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Summary

Burn-in tests have been discussed extensively in the reliability literature, wherein we
operate items until high degradation values are observed, which could separate the
weak units from the normal ones before they get to the market. This concept is often
referred to as a screening procedure, and it involves misclassification errors. Com-
monly, the underlying degradation process is assumed to be a Wiener or a gamma
process, based on which several optimal burn-in policies have been developed in the
literature. In this paper, we consider the mixture inverse Gaussian process, which
possesses monotone degradation paths and some interesting properties. Under this
process, we present a decision rule for classifying a unit under test as normal or weak
based on burn-in time and a set of cutoff points. Then, an economic cost model is used
to find the optimal burn-in time and the optimal cutoff points, when the estimation of
model parameters is based on an analytical method or an approximate method involv-
ing copula theory. Finally, an example of a real data set on LASERs, well known in
the reliability literature, is used to illustrate the model and the inferential approach
proposed here.
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1 INTRODUCTION

Very reliable items under test often result in few or no failures, but when failure can be associated directly with a quality
characteristic (QC) over time, it is then possible tomeasure degradation over time and use it to make inference about the product’s
reliability. This approach allows us to get information about the lifetime distribution without actually observing failures. In
degradation tests, a piece of equipment is considered to have failed if the degradation value crosses a certain threshold level,
which is usually specified by themanufacturer complyingwith functional requirements1.While some degradation studies involve
measuring physical degradation as a function of time (for instance, tire wear), in some other applications, it can not be seen
directly, but some measure of the item’s performance degradation (for instance, power output) may be available. Furthermore,
degradation analysis can have one or more variables in the underlying degradation process.
Burn-in test is a technique used to increase the quality of components and systems by testing the units before fielding them

into the market. Traditional burn-in tests are inefficient for very reliable items. The condition-based burn-in tests, on the other
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hand, are useful in this case, wherein a QC related to failure is chosen, and the items with deterioration levels below a specified
threshold are considered to be standard units, while items with deterioration levels exceeding this threshold value are considered
to be weak units.
In the last few decades, the manufacturing industry has been dedicating much effort in designing burn-in policies to eliminate

early failures before fielding items into the market. These failures, which usually happen in a small proportion among the
manufactured items, are generally caused by manufacturing defects and lead to high warranty and replacement costs. Diverse
burn-in policies have been discussed in the degradation literature; see, e.g., Jensen2, Kuo3, and Leemis and Beneke4.
The use of mixture distributions is an essential characteristic in burn-in policies because the lifetime distribution of the com-

ponents is usually bimodal from a mixture of two distributions, wherein the weak units tend to fail earlier than the normal ones,
and so the degradation values may exhibit bimodal behavior as well. The manufacturing process often causes such heterogene-
ity with a variety of material flaws, or due to the components coming from different suppliers. Burn-in policies are also subject
to misclassification errors, which are of great importance in burn-in studies. Tseng et al.5 developed an economic model based
on misclassification errors and established an optimal burn-in policy from termination time and a set of cutoff points, whose
degradation paths were modeled by a mixture of two Wiener processes.
In many experiments, the degradation is a continuous progression of wear and decay, and so it is natural to model the

degradation path with a stochastic process6. In this sense, the degradation over time is often modeled by a stochastic process
{D(t); t > 0}, to account for inherent randomness. Based on the supposition of additive accumulation of degradation, two classes
of degradation processes have been well studied, namely, the Wiener and the gamma processes. Various papers in the litera-
ture suppose that the degradation paths follow the Wiener process; e.g., Tseng and Peng7 studied an efficient burn-in approach
based on an integrated Wiener process for the cumulative degradation, and Wu and Xie8 suggested the use of receiver operating
characteristic (ROC) curve for the removal of the weak group from the production.
Zhai et al.9 used the Wiener process to model the underlying degradation and considered Gaussian measurement errors in the

observations. The work then focused on the optimal burn-in strategies under two different cost structures, the misclassification
cost model and the field failure cost model, to obtain the optimal cutoff levels. Also, Ye et al.10 considered Wiener processes
with linear drift, while the weak and the normal subpopulations possess distinct drift parameters. The objective of joint burn-in
and maintenance decisions was to minimize the long-run average cost per unit time during field use by choosing suitably the
burn-in settings and the preventive replacement intervals. In the multivariate context, Ye et al.11 developed a burn-in planning
method by considering normal and mortality failure modes and designed a burn-in test framework that assigns both degradation
and failure data, and Ye et al.12 built a degradation-based model that facilitates, for two different types of failures (normal and
defect failures), the determination of optimal burn-in characteristics conditioned to heterogeneous customer behaviors.
The gamma process, which does exhibit a monotone increasing behavior, has been discussed by several authors, e.g., Singpur-

walla13, Lawless and Crowder14, Park and Padgett15, Park and Padgett16 and, more recently, by Tsai et al.17, who proposed a
mixed gamma process for the degradation paths and presented an optimal burn-in policy for classifying LASER components
based on a cost model.
Recently, the IG process has been suggested as an attractive and flexible stochastic process for degradation modeling. This

process, with monotone paths, was first proposed by Wasan18 and discussed more recently by Wang and Xu19, Ye and Chen20,
and Peng21, in the context of degradation modeling with random effects. In comparison with the gamma process, the IG process
is more flexible in incorporating random effects and covariates and is also mathematically tractable (for instance, the lifetime
distribution based on