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Abstract

Many real-world systems give rise to a time series of symbols. The elements in a sequence
can be generated by agents walking over a networked space so that whenever a node is vis-
ited the corresponding symbol is generated. In many situations the underlying network is
hidden, and one aims to recover its original structure and/or properties. For example, when
analyzing texts, the underlying network structure generating a particular sequence of words
is not available. In this paper, we analyze whether one can recover the underlying local prop-
erties of networks generating sequences of symbols for different combinations of random
walks and network topologies. We found that the reconstruction performance is influenced
by the bias of the agent dynamics. When the walker is biased toward high-degree neigh-
bors, the best performance was obtained for most of the network models and properties.
Surprisingly, this same effect is not observed for the clustering coefficient and eccentric,
even when large sequences are considered. We also found that the true self-avoiding dis-
played similar performance as the one preferring highly-connected nodes, with the advan-
tage of yielding competitive performance to recover the clustering coefficient. Our results
may have implications for the construction and interpretation of networks generated from
sequences.

1 Introduction

Many real-world phenomena are characterized by discrete series of events or decisions hap-
pening in succession [1, 2]. This includes how users navigate through websites or social media,
how language is written and spoken, music, city navigation, and even people’s everyday deci-
sions. In most cases, however, only a limited amount of information is available to infer the
rules and the mechanisms driving the generative processes behind these phenomena. For
instance, from the perspective of a social media user, the observed content may be limited to
their own interests, political positions, friends’ preferences and what is being suggested by a
recommendation algorithm. Such content normally only constitutes a small fragment of what
is present in the complete social media platform. These aspects are often linked with the emer-
gence of biases leading to polarization, formation of echo chambers, and other social

PLOS ONE | https://doi.org/10.1371/journal.pone.0296088 January 19, 2024

1/18


https://orcid.org/0000-0002-2038-3307
https://orcid.org/0000-0002-9151-6517
https://doi.org/10.1371/journal.pone.0296088
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296088&domain=pdf&date_stamp=2024-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296088&domain=pdf&date_stamp=2024-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296088&domain=pdf&date_stamp=2024-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296088&domain=pdf&date_stamp=2024-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296088&domain=pdf&date_stamp=2024-01-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0296088&domain=pdf&date_stamp=2024-01-19
https://doi.org/10.1371/journal.pone.0296088
https://doi.org/10.1371/journal.pone.0296088
https://doi.org/10.1371/journal.pone.0296088
http://creativecommons.org/licenses/by/4.0/

PLOS ONE

Identifying the perceived local properties of networks reconstructed from biased random walks

Sao Paulo Research Foundation (FAPESP grant no.

2020/06271-0). This research was supported in
part by Lilly Endowment, Inc., through its support
for the Indiana University Pervasive Technology
Institute. The funders had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

phenomena like the friendship paradox [3]. In another example, because of limited individu-
als’ capacity, resources and available personnel, scientists or research groups adopt different
strategies to choose the focus of their research among all the possible problems. Such a strategy
could favor exploitation over exploration (or vice versa), a decision that could potentially
impact the collective discovery process [4]. These examples raise the question on how well
aspects of the inherent (generative) process are truly recovered through limited or biased
information.

Since many complex systems have been successfully represented by networks (i.e., by the
intricate relationships among their components) [5-8], it is possible to study the aforemen-
tioned question in terms of how well the characterization of such structures changes according
to the limited information observed through certain dynamics. In particular, for the case of
networks, different behaviors of dynamics can be simulated through random walk heuristics.
In such systems, an agent performs a walk in a network and reconstructs it based on the set of
visited nodes and edges. This process has been investigated, in particular for the case of the
knowledge acquisition process, in which pieces of knowledge are learned by agents walking
across a network representing knowledge. Previous works [9] have found that it is possible to
determine characteristics of the inherent model by only looking at features of the partially
reconstructed networks. This indicates that different combinations of network topology and
dynamics can lead to potentially different observed features in the generated sequences. In this
work, we address the problem of checking how similar are the observed features of partially
reconstructed networks compared to the original structure.

