

Nº 62

Derivations with invertible values in rings
with involution

A.Giambruno, P. Misso and C.Polcino Milies

Fevereiro/1984

DERIVATIONS WITH INVERTIBLE VALUES
IN RINGS WITH INVOLUTION

A. Giambruno, P. Misso and C. Polcino Milies

Recently Bergen, Herstein and Lanski studied the structure of a ring R with a derivation $d \neq 0$ such that, for each $x \in R$, $d(x)=0$ or $d(x)$ is invertible. They proved that, except for a special case which occurs when $2R=0$, such a ring must be either a division ring D or the ring D_2 of 2×2 matrices over a division ring.

In this paper we address ourselves to a similar problem in the setting of rings with involution, namely: let R be a 2-torsion free semiprime ring with involution and let S be the set of symmetric elements. If $d \neq 0$ is a derivation of R such that the non-zero elements of $d(S)$ are invertible, what can we conclude about R ?

We shall prove that R must be rather special. In fact we shall show the following:

THEOREM - Let R be a 2-torsion free semiprime ring with involution. Let d be a derivation of R such that $d(S) \neq 0$ and the non-zero elements of $d(S)$ are invertible in R . Then R is either:

1. a division ring D , or
2. D_2 , the ring of 2×2 matrices over D , or
3. $D \oplus D^{OP}$, the direct sum of a division ring and its opposite relative to the exchange involution, or
4. $D_2 \oplus D_2^{OP}$ with the exchange involution, or
5. F_4 , the ring of 4×4 matrices over a field F with symplectic involution

In case $R=F_4$ with $*$ symplectic we shall prove that d is inner. As Herstein has pointed out, an easy example of such a ring is given by taking F to be a field in which -1 is not a square and d the inner derivation in F_4 induced by $\begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$ where I is the identity matrix in F_2 .

Now, if $R=D \oplus D^{OP}$ or $R=D_2 \oplus D_2^{OP}$ then $S \cong D$ or $S \cong D_2$ respectively. Thus both cases come naturally from [1].

We remark that if $d(S)=0$ then $d(\bar{S})=0$, where \bar{S} is the subring generated by S ; hence, if R is semiprime, by [3, theorem 2.1.5.] either S lies in the center of R (and R satisfies the standard identity of degree 4) or $d(J)=0$ for some non-zero ideal J of R .

Let R be a ring with involution; we denote by Z the center of R and by S and K the sets of symmetric and skew elements of R respectively. Throughout this paper, unless otherwise stated, R will be a 2-torsion free semiprime ring with an involution $*$ and d will be a derivation of R such that $d(S) \neq 0$ and the non zero elements of $d(S)$ are invertible.

We begin with the following

LEMMA 1 - If $I=I^*$ is a non-zero ideal of R then $d(I \cap S) \neq 0$.

PROOF - Suppose, by contradiction, that $d(I \cap S)=0$ and let $t \in S$ be such that $d(t) \neq 0$. For all $s \in I \cap S$ the elements sts and $st+ts$ lie in $I \cap S$, hence

$$0 = d(sts) = sd(t)s$$

$$0 = d(st+ts) = sd(t)+d(t)s$$

Multiplying the second equality from the left by s , we obtain $s^2d(t)=0$. Now, from our basic hypothesis on R , $d(t)$ is invertible; hence $s^2=0$, for all $s \in I \cap S$.

Let now $x \in R$, $s \in I \cap S$. Then the element $sx+x^*s$ lies in $I \cap S$ and, so, it must be square-zero. Therefore, since $s^2=0$,

$$0 = (sx+x^*s)sx = (sx)^3 ,$$

that is, every element in the right ideal sR is nilpotent of index ≤ 3 . By Levitski's Theorem [2, Lemma 1] we must have $sR=0$ and, so, $s=0$. This proves that $I \cap S=0$.

