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Abstract: We introduce a class of Markov models to describe the bid—ask price dynamics in the
presence of liquidity fluctuations. In a highly competitive regime, the spread evolution belongs
to a class of Markov processes known as a population process with uniform catastrophes. Our
mathematical analysis focuses on establishing the law of large numbers, the central limit theorem,
and large deviations for this catastrophe-based model. Large deviation theory allows us to illustrate
how huge deviations in the spread and prices can occur in the model. Moreover, our research
highlights how these local trends and volatility are influenced by the typical values of the bid—ask
spread. We calibrated the model parameters using available high-frequency data and conducted
Monte Carlo numerical simulations to demonstrate its ability to reasonably replicate key phenomena
in the presence of liquidity fluctuations.
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1. Introduction

The “order book” (OB) refers to an electronic list used to describe the evolution of bid
and ask prices and sizes in high-frequency electronic markets, such as NYSE-ARCA, LSE,
or NASDAQ. The evolution of the OB results from the interaction of buy and sell orders
through a rather complex dynamic process. Order book dynamics has been extensively
studied in the market microstructure and econophysics literature ([1-3]). More recently,
based on empirical characteristics presented in these studies, several models for the evolu-
tion of the OB have been proposed, as seen in [4-7]. These models, which are Markovian
queueing systems, primarily focus on the direction of the next price movement and provide
good results, offering a more or less clear understanding of price dynamics in conditions of
uninterrupted high liquidity, i.e., they assume an abundant availability of limited orders in
the OB. In this high liquidity context, the prices are relatively stable with small temporary
fluctuations, and the bid and ask sizes at the top of the OB provide valuable information
on these short-term price fluctuations.

Conversely, in various markets, prices are not as stable; they exhibit significant changes
and, in some cases, local downtrends, often caused by liquidity wells in the OB. Events
such as the 6 May 2010 “flash crash” (see Figure 1), which was a sudden and severe drop in
stock prices in a very short time, have raised concerns about the stability of the OB and its
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suitability as the primary mechanism for trading. Additionally, occurrences of mini flash
crashes—rapid and significantly large directional movements in asset prices—have become
increasingly common (see [8]). These events lead to temporary liquidity crises, resulting
in larger spreads. Consequently, it is both practically and theoretically important to gain
a better understanding of how price dynamics depend on the structure and fundamental
parameters of the OB (see [9-11]).

PREVIOUS CLOSE: 10,868.10

Close
10,520.32
Dow industrials —3.2%
10,600
- Momentary Lapse
Stock markets plunged suddenly
yesterday afternoon and gained
speed as computer programs
prevented losses. But almost as
10.200 quickly, the market recovered
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10,000
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=2.2%
10 AM. 11AM. 12 PM. 1FM. 2EM. IEM.
Sourca; B,\gombe_ly THE NEW YORK TIMES

Figure 1. A graph of the S&P500 futures on the day of the flash crash of 6 May 2010 at 2:45 p.m.

In the present paper, we are interested in understanding how severe intermittencies
in liquidity affect the order book dynamics. The contexts in which there are significant
and intermittent decreases in the OB’s ability to absorb market orders are what we call
“liquidity fluctuations”. We propose a simple model for price dynamics in an OB with the
presence of liquidity fluctuations, our model explains in a simple way how large price
fluctuations occur, fluctuations such as those observed in flash crashes. Furthermore, it
shows us how these local trends and volatility are determined by the typical values of the
bid-ask spread. From our price model, a model for the dynamics of the spread is implicitly
derived, we use this model to analyze large deviations in the spread and its impact on
prices, we present these large deviations in the form of “optimal trajectories” that give us
relevant information about their occurrence. Finally, we present Monte Carlo simulations
to corroborate that our model reproduces relevant empirical characteristics observed in our
data as well as documented in the literature, such as the famous bid—ask bounce; see [12].

We were initially motivated by the local and seemingly patternless price trends ob-
served in various markets. Our goal was to understand the connection between these
long-term trends and the short-term micro-jumps in prices, as shown in Figure 2. Our
initial conjecture motivating this work was the existence of a close relationship between
the spread, price trends, volatility around these trends, and liquidity fluctuations. Conse-
quently, we needed to jointly model spread and price dynamics. Figure 2 illustrates that the
local trend is shared by both bid and ask prices. This observation suggested that our model
should not only capture long-term price trends but also incorporate the asymptotically
stationary behavior of the spread. Large spread and price changes are typically attributed
to liquidity changes ([13]). Our curiosity about this phenomenon grew, leading us to inves-
tigate how significant fluctuations in spread and prices, such as those seen in flash crashes,
are related to liquidity fluctuations.
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Our paper is organized as follows. In Section 2, we elucidate key empirical characteris-
tics within an order book exhibiting liquidity fluctuations. We also introduce a general class
of continuous-time Markov processes to model bid—ask price dynamics. Section 3 outlines a
comprehensive Markovian model for an order book with high liquidity fluctuations. Here,
we present the fundamental mathematical statements concerning stability (invariant mea-
sure), the law of large numbers, the central limit theorem, and large deviations. In Section 4,
we present our numerical results. Section 5 delves into extensions and proposes models
for two additional liquidity regimes: non-competitive and low liquidity. Our conclusions
are presented in Section 6. The appendix, our final section, contains auxiliary results and
proofs of the main statements presented in Section 3.
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Figure 2. Intraday evolution of the ask (red) and bid (green) prices, Apple Inc. (Cupertino, CA, USA)
AAPL stock, 4 March 2011. Left: short-term, 1 min. Right: long-term, 15 min. Figures created by H.Rojas.

2. Markov Model and Regimes in Liquidity Fluctuations

A very important empirical characteristic observed in markets with liquidity fluctu-
ations is the low availability of orders in the OB; the queue sizes at the top of the OB are
small most of the time; see, e.g., Figure 3. In this context, the queue sizes of the best bid
and ask prices are no longer the determining factors in the dynamics of prices; for more
details see [13]. If the liquidity intermittency is severe, even “gaps” are formed in the OB
(blocks of adjacent price levels that do not contain quotes). In these cases, the distribution
of price changes is mainly determined by the distribution of the gap sizes in the OB. Taking
these facts into account, if our interest is to explain the observed long-term price trends, we
can focus only on micro-jumps in prices and disregard the size of the queues.