We approach the problem of reconstructing networks from limited information by employ-
ing different types of random walks performed by non-interacting agents. Each agent simu-
lates an individual with limited information and stores a subgraph of the original network
reconstructed by co-adjacency. Fig 1 shows an example network in which a random walk was
performed starting at node A. This simulates, for instance, a user in social media navigating
across different profiles. Given the user’s limited information, they may think that node A is
the one with most connections in the network, in contrast to the correct answer: C. This is
because the agent visited A’s neighborhood, while B’s and C’s neighbors were not. Other prop-
erties such as clustering coefficient and centrality measures are also not correctly recovered

Fig 1. Example of a subgraph (highlighted in red) representing the limited information observed by a random walk starting at node A.

https://doi.org/10.1371/journal.pone.0296088.9001
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through this walk. The potential to recover network properties may also depend on the net-
work topology itself. For instance, an irregular network with heterogeneous degrees and high
density may be more challenging to navigate than a regular network, since in the first case,
hubs may be visited more frequently, potentially leaving regions of low degree poorly explored.
As a consequence, the recovered network characteristics may be different and biased com-
pared to those from the original network.

In this work, we study how well network characteristics—such as node degree, clustering
coefficient, etc—can be recovered from reconstructions based on finite sequences. We explore
the effects of different strategies to generate the sequences, including biased [9] and true self-
avoiding [10, 11] random walks. First, we generate sequences of nodes based on the progres-
sion of visited nodes given by an agent dynamics. Next, the sentences are used to reconstruct
independently a network based on co-adjacency. Network properties for both the original and
reconstructed networks are obtained and compared via Pearson or Spearman correlations. We
also vary the length of the sequences to simulate different levels of limited information. For
this analysis, we considered real-world networks and realizations of traditional network mod-
els in addition to a community-based model, the LFR [12].

Our results indicate that the choice of dynamics employed to generate the sequences has an
influence on the correlation values between the recovered and original network properties.
The reconstruction performance depends, for instance, if the dynamics are biased by node
degree. When highly connected nodes are preferable to be visited (RWD), we achieve the best
performance in recovering network properties for most of the considered networks and prop-
erties, with the exception of clustering coefficient and eccentricity. In those cases, even by con-
sidering the long sequences, it still reaches low values of correlation. On the other hand, for the
case that the random walk dynamics avoids highly connected nodes (RWID), we see the worst
performance among the considered dynamics. However, it is able to recover the clustering
coefficient with similar performance as other dynamics. In addition to that, we explore three
other types of random walks, the unbiased random walk (RW) and two self-avoiding strate-
gies, known as true self-avoiding walk [10, 11], one based on edges, which avoids passing
through already visited edges (TSAW-edge), and another based on nodes (TSAW-node).
TSAW-edge displayed similar performance as the RWD approach, but with no problems in
recovering the clustering coefficient. We discuss these results in detail and the potential impli-
cations in Section 4.

Finally, we also check if the community structure can be recovered from the partial infor-
mation stored in sequences. This is accomplished by comparing the detected communities’
membership of the original networks (or planted for the LFR models) with those from the
reconstructed versions. The results seem to depend strongly on the network topology, with
mixed patterns across different mixing coefficients of the LFR and real networks. Nonetheless,
TSAW-edge and RW display the best performance in that task.

This work is organized as follows. In Section 2 we present and discuss the related works.
Section 3 describes the adopted methodology in order to generate networks, perform random
walks on the topologies, reconstruct partial networks and how we have analyzed and compared
the properties in these networks. The results are reported and discussed in Section 4. Finally,
in Section 5, we present the general conclusions and future works.

2 Related works

The process of random walkers exploring complex network topologies has already been stud-
ied by several works [2, 13-15]. In the context of knowledge acquisition, the sequence of vis-
ited nodes in random walks is to recover the set of nodes in the network [2, 14]. In [2], the
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authors investigated how different agents walking over the network can reconstruct the net-
work topology. In the proposed multi-agent random walk, the true self-avoiding and Lévy
flight-based dynamics outperformed other walk strategies in terms of efficiency in discovering
new nodes. Surprisingly, the study also showed that fine-tuning the parameters controlling the
agent dynamics had little effect on the global knowledge acquisition performance.

The study conducted in [13] focused on the knowledge acquisition task when several net-
work topologies and agent dynamics are used in a single-agent context. This study found
that the true self-avoiding dynamics had the best performance over different settings in dis-
covering nodes in the network. The degree-biased had the slowest learning curve in the
experiments. The study has also demonstrated that higher average degrees provide a faster
learning rate.

