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D£&1YATIO'aS •tTR IU E&TIBLE YALUES 
IN RINGS WITH INYOLUTIOI 

A. Giamb~uno, P. Mi~~o and C. Pol~ino Mitie~ 

Recently Bergen, Herstein and Lanski studied the structure 
of a ring R with a derivation d ~ 0 such that, for each x € R, 
d(x)=O or d(x) is invertible. They proved that, except for a 
special case which occurs when 2R=0, such a r~ng must be either • a division ring D or the ring Oz of 2x2 matrices' over a division 
ring. 

In this paper we address ourselves to a similar 
problem in the setting of rings with involution, namely: let R 
be a 2-torsion free semiprime ring with involution and let S be 
the set of Jymmetric elements. If d ~ 0 is a derivation of R 
such that the non-zero elements of d(S) are invertible, what can 
we conclude about R? 

We shall prove that R must be rather special. In fact 
we shall show the following: 

THEOREN - Let R be a 2-torsion free semiprime ring with involution. 
Let d be a derivation of R such that d(S) ~ 0 and the non-zero 
elements of d(S) are invertible in R. Then R is either: 
1. a division ring D, or 
2. Dz, the ring of 2x2 matrices over D, or 
3. D~o 0 P, the direct sum of a division ring and its op~osite 

relative to the exchange involution, or 
4. Oz~Ozop with the exchange involution, or 
5. F4 , the ring of 4x4 matrices over a field F wtth symplectic 

involution 



• 
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In case R=F .. with* symplectic we shall prove that d is 
inner. As Herstein has pointed out,an easy example of such a 
ring is given by taking F to be a field in which _, is not a 
square and d the inner derivation in F .. . induced by ( O ~)where I 

-I 
is the identity matr;x in F 2 • 

. ·-op 
0

op . i Now, if R=D~D or R=D 2 ~ 2 then S;O or s~o 2 respecti-
vely. Thui both cases come naturally from [1]. 

We remark that if d(S)=O then d(S)=O, where Sis the 
subring generated by S; hence, if R is semiprime, by (3, theorem 
2.1.5.] either S lies in the center of R (and R satisfies the 
standard identity of degree 4) or d(J)=O for some non-zero ideal 
J of R. 

Let R be a ring with involution; we denote by Z the 
center of Rand by Sand K the sets of symmetric and skew ' 
elements of R respectively ■- Throughout this paper, unless 
otherwise stated, R will be a. 2-.to~~ion 6~ee ~emip~ime ~ing with 
an involu..tion * and d

0

will be a. de~iva..tion of R .su.c.h .tha..t d(S};&!O 
and the non ze~o elemen.t~ 06 d{S} a.~e inve~.tible . 

. We begin with the following 

LENNA 1 - If l=I* is a non-zero ideal of R then d(I n S) ~ O. 

. PROOF - Suppose, by contradiction, that d{I n S)=O and let t € S 
be such that d(t) ~ 0. For all S £ In S the elements sts and 
st+ts·lie in In S, hence 

0 = d(StS) = Sd(t)s 

0 = d(St+tS) = Sd(t)+d(t)s 
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Multiplying the second equality from the left bys, we obtain 
s 2 d(t)=0. Now, from our basic hypothesis on R, d(t) is inverti­
ble; hence S 2 =0, for all s i:: I n S. 

Let now xi:: R, s E In S. Then the element sx+x*s 
lies in In Sand, so, it must be square-zero. Therefore, since 
s 2 =0, 

0 = (sx+x*s)sx ={sx) 3 , 

that is, every element in the right ideal . sR is nilpotent of 
index s 3. By Levitski's Theorem [2, Lemma 1) we must have 
SR~O and, so, ScO. This proves that In S=O. 

For x E: I, x+x* e . I n S; hence x=-x* and x2 E: I n 5=0. 
This I is a nil ieal of index s 2. This forces 1=0, a 
contradiction. 

□ 

At this stage we are able to prove our result in case 
R is not simple; in fact we have 

PROPOSITION 1 - If R is not a simple ring .then either R~oeo 0 P, D 
a division ring, or R~D 2 QD 2 °P and* is the exchange involution. 

PROOF - Let I~ R be an ideal of R such that l=I*. If x,y € I 
then xy+y*x* e I n S and 

d(xy+y*x*) = d(x)y+xd(y)+y*d{x*)+d(y*)x* e I • 

Since I doesn't contain invertible elements we must have 
d(xy+y*x*) = 0. This fact implies that for all i e !2, 

. . d(z+z*) = 0 and so, since R is 2-torsion free, d(I2 •n S) = O. 
But then, sioce 12 =1* 2 , by lemma 1, 12 =0 and the semiprimeness 

• 
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of R forces l=O. We have proved that R doesn't contain proper 
*-ideals. 