In these liquidity regimes, the spread exhibits a quite flexible dynamic behavior, reach-
ing values much larger than those observed in high liquidity conditions; see, e.g., Figure 4.
Based on our empirical experiences, the OB slowly digests liquidity fluctuations and we
can characterize that process in two stages. In the first stage, the spread begins to increase
persistently. In the later stage, the spread is reduced; the reduction can be drastic or grad-
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ual. The closing type of the spread in the second stage depends on the intensity of the
liquidity fluctuation.

Our empirical observations about the reversing process of the bid-ask spread to its typical
values, before and after liquidity shocks, have been theoretically corroborated through equi-
librium models; see [14]. In this paper, we consider different types of reversing processes of
the spread, i.e., we consider three low-liquidity regimes: highly competitive, non-competitive,
and low liquidity with gaps. These three regimes correspond to low-liquidity regimes but
differ in the closing type of the spread and in the gaps present in the OB.

Figure 3. Joint empirical distribution of bid and ask queue sizes at the top of the order book;
Apple Inc. stock, 4 March 2011. Figure created by H.Rojas.
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Figure 4. Empirical distribution of the bid-ask spread, Apple Inc. stock, 4 March 2011, corresponding to

15 min of observation (blue). The invariant distribution is calculated by Formula (6) (red). Figure created
by H.Rojas.

The Markov Model: A General View

Building upon our discussions in the preceding sections, we propose a simplified
model for an order book (OB) with liquidity fluctuations. Let P,(t) represent the (best)
bid price and P,(t) denote the (best) ask price. The state of the OB is characterized by a
continuous-time process X(t) = (Py(t), P(t)), taking values in the discrete state space
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TZ x TZ (a two-dimensional lattice). Here, T represents the “tick size”, and, as usual, Z
denotes the set of integers.

Here, we aim to elaborate on our choice of employing the set of integers Z as opposed
to restricting ourselves to the set of positive integers. This decision is motivated by several
factors. One primary reason is the inherent simplicity that arises from utilizing Z in terms
of mathematical description and subsequent analysis. Introducing boundary conditions,
such as reflections, can significantly complicate the analytical process.

Furthermore, an additional rationale behind our choice lies in our focus on analyzing
systems characterized by constant parameters. In situations where the price tends towards
zero, it is possible that this behavior is driven by changes in the underlying system’s
parameters (due to a crisis, for example). In contrast, it might not necessarily be an outcome
of the dynamics within a model governed by the same parameters. This consideration
underscores our approach to employ Z for its greater flexibility and relevance to the specific
context of our analysis.

For the sake of simplicity, we consider Z X Z as the state space of X(t), interpreting
each state as a multiple of 7. The price process X(t) manifests piecewise constant sample
paths, with transitions corresponding to order book events that trigger price fluctuations
(as illustrated in Figure 2). Our objective is to describe the asymptotic behavior of the price
process X(t) arising from numerous micro-jumps.

Based on this simplified representation, consider a continuous-time Markov chain
X(t) = (Py(t), Pa(t)) with state space X C Z x Z

X ={(bja) € ZxZ: suchthatb < a}.

Here, P, (t) represents the bid price, P, () represents the ask price, and S(t) = P,(t) — Py(t) is
the bid—ask spread. In general, the transitions of the chain X(t) are defined by the following
transition rates: given a state (b,a), then

(b ( ) withrate ai(A),
(b,a) —» (b,a—A) withrate a_(A), where0<A<a-—b,
(b ( ) withrate p_(A)
(b,a) — (b+A,a) withrate py(A), where0<A<a-—b,

)

7

in all cases, the increment A is a positive integer number. The function a, (-) (resp. f—(+))
is the rate at which increases (resp. decreases) in the ask (resp. bid) price occur as a result
of the execution of market buy (resp. sell) orders or cancellations of limited sell (resp. buy)
orders, as well as, that the function a_(-) (resp. B+ (+)) is the rate at which the decreases
(resp. increases) in the ask (resp. bid) price occur as a result of a limited sell (resp. buy)
order placed within the spread.

We study the asymptotic behavior of X(t) as t goes to infinity. To facilitate this analysis,
itis convenient to consider an equivalent process, denoted as Y (t) = (P,(t), S(t)) with state
space Y = Z x N. Although both X(t) and Y () contain the same information, the latter
representation offers better control for our asymptotic examination. The transitions of the
chain Y (t) are defined by the following transition rates: given a state (b, s) of the Markov
chain, then
b,s+A) withrate a4
b,s —A) withrate «
b—A,s+A) withrate p_
b+A,s—A) withrate B4

@
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Since the transition rates of Y (t) depend only on the second coordinate, the spread, we
see that S(t) alone is the continuous-time Markov process and has the following transition
rates. Suppose that at some moment the spread is k € N, then

k—k+A withrate v+ (A):=as(A)+B-(A), 3
k—k—A withrate v_(A):=a_(A)+B+(A). ©)

Based on the model (1) and its alternative representation (2) and (3), it is possible to
define three low-liquidity regimes: highly competitive, non-competitive, and low liquidity
with gaps. Any regime is defined by how the rates depend on the increment A which is
usually determined by the intensity of the liquidity fluctuations.

In this paper, our focus is primarily on the first regime, namely, the highly competitive
regime, while the other two regimes are outlined briefly. The findings presented here can
be generalized for the other two regimes, but we believe that there will be no significant
qualitative difference in the results.

3. The Markov Model: Closing the Spread Uniformly (Highly Competitive Regime)

The highly competitive regime (HC regime) is characterized by very small opening
steps of the spread and a rapid decrease in it. This regime is consistent with a rapid
reversing process of the spread and the absence of gaps in the order book (OB). The rapid
decrease in the spread is caused by the competitive behavior of impatient agents who place
quotes within the spread, prioritizing the execution of their placed limit orders. In the
considered model (1), we define the rates in such a way that the spread can increase by
only one unit. For a given spread length, denoted as k, the next length of the spread is
chosen uniformly from the set [ = {1,...,k—1}.

In order to define the rates for the highly competitive regime, we make use of our
notation and fix the parameters a4, _, 1, and B_, which are strictly positive real numbers.
Furthermore, the terms a+ and B+ are employed solely as parameters of the model and not
as functions. The transition rates for the Markov chain X(t) are defined as follows: given
that the chain is in a state (b,a4) € X at a certain moment, then

[ oay, ifA=1; [ S, ifa—b>1forany A €I, ;
i (A) = { 0, otherwise; a(b) = { 0, otherwise;

(4)
[ B-, ifA=1; _ thl, ifa—b>1forany A € I, y;
p-(8) = { 0, otherwise; P HA) =1 0, otherwise.