While several studies focused on the knowledge (nodes) acquisition problem [14, 15], the
study conducted in [9] used a machine learning approach to recover both the network topol-
ogy and agent dynamics generating a sequence of symbols. To train the supervised classifiers,
sequences of visited nodes were mapped into (reconstructed) networks via the co-occurrence
strategy. Then, six different network properties were used to create features describing the
observed reconstructed networks. Sixteen different combinations of network topology and
agent dynamics were considered to generate sequences. The study revealed that it is possible to
recover both the topology and dynamics with high accuracy, provided that the sequence (i.e
the random walk) length is not too short. The accuracy of identification increased with the
observed sequence length. When less than 20% of the whole network was discovered, both the
topology and dynamics were recovered with an accuracy higher than 86% in a supervised clas-
sification scenario with 16 classes.

In [16], the authors analyzed how network properties (e.g. average degree) evolve as the net-
work sample size grows. If a network property is unstable for all sample sizes then it does not
represent the network very well; however, if the property does not change as the sample size
grows, then the property is considered a good representation of the network. The main contri-
bution of this work is therefore a methodology to quantify if any network property is robust
regarding the network size used in the experiments. In networks formed from sequences, it
means that unstable properties may vary depending on the sequence length used to form the
networks. This means that when recovering local properties, the original value of the property
may only be recovered if the sample and original network sizes are consistent. However, one
may still find a correlation between values observed in sampled and original networks for
unstable metrics.

The study conducted in [7] investigated a teaching-learning perspective using complex
networks. In the adopted representation, facts are graph nodes and the relationship or
underlying connections between two facts are represented by edges. The study aimed to
probe how students learn contents from linear algebra textbooks by considering the nodes
exploration process simulating the human memory characteristics during the learning pro-
cess. Among the main findings, the authors reported that human memory limitation plays a
special role in long-term information retention effectiveness and problem-solving
creativity.

The relationship between knowledge representation and complex networks has also been
studied elsewhere. In [14], knowledge is acquired when nodes and edges are visited by random
walkers. Different from other approaches, the experiments considered free and conditional
transition edges. While the former is commonly used in most of the works, the latter allows
new nodes to be accessed only when certain criteria are met. In this case, the main criteria con-
sist in visiting a subset of nodes in order to make a new node accessible. The author analyzed
the knowledge acquisition performance via hierarchical complex networks [17], which are
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Walk in a network

Sequence
generation

explored via traditional random walks and variations biased toward new links. The study
showed that the biased random walks are slower to acquire knowledge in the conditional
exploration scenario.

While most of the related works tried to recover the set of nodes or identify the dynamics
and topology generating a sequence, here we focused on a different network perspective. We
studied if the properties of the reconstructed networks are consistent with the ones of the orig-
inal networks. This is a relevant topic since in many scenarios one does not have access to the
original networks generating a sequence of symbols.

3 Methodology

In this section, we discuss the proposed methodology. The main purpose of this paper is to
analyze whether the local properties of reconstructed and original networks are correlated.
The methodology can be divided into the following 4 main steps, which are summarized
below. The steps are also illustrated in Fig 2.

o Original networks: here we used network models to represent different network topologies.
Examples of models include random and geographical networks. We also used examples of
real-world networks modeling e.g. social and biological complex systems.

Network dynamics: in many real-world situations, network data is only available as a
sequence of symbols [18]. Sequences can be generated by an agent walking over the network

via different rules.

o Network reconstruction and properties extraction: the observed sequence generated in the
previous step is used to reconstruct. Several properties of the obtained networks are then
extracted.

Correlation analysis: the properties of the original and reconstructed networks are com-
pared. The properties are compared in terms of network metrics (e.g. clustering coefti-
cient) and, in modular networks, the partitions representing the network communities are

compared.
Walk Reconstructed Features Original vs reconstructed
sequence network Nodes features features
o, G Degree .
Closeness ® -0
0' a Clustering Coef o
9, e Eccentricity ,,’ @
° e Betweenness .,’. Pearson
’ Coreness correlation
Network Measure
reconstruction extraction

Original network nodes features | NME-
Elem.-centric

Fig 2. Schematics of the methodology. First, we look into the original network and annotate the concerned properties for each node. In the next step, we
iterate over the network with the desired dynamics in order to generate a sequence of symbols. In the third step, we reconstruct the network using the
discovered nodes and edges, and we annotate the node’s properties in this reconstructed network. Finally, we build correlations among the reconstructed
and original nodes by comparing each node i in the reconstructed network to its respective node in the original network.

https://doi.org/10.1371/journal.pone.0296088.9002
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3.1 Original networks

We considered the most common and diverse topology models in the literature [19]. Similar
to previous studies [9], our analysis focused on networks with N = 5, 000 nodes and average
degree (k) = 4. The following models were used here:

Erdés-Rényi (ER): this is the traditional random network model. The probability 7 of two
nodes being linked by an edge is constant [20, 21].