For $x \in I$, $x+x^* \in I \cap S$; hence $x=-x^*$ and $x^2 \in I \cap S=0$. This I is a nil ideal of index ≤ 2 . This forces $I=0$, a contradiction. \square

At this stage we are able to prove our result in case R is not simple; in fact we have

PROPOSITION 1 - If R is not a simple ring then either $R \cong D \oplus D^{op}$, D a division ring, or $R \cong D_2 \oplus D_2^{op}$ and $*$ is the exchange involution.

PROOF - Let $I \neq R$ be an ideal of R such that $I=I^*$. If $x, y \in I$ then $xy+y^*x^* \in I \cap S$ and

$$d(xy+y^*x^*) = d(x)y+xd(y)+y^*d(x^*)+d(y^*)x^* \in I .$$

Since I doesn't contain invertible elements we must have $d(xy+y^*x^*) = 0$. This fact implies that for all $z \in I^2$, $d(z+z^*) = 0$ and so, since R is 2-torsion free, $d(I^2 \cap S) = 0$. But then, since $I^2=I^{*2}$, by lemma 1, $I^2=0$ and the semiprimeness

of R forces $I=0$. We have proved that R doesn't contain proper $*$ -ideals.

If R is not simple, then there exists a proper ideal $I \neq I^*$. Since $I+I^*$ is a non-zero $*$ -ideal of R , $I+I^* = R$. Also $I \cap I^* \neq R$ is a $*$ -ideal of R , hence $I \cap I^* = 0$. Thus we have that $R=I \oplus I^*$. Moreover since $I^2 \neq I^{*2}$ we also get $R=I^2 \oplus I^{*2}$ and, so, $I=I^2$. Now, $d(I)=d(I^2) \subset I$ says that I , and so I^* , is invariant under d . If we write $I=e+f$ with $e, f^* \in I$ then e is the unit element of I . Also, if x is in I and $d(x) \neq 0$, then $0 \neq d(x)+d(x^*) = d(x+x^*)$ is invertible in R . If $y+z$ is its inverse, where $y, z^* \in I$, we get $d(x)y=e$. Thus z^* , for every $x \in I$, $d(x)$ is either 0 or invertible. By [1, Theorem 1] I , and so I^* , is either a division ring D or D_2 . If $d(I)=0$, then $d(I^*) \neq 0$ and the above argument leads to the same conclusion. Clearly the involution in R is the exchange involution. \square

If R is a prime ring we denote by C the extended centroid of R and by $Q=RC$ the central closure of R (see [3, pg. 22]). Next lemma holds for arbitrary rings with involution, with a derivation $d \neq 0$.

LEMMA 2 - Let R be a prime ring with involution, with a derivation $d \neq 0$. Let $x \in R$ be such that for all $s \in S$

$$xsx^*d(R)xsx^* = 0.$$

Then either $x^*d(R)x = 0$ or $Q=RC$ has a minimal right ideal.

PROOF - For $y \in R$ let $u=x^*d(y)x$. Then if $s \in S$, $ususu=ususu^*=0$; now, if $r \in R$, $su^*r^*+rus \in S$ and, so,

This says that every element in the right ideal $usuR$ is nilpotent of index ≤ 3 . By Levitski's theorem [2, Lemma 1.1], $usuR = 0$ and so $usu=0$ for all $s \in S$. By [5, Lemma 3], if $u \neq 0$, $Q=RC$ has a minimal right ideal. \square

At the light of Proposition 1 we now make a first reduction: from now on, unless otherwise stated, we will always assume that R is a simple ring with 1. In this case clearly R coincides with its own central closure.

Next lemmas give us some information about the nature of the symmetric elements in the kernel of d .

LEMMA 3 - Let $a \in S$. If for all $s \in S$ we have that $asa=\lambda a$, for some $\lambda = \lambda(s) \in \mathbb{Z}$, then R has a minimal right ideal.