Figure 5. The rates for the highly competitive model. An illustrative example of the case when
a — b = 3. Figure created by A.Yambartsev.

In this regime, the transition rates of S(t), see (3), are the following: suppose that at
some moment the spread is k € N, and let 74 := f_ + a4 and y— := B4+ +a_, then

k—k+1 withrate 7y,

_ ©)
k()/— I for A € I.

k— k— A withrate
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Note that S(t) is an irreducible Markov chain in this regime.

3.1. Ergodicity and Invariant Measure for S(t)

We begin by analyzing the stability of the spread S(t). The following theorem estab-
lishes ergodicity, representing one of the rare instances where we are able to determine the
invariant measure for the process.

Theorem 1. In a highly competitive regime model, for any positive values of parameters o, a_, B4,
B— the spread S(t) is a positive recurrent Markov process with an invariant measure denoted as
u = (u(k), k € N) given by the following formula: let 7y :== y4 + y—

K(ye)t! ( K(7e k! )
k)= ——— |1+ R . 6
O = e v kzzznf;m_wv) ©

These findings regarding the stationary asymptotic behavior of the spread process
S(t) are in line with the empirical observations illustrated in Figure 4.

We conclude this section with the following observation: the process S(t) falls within
the category of processes referred to as population processes with uniform catastrophes.
An extension to processes with almost uniform catastrophes (as defined in Section 5.1) was
explored in [15]. In that work, the following result was established for the maximum of the
process: for any fixed b € (0,1)

Pl lim sup &p>£ =0.
T=oycior T

3.2. Local Drift (LLN for the Prices)

The following theorem addresses the law of large numbers (LLN) as applied to prices.
This theorem will illuminate the local trends (local drift) exhibited by the prices.

Theorem 2. With probability one scaled by the time the bid price converges to a constant

PL@—)D as. t— oo, 7)

where

T+ 2

This result validates our conjecture regarding the impact of the spread on the local
trend of prices. From a practical standpoint, given the jump rates of the bid and ask prices,
we can easily compute the price trend.

3.3. Price Volatility (CLT for the Prices)

In this section, our focus is on examining the connection between price volatility and
price jump rates. Specifically, we establish a central limit theorem (CLT) for the price
process. We articulate the volatility of price fluctuations around local drift in relation to the
jump rates of the ask and bid prices. In other words, the central limit theorem holds for the
process depicted by (A3).

Once more, we begin by demonstrating the central limit theorem (CLT) for the em-
bedded discrete-time dynamics p,, of the price (Lemma 1), followed by establishing the
CLT for the continuous-time chain P, (#) (Theorem 3). We have included the proofs in
the Appendix A.
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Lemma 1. Let n — oo, then

Pn — NO

_PnZ0 L N(0,1)
nVarz (F(3,))

in distribution, where

Vara(F(on) = B+ HEL (B0 )+ B ¥ s - 1)m(s) — [BaPian)))

Lemma 1 establishes a connection between the “coarse-grained” volatility of intraday
returns at lower frequencies and the high-frequency jump rates of prices. In simpler terms,
it asserts that prices exhibit a diffusive behavior around a local drift over time, with a
diffusion coefficient of Varz (F($,)). Consequently, price volatility, as determined by the
number of micro-jumps in prices, is given by

on = /nVary (F(5,)) 8)

Here, n represents the total count of high-frequency price jumps. Equation (8) presents
a means to estimate price volatility without requiring long-term price observations. Op-
tionally, the parameter 0, can be interpreted as the intraday realized volatility of the asset.
Thus, relation (8) establishes a link between the realized volatility and the high-frequency
parameters of the order book.

Based on Lemma 1, we established Theorem 3; see proof in Appendix A.4. Note that
the proof of the law of large numbers provides the following representation for local drift
D in continuous time D = v7y, where v is the local drift for an embedded chain provided
by Lemma Al (see Appendix A.2).

Theorem 3. Let t — oo, then there exists o> > 0 such that

\/¥<Pb(t) - D) — N(O, Ca +v2)7),

t
in distribution.

3.4. Large Deviations for the Spread S(t)

It is known that in the context of liquidity fluctuations, even a small order can trigger
a substantial price change, thereby leading to a significant increase in the spread ([3,13]).
Consequently, our interest lies in comprehending the mechanisms behind substantial
spread changes without altering the model’s parameters. We believe that such analyses can
contribute to evaluating the order book’s resilience against severe liquidity fluctuations.

In this section, we present an application of the large deviations theory to the Markov
process that describes the dynamics of the spread. Specifically, we investigate the asymp-
totics of large deviations for the spread process. Our goal is to identify the most probable
trajectory associated with a specific state of the spread, particularly when it becomes very
large, over a given time interval.

The topic of large deviations for Poisson processes with uniform (or almost uniform)
catastrophes has been explored in [15,16]. Large deviation analysis serves as a culminating
step within a sequence of limit theorems for such processes. While the theory of large
deviations is well-developed, the processes examined here do not satisfy the “classical”
conditions. Consequently, the proof of large deviations remains quite technical.

In order to provide the large deviations, we need some increasing scaling param-
eter. Let T be the length of the time interval [0, T| over which we observe our process.
We consider the following scaled process:
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Sr(t) = 22 pe 0,1

We say that the family of the random variable St (1) satisfies the large deviation
principle (LDP) on R with the rate function I = I(x) : R — [0, oo] if for any ¢ > 0 the set
{x € R: I(x) < c} is compact and for any set B € B(R) the following inequalities hold:

1 1
li?jzpflnP(ST(l) €B) < _xierbfs] I(x) and li]{gigolfflnP(ST(l) €B) > —xierglfg) I(x),

where B(R) is the Borel o-algebra on R and [B], (B) are the closure and open interior of
the set B, respectively. This principle was established in [16], in which the logarithmic
asymptotic for the probability P(St(1) > x) was calculated. Note that the principle was
proved for the state x of the spread at the time T, it is not the principle on the functional
space. The principle on the functional (trajectory) space provides us the possibility to find
the (unique) optimal trajectory—the trajectory which shows how such deviation (a rare
event) occurs taking into account the evolution of the spread.