Barabdsi-Albert (BA): this model implements a scale-free topology [22]. Different from ER
networks, the BA model is based on a growth model, since at each step new nodes are
included in the network. The probability 7;; of a new node i to connect to an old node j with
k; links is proportional to k;:

"= 0
Y

Waxman (Wax): this topology is an implementation of a geographic network. The first step

consists in randomly placing each node in a two-dimensional plane. A link between two

nodes i and j is provided by a probability formulation that decays exponentially with the geo-

graphical distance between the nodes [13, 23].

Modular Networks (LFR): this model [12] creates networks with nodes clustered into net-
work communities. The main parameters used to construct modular networks are the num-
ber of communities (n1¢), the exponent for the degree sequence in the network (#,), the
minus exponent for the community size distribution (t,), and the mixing parameter (u),
which measures how well defined communities are. Lower values of mixing value lead to
well-defined network communities. We used the following parameters to construct the net-
works: nc =5, t; = 3,1, = 0 and ¢ = {0.05, 0.2, 0.8}. Similar values have been used in related
works 2, 9, 13],

We also conducted our experiments in real networks modeling diverse complex systems,

the selected networks description as well as their download links are:

Facebook: this network comprises social relationships among Facebook employees. The net-
work comprises 320 nodes [24] and is available at [25].

Power Grid: this is a classic geographical network modeling the US Western States Power
Grid. Nodes represent transforms or power relay points, while edges are power lines. The
network comprises 4,941 nodes [26] and is available at [25].

Econ-Poli: we have used Economics Poli network which contains 3,915 nodes and presents
behavior on interconnected economic agents [27]. The network is available at [27].

Web-EPA: we also have used the Web-EPA network with the size of 4,271 nodes and
implements information in web level for hyperlinks across the internet that link to the
www.epa.gov website [27]. The network is available at [27].

Bio (DM-CX): The Bio (DM-CX) is a biological real network that represents co-occurrences
on Drosophila melanogaster fly pairs of genes acquired from the FlyNet repository. The net-
work comprises 4,032 nodes [27, 28]. The network is available at [27].

Bio (Al Interactions): we have explored the AI Interactions dataset which presents a biologi-
cal real network with Arabidopsis Interactome map of protein-protein interactions. The larg-
est component of this network comprises 4,519 nodes [29]. The network is available at [30].
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o socfb-JohnsHopkins55: this is a social network representing Facebook connections inside the
Johns Hopkins community. The network comprises 5,180 nodes and is available at [27].

Since the size of the networks can influence the coverage speed of random walks, we opted
to select networks of similar size. Except for the Facebook network, all the choosen networks
have about 4000-5000 nodes.

3.2 Network dynamics

Agent dynamics have been used in a wide variety of network-based studies, including epi-
demic spreading and knowledge acquisition analysis [2, 13, 15]. In this work, agent dynamics
are used to explore the network and generate a sequence of visited nodes. The sequence of
nodes is assumed to be the information available for network reconstruction. We have used 5
well-known walks:

o Traditional Random Walk (RW): in the traditional random walk the agent selects the next
node to visit randomly among its neighbors. The probability of the agent moving from node
ito nodejis p;; = 1/k;, where k; represents the degree of i-th node.

o Degree-biased Random Walk (RWD): this random walk considers the degree of the neighbor
nodes when selecting the next node to be visited by the agent. The probability of visiting a
node is proportional to its degree:

k.
pi' = —Ja
! Zler,kl

where I'; is the set comprising the neighbors of i.

(2)

Inverse of the Degree-biased Random Walk (RWID): Similar to the RWD dynamics, the
RWID walk uses the degree of the neighborhood when defining the probabilities. However,
in this dynamics, the agent prefers to visit the nodes with smaller degrees, i.e.

k1!

__ N
Py = Zlel",-kl_l . G)

True Self-avoiding Random Walk on nodes (TSAW-node): in this random walk, the agent
avoids the nodes that were already visited [10, 11]. Therefore, in this network, the nodes not
yet visited are preferred to be visited, which works in favor of the network exploration. Let f;
be the frequency that j has been visited. The mechanism to avoid already visited nodes is
encoded according to:

e i

b Cae @

True Self-avoiding Random Walk on edges (TSAW-edge): similarly to the traditional TSAW
dynamics, in this random walk there is an avoiding bias, however in this implementation,
the agent avoids edges previously visited instead of nodes, as implemented in works related
to network exploration [2, 13]. The probability transition is computed as

e Mi

e o
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In both versions of the true self-avoiding random walks, we are using A = In2, as in related
works [2, 9, 13].