PROOF - Let $x \in R$. Then $a(x+x^*)a=\lambda a$, for some $\lambda \in \mathbb{Z}$, that is $ax^*a=\lambda a - axa$. Let $\mu \in \mathbb{Z}$ be such that $a(xax+x^*ax^*)a=\mu a$. Playing these off against each other we get

$$0 = axaxa + ax^*ax^*a - \mu a = 2axaxa - 2\lambda axa + (\lambda^2 - \mu)a.$$

Therefore $2(ax)^3 - 2\lambda(ax)^2 + (\lambda^2 - \mu)ax = 0$ and, since $\text{char } R \neq 2$, ax is algebraic over \mathbb{Z} of degree at most 3. This proves that aR is an algebraic algebra of bounded degree. Thus aR satisfies a polynomial identity; hence R satisfies a generalized polynomial identity. Since R coincides with its own central closure, by a theorem of Martindale [3, Theorem 1.3.2.] R has a minimal right ideal. \square

LEMMA 4 - Suppose R does not contain minimal right ideals. If $a \in S$ is such that $d(a)=0$ then either a is invertible or $ad(R)a=0$.

PROOF - Suppose $a \neq 0$ and a is not invertible. Since $d(a)=0$ then, for all $s \in S$, $d(as)=ad(s)a$ and it is not invertible. Hence $ad(s)a=0$.

Let now $x \in R$. Then $ad(x+x^*)a=0$ implies $ad(x)a=-ad(x^*)a$. Therefore for all $s \in S$, recalling that $d(a)=ad(s)a=0$ we get

$$asad(x)a = ad(sax)a = -ad(x^*as)a = -ad(x^*)asa = ad(x)asa.$$

We have proved that for all $x \in R$, $s \in S$

$$asa \ d(x)a = ad(x)asa \quad (1)$$

Since $d(a)=0$, $d(aR) \subset aR$; moreover if $\rho_R(a)$ is the left annihilator of a in R , $d(\rho_R(a)) \subset \rho_R(a)$; this says that d induces a derivation (which we will still denote by d) in the prime ring $R_1 = aR/\rho_R(a)aR$. Moreover, for $s \in S$, if \bar{as} is the image of as in R_1 , from (1) we get

$$\bar{as} \ d(\bar{ax}) = d(\bar{ax})\bar{as} \ , \text{ for all } \bar{ax} \in R_1.$$

By [4] since $\text{char } R \neq 2$ either $d = 0$ in R_1 or $\bar{as} \in Z(R_1)$, the center of R_1 . That is, either $ad(R)a = 0$ or $asaxa = axasa$ for all $x \in R$.

If $ad(R)a=0$ we are done; therefore we may assume that $asaxa=axasa$, for all $x \in R$, $s \in S$. But then, by [3, Lemma 1.3.2.], $asa=\lambda a$, for some $\lambda \in Z$ and, by Lemma 3, R has a minimal right ideal, a contradiction. \square

We remark that since R is simple with 1 then it must be a primitive ring. Now, through a repeated application of the density theorem we will be able to prove that R is artinian.

PROPOSITION 2 - R is a simple artinian ring

PROOF - Since R is primitive it is a dense ring of linear transformations on a vector space V over a division ring D . By [3, Lemma 1.1.2.] to prove that R is artinian it is enough to prove that R has a minimal right ideal or equivalently that R contains a non-zero transformation of finite rank. Suppose, by contradiction, that this is not the case.

Let $s \in S$ be such that $d(s) \neq 0$ and suppose that there exist linearly independent vectors $v, w \in V$ such that

$$vs = ws = 0$$

Since $d(s)$ is invertible, the vectors $vd(s)$ and $wd(s)$ are linearly independent over D . Moreover, since R doesn't contain non-zero transformations of finite rank, there exists a vector $u \in V$ such that $us \notin vd(s)D + wd(s)D$, i.e., $us, vd(s), wd(s)$ are linearly independent over D .