An initial approach to proving the principle in the functional space is to establish the
local large deviation, which involves studying the asymptotic behavior of the probability of
the process remaining within a small neighborhood of a given continuous function. We say
that the family of the processes St (-) satisfies the local large deviation principle (LLDP) on the
set G C D0, 1] with rate function I = I(f) : D[0, 1] — [0, 0] if for any function f € G the
following inequalities hold:

limlimsup%lnIP’(ST(-) e Ue(f)) = limliminf%ln]P’(ST(') e Ue(f)) = —I(f),

=0 T .0 e=0 T—oo

where D[0, 1] is the space of cadlag functions, i.e., the functions that are continuous from
the right, and have a limit from the left; and where U, (f) := {g € D[0,1] : SUP;eo,1] |f(t) —
g()] <eb.

The LLDP was proved in [15] for the compound Poisson process with almost uniform
catastrophes. We note only here that the process S(-) is the special case of the processes
considered in [15]. Let G be a set of absolutely continuous functions that are positive on
the interval (0, 1]. In order to write the corresponding rate function, we need to remember
that any function with a finite variation can be uniquely represented as a difference of two
non-decreasing functions f and f~ such that Var floq) = Var f[JOr,l] + Var f[E,l] . The functions

f* and f~ are called the positive and negative variations in the function f, respectively.
Now, the rate function for St(-) can be represented for f € G as follows:

f+
T+ +

=2+ [ (FomED) - (L >aa o

where f stands for the derivative of function f and I is the indicator function.

We note that the large deviation principle and local large deviation have the same
normalization factor for the probabilities, 1/T. This provides the existence of an opti-
mal trajectory for the large deviations. The existence of the optimal trajectories of large
deviations S7(1) > x was established in [16]. If x < <y, then there exists the moment
tx =1— 3= € (0,1) such that the spread process St(-) stays near zero up to the time f, and
after that St(t), t > ty increases according to the straight line which starts at point (¢, 0)
and grows up to the point (1, x) with the slope 4 ; see function f, in Figure 6A. If x > 7,
then the process grows together with the straight line starting from the origin up to the
point (1,x), i.e., its slope is x; see function f; in Figure 6A. For illustrative purposes of
comparison, in Figure 6 we represent the optimal trajectories that provide large fluctuations
for the Poisson process with rate oy and the process S, that is, the Poisson process (of rate
v+) with uniform catastrophes (of rate y_).
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(A) (B)
X
f1 (t) = xt
PR
f2(t) =yt
0 1

- 0, iftel0,t,
fz(t)—{ Yt —ty), ift € [ty,1]

Figure 6. The optimal trajectories for (A) spread process, which is a Poisson process (of rate ) with
uniform catastrophes (of rate y_), and (B) Poisson process with rate . If x < 4, then the large
deviation occurs according to the functions f. If x > 7, then the large deviation trajectory is in the
neighborhood of the straight line f;. Figures created by A.Yambartsev.

3.5. Large Deviations for the Prices (Py(t), Pa(t))

The large deviation result for the spread suggests the question about the behavior
of prices under a large spread. The rate function corresponding to the large deviation is
essentially the rate function of a Poisson process with rate vy, which consists of the rates a 1.
and B_. Here, we provide some qualitative behavior of optimal price trajectories without
proof. The qualitative picture is represented in Figure 7.

The main difference between the behavior of the optimal trajectories of Poisson pro-
cesses and our process lies in the inclusion of the indicator function within the rate function,
as seen in (9). This indicator function imposes a constraint on the possible values of the
line slope—it cannot be lower than the rate of the Poisson process. Consequently, when the
scaled spread is less than ., a “bifurcation” point ¢, emerges. After this point, the upper
line has a slope of # and the lower line has a slope of —. As the scaled spread surpasses
7+, the slopes change, but the relationship between the contributions of rates a and —p
remains constant.

(A) 4 (B)

X<V Xy,

0 tﬂc 1 0 1

Figure 7. The optimal trajectories for prices (P, (t), P;(t)) under a large deviation of the spread when
(A) the scaled spread x is less than <y, which consists of the rates _, a4, ie., v4 =B +ay;and
(B) the scaled spread x > <. Figures created by A.Yambartsev.
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4. Numerical Simulations and Applications

This section provides a detailed description of the data and the empirical facts relevant
to them. We also present computational simulations used to calibrate the model parameters,
using the data to validate some qualitative model outcomes. Additionally, we demonstrate
a practical application that confirms our model’s short-term predictive capabilities.

4.1. HFT Data

The dataset consists of NASDAQ high-frequency trading (HFT) data for Apple Inc.,
collected through the Bloomberg stock trading platform. High-frequency data are collected
within the day (intraday), and recorded tick by tick. The dataset covers 12 h of trading activity
each day, specifically, the entire trading population for 3 and 4 March 2011. During the first
12 h of market operation, the order book quotes, measured by the frequency of price jumps,
remain stable for periods ranging from 180 to 540 min after the market opens, as shown in
Figure 8. Consequently, for both trading days, we will analyze data from within these time
intervals. It is noteworthy that during these intervals there are approximately 305 thousand
price jumps per day, a characteristic that typically persists on a daily basis.
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Figure 8. Intensity of price jumps: average number of microjumps per minute. Upper graph:
3 March 2011. Lower graph: 4 March 2011. Figures created by H.Rojas.

4.2. Empirical and Qualitative Facts

In this section, based on the available data presented above, we present some empirical
and qualitative characteristics that are typically observed in high-frequency trading markets.
The objective of this section is to corroborate whether the assumptions underlying our
model align with these recurring qualitative features commonly found in most markets.

As previously mentioned, our model’s key assumption is that in conditions of low
liquidity, characterized by a high intensity of price jumps, the sizes of the bid and ask orders
diminish in significance as the primary factors influencing the price dynamics. In contrast,
under these conditions, the bid—ask spread becomes the determining factor in predicting
price dynamics.
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In order to empirically validate this assumption, we will label the observed price
variations into two categories: up variations for upward variations, and down variations
for downward variations. After binarizing the price jumps, we use them as binary labels
(target variable) to classify jumps based on the bid—ask spread and the sizes of the bid and
ask orders as predictors.

The idea is that the greater the predictive power, the greater the influence on price
dynamics. It is worth mentioning that to measure the predictive power of order sizes,
the imbalance was considered, which corresponds to the fraction of the ask size and the
sum of total orders, that is, the bid size divided by the sum of the bid and ask sizes.

There are various dissimilarity metrics, known as divergence measures in information
theory, that we can use to assess the predictive power of the bid—ask spread and the
imbalance. Due to its simplicity and wide use in classification problems, we will employ the
Jeffreys divergence, also known as the information value (IV); see, for example, reference [17].