3.3 Network reconstruction and properties extraction

The sequences generated by the random walks are used to reconstruct the networks. In our
experiments, we probed how the sequence length affects the properties of the reconstructed
networks. We investigated the results for the following set of sequence length w: {100, 200,
400, 500, 600, 800, 1000, 2000, 5000, 20000, 50000}. The reconstruction is performed by recre-
ating the edges observed in the sequence. This procedure is equivalent to the co-occurrence
approach usually employed in network analysis, where two symbols are linked whenever they
are adjacent in the sequence. When analyzing texts using network science, the co-occurrence
approach is widely employed [6, 31, 32]. For each combination of network topology, agent
dynamics and walk size, we considered 20 sequence realizations.

Once the network is reconstructed, our aim is to analyze if relevant properties can be recov-
ered. To characterize the networks, we used well-known network metrics, including local,
quasi-local and global metrics. We computed the degree, clustering coefficient, closeness,
betweenness eccentricity and coreness centrality of the networks [19, 33]. All metrics are
defined for unweighted and undirected networks. For networks with modular structure, we
also detect the communities using the Leiden method [34].

3.4 Correlation analysis

To assess how similar the structural properties are preserved by the reconstruction process, we
employed the Pearson and Spearman correlations between structural properties of the original
and reconstructed networks. More specifically, for each node i® of the reconstructed net-
works we measure a structural feature u(i*®) (e.g. degree or clustering coefficient). The same
property is also measured for the corresponding node in the original network, i.e. u(i‘?’).
Finally, we measured the correlation between y(i(R)) and y(i(o)), for all nodes of the recon-
structed network.

Since we are also interested in the modular structure of networks, we also compared the
similarity of partitions in the original and reconstructed network via normalized mutual infor-
mation (NMI) [19, 35] and adjusted rand index (ARI) [36, 37]. Higher values of normalized
mutual information mean that the partitions of the original and reconstructed network are
similar.

The steps taken in our framework and that were described in this section are summarized
in Algorithm 1. The code can be found on GitHub at: https://github.com/lucasguerreiro/
localproperties.

To mitigate the inherent randomness associated with the starting nodes in random walks,
we conducted multiple iterations of each walk for every network configuration (20 repetitions
for each configuration), thereby ensuring that the Pearson correlation values presented are
robust averages.

Algorithm 1 Framework to explore networks (N,), reconstruct subnetworks (N,) and cal-

culate correlations between N, and N,
function reconsTRrUCT (T)
N, «— 0
Jlastnode « ()
for n € r do
if n ¢ N, then
N, «— N,Un > add node n to N,
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end if
N, «— N,U(lastnode, n) > add edge (n, lastnode) to N,
end for
end function and return N,
for p € w do

r «— walk(N, d, p) > perform dynamics d in network N with length
b

N, < RECONSTRUCT ()

u(i(R)) « getproperty(N,) = calculate property of reconstructed
network
end for
u(i(0)) « getproperty (N) > calculate property of original network
C « correlation(u(i(0)), u(i(R))) > calculate correlation

4 Results and discussions

In Section 4.1, we analyze if the local properties of the original networks are preserved for dis-
tinct biased random walks. In Section 4.2, the efficiency in recovering local properties is ana-
lyzed in the context of the knowledge acquisition task [2].

4.1 Efficiency in recovering the original properties

In our first analysis, we intended to probe whether the properties of the reconstructed net-
works are consistent with the properties of the original ones, according to the procedure
described in Fig 2. The scatter plot of the node degree observed in original and reconstructed
networks is shown in Fig 3 for the five agent dynamics in the LFR network (with mixing
parameter m = 0.05). Each column represents a different sequence length (chosen proportion-
ally to the original network length), while lines are different agent dynamics. For each sub-
panel, we show in the x- and y-axis the node degree observed in the reconstructed and original
networks, respectively. We also show in each subpanel the Pearson and Spearman correlations
(Cp and C,, respectively).

