


UERIVATIONS MITH INVERTIBLE VALUES
IN RINGS WITH INVOLUTION

A. Giambruno, P. Misso and C. Polcino Mifies

Recently Bergen, Herstein and Lanski studied the Structure
of a ring R with a derivation d # 0 such that, for each x e R,
d(x)=0 or d(x) is invertible. They proved that, except for a
special case which occurs when 2R=0, such a ring must be either
a division ring D or the ring D, of 2x2 matrices over a divisian

ring.

In this paper we address ourselves to a similar
problem in the setting of rings with involution, namely: 1let R
be a 2-torsion free semiprime ring with involution and let S be
the set of symmetric elements. If d = 0 is a derivation of R
such that the non-zero elements of d(S) are invertible, what can

we conclude about R?

We shall prove that R must be rather special. 1In fact

we shall show the following:

THEOREN - Let R be a 2- torsion free semiprime ring with involution,
Let d be a derivation of R such that d(S) =0 and the non- zero

elements of d(S) are invertible in R. Then R is either:

1. a division ring D, or

2. D,, the ring of 2x2 matrices over D, or

3. D@DOP, the direct sum of a division ring and its opposite
relative to the exchange involution, or

4, DzeD2 °P with the exchange involution, op

5. F4, the ring of 4x4 matrices over a field F with symplectic

involution
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In case R=F, with * symplectic we shall prove that d is
inner. As Herstein has pointed out,an easy example of such a
ring is given by taking F to be a field in which -1 is not a

square and d the inner derivation in Fy induced by(0 I)where I
-1 0

is the identity matrix in Fa.

- r—

Now, if R=D@D?P or R=D2®Dgp then S=D or S=D, respecti-f

vély. Thus both cases come naturally from [1].

We remark that if d(S)=0 then d(%)=0, where 3 is the
subring generated by S; hence, if R is semiprime, by [3, theorem
2.1.5.] either S 1ies in the center of R (and R satisfies the
standard identity of degree 4) or d(J)=0 for some non-zero ideal

J of R.

Let R be a ring with involution; we denote by Z the
center of R and by S and K the sets of symmetric and skew
e]ements of R respectively. Throughout this paper, unless
otherwise stated, R wiflf be a 2-torsion free semiprime ning with
an involution * and d will be a denivation of R such that d(S)=0

and the non zeno elements of d(S) are inventible.

We begin with the following
LEMMA 1 - If I=I* is a non-zero ideal of R then d(I p S) = 0,

PROOF - Suppose, by contradiction, that d(I n S)=0 and let t ¢ §
be such that d(t) = 0. For all Se I n § the elements sts and

st+ts-lie in I n S, hence

0 = d(sts) = sd(t)s

0

d(st+ts) = sd(t)+d(t)s



Multiplying the second equality from the left by 5, we obtain
s2d(t)=0. Now, from our basic hypothesis on R, d(t) is inverti-

ble; hence s2=0, for all s « I ns§S,

Let ﬁow X € R, s € I nS, Then the element S X+X*s
lies in I 0 S and, so, it must be square-zero. Therefore, since
s2=0,

0 = (sx+x*s$)sx =(sx)? ,
that is, every element in the right ideal sR is nilpotent of

. index = 3. By Levitski's Theorem (2, Lemma 1] we must have

SR=0 and, so, s=0. This proves that I n S=0.
For x ¢ I, x+x* ¢ I n S; hence x=-x* and x2 ¢ I n S=0,
This I is a nil ieal of index = 2, This forces I=0, a

contradiction. 0

At this stage we are able to prove our result in case

R is not simple; in fact we have

PROPOSITION 1 - If R is not a simple ring then either R=DeD°P, p

a division ring, or RsDzﬁéDzop and * is the exchange involution.

PROOF - Let I = R be an ideal of R such that I=I*. If x,y ¢ 1

then xy+y*x* ¢ I nS and

d(xy+y*x*) = d(x)y+xd(y)+y*d(x*)+d(y*)x* el .

Since I doesn't contain invertible elements we must have
d{xy+y*x*) = 0. This fact implies that for all z ¢ 12,
d(z+z*) = 0 and S0, since R is 2-torsion free, d(I2 n S) = 0,

But then, since I2=1*2, by lemma 1, I12=0 and the semiprimeness



of R forces I=0. We have proved that R doesn't contain proper

*-ideals.