Based on the information value (IV) (see Figure 9) we corroborate that the bid—ask
spread has a persistent and relevant influence on the price dynamics. On the other hand,
the imbalance, and consequently the size of the orders, has an influence that disappears
quickly over time. Therefore, our main assumption of the model, the prevailing influence
of the spread on price dynamics, is empirically validated in our data. It is worth noting
that the influence of the bid—ask spread fluctuates, and our model implicitly accounts for
this empirical observation.

0.006
0.08

0.004

Day
-3
-4

Day
-3
-4

Information value
Information value

0.002

i (lags) i (lags)

Figure 9. The vertical axis corresponds to the information value (IV). The horizontal axis corresponds
to the time lag (lags) taken into account for the calculation of the divergence, that is, contiguous
periods where price jumps occur. The graph on the left corresponds to the spread bid-ask predictor.
The graph on the right corresponds to the imbalance predictor. Figures created by H.Rojas.

4.3. Parameter Estimation and Monte Carlo Experiments

In this section, we explore the steady-state properties of our proposed model using
Monte Carlo simulations. We compare the empirically observed long-term behavior (un-
conditional properties) of the OB to simulations of the fitted model. The goal of these
simulations is to indicate how well the model reproduces the average properties of the OB.
The transition rates of X () can be estimated by

Nﬂl+ A _ Nt)(, -3 _ Nﬁ+ A o Nﬁ,
T’ =7 Pr=7 B-=—7

By = (10)
where T is the length of our sample (in seconds), Ny, (N;_) is the total number of jumps
where the ask price increases (decreases), and Ng, (Ng_) is the total number of jumps
where the bid price increases (decreases).
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From the Apple stock data, since our model (4) only allows spread openings in
one tick, we selected approximately 15 continuous minutes of trading for which spread
openings only occurred in one tick, which corresponds to the interval of 365 to 380 min
after the market opens. In this sub-sample, using (10), we obtain the following: T = 900 s,
&y = 3.756, a_ = 0.765, ﬁ+ = 0.848, and ﬁ_ = 4.907. Based on the estimation of the
parameters (&4,&_, B+, B_), we simulate the price process X(t) over a long horizon of
900 s, which corresponds to what was empirically observed, and observe the evolution
of prices in two time windows. The results are displayed in Figure 10. The results of our
simulations illustrate that our model reproduces realistic characteristics for both the short-
and long-term price behavior, which were presented for the empirical data in Figure 2.

The simulation results demonstrate that our model also accurately captures realistic
characteristics of the (steady-state) average behavior of the order book (OB) profile. Notably,
the model successfully replicates the negative autocorrelation of price changes at the first
lag. Empirical observations indicate that there is a pronounced negative autocorrelation at
the first lag in the autocorrelation function of the transaction price returns. This negative
autocorrelation is significant at the first lag and rapidly diminishes thereafter, as depicted
in Figure 11.
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Figure 10. Simulation of the order book with parameters & = 3.756, &_ = 0.765, B+ = 0.848, and
B_ = 4.907. Upper left: Short-term evolution of bid (blue) and ask (red) prices, 1 min sample. Upper
right: Long-term evolution of the prices, 15 min sample. Bottom left: short-term path of the price
process X(t), 1 min sample. Bottom right: long-term path of the price process, 15 min sample. Figures

created by H.Rojas.

This phenomenon is commonly referred to as the bid—-ask bounce [12], largely arising
from having distinct trading prices for buyer-initiated and seller-initiated transactions.
While this negative autocorrelation vanishes when considering aggregate returns, it is a
noteworthy microstructural effect that must be considered in an order book model. Our
model successfully replicates this empirical characteristic. Therefore, we conclude that we
have sufficient evidence to argue that our model reproduces qualitative characteristics that
are realistic and relevant.
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Figure 11. Autocorrelation function of price return based on our simulations of the order book.
The red dashed line represents the 95% confidence interval. Figure created by H.Rojas.

4.4. Application: Prediction of Next Price Jump Direction

In this section, we present a direct application of our model that corresponds to the
short-term forecast of price movement; that is, we use the proposed model to calculate the
probability that the price will increase in the next jump, this probability is conditional on
the observed state of the OB. This amount is particularly important in financial trading as
it is used in the design of high-frequency trading strategies. From the transition rates of
the price process X(t) in (4), the probability that the price will increase in the next jump
conditional to the observed state of the OB is given by

afi:ﬁ,’ if a-b=1,
p(b,a) :==P{AP > 0|X(t) = (ba)} = (11)

a P _
T if a—-b>1,

where AP is the change in the mid-price. To increase the precision of the forecasts, we suggest
calculating the theoretical probabilities p(b, 2) taking into account the different fixed values
of the imbalance and the spread, that is,

V(a)

m and Spread =4a— b,

Imbalance =

where V (a) is the numbers of ask orders and V(b) the numbers of bid orders. In other
words, we will use (11) for buckets or bins generated by combinations of spread bid—ask
and imbalance values.

As for the calculation of the IV, for the purposes of empirical contrast of the theoretical
quantities p(b, a), the observed variations in the mid-price were classified into two categories.
Variations with mid-price increases were categorized as up variations. On the other hand, down-
ward variations were categorized as down variations. Once the variations in mid-prices were
dichotomized, the total set of 305 thousand observations was divided into two sub-samples.

The first sub-sample, which we call the training sample, corresponded to 70% of the
total observations and was used to estimate the model parameters. The second sub-sample,
called the test sample, corresponding to 30% of the total observations, was used to validate
the performance of the model forecasts.

With the estimated parameters, we calculate the empirical probabilities p(b, a) using
the test sample. Additionally, using the (11), we calculate the theoretical predicted prob-
abilities p(b, a) for the same dataset. For comparison purposes, in Figure 12, we present
the results for both quantities. The figure confirms the good precision of the model to
predict variations in the mid-price. Furthermore, to numerically confirm the precision of



Mathematics 2023, 11, 4235

15 of 24

our forecasts, we present in Figure 13 the ROC curve, which corroborates, with a score of
96%, the predictive power of the model to events of up variations in the mid-price.
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Figure 12. Empirical probabilities p(b, a) versus theoretical probabilities p(b,a). Figures created
by H.Rojas.
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Figure 13. Accuracy in classifying variations up; the event of interest (target variable) is the variation
up. Figure created by H.Rojas.

5. Discussion: Other Regimes

In this section, we outline the formulations for the remaining two regimes that can be
encompassed within our general model. As previously indicated, the primary findings of
this article have the potential for generalization to these alternative regimes. However, our

belief is that, in qualitative terms, there will be minimal disparities between the outcomes.
We anticipate that these subsequent formulations will serve as incentives for future research
endeavors aimed at extending and broadening the scope of our results.