We notice that for small sample sizes (w = 100 and w = 500) the node degree property is not
well represented since the agent did not acquire enough information to create an accurate
representation of the original network. This might be an explanation of previous results show-
ing that networks reconstructed via very short walks are not consistent with their original
topological nature [9]. Interestingly, larger sample sizes not necessarily imply high correlation
values. Considering the RWID agent dynamics and w = 5, 000 steps, the Pearson correlation,
C,, reaches only 0.24, even though higher values were observed for the other considered
dynamics. Considering the same walk length, we found C,, = 0.88 for the RWD walk. This
means that the node degree is consistent (i.e. linearly correlated) with the ones observed in the
original networks.

For large values of w, i.e. long sequences, one should expect that most of the network struc-
ture (nodes and links) is retrieved by the agents [2]. Therefore, the correlations should reach
high values. In fact, this is observed in the TSAW Edge dynamics (C, = 1). This means that this
particular TSAW is not only efficient in knowledge acquisition, but it also captures the local
connectivity [2]. RWD outperformed RW in this particular network. Finally, it is clear that
after 5, 000 steps, the RWID walk may recover relevant information regarding node connectiv-
ity but it does not perform as well as the other dynamics.

While in Fig 3 we focused on a scatter-plot analysis of a single network model, the scatter
plot for other network models are similar to the one shown for the other LFR networks (results
not shown). The behavior of the correlations in different agent dynamics and network topolo-
gies is shown in Fig 4. The figure illustrates the evolution of the Pearson correlation for distinct
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httpsz//doi.org/10.1371/journal.pone.0296088.003

sequence lengths. We also show the NMI and ARI, comparing the structure of communities
found in the LFR original and reconstructed networks.

The results in Fig 4 reveal that the RWID dynamics displayed the lowest correlation values
in almost all scenarios. This is especially true in networks where hubs play a prominent role, as
is the case of BA and LFR networks. Therefore, avoiding hubs in networks where hubs are rele-
vant causes a distortion in network metrics observed in reconstructed networks. Conversely,
the RWD dynamics displayed competitive performance, even in networks with no evident pres-
ence of hubs (see e.g. degree in ER networks). The efficiency of RWD is more evident in BA
and LFR networks, even in short sequences. The RW dynamics displayed a performance that is
similar to the TSAW Edge walk. A major difference was found only for particular metrics, e.g.
the eccentricity in ER networks for long sequences. Interestingly, we found that major differ-
ences in performance can be found for different versions of the TSAW walk. This is the case of
the betweenness in BA networks. For walk lengths larger than 2, 000 steps, the true self-avoid-
ing rule applied on edges turned out to be more efficient than the same rule applied on nodes.

The efficiency of metrics recovery has a minor dependency on the walking strategy when
considering the clustering coefficient, coreness and the NMI and ARI metrics. For the

PLOS ONE | https://doi.org/10.1371/journal.pone.0296088 January 19, 2024 10/18


https://doi.org/10.1371/journal.pone.0296088.g003
https://doi.org/10.1371/journal.pone.0296088

PLOS ONE

Identifying the perceived local properties of networks reconstructed from biased random walks

0.5

Degree

0.0

0.5

Closeness

0.0

cC

0.5

0.0

0.5

Eccentricity

0.0

Correlation

0.5

Betweenness

0.0

0.5

Coreness

0.0

0.5

NMI

0.0 A

ARI

0.5

0.0

1
1
1
1

\\
\\
\
&x
\K\
\

1
1]
1

x
}
\
\
A

1
L
1

i
|

)

%
|\
|
\
{
AN
1
\
\
[
\

1‘

\
\
|
\\
\
K\

.C/

1
I
1
1

s
\%\
\ i

!
!
1
1

1
L
1

\

\
IR
i
Ty

&

—e— RW &W, o
—=— RWD
—=— RWID E e 3 A 3
TSAW_Edge
TSAW_Node ) /
L P~ —rvv M
J ] ] : ] |
T T T T — T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
o9 9 9 9 9 o 2 99 9 9 9 9 9 oo OO 0 9 99 9 9 9 9 QO 9990 9 9 9 9 o 9 99 9 9 9 9 o o
888 3888 88888 888 8 8888 888 8 8888 288 8 28888 288 88 288828888 8 8
SRR 888 8 82k 833 g 8=FaR s3 s & a="RRB 888 8 3288 888 8 8=’8 888 8 8
28 8 8 8 2R 8 8 8 28 8 8 8 2R & 8 8 2R K 8 8 2R 8 8 8
& R R R & R & R & R ] R
ER Wax BA LFR,m=0.05 LFRm=0.2 LFRm=0.8
Walk length