By the density of the action of R on V , there exists $x \in R$ such that

$$usx \neq 0$$

$$vd(s)x = 0$$

$$wd(s)x \neq 0$$

Let $t \in S$. Since $vd(s)x=vs=0$ then $vd(sxtx^*s)=0$; hence, since $sxtx^*s \in S$ and $d(sxtx^*s)$ is not invertible, we must have $d(sxtx^*s) = 0$. Moreover s , and so $sxtx^*s$, is not invertible. Since R has no minimal right ideals, by applying Lemma 4 to the element $sxtx^*s$, we get $sxtx^*sd(R)sxtx^*s = 0$, for all $t \in S$. Hence Lemma 2 implies $x^*sd(R)sx = 0$.

Let now $y, z \in R$. Since $x^*sd(y)sx = 0$ we have

$$0 = x^*sd(ysxz)sx = x^*syd(sxz)sx.$$

Hence $x^*sRd(sxR)sx = 0$ and, since $x^*s \neq 0$, the primeness of R forces $d(sxR)sx = 0$. If $y \in R$ we get

$$0 = d(sxy)sx = d(s)xysx + sd(xy)sx;$$

hence, since $ws = 0$, $0 = wd(sxy)sx = wd(s)xysx$. But $wd(s)x \neq 0$ and, by the density of the action of R on V , $wd(s)xR = V$; thus $0 = wd(s)xRsx = Vsx$ implying $sx = 0$, a contradiction.

We have proved that for every $s \in S$ with $d(s) \neq 0$, $\dim_D \ker s \leq 1$.

Let now W be a finite dimensional subspace of V such that $\dim_D W > 1$ and let $\rho = \rho_W = \{x \in R \mid Wx = 0\}$; ρ is a right ideal of R .

We claim that there exists $s \in \rho \cap S$ such that $s^2 \neq 0$. In fact, suppose not and let $x \in \rho$, $s \in \rho \cap S$. Then, since $(xs+sx^*) \in \rho \cap S$ and $(xs+sx^*)^2 = s^2 = 0$; we get $0 = s(xs+sx^*)^2 = s(xs)^2$, i.e., $s\rho$ is a right ideal nil of bounded index. By Levitski's theorem $s\rho = 0$; hence $(\rho \cap S)\rho = 0$. Now, since R has no minimal right ideals, by [3, Lemma 5.1.2.], for $v \notin W$, there exists $x \in \rho$ such

that $x^* \in \rho$, $vx^*=0$ and $v(x+x^*) = vx \notin W+Dv$. But then, by density, there exists $y \in \rho$ such that $v(x+x^*)y \neq 0$, contradicting the fact that $(x+x^*)y \in (\rho \cap S)\rho=0$. This establishes the claim

Set then $s \in \rho \cap S$ such that $s^2 \neq 0$. Since ρ is a proper right ideal of R , s is not invertible; moreover, since $\dim_D \ker s \geq \dim W > 1$, $d(s)=0$. Hence, by Lemma 4, $sd(R)s=0$.

Now, if $x \in \rho$ then $sx^*+xs \in \rho \cap S$ and $d(s)=0$ implies $0=d(sx^*+xs)=sd(x^*)+d(x)s$. Since $sd(x^*)s=0$, multiplying by s from the right we get $d(x)s^2=0$. Thus $d(\rho)s^2=0$. Now, for $x, y \in \rho$, $0=d(xy)s^2=d(x)ys^2$ forces $d(\rho)ys^2=0$ and, since R is prime and $s^2 \neq 0$, $d(\rho)\rho=0$. Clearly $d(\rho) \neq 0$; so, let $x \in \rho$ be such that $d(x) \neq 0$. If $vd(x) \notin W$ for some $v \in V$, then by density there exists $r \in \rho$ such that $vd(x)r \neq 0$, contradicting the fact that $d(x)r \in d(\rho)\rho=0$. Thus $vd(x) \in W$ and $d(x)$ is a transformation of finite rank, a contradiction. \square

We are now in a position to prove the Theorem:

PROOF OF THE THEOREM - By Proposition 1 and Proposition 2 we may assume that R is a simple artinian ring. Hence, $R=D_n$, the ring of $n \times n$ matrices over a division ring D .