5.1. Almost Uniform Catastrophes

As we mentioned before, the large deviations were proved for the so-called almost

uniform catastrophes. Recall that in order to close the spread of length k (with probabil-
ity 77’), we choose the next state for the spread with the same probability (uniformly)
from the set Iy = {1,...,k — 1} and denote these probabilities as Q;(k),i € I, and here
Qi(k) = ¢£5. The almost uniform distribution is defined by the following form of probabili-
ties Q;(k),1 < i < k — 1: there exists a constant ¢ > 1 such that forallk € N

1 c
m < Qi(k) < k—1’
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for all i € Ii. It extends the class of models for highly competitive regimes. For example,
for any length k of the spread, it can be divided into some parts, say two parts, and we say
that with probability 0.7, we choose one part, and then uniformly the state from this part
is chosen; with probability 0.3, the second part is chosen and the corresponding state is
chosen uniformly.

All the proofs above can be slightly modified.

5.2. Non-Competitive Regime

The main features of the non-competitive regime (NC regime) are small openings
of the spread, similar to the HC regime. However, in the NC regime, there is a slow
decrease (following a power law) in the spread. This slow decrease occurs because agents
placing limit orders within the spread prioritize achieving an optimal price in their quotes.
Compared to the HC regime the agents are less impatient. With some constant rate,
the spread opens by one tick. For the closing spread, let k > 1 be the spread size, and the
variation in the prices A is chosen from Iy = {1, ...,k — 1} according to the rate which is
proportional to A™#, where p is a fixed positive number. The parameter i can be interpreted
as a behavioral measure for agents to obtain a more favorable price in their negotiations.

Model: Closing the Spread Polynomially

In order to define the rates for the NC regime, let us again fix parameters a‘, , ® , 8%, B,
which are strictly positive real numbers. Suppose that at some moment the chain is at
some state (b,a) € X, then the transition rates for the Markov chain X () in this regime are
defined in the following way:

af ifA=1; LS ifa—b>1forany A €I, 4;
= +7 ’ — N y a—bs
w+(4) { 0, otherwise; "~ (8) { 0, otherwise;
. (12)
S, ifa—b>1forany A € 1, y;

otherwise; 0, otherwise.

B-0)={ P Derwive; PH(®) =

——
™

For illustration, see Figure 14 in the case whena — b = 3.
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Figure 14. The rates for the non-competitive model. An illustrative example for the case when
a — b = 3. Figure created by A.Yambartsev.

Again, as before, first, we study the Markov chain S(t). Suppose that at some moment
t the chain is at some state k € N, and let 74 := B¢ + a5 and ¢ := B5 +a‘, then

k—k+1 withrate 79,
ve (13)
k— k—A withrate A—;forAeIk.

These transitions suggest that the spread dynamics have a slow reversal process to
their typical values, this is because each liquidity provider competes with the others to
spread closing.
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5.3. Low Liquidity with Gaps Regime

The main feature of low liquidity with gaps regime (LLG regime) is that the spread
can open by more than one tick, this is due to the existence of gaps in the OB. The spread
decreases similarly to the NC regime.

Model

Let us fix parameters o, , &', B, B., x4, , and 6 € (0,1), which are strictly positive
real numbers. Suppose that at some moment the chain is at some state (b,a) € X, then the
transition rates for the Markov chain X(t) for this regime are defined as follows.

iz A1 .
(X_A,_(A) = { (tlfz;)f‘a ' 6(1 - 6) ’ for A € N/

0, otherwise;

ifa—b>1forA€l,_y;

O, otherwise;
(14)

, otherwise;

(a—g)"b ’ T—(1—f)a b1’ ifa—b>1forA € Ia—b;
0, otherwise.

{ B 0(1-0)271, forAeN;
0

For illustration, see Figure 15 in the case whena — b = 3.

e mb a (2) a_(l)A‘.....
*55% 0% 0° o e IO TN
R e TR

Figure 15. The rates for the low-liquidity model. An illustrative example for the case whena — b = 3.
Figure created by A.Yambartsev.

This Markov chain can be described more easily informally in the following way: for
a given state (b, a)

l
with the rate by )Ka , the chain decides to increase the ask price, and it chooses the
increment accordmg to the geometric distribution with parameter 0;

with the rate (=L the chain decides to decrease the ask price, and it chooses the

)Kg 7
increment according to the truncated geometric distribution with parameter 6 and
values I, , ={1,...,a—b—1};

,BI
with the rate @b

increment according to the geometric distribution with parameter 6;

the chain decides to decrease the bid price, and it chooses the

with the rate %, the chain decides to increase the bid price, and it chooses the

increment according to the truncated geometric distribution with parameter 6 and

values I, , ={1,...,a—b—1}.

Once more, following the same approach, we initiate our analysis by studying the
Markov chain S(t). Let us consider a particular time instance t when the chain is situated
at state k € N, then the following transitions occur:

ol 1

k—k+A withrate (k,j + ) 01 —0)27, forAeN,

By 000y
) e

(15)

k—k—A withrate (—+ for A € I.

kx k*v
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6. Conclusions

We propose a straightforward model for price dynamics in an OB with liquidity
fluctuations. Unlike [9], our model does not explicitly capture liquidity fluctuations but still
offers a reasonable approximation for empirical observations. The continuous-time Markov
process describing spread dynamics falls into the category of Poisson processes with
uniform catastrophes, where the eliminated fraction of the population follows a uniform
distribution. Large deviation results for such processes have been studied in [15,16].

When the spread closure (catastrophe) follows a uniform distribution, it accurately
represents a scenario of complete uncertainty in the decisions of bidders. In such a case, any
change in the spread is equally probable, indicating an exceptionally unusual situation often
associated with extremely high volatility. By examining such scenarios, it is conceivable,
to a significant extent, to devise a decision-making algorithm with a substantial degree of
reliability. Alternatively, if one seeks to hedge against substantial fluctuations in the spread,
our model may offer insights into calculating the appropriate insurance premiums needed
to ensure that the risk of financial collapse remains below a predetermined threshold.

We examined the asymptotic behavior of the model, which involved determining the
invariant measure (a rare case where it can be derived explicitly), and establishing results
such as the law of large numbers, the central limit theorem, and large deviations. These
theoretical findings were utilized in Monte Carlo simulations to validate that our model
reproduces relevant empirical characteristics.