If R is not simple, then there exists a proper ideal
I = I*, Since I+I* is a non-zero *-ideal of R, I+I* = R, Also
I nI*¥ =R is a *-ideal of R, hence I n I* = 0, Thus we have that
R=I®I*. Moreover since I? = I*2 ye also get R=12@¢I*2 and, so, I=I2,
Now, d(I)=d(I2) « I says that I, and so I*, is invariant under d.
If we write 1=e+f with e,f* ¢ I then e is the unit element of 1I.
Also, if x is in I and d(x) = 0, then 0 = d(x)+d(x*) = d(x+x*) is
invertible in R. If y+z is its inverse, where Ysz* ¢ I, we get
d(x)y=e. Thus z*, for every x ¢ I, d(x) is either 0 or invertible.
By [1, Theorem 11 I, and so I*, is either a division ring D or D,.
If d(I)=0, then d(I*)=0 and the above argument leads to the same

conclusion. Clearly the involution in R is the exchange involution.O

If R is a prime ring we denote by C the extended
centroid of R and by Q=RC the central closure of R (see [3, pg. 22].
Next lemma holds for arbitrary rings with involution, with a

derivation d = 0.

LEMMA 2 - Let R be a prime ring with involution, with a derivation

d= 0. Let x ¢ R be such that for all s ¢ S
XSX*d(R)xsx* =.0,

Then either x*d(R)x = 0 or Q=RC has a minimal right ideal.

PROOF - For y e R et u=x*d(y)x. Then if s ¢ §, ususu=ususu*=0;

now, if r ¢ R, su*r*s+ruys € S and, so,

1l = venlen®wkimanVil cndie o o
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This says that every element in the right ideal usuR is nilpotent
of index 5 3. By Levitski's theorem [2,Lemma 1.1], usu R and so
usu=0 for all s € S. By [5, Lemma 3], if u = 0, Q=RC has a minimal

right ideal. _ 0

At the light  of Proposition 1 we now make a first
reduction: from now on, unless otherwise stated, we wife always
assume that R {8 a simple ning with 1. In this case clearly R

coincides with its own central closure.

Next lemmas give us some information about the nature

of the symmetric elements in the kernel of d.

LEMMA 3 - Let a € S. If for all s € S we have that asa=Xa, for some

A =x(s) € z, then R has a minimal right ideal.

PROOF - Lét X € R. Then a(x+x*)a=xa, for some A e Z, that is
ax*a=)a-axa. Let ue Z be such that a(xax+x*ax*)a=va. Playing

these off against each other we get

0 = axaxa+ax*ax*a-ua = 2axaxa-2Xtaxa+(A2-p)a.

Therefore 2(ax)3-2X(ax)2+(A%-u)ax = 0 and, since char R = 2, ax is
algebraic over Z of degree at most 3. This proves that aR 1is an
algebraic algebra of bounded degree. Thus aR satisfies a
polynomial identity; hence R satisfies a generalized polynomial
identity. Since R coincides with its own central closure, by a
theorem of Martindale [3, Theorem 1.3.2.] R has a minimal right

ideal. 0



LEMMA 4 - Suppose R does not contain minimal right ideals. If

a € S is such that d(a)=0 then either a is invertible or ad(R)a=0.

PROOF - Suppose a = 0 and a is not invertible. Since d(a)=0 then,
for all s ¢ S, d(asa)=ad(s)a and it is not invertible. Hence

ad(s)a=0.

Let now x € R. Then ad(x+x*)a=0 implies ad(x)a=-ad(x*)a.

Therefore for all s € S, recalling that d(a)= =ad(s)a=0 we get
asad(x)a = ad(sax)a = -ad(x*as)a = -ad(x*)asa = ad(x)asa.

We have proved that for all x « R, s 8§
asa d(x)a = ad(x)asa (1)

Since d(a)=0, d(aR) < aR; moreover if ppla) is the
left annihilator of a in R, d(pp(a)) < pp(a); this says that d
induces a derivation (which we will still denote by d) in the prime
ring R, = aRk%(a)naR. Moreover, for s ¢ S, if as is the image of
as in Ry, from (1) we get
as d(ax) = d(ax)as , for all ax e R;.
By [4] since char R = 2 either d = 0 in Ry or @as ¢ Z(R,), the

center of Ri. That is, either ad(R)a = 0 or asaxa = axasa for

-all x € R.