Suppose first that $*$ on D_n is of transpose type and assume $n > 2$. Let e_{ij} be the usual matrix units. For $i=1, \dots, n$ $e_{ii}=e_{ii}^* \in S$ implies $d(e_{ii})=e_{ii}d(e_{ii})+d(e_{ii})e_{ii}$. Thus, since rank $e_{ii}=1$, rank $d(e_{ii}) \leq 2$ and, being $n > 2$, $d(e_{ii})$ cannot be invertible. Hence $d(e_{ii})=0$, $i=1, \dots, n$.

Now, if $i \neq j$, for a suitable $0 \neq c \in D$, $e_{ii}+ce_{jj}=e_{ii}+e_{jj}^* \in S$. Thus

$d(e_{ij} + ce_{ji}) = d(e_{ii}(e_{ij} + ce_{ji}) + (e_{ij} + ce_{ji})e_{ii}) = e_{ii}d(e_{ij} + ce_{ji}) + d(e_{ij} + ce_{ji})e_{ii}$; and so, rank $d(e_{ij} + ce_{ji}) \leq 2$. It follows $d(e_{ij} + ce_{ji}) = 0$ which implies $0 = d(e_{ii}(e_{ij} + ce_{ji})) = d(e_{ij})$.

We have proved that $d(e_{ij}) = 0$ for $i, j = 1, \dots, n$. Let now $x \in D$. If $i \neq j$, $S = xe_{ij} + (xe_{ij})^* = xe_{ij} + c_1x^*c_2e_{ji}$ for suitable $c_1, c_2 \in D \cap S$. We have:

$$\text{rank}(d(xe_{ij} + c_1x^*c_2e_{ji})) = \text{rank}(d(x)e_{ij} + d(e_{ij}x^*c_2)e_{ji}) \leq 2,$$

hence $d(xe_{ij} + c_1x^*c_2e_{ji}) = 0$ and, multiplying by e_{ji} from the right we get $d(x)e_{ii} = 0$, for all $i = 1, \dots, n$. Thus $d(x) = d(xI) = \sum_i d(x)e_{ii} = 0$, i.e., $d(D) = 0$. In short $d=0$ in D_n .

Suppose now that $*$ is symplectic. In this case $D=F$ is a field and suppose $n > 4$. Let $I_1 = e_{11} + e_{22}$; $I_1^2 = I_1 \in S$, so $\text{rank } d(I_1) = \text{rank}(I_1d(I_1) + d(I_1)I_1) \leq 4$ implies $d(I_1) = 0$. Now, for i odd, $a = e_{ii} + e_{i+1, i+2} \in S$; hence $d(a) = d(I_1a + aI_1) = I_1d(a) + d(a)I_1$ has rank ≤ 4 . It follows $d(a) = 0$ and, so, for $i \neq 1$, $0 = d(I_1a) = d(e_{ii})$. On the other hand, if i is even, $e_{ii} - e_{i-1, i} \in S$ and by the same argument we get $d(e_{ii}) = 0$ for $i \neq 2$. Moreover by looking at $e_{ii} + e_{i1}^*$ as above, we obtain $d(e_{ii}) = 0$ for $i \neq 1, 2$. At this stage it easily follows $d(e_{ij}) = 0$ for all $i, j = 1, \dots, n$. Since clearly $d(F) = 0$, then $d=0$ in F_n and we are done.

We are left with the case $R=F_4$ and $*$ symplectic. We will prove that in this case d must be inner. By a well known result on finite dimensional central simple algebras it is enough to prove that $d(F) = 0$. So, suppose by contradiction that there exists $\alpha \in F$ such that $d(\alpha) \neq 0$ and let $s \in S$, $s \neq 0$, be such that $d(s) = 0$. Then, since $d(\alpha) \in F$, $d(\alpha s) = d(\alpha)s \neq 0$ implying s invertible.