We conclude our paper by discussing potential future research directions, including
the exploration of other liquidity regimes and model extensions for various applications.
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Appendix A
Appendix A.1. Ergodicity and Invariant Measure for S(t): Proof of Theorem 1

To establish positive recurrence, we introduce a Lyapunov function based on the
criteria for continuous-time Markov chains as outlined in [18], Theorem 1.7. Positive
recurrence can be inferred from the existence of a non-negative function f (Lyapunov
function) across the set of states, a small positive value ¢, and a finite set of states F.
Specifically, by applying the process generator I' to function f, we ensure that I'f(x) < —e
holds true for all states x not within the set F.

Recall that the generator I for a discrete-state Markov process is represented by the
matrix I' = (l"xy), where I'yy for x # y corresponds to the transition rate from state x to
state y, and I'xy = — ), 2, ['vy. Applying the generator for the identity function f(x) = x,
we obtain

_k
Tf(k) =y+(k+1)+ ) ijle (v+ +r-)k =74 — 77 < -1,

x€l}
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T+p(1) = 7-p(2) + - p(3) + Fpd) + -
(v +7-)n(2) = 7 p(1) + Zp(3) + Fp(4) +...

(r+ +7-)u) = r+1(2) + §V(4) + f;t(5) +...

(v +-)p(n) = yepln =1) + ——p(n+1) + ...

for all k : k > 2(y4+ +1)/v—. The last inequality provides the finite set F = {k <
2(v4+ +1)/v-} for the criteria above with ¢ = 1. Thus, the criterion ensures that the
Markov process is positively recurrent.

The formula for the invariant measure can be verified through direct examination
using the global balance equations. Beginning with the system of global balance equations,
we derive the following.

i v

294+p(1) = (v+ +27-)u(2)
v

7 @y +790@) = vep) + (v + 7+ ()

14

i i

@74 + 7)) = 1@ + (14 +7- + )u(4)
=

T @74 + 7)) = 1en(n =) + (v4 +7- + T )u(n+1)

Dividing the left side and right side on ¢4 + y— and using the notation p := %'yj% ,
g := 1 — p, we rewrite the last system as
2p _ 2
H@) = {2ou() n@) = 7 2ou()
1+p p 3p?
3) = 2) — 1 3) = ———u(l
A
I+p 14 np"1
u(n) = p(n—1) - p(n—2) n)=————nu(l
Ty e = par
After the normalizing of the relation
npnfl
p(n) = — = —#(1) (A1)
H?:ll(l +1)

and since y is the probability measure, ) (k) = 1, we return the notation v+ and obtain
Formula (6).

Appendix A.2. Law of Large Numbers: Proof of Theorem 2

Perhaps the most straightforward method to prove the LLN involves the ergodic
theorem for discrete-time Markov chains. Let s, denote the embedded discrete-time
Markov chain on N derived from S(-), with the following transition probabilities:

1,ifl=2and k =1,

G

plk 1) :=P(sys1 =1|sp =k) = T+ + -
Y-

Y+ +r-k-1

,ifl=k+1, whenk > 1,

Jifl € Ipand k > 1.
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Consider the stationary measure 7 = (71(s),s € N) associated with the chain s,,.
Evidently, the relation (6) for the stationary measure u can be transformed into the following
relation for the stationary measure 7

S >
7t(n) H?;11(1+ %)71(1), n>2. (A2)
This transformation can be verified directly using the global balance equations of the
discrete-time Markov chain s;,.
Denote as p, the discrete-time embedding chain corresponding to the continuous-time
bid-price process Py (t). The behavior of p, can be expressed as a function of the spread
dynamics s, using the following formula.

n

Pn = ZF(Snfllsn/ Un)/ (A3)
i=0

where
Uy = (Uy, Uy)
is the sequence of independent and identically distributed random vectors such that

P((Uy, Uz) = (1,0)) = % (1 - ff) P((ULU2) = (1,1) = iff

P ud) = 0) = (1-22) (1- 52, mubud) =01 = (1- 222,

and where the function F is

—1,ifsy =s,_1+land U} = 1;
F(sp—1,50,Uyn) = < 5,1 — s, if s, < 5,1 and LI,% =1 (A4)
0, otherwise.
Note that
8y = (Snflrsnr un) (A5)

is a Markov chain, and let 7t be its invariant measure. Observe that the discrete part of the
invariant measure 7 for the process (s,,—1,5,) is the product 7(x,y) = 7t(x)p(x,y). By the
ergodic theorem, we obtain the LLN for the embedding chain pj,.

Lemma Al.
%—H} as. n— oo (A6)
where -
_ 1 _v_
oo P— 7 (/37 +/37+> an
Y++7r- v+ +7-\ 1+ 2 T+ +7 2

Proof. The ergodic theorem states the convergence (A6). Thus, we need only to find the v,
which is the expectation over the invariant measure 7 of the increments F($,):

B- + T+ SRS - I B+
m(l)— — (s Sp)—S R —
S Sl e 7+ 5;25121 ) ey
p- (1) B-r— | B+
- + = s7(s
Y+ + - 7++%( T+ 2> T+ +7 22

which finishes the proof of the lemma. O
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“(

To finish the proof of Theorem 2, we observe

Py(t) = lim PN Nt =0

L
_ B-r- B B+ v _.
=—p-— ﬂ(l)( . + %) + %S;sn(s) =:D,

where N; is the Poisson process with rate v, + y—_.

Appendix A.3. CLT for Embedding py: Proof of Lemma 1

For instance, one approach to proving this is by demonstrating the geometric ergodicity
of the chain 3,,, which indicates a geometric rate of convergence to the invariant measure:

||P"(x,) — 7(-)|| < M(x)q", for some g < 1, (A7)

where || - || stands for the total variation norm. Subsequently, we can apply the results
applicable to geometrically ergodic chains. Formally, this necessitates establishing that the
chain §,;, defined by (A5), is a Harris ergodic Markov chain, which indeed holds true for 3,,.
For further details, please refer to [19].

Theorem A1 (Corollary 2, [19]). Let X be a Harris ergodic Markov chain on X with invariant
distribution 7t and let f : X — R be a Borel function. Assume that X is geometrically ergodic and
Ex|f(x)[**° < oo for some & > 0. Then, for any initial distribution, as n — oo

Vi(fu —Exf) = N(O,U%)

in distribution.