Fig 4. Evolution of the efficacy in recovering network metrics in reconstructed networks. The x-axis represents the walk length used to generate the
sequence, and the y-axis is the Pearson correlation for local metrics obtained in the original vs. reconstructed networks. The last columns are the NMI and
ARI, which are used to compare the partitions in networks with community structure. While the coreness is not defined in BA and LFR networks, the NMI
and ARI are computed only for networks with community structure.

https://doi.org/10.1371/journal.pone.0296088.g004

particular case of networks with community structure (i.e. LFR networks), we noticed that
there is no evident differences in performance in networks with high values of mixing parame-
ter. The differences in performance are only evident for well-defined communities, i.e. for net-
works with mixing parameter lower than 0.20. However, the NMI reaches roughly 0.50 even
after long walks. In well-defined communities (mixing parameter = 0.05), we found that the
structure can indeed be recovered; also, we noticed that the ARI metric did not differ much
from the NMI calculations, presenting corresponding results. However, a large number of
steps is still required to achieve high performance.

In Fig 5 we show the efficiency of the recovery for real-world networks obtained from sys-
tems of different disciplines (as described in Section 3.1). We observe the same overall behav-
ior for both RWD and TSAW Edge dynamics. In most cases, the RWD outperforms other
approaches for short sequences, while the TSAW dynamics performs better when longer
sequences are considered. We can also notice that, again, the RWID dynamics had the worst
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comparable performance in terms of correlation over the original network for most
properties.

When comparing the efficiency of properties recovery across different networks, the Eco-
nomics and Power Grid networks have almost all of the considered properties recovered with
high correlation for sequences comprising more than 2,000 nodes. Conversely, for some prop-
erties in both Bio (DM-CX) and Social (JH) networks, 50,000 steps were not sufficient to
recover the original metrics with high efficiency. This is the case of the clustering coefficient,
eccentricity and coreness. Concerning the different network properties, the community struc-
ture could be recovered with efficiency only for three networks (according to the NMI and
ARI metrics). Interestingly, we can see that neither walk outperformed the others substantially
regarding the recovery of network structure.

4.2 Efficiency in recovering network properties and knowledge acquisition

While in the previous section we focused on analyzing the recovery of network properties,
here we also consider the knowledge acquisition performance as an additional feature of the
random walks [13]. In the knowledge acquisition task, each node is considered as a piece of
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knowledge, and the performance metric corresponds to the fraction of the total number of
nodes that have been discovered in the reconstructed network in comparison with the original
network [13]. In this context, we analyze whether the reconstructed network is a good repre-
sentation of the original ones in a twofold fashion: (i) the correlation of the properties of the
discovered nodes; (ii) the computation of how many nodes from the original networks have
been recovered.

In Fig 6, in the x-axis, each point represents the knowledge acquired by the walkers for a
given sequence length L, i.e. we show the fraction of unique nodes discovered for that sequence
length. In the y-axis, we show the correlation of properties obtained for the same value of L,
according to the methodology described in Section 3.3. One may notice that, in most scenar-
ios, the RWD dynamics improved the recovery correlation as more nodes are discovered. In
particular scenarios, high correlation values are reached in the first steps of the walk, however,
many more steps are required to discover a significant portion of the network (see e.g. the
closeness metric for the BA network). We also note that the knowledge acquisition and corre-
lation performance may increase with a similar speed—this is the case e.g. of the clustering
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https://doi.org/10.1371/journal.pone.0296088.9006
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coefficient in BA networks). As for the RWID dynamics, we observe that, in many cases, even
when a large portion of the network is discovered, a low correlation is found (see e.g. the close-
ness centrality in BA networks). As for the TSAW, in most cases, the edge-based version pre-
sented a higher correlation when the same amount of nodes was discovered. This is evident,
for example, when recovering the betweenness in BA networks. When half of the network is
discovered, the edge-based version presents an almost perfect correlation, while the node-
based version only achieves a correlation value close to 0.50.