Therefore, for every $s \in S$, $s \neq 0$, $d(s)=0$ implies s invertible.

Now, if I is the identity matrix in F_2 , $t = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix} \in S$

and, since t is not invertible, $d(t) \neq 0$. Moreover it is easy to prove that $d(t) = \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}$ where $A, B \in F_2$. Let now V be a 4-dimensional vector space over F and let $\{e_1, e_2, e_3, e_4\}$ be the standard basis for V . Then since $d(t)$ is invertible, $e_1d(t), e_2d(t)$ are linearly independent over F ; moreover $e_1d(t), e_2d(t) \in \text{Span}_F\{e_3, e_4\}$. By density there exists $x \in F_4$ such that $e_1d(t)x = e_1x = e_2x = 0$, $e_2d(t)x \in \text{Span}_F\{e_3, e_4\}$ and $e_2d(t)x \neq 0$. Clearly $tx = x$ and, so, $x^*t = x^*$. Now, since $e_1d(txx^*t) = e_1d(t)xx^*t + e_1td(xx^*t) = 0$, $d(txx^*t)$ cannot be invertible; hence $d(txx^*t) = 0$. By the remark above, since t is not invertible, we must have $0 = txx^*t = xx^*$. Thus, since $*$ is symplectic, $x = 0$, a contradiction. \square

REFERENCES

1. J. BERGEN, I.N. HERSTEIN and C. LANSKI - Derivations with invertible values, *Can. J. Math.* 35, 2 (1983) 300-310
2. I.N. HERSTEIN - *Topics in ring theory*, Univ. of Chicago Press, Chicago, 1969
3. I.N. HERSTEIN - *Rings with involution*, Univ. of Chicago Press, Chicago, 1976
4. I.N. HERSTEIN - A note on derivations II, *Can. Math. Bull.* 22 (1979) 509-511
5. I.N. HERSTEIN - A theorem on derivations of prime rings with involution, *Can. J. Math.* 34, 2 (1982) 356-369

000

Instituto de Matemática
Università di Palermo
Via Archimafi 34
90 123 Palermo, Italy

Instituto de Matemática e Estatística
Universidade de São Paulo
Caixa Postal 20.570 Ag. Iguatemi
São Paulo, Brasil

TRABALHOS
DO
DEPARTAMENTO DE MATEMATICA
TITULOS PUBLICADOS

8001 - PLETCH, A. Local freeness of profinite groups. São Paulo, IME-USP, 1980. 10p.

8002 - PLETCH, A. Strong completeness in profinite groups. São Paulo, IME-USP, 1980. 8p.

8003 - CARNIELLI, W.A. & ALCANTARA, L.P. de. Transfinite induction on ordinal configurations. São Paulo, IME-USP, 1980. 22p.

8004 - JONES RODRIGUES, A.R. Integral representations of cyclic p-groups. São Paulo, IME-USP, 1980. 13p.

8005 - CORRADA, M. & ALCANTARA, L.P. de. Notes on many-sorted systems. São Paulo, IME-USP, 1980. /25/p.

8006 - POLCINO MILIES, F.C. & SEHGAL, S.K. FC-elements in a group ring. São Paulo, IME-USP, 1980. /10/p.

8007 - CHEN, C.C. On the Ricci condition and minimal surfaces with constantly curved Gauss map. São Paulo, IME-USP, 1980. 10p.

8008 - CHEN, C.C. Total curvature and topological structure of complete minimal surfaces. São Paulo, IME-USP, 1980. 21p.

8009 - CHEN, C.C. On the image of the generalized Gauss map of a complete minimal surface in R^4 . São Paulo, IME-USP, 1980. 8p.

8110 - JONES RODRIGUES, A.R. Units of ZCp^n . São Paulo, IME-USP, 1981. 7p.