Let us begin by proving the geometric ergodicity of the chain $,,. General results exist
concerning the so-called drift conditions for establishing geometric ergodicity in chains,
as detailed in [20]. However, for countable Markov chains, we can utilize the criteria
outlined in [21] (refer to Theorem 2):

A countable Markov chain is geometrically ergodic if there exists a finite set B C X and function
g(x) > 0, x € X such that E,e8(X1)-8(X0) < g < 1, when x ¢ B and E,e8(X1)=8(X0) < oo,
ifx € B.

Proof. Utilizing the criteria, let V(-) = ¢8(). To check the conditions we consider the
function V (+) for the chain §,, defined as follows:

V(i,j,u) — elrl(i2+j2) _ iZ +]2

T+ - _ =
7 and p = Then,

For simplicity, let us assume p4 = P

V 7 ,u x=1 _k2+ 2 _ +12+ 2
(snSn41, Unt1) Sn1=}/,sn=x> _ 2((36 ) x> p +((x ) x>p+

V(Sn—ll S'rl/ un)

(A8)

<

x(2x —1) x? (x+1)2 +x?

2\ 242 x—1 y2 + x2
x(2x —1) x? (x +1)2+ %2

= - - . A
62+ )" +x2+y2p v Pt (A8)

Consider two cases. First, we suppose that x < y. Then,

- 6(x2+(x+1)2)p_+x2+(x+1)2

2
p-+ aP+ <zP-Ftpr=q<lL

x2+ (x+1)
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Thus, the condition holds for all (x, y) such that x < y. In the second case, x > y, we
havey = x — 1:

x(2x —1) x? (x+1)% +x?
PN CIEEVr) sy ey 2 oy pamp y el

(8x% — x)p_ +24xp. n
607+ (-1

(A8) =

There is no g < 1 such that (A8) < g for all x. But it is easy to see that there exists
q> %p_ + p+ and C = C(p—, p+,q) > 0 such that for all (x,y) under the condition x > C

(A8) <g< 1.
It is easy to see that

(8x% — x)p— + 24xp
6(x2+ (x —1)?)

sup + p+ < .
X

Thus, in this case, we can define the finite set B from the condition as
B={(x,y): x<Cy<xU,€{00),(01),(1,0),(1,1)}}.

This completes the proof of the geometrical ergodicity of the chain §,. O

N 1:( §n) |2+(5 <
oo for a certain 6 > 0, where the function F is defined by (A4). To achieve this, we require
insights into the behavior of the invariant measure.

Proof. As before, let 7t be the invariant measure for the chain s,. The condition takes the
following form:

Ex|F(5,)[> = 2(2 KA k)?r+ﬁ(x,x+1)§;)
B o x—1 k2+(5
B 7+ﬁ+ 7- vfiv— Z () kzz x—1 i
‘3_ N ‘3+ E 3+5

Y++7r- v+ +- 3+§ x—1

Thus, if we prove that 77(x) decreases sufficiently fast, then the last series in (A9) will
converge. Indeed, from the relation (A2) we obtain immediately

n(n) < np"2r(1),

which provides the convergence of the last series in (A9). This establishes the conditions
for the central limit theorem (CLT). O

With that, we conclude the proof of the CLT, as stated in Lemma 1.

Appendix A.4. CLT for Continuous-Time Py(t): Proof of Theorem 3

Based on the result above, let us proceed to establish the central limit theorem for the
price process Py (). As previously mentioned, consider N; to be the Poisson process with
rate ¥ = 4 + 7, representing the count of jumps for the process X(t) = (Py(t), Pa(t)).
The subsequent representation holds:

\/E<Pbt(t>—D> Zm(?}?—v>\/§+ﬁ(l\t]tv—D)
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According to Lemma 1 and CLT for the Poisson process, we expect that as t — oo

VN (I;\]}]t - v) — N(0,0?) in distribution for some ¢
t

N (I\t]t — 'y) — N(0, ) in distribution (A10)

N;
- > vas

The second and third convergence are well known when the first one can be proved
as follows: let F,(x) be the cumulative distribution function of the scaled embedded price
Markov chain p; from Lemma 1, then for any é > 0 there exists 15 such that for all n > n;

|Fu(x) — @2(x)| <0,

where @, (x) stands for the cumulative normal distribution with zero mean and variance
2
<. Then,

Nt S 1’15) ]P)(Nt S 7’15)

(o) <o) o () =
O r(vm(n ) <

t

N; = n) P(N; = n)

< ]P)(Nt < 1’15) +q>(72(X) +9

— P 2(x) ast — oo, andasd — 0
IP’(\/ﬁt(pNt - v) < x) > (Dy2(x) — O)P(N; > ng)

= q)UZ(X) -0+ (q)UZ(X) — (S)]P)(Nt < 1’15)

— ®2(x) ast — oo, and as 6 — 0.

Observe that two normal variables from (A10) are not independent; however, they
are asymptotically uncorrelated and, furthermore, asymptotically independent. To demon-
strate this, consider variables

\/ﬁ,g(pN‘—v> and \/E(I\t]t—’y)

N

We will show that they are asymptotically independent.
Since the second variable is a measurable function of the N; it suffices to prove that for
all x € R, all sets A C N, and all ¢ > 0, the following inequality holds:

tlim P(x/Nt (I;\[N’ - v> <x N; € A) — @2 (x)P(N; € A)’ <e. (A11)
—00 t
If the set A is bounded from above, then the inequality holds:
0 < lim IP’(th<pN’ —v> < x,N; € A) < lim P(N; € A) =0.
t—o0 Nt t—o0

Suppose now that A is not bounded. In this case, for any § > 0 we obtain
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t

lim ]P’(\/Nt<pr _ v) <x,N; € A>
t—o0 N,

T PNe ; Pk _
_tlggP(\/Nt< X v) <1 N GAO[O,ng]) +lim Y P(VE(EE —0) <xNee an{K})

e k=ns+1 k

= lim 3 Pr .
- tlﬁwk_%ﬂp(ﬁ( . v) < x)IP(Nt e An{k})

Thus, for any § > 0 we have

t—oc0 N;
< lim (@52 (x) + )P(N: € AN [ng,0)),

)

lim (CD(,z(x) — 5)P(Nt €AN [n(;,oo)) < tli%m P(m(m — ‘U) <x,Ny € A)

and the following inequality holds

tlim ‘P(VN(?\?G - U) <x,N; € A> — P2 (x)P(N € A)‘ < 5tlim P(N; € AN [ng,00)) < 4.
—00 t — 00

Choosing ¢ = ¢, we obtain inequality (A11).
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