structure D; is for incremental MSF, we do not have support to edge removals.

The approach we presented to avoid the need for a fixed m, as seen in de Andrade Junior and Seabra’s implemen-
tation, demonstrates an interesting method for adapting a square-root decomposition technique to our advantage. This
technique could be further explored in other applications as well.

Finally, the algorithm of Holm, de Lichtenberg, and Thorup [10] maintains dynamic graphs efficiently. Their al-
gorithm is also based on link-cut trees. It would be interesting to use their ideas to achieve an implementation of an
efficient fully retroactive incremental MSF.

Acknowledgements

The first author would like to thank the support from Conselho Nacional de Desenvolvimento Cientifico e Tec-
nolégico (CNPq) of Brazil, grants 310979/2020-0 and 404315/2023-2, and Fundacido de Amparo a Pesquisa do Estado
de Sdo Paulo (FAPESP), grant 2023/03167-5.

References

[1] de Andrade Junior, J.W., Seabra, R.D., 2022. Fully retroactive minimum spanning tree problem. The Computer Journal 65, 973-982.
[2] Chen, L., Demaine, E.D., Gu, Y., Williams, V.V., Xu, Y., Yu, Y., 2018. Nearly optimal separation between partially and fully retroactive data
structures, in: Proc. of the 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pp. 33:1-33:12.
[3] Demaine, E.D., Iacono, J., Langerman, S., 2007. Retroactive data structures. ACM Transactions on Algorithms 3, 13.
[4] Demaine, E.D., Kaler, T., Liu, Q.C., Sidford, A., Yedidia, A., 2015. Polylogarithmic fully retroactive priority queues via hierarchical check-
pointing, in: Proc. of the Workshop on Algorithms and Data Structures (WADS), pp. 263-275.
[5] Demaine, E.D., Langerman, S., Price, E., 2008. Confluently persistent tries for efficient version control, in: Proc. of the Scandinavian Workshop
on Algorithm Theory (SWAT), pp. 160-172.
[6] Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E., 1989. Making data structures persistent. Journal of Computer and System Sciences 38,
86-124.
[7]1 Frederickson, G.N., 1983. Data structures for on-line updating of minimum spanning trees, in: Proc. of the 15th Annual ACM Symposium on
Theory of Computing (STOC), pp. 252-257.
[8] Henzinger, M., Krinninger, S., Nanongkai, D., Saranurak, T., 2015. Unifying and strengthening hardness for dynamic problems via the online
matrix-vector multiplication conjecture, in: Proc. of the 47th Annual ACM Symposium on Theory of Computing (STOC), pp. 21-30.
[9]1 Henzinger, M., Wu, X., 2021. Upper and lower bounds for fully retroactive graph problems, in: Proc. of the 17th International Symposium
Algorithms and Data Structures (WADS), pp. 471-484.
[10] Holm, J., de Lichtenberg, K., Thorup, M., 2001. Poly-logarithmic deterministic fullydynamic algorithms for connectivity, minimum spanning
tree, 2-edge, and biconnectivity. Journal of the ACM 48, 723-760.
[11] Holm, J., Rotenberg, E., Wulff-Nilsen, C., 2015. Faster fully-dynamic minimum spanning forest, in: Proc. of the European Symposium on
Algorithms (ESA), pp. 742-753.
[12] Roditty, L., Zwick, U., 2016. A fully dynamic reachability algorithm for directed graphs with an almost linear update time. STAM Journal on
Compututing 45, 712-733.
[13] Sleator, D.D., Tarjan, R.E., 1981. A data structure for dynamic trees, in: Proc. of the 13th Annual ACM Symposium on Theory of Computing
(STOC), pp. 114-122.
[14] Tarjan, R.E., 1979. A class of algorithms which require nonlinear time to maintain disjoint sets. The Journal of Computer and System Sciences
18, 110-127.