If ad(R)a=0 we are done; therefore we may assume that
asaxa=axasa, for all x ¢ R, s ¢ S. -But then, by [3, Lemma 1.3.2.],
asa=)a, for some ) ¢ Z and, by Lemma 3, R has a minimal right ideal,

a contraQiction.‘ : : g
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We remark that since R is simple with 1 then it must
be a primitive ring. Now, through a repeated application of the

density theorem we will be able to prove that R is artinian.

PROPOSITION 2 - R is a simple artinian ring

PROOF - Since R is primitive it is a dense ring of linear transf
transformations on a vector space V over a division ring D. By
[ 3, Lemma 1.1.2.] to prove that R is artinian it is enough to
prove that R has a minimal right ideal or equivalently that R
~ contains a non-zero transformation of finite rank. Suppose, by

contradiction, that this is not the case.

Let s ¢ S be such that d(s) = 0 and suppose that there

exist linearly independent vectors v,W ¢ VY such that

vsS. = ws = 0 .
Since d(s) is invertible, the vectors vd(s) and wd(s) are linearly
independent over D. Moreover, since R doesn't contain non-zero
transformations of finite rank, there exists a vector u € V such
that us ¢ vd(s)D+wd(s)D, i.e., us,vd(s),wd(s) are linearly

independent over D. ' . ~

By the density of the action of R on V, there exists
X ¢ R such that-
| usx = 0
vd(s)x = 0
wd(s)x = 0 .




Let t « S. Since vd(s)x=vs=0 then vd(sxtx*s)=0; hence, since
sxtx*s ¢ S and d(sxtx*s) is not invertible, we must have

d(sxtx*s) = 0. Moreover s, and so sxtx*s, is not invertible. Since
R has no minimal right ideals, by applying Lemma 4 to the element
sxtx*s, we get sxtx*sd(R)sxtx*s = 0 » for all t € S. Hence Lemma

2 implies x*sd(R)sx = 0,
Let now Y,z € R. Since x*sd(y)sx = 0 we have

10 = x*sd(ysxz)sx = x*syd(sxz)sx .

/

Hence x*sRd(sxR)sx = 0 and, since x*s = 0, the primeness of R

forces d(sxR)sx = 0. If y ¢ R we get

0 = d(sxy)sx = d(s)xysx+sd(xy)sx;

hence, since ws = 0, 0 = wd(sxy)sx = wd(s)xysx. But wd(s)x = 0 and,
by the density of the action of R on V, wd(s)xR = V; thus

O=wd(s)xRsx=Vsx implying sx=0, a contradiction.

We have proved that for every s ¢ S with d(s) = 0,

dikaer s £ 1.

Let now W be a finite dimensional subspace of V such
that dimph > 1 and Tet ,p=p ={x ¢ R | Wx=0}; p is a right ideal of
R. :

wé claim that there exists s ¢ pn S such that s2= 0.
In fact, suppose not and let x e P» S € pn S, Then,since
(xs+sx*) ¢ p n S and (xs+sx*)2=52-0; we get O=s(xs+sx*)2=s(xs)2,
i.e., sp is a right ideal nil of bounded index. - By Levitski's
theorem sp=0; hence (pnS)p=0. Now, since R has no minimal right

ideals, by [3, Lemma 5.1.2.]1, for v ¢ W, there exists x « p such



that x* ¢ p, vx*=0 and v(x+x*) = vx ¢ W+Dv. But then, by density,
there exists y ¢ p such that v(x+x*)y = 0, contradicting the fact

that (x+x*)y ¢ (pnS)p=0. This establishes the claim

Set then s ¢ p n S such that sz = 0. Since p is a
proper right ideal of R,s is not invertible; moreover, since

dikaer s 2dim W > 1, d(s)=0. Hence, by Lemma 4, sd(R)s=0.

Now, if x € p then sx*+xs ¢ p n S and d(s)=0 implies
0=d(sx*+xs)=sd(x*)+d(x)s. Since sd(x*)s=0, multiplying by s from
the right we get d(x)s2=0. Thus d(p)s2=0. Now, for X,y e p,
0=d(xy)s2=d(x)ys? forces d(p)ps2=0 and, since R is prime and s2= 0,
d(p)p=0. Clearly d(p) = 0; so, let x ep be such that d(x) = 0. If
vd(x) € W for some v € V, then by density there exists r ¢ p such
that vd(x)r = 0, contradicting the fact that d(x)r ¢ d(p)p=0. Thus
Vd(x) = W and d(x) is a transformation of finite rank, a

contradiction. a

We are now in a position to prove the Theorem:

PROOF OF THE THEOREM - By Proposition 1 and Proposition 2 we may
assume that R is a simple artinian-ring. Hence, R=Dn, the ring of

nxn matrices over a division ring D.