We have also analyzed both correlation and knowledge acquisition relationships in real-
world networks. The results are shown in Fig 7. In the Facebook network, for a fixed amount
of discovered nodes, the highest correlation is mostly achieved with RWD dynamics. Both
clustering and eccentricity metrics This result is compatible with the behavior of BA networks.
Surprisingly, in the Power Grid, Economics and BIO (AI) networks, there is no evident differ-
ence in the behavior observed for distinct random walks for most of the considered metrics.
The RWD again seems to provide the highest values of correlation when the same number of
nodes is discovered for shortest paths-dependent metrics (closeness and betweenness) in the
Web network. Finally, we note that RWD also achieved the highest accuracy for the degree,
closeness and betweenness in the social network. Finally, in almost all metrics and networks,
we again observed that the TSAW-edge strategy is more efficient in recovering nodes’ proper-
ties than the nodes-based counterpart.
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All in all, the results indicate that the RWD agent dynamics performs equally or better than
the other walk dynamics when recovering local metrics when the same fraction of nodes is dis-
covered. We should keep in mind, however, that the RWD is outperformed by other random
walk strategies in the knowledge acquisition task [2, 13]. In other words, while the RWD is effi-
cient in recovering nodes’ properties, it takes longer to discover new nodes. Another interest-
ing finding is that many of the real-world networks displayed a behavior that is similar to the
one observed for the respective models. This is the case of the Facebook network, which dis-
played a behavior consistent with BA networks.

5 Conclusions

In the current paper, we proposed a framework to identify the efficiency in recovering network
metrics arising from the reconstructed structure generated by a sequence of symbols. Net-
works were reconstructed using the well-known co-occurrence approach. The efficiency in
recovering the network structure was evaluated by comparing reconstructed and original net-
works via correlation of network metrics. The analysis included four network models and six
real networks. Five different random walks were evaluated. Here we focused on analyzing the
ability to recover network metrics as many networked-based applications depend on the accu-
rate representation of network topology [38, 39].

Our experiments revealed that long walks do not necessarily yield a high correlation
between original and reconstructed networks. We also found that the TSAW Edge dynam-
ics achieved a high correlation for most of the experiments. Surprisingly, while having a
similar strategy to select neighbors, the TSAW Node dynamics did not achieve competitive
correlations. In modular networks, the walking strategy based on avoiding hubs did not
achieve competitive performance in particular network models (e.g. RWID for all consid-
ered values of mixing parameter). Conversely, the RWD dynamics, performed well in most
scenarios, especially when the size of the sequence size used in the reconstructed network
was typically lower than 2, 000 nodes. Such behavior was similar for model and real
networks.

We also analyzed the interplay between network reconstruction and knowledge acquisition
performance. The experiments demonstrated that the RWD outperforms other dynamics with
regard to network metrics recovery efficiency. However, this random walk discovers new
nodes slower than others. In other words, discovering nodes faster may not reflect in a good
local network representation via network metrics. Finally, we also noted that the true self-
avoiding walking—an efficient metric in the knowledge acquisition task—might have distinct
behavior in recovering network metrics depending on which network elements are avoided.
We found that avoiding visited edges is more efficient in network metrics recovery than avoid-
ing nodes, according to the true self-avoiding rule.

In general, for shorter walks, the performance in recovering the properties of the original
networks can vary substantially depending on its architecture and type of walk dynamics. In
addition, for some combinations of networks, walks and metrics; even longer walks can lead to
low correspondence between the real and observed properties. Such results indicate that biases
can be easily formed depending on the walk dynamics, length of the sequences, and topological
characteristics of the networks.

A potential application of this work is understanding how recommendation algorithms (in
social media or content platforms) impact in the perceived knowledge of the network. For
instance, we found that clustering coefficient was not reliably recovered from network recon-
structions based on the RWD dynamics. This suggests that when new content is recommended
to users based on their number of views (or number of links to them, similar to the RWD
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dynamics), this may lead to the misleading notion that related contents (local) are not inter-
connected among themselves but only through hubs.

Another application is understanding the different user behaviors in click-streams [40]
data. Such a type of data covers sequences of web access or actions taken in by users in a online
platform or across the whole internet. Users may navigate across content by using different
strategies, which could potentially be identified by the patterns of the reconstructed networks.
A similar approach could be used to understand the foraging process of researchers in science
[41], i.e., the different strategies they use to perform or seek for new experiments, research
questions and theories. This can be accomplished by considering researchers as agents walking
across a knowledge space made from publications [42].

While this paper focused on a global recovery strategy, in future studies we intend to ana-
lyze whether different parts of the network are more easily recovered. In addition, we also
intend to analyze if other reconstruction methods lead to improved reconstruction accuracy.
The results could lead to potential new approaches to model sequences as complex networks,
with potential implications in applications relying on co-occurrence approaches [43]. The pro-
posed framework can also be used to better understand and aid developing new algorithms to
estimate topological features of networks based on samples or partial observations of the data,
such as in [44, 45]. In addition to that, future work can also focus on walks directly inspired by
content recommendation strategies commonly used in media content platforms, which can
lead to new ways to diversify content for the users or to mitigate biases in these platforms.
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