8111 - KOTAS, J. & COSTA, N.C.A. da. Problems of modal and discussive logics. São Paulo, IME-USP, 1981. 35p.

.8112 - BRITO, F.B. & GONCALVES, D.L. Algébras não associativas, sistemas diferenciais polinomiais homogêneos e classes características. São Paulo, IME-USP, 1981. 7p.

.8113 - POLCINO MILIES, F.C. Group rings whose torsion units form a subgroup II. São Paulo, IME-USP, 1981. 1v. (não paginado)

.8114 - CHEN, C.C. An elementary proof of Calabi's theorems on holomorphic curves. São Paulo, IME-USP, 1981. 5p.

.8115 - COSTA, N.C.A. da & ALVES, E.H. Relations between paraconsistent logic and many-valued logic. São Paulo, IME-USP, 1981. 8p.

.8116 - CASTILIA, M.S.A.C. On Przymusinski's theorem. São Paulo, IME-USP, 1981. 6p.

.8117 - CHEN, C.C. & GOES, C.C. Degenerate minimal surfaces in \mathbb{R}^4 . São Paulo, IME-USP, 1981. 21p.

.8118 - CASTILIA, M.S.A.C. Immersions inversas de algumas aplicações fechadas. São Paulo, IME-USP, 1981. 11p.

.8119 - ARAGONA VALEJO, A.J. & EXEL FILHO, R. An infinite dimensional version of Hartogs' extension theorem. São Paulo, IME-USP, 1981. 9p.

.8120 - GONÇALVES, J.Z. Groups rings with solvable unit groups. São Paulo, IME-USP, 1981. 15p.

.8121 - CARNIELLI, W.A. & ALCANTARA, L.P. de. Paraconsistent algebras. São Paulo, IME-USP, 1981. 16p.

.8122 - GONÇALVES, D.L. Nilpotent actions. São Paulo, IME-USP, 1981. 10p.

.8123 - COELHO, S.P. Group rings with units of bounded exponent over the center. São Paulo, IME-USP, 1981. 25p.

.8124 - PARMENTER, M.M. & POLCINO MILIES, F.C. A note on isomorphic group rings. São Paulo, IME-USP, 1981. 4p.

.8125 - MERKLEN, H.A. Hereditary algebras with maximum spectra are of finite type. São Paulo, IME-USP, 1981. 10p.

.8126 - POLCINO MILIES, F.C. Units of group rings: a short survey. São Paulo, IME-USP, 1981. 32p.

.8127 - CHEN, C.C. & GACKSTATTER, F. Elliptic and hyperelliptic functions and complete minimal surfaces with handles. São Paulo, IME-USP, 1981. 14p.

.8128 - POLCINO MILIES, F.C. A glance at the early history of group rings. São Paulo, IME-USP, 1981. 22p.

.8129 - FERRER SANTOS, W.R. Reductive actions of algebraic groups on affine varieties. São Paulo, IME-USP, 1981. 52p.

.8130 - COSTA, N.C.A. da. The philosophical import of paraconsistent logic. São Paulo, IME-USP, 1981. 26p.

.8131 - GONÇALVES, D.L. Generalized classes of groups, spaces c-nilpotent and "the Hurewicz theorem". São Paulo, IME-USP, 1981. 30p.

.8132 - COSTA, N.C.A. da & MORTENSEN, Chris. Notes on the theory of variable binding term operators. São Paulo, IME-USP, 1981. 18p.

.8133 - MERKLEN, H.A. Homogeneous ℓ -hereditary algebras with maximum spectra. São Paulo, IME-USP, 1981. 32p.

.8134 - PERESI, L.A. A note on semiprime generalized alternative algebras. São Paulo, IME-USP, 1981. 10p.

.8135 - MIRAGLIA NETO, F. On the preservation of elementary equivalence and embedding by filtered powers and structures of stable continuous functions. São Paulo, IME-USP, 1981. 9p.