Suppose first that * on Dn is of transpose type and
assume n > 2.' Let eij be the usual matrix units. For i=1,...,n
* . ;
e;j=€54y €S implies d(eii)=eiid(eii)+d(eii)eii' Thus, since rank
e ;=1, rank d(eii) S 2 and, being n > 2, d(eii) canot be invertible.

Hence d(eii)=0, i=1,...,n.

Now, if i * j , for a suitable 0 # c ¢ D,

*
e;;+ce;; = e .;+e,. € S . Thus
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= P - P s . YL - P e s ez 223 d
d(eij+ceji’ d(e11(e1J+ceJ1)+(e1J+ceJ1)eli) end(eu+ce\n)+d(eu+ceJ1)e11 an

so, rank d(eij+ceji) 2. It follows d(eij+eeji) = 0 which implies

0 = d(eii(eij+ceji) ) = d(eij)'

We have proved that d(eij)=0 for i,j=1,...,n. Let now

. . . " ,
x e D. If i =3j, Ss xe1j+(xe1j) -xeij+c1x czeji fQor suitable

€Ci1:€2 € D n S. -We have:

rank(d(xeij+c1x*c2eji)=rank(d(x)eij+d(e1x*c2)eji) s 2,

hence &(xeij+e1x*czeji) = 0 and, multiplying by ejifrom the right

we get d(x)eii=0, for all i=1,...,n. Thus d(x):d(xI):;d(x)eii =0,
i
i.e., d(D)=0. 1In short d=0 in Dn’

Suppose now that * is symplectic. 1In this case D=F is
a field and suppose n > 4, Let [1=ey31+€,5; I3=1, ¢ S, so
rank d(I,) = rank(I,d(I,)+d(I,)I,) <4 implies d(I;)=0. Now, for
i odd , a=e ;+e; ) , € S; hence d(a)=d(11a%al1)=I1d(a)3fd(a)I1

has rank < 4. It folows d(a)=0 and, so, for i = 1, 0=d(11a)=d(e1i).

On the other hand, if i is even, e ;j-e € S and by the same

i 1-1;2
argument we get d(e1i)=0 for i # 2. Moreover by looking at
* .
e j+ey, as above, we obtain d(e11)=0 for i # 1,2, At-'this stage
it easily follows d(eij)=0 for all i,j=1,;..;n. Since clearly

d(F)=0, then d=0 in Fn and we are done.

We are left with the caée R=F4 and * symplectic. We
will prove that in this case d must ‘be inner. By a well known
result on finjte dimensional central simple algebres it is enough
to prove that d(F)=0. So, suppose by contradiction that there
exists a e F such that d(a) =0 and let s ¢ S, s = 0, be such that

d(s)=0. Then, since d(a) e F, d(as)=d(a)s = 0 implying s invertible,
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Therefore, for every s € S, s = 0, d(s)=0 implies s invertible.

0 0
Now, if I is the identity matrix in F, , t= (P )e S
I

and,since t is not invertible, d(t) = 0. Moreover it is easy to

0 A
prove that d(t) = where A,B ¢ F,. Let now V be a
B 0
4-dimensional vector space over F and let {e;,e;,e3,e,} be the

standard basis for V. Then since d(t) is invertible, e d(t),e,d(t)
are linearly independent over F; moreover

ei1d(t),e,d(t) e SpanF{e,,eu}. By density there exists x ¢ F, such
that e d(t)x=eix=e,x=0, e,d(t)x e SpanF{es,eu} and e,d(t)x = 0.
Clearly tx=x and, so, x*t=x*. Now, since
erd(txx*t)=e1d(t)xx*t+estd(xx*t)=0, d(txx*t) cannot be invertible;
hence d(txx*t)=0. By the remark above, since t is not
invertible, we must have O=txx*t=xx*. Thus, since * is symplectic,

x=0, a contradiction. ’ . 0

000
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