4 • 

If R is not simple, then there exists a proper ideal 
I~ I*. Since l+I* is a non-zero *-ideal of R, I+I* = R. Also 
I n I*~ R is a . *-ideal of R, hence I n I*= O. Thus we have that 
R=l~I*. Moreover since 12 ~ 1* 2 we also get R=l 2 ~1* 2 and, so, 1=1 2 • 

Now, d(l)=d(I 2 ) c I says that I, and so I*, is invariant under d. 
If we write 1=e+f with e,f* ~ I then e is the unit element of I. 
Also, if xis in I and d(x) ~ 0, then O ~ d(x)+d(x*) = d(x+x*) is 
invertible in R. If y+z is its inverse, where y,z* e I, we get 

- d ( x ) y = e • Thus z * , for every x e I , d ( x ) i s e i th er O or i n v er t; b 1 e ·• 
By [l, Theorem lJ I, and so I*, is either a division ring Dor D2 • 

If d(I)=O, then d(l*J~o and the above argument leads to the same 
concluston. Clearly the involution in R is the exchange involution. □ 

If Risa prime ring we denote by C the extended 
centroid of Rand by Q=RC the central closure of R (see [3, pg. 22]. 
Next lemma holds for arbitrary rings with involution, with a 
derivation d ~ O. 

LEMMA 2 Let R be a prime ring with involution, with a derivation 
d ~ 0. Let x e R be such that for all s e S 

_ ~sx*d(R)xsx* =.0. 

Then either x*d(R)x = 0 or Q=RC has a minimal right . ideal. 

PROOF - For ye R let u=x*d(y)x. Then ifs e S, ususu=~susu*=O~ 
now, if r t R, su*r*+rus e S and, so, 
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-This says that every element in the right ideal · usuR is nilpotent 
of index ~ 3. By Levitski 's theorem [2, Lemma 1.1], usu R and so 
usu=O for all s ES. By [5, Lemma 3], if u ~ 0, Q=RC has a minimal 
right ideal. 

____ At the light . of Proposition 1 we now make a first 
reduction: from now on, unless otherwise stated, we will alway~ 
a~~ume zhaz R i4 a 4imple 4ing with 1. In this case clearly R 
coincides with its own central closure. 

D 

Next lemmas give us some information about the nature 
of the symmetric elements in the kernel of d. 

LEMMA 3 - Let a€ S. If for all s ES we have that asa=Aa, for some 
A =A(s) € z, then R has a minimal right ideal. 

PROOF - Let x E R. Then a (x+x*)a= Aa, for some A E Z, that is 
ax*a=Aa-axa. Letµ E Z be such that a(xax+x*ax*)a=µa. Playing 
these off against each other we get 

Therefore 2(ax)3-2>-(ax) 2 +(>- 2 -µ)ax = 0 and, since char R ~ 2, ax is 
algebraic over Z of degree at most 3. This proves that aR is an 
alge~raic algebra of bounded degree. Thus aR satisfies a 
polynomial identity; hence R satisfies a generalized polynomial 
identity. Since R coincides with i~s own central closure, by a 
theor~m of Martindale (3, Theorem 1.3.2.J R has a minimal right 
ideal. 

D 
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LEMMA 4 - Suppose R does not contain minimal right ideals. If 
a E Sis such that d(a)=O then either a is invertible or ad(R)a=O. 

PROOF - Suppose a¢ 0 and a is not invertible. Since d(a)=O then, 
for all s e S, d(asa)=ad(s)a and it is not invertible. Hence 
ad(s)a=O. 

Let now x e R. Then ad(x+x*)a=O implies ad(x)a=-ad(x*)a. 
Therefore for all s e S, recallJng that d(a)=ad(s)a=O we get 

· asad(x)a = ad(sax)a = -ad(x*as)a = -ad(x*)asa = ad(x)asa. 

We have proved that for all x e R, s e S 

asa d(x)a = ad(x)asa ( 1) 

Since d(a)=O, d(aR) c aR; moreover if pR{a) is the 
left annihilator of a in R, d(pR(a)) c pR{a); this says that d 
induces a derivation (which we will still denote by d) in the prime 
ring R1 = aR/p~(a)naR. Moreover, for s e S, if as is the image of 
a~ in R1 , from.JO r we get 

as d(ax) = d(ax)as , 
By [4J since char R ~ 2 either d = 0 in Ri or as ~ Z(R 1 ), the 
center of R1 • That is~ either ad(R)a = O or asaxa = axasa for 

· all x e R. 

• 
·-

If ad(R)a=O we are done; therefore we may assume that 
asaxa=axasa, for all x e R, s e S. ·But then, by [3, Lemma 1.3.2.], 
asacAa, for some A e Zand, by Lemma 3, R has a minimal right ideal, 
a contradiction. · 

□ 
.-



7. 

We remark that since R is simple with 1 then it must 
be a primitive ring. Now, through a repeated application of the 
density theorem we will be able to prove that R is artinian. 

· PROPOSITION 2 - Risa simple artinian ring 

PROOF - Since R is primitive it is a dense ring of linear transf 
transformations on a vector space V over a division ring D. By 
[ 3, L~mma 1.1.2.J to prove that R is artinian it is enough to 
prove that R has a minimal right ideal or equivalently that R 
contains a non-zero transformation of finite rank. Suppose, by 

contradiction, that this is not the case. 

Lets£ S be such that d(s) ~ 0 and suppose that there 
exist linearly independent vectors v,w £ V such that 

vs. = ws = 0 

Since d(s) is invertible, the vectors vd{s) and wd(s) are linearly 
independent over 0. Moreover, since R doesn't contain non-zero 
transformations of finite rank, there exists a vector u € V such 
that us t vd(s)D+wd(s)D, i.e., us,vd(s),wd(s) are linearly 
independent over D. 

By the density of the action of Ron V, there exists 
x e: R such that · 

--,- U SX ii! 0 

vd(s)x = 0 

wd(s)x;.: O • 



Let t .E S. Since vd(s)~=VS=O then vd(sxtx*s)=O; hence, since. 
sxtx*s E Sand d(sxtx*s) is not invertible, we must have 

-s. 

d(sxtx*s) = O. Moreover s, and so sxtx*s, is not invertible. Since 
R has no minimal right ideals, by applying Lemma 4 to the element 
sxtx*s, we get sxtx*sd(R)sxtx*s = 0 , for all t € S. Hence Lemma 
2 implies x*sd(R)sx = O. 

Let now y,z E R. Since x*sd(y)sx = 0 we have 

;,O = x*sd(ysxz)sx = x*syd(sxz)sx . \ 

} 
Hence x*sRd(sxR)sx = 0 and, since x*s ~ 0, the primeness of R, / 

· forces d(sxR)ix = 0. If y ER we get 

0 = d(sxy)sx = d(s)xysx+sd(xy)sx; 

hence, since ws = 0, 0 = wd(sxy}sx = wd(s)xysx. But wd(s)x ~ 0 and, 
by the density of the action of Ron V, wd(s)xR = V; thus 
O=wd(s)xRsx=Vsx implying sx=O, a contradiction. 

We have proved that for every s E S with d(s) ~ 0, 
dim0ker · s:;; 1. 

Let now W be a finite dimensional subspace of V such 
that dim0w > 1 and let . P=Pw ={x € . R 1 · ·wx=O}; p is a right ideal of 
R. 

We claim that there exists s e p n S such that s 2 ~ O. 
In fact, suppose not and let x e p, s e p n S. Then, since 
(xs+sx*) E p n Sand (xs+sx*) 2 =S 2 =0; we get 0=s(xs+sx*) 2 =s(xs) 2 , 

i.e., sp is a right ideal nil of bounded index.· By Levitski's 
iheorem sp=O; hence (pnS}p=O. Now, since R has no minimal right 
ideals, by [3 1 Lemma 5.1.2.], ·for v t W, there exists x E p such 
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that x* e p, vx*=O and v{x+x*) = vx t W+Dv. But then, by density, 
there exists ye p such that v(x+x*)y ¢ 0, contradicting the fact 
that (x+x*)y t: (pnS)p=O. This establishes the claim 

Set then § . E: p n S such that s 2 ;ae 0. Since pis a 
proper right ideal of R,s is not invertible; moreover, since 
dim0ker s ~ dim W > 1, d{s)=O. Hence, by Lemma 4, sd(R)s=O. 

Now, if x E p then sx*+xs E p n Sand d(s)=O implies 
Ozd(sx*+xs)=sd(x*)+d(x)s. Since sd(x*)s=O, multiplying bys from 
the right we get d(x)s 2 =0. Thus d(p)s~=O. Now, for x,y E p, 
0=d(xy·)s 2 =d(x)ys 2 forces d(p)ps 2 =0 and, since R is prime and ·s 2 ;ae 0, 
d(P)P=O. Clearly d(p) ;ae O; so, let x ep be such that d(x) ;ae 0. If 
vd(x) t W for some v e V, then by density there exists re p such 
that vd(xlr ;ae 0, contradicting the fact that d(x)r E d(p)p=O. Thus 
Vd(x) c Wand d(x) is a transformation of finite rank, a · 
contradiction. 

We are now in a position to prove the Theorem: 

PROOF OF THE THEOREM - By Proposition 1 and Proposition 2 we may 
assume that Risa simple artinian ring. Hence, R=Dn, the ring of 
nxn matrices over a division ring D. 

Suppose first that * on Dn is of transpose type and 
assume n > 2. Let e .. be the usual matrix units. For i=l, ... ,n lJ 

* d(e .. }=e .. d(e .. }+d(e .. )e ..• e
11

=e . . · E: s implies Thus, since rank . 11 1 1 1 l l l l 1 l l 

□ 

e11.=1, ra_nk d(e .. ) s 2 and, being n > 2, d(e .. } canot be invertible. 11 11 . 

Hence d(e 11 )=0, i=l, ••• ,n. 

Now, if i ;ie j , for a suitable O ¢ c e 0, 
* e,1.;+ce:-1 = e • .,+e.:.; t: S • Thus 

• 
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d ( e .. +ce .. )=d( e .. ( e .. +ce .. )+( e .. +ce .. )e .. ) =e .. d ( e .. +ce. ,. }+d ( e,.J.+ceJ· ,· )e,. ,· ; and 1J J1 ,, 1J J1 1J J1 ,, 11 1J J 

so, rank d(eij+ceji) s 2. It follows d(eij+eeji) = 0 which implies 

o · = d(e .. (e .. +ce .. ) } = d(e
1 
.. ). 

11 1J J1 J 

We ha v e proved th a t d ( e . . ) = 0 for i , j = 1' ,· • • • ; h • Le t now 1J 
X E'. D. If i ;,,! j, S. xe .. ~(xe .. )*=xe .. ~c 1 x*c 2 e .. ~qr suitable 1J . 1J _1J Jl 

D n S. · We have: 

hence d(xe .. +e 1x*c2e .. ) = , J J 1 
0 and, multiplying by ej;from the right 

we get d ( x ) e ii= 0 , for a 11 i = l , .•• , n • Thus d(x)=d(xI)=Ed(x)e .. = 0, . , , 
1 i.e., d(D)=O. In short d=O in Dn. 

Suppose now that* is symplectic. In this case ·D=F is 
a field and suppose n > 4. Let l1=e11+e22i !~=1 1 E: S, so 
rank d{I 1 ) = rank(l 1 d(I 1}+d(I 1)I 1) S 4 implies d(Ld;."O. Now, for 

i odd , a=e
1
i+ei+i, 2 E: ~; hence d(a)=d(I 1a+al 1)=f 1d(a)+d(a)I

1 

has ranks 4. It folows d(a)=O and, so, for i ~ 1~ 0=d(l 1a)=d(e 1i). 

On the other hand, if i is even, e .-e. · £Sand by the same 11 1-1,2 

argument we get d(e .)=0 for i ~ 2. Moreover by looking at . 11 

* e 
1 
i + e i 

1 
a s a b o v e, we ob ta i n d ( e i 

1 
) = 0 for i ~ 1 ,· 2 • At· · t h i s s ta g e 

it eas _ily follows d(e .. )=0 for all i,j=l,·.· •• ,n. Since clearly lJ 
d(F)=O, then d=O in Fn and we are done. 

We are left with the case R=F~ and* symplectic. We 
~ill prove that ;~ -this cased must.be inner. By a well known 

result on finite dimensional central simple algebres · it is enough 
to prove that ~(F)=O. So, suppose by contradiction that there 
exists -a E: F such that d(a) ~ 0 and lets e S, s ~ 0, be such that 
d(s)=O. Then, since d(a) e F, d(as)=d(a)s ~ 0 implying s invertible. 
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Therefore, for every s e: S, s ~ 0, d(s)=O implies s invertible. 

, t -- (Oo OI)c S Now, if I is the identity matrix in F2 ~ 

and,since tis not invertible, d(t) ~ O. Moreover it is easy to 

- prove that d(t) = (
0 

A) where A,B e F • Let now V be a 
B O 2 

- 4-dimensional vector space over F and let {e 1 ,e2,e 3 ,e4} be the 
standard basis for V. Then since d(t) is invertible, e 1 d(t),e 2 d(t) 
are linearly independent over F; moreover 

e 1d(t),e2d(t) e SpanF{e 3 ,e4}. By density there exists x e: F~ such · 
that e1d(t)x=e1x=e2x=O, e2d(t)x e SpanF{es,e4} and e 2 d(t)x ~ 0. 
Clearly tx=x and, so, x*t=x*. Now, since 

e1d(txx*t)=e1d(t)xx*t+e1td(xx*t)=O, d(txx*t) cannot be invertible; 
hence d(txx*t)=O. By the remark above, since tis not 
invertible, we must have O=txx*t=xx*. Thus, since* is symplectic, 
X=O, a contradiction. r •. 0 

oOo 
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