8136 - FIGUEIREDO, G.V.R. Catastrophe theory: some global theory a full proof. São Paulo, IME-USP, 1981. 91p.

8237 - COSTA, R.C.F. On the derivations of gametic algebras. São Paulo, IME-USP, 1982. 17p.

8238 - FIGUEIREDO, G.V.R. de. A shorter proof of the Thom-Zeeman global theorem for catastrophes of cod < 5. São Paulo, IME-USP, 1982. 7p.

8239 - VELOSO, J.M.M. Lie equations and Lie algebras: the intransitive case. São Paulo, IME-USP, 1982. 27p.

8240 - GOES, C.C. Some results about minimal immersions having flat normal bundle. São Paulo, IME-USP, 1982. 37p.

8241 - FERRER SANTOS, W.R. Cohomology of comodules II. São Paulo, IME-USP, 1982. 15p.

8242 - SOUZA, V.H.G. Classification of closed sets and diffeos of one-dimensional manifolds. São Paulo, IME-USP, 1982. 15p.

8243 - GOES, C.C. The stability of minimal cones of codimension greater than one in R^n . São Paulo, IME-USP, 1982. 27p.

8244 - PERESI, L.A. On automorphisms of gametic algebras. São Paulo, IME-USP, 1982. 27p.

8245 - POLCINO NILIES, F.C. & SEHGAL, S.K. Torsion units in integral group rings of metacyclic groups. São Paulo, IME-USP, 1982. 18p.

8246 - GONÇALVES, J.Z. Free subgroups of units in group rings. São Paulo, IME-USP, 1982. 8p.

8247 - VELOSO, J.M.M. New classes of intransitive simple Lie pseudo-groups. São Paulo, IME-USP, 1982. 8p.

8248 - CHEN, C.C. The generalized curvature ellipses and minimal surfaces. São Paulo, IME-USP, 1982. 10p.

8249 - COSTA, R.C.F. On the derivation algebra of zygotic algebras for polyploidy with multiple alleles. São Paulo, IME-USP, 1982. 24p.

8350 - GONÇALVES, J.Z. Free subgroups in the group of units of group rings over algebraic integers. São Paulo, IME-USP, 1983. 8p.

8351 - MANDEL, A. & GONÇALVES, J.Z. Free k-triples in linear groups. São Paulo, IME-USP, 1983. 7p.

8352 - BRITO, F.G.B. A remark on closed minimal hypersurfaces of S^4 with second fundamental form of constant length. São Paulo, IME-USP, 1983. 12p.

8353 - KIIHL, J.C.S. U-structures and sphere bundles. São Paulo, IME-USP, 1983. 8p.

8354 - COSTA, R.C.F. On genetic algebras with prescribed derivations. São Paulo, IME-USP, 1983. 23p.

8355 - SALVITTI, R. Integrabilidade das distribuições dadas por subalgebras de Lie de codimensão finita no $gh(n, C)$. São Paulo, IME-USP, 1983. 4p.

8356 - MANDEL, A. & GONÇALVES, J.Z. Construction of open sets of free k-Tuples of matrices. São Paulo, IME-USP, 1983. 18p.

8357 - BRITO, F.G.B. A remark on minimal foliations of codimension two. São Paulo, IME-USP, 1983. 24p.

8358 - GONÇALVES, J.Z. Free groups in subnormal subgroups and the residual nilpotence of the group of units of group rings. São Paulo, IME-USP, 1983. 9p.

8359 - BELOQUI, J.A. Modulus of stability for vector fields on 3-manifolds. São Paulo, IME-USP, 1983. 40p.

8360 - GONÇALVES, J.Z. Some groups not subnormal in the group of units of its integral group ring. São Paulo, IME-USP, 1983. 8p.

8361 - GOES, C.C. & SIMOES, P.A.Q. Imersões minimas nos espaços hiperbólicos. São Paulo, IME-USP, 1983. 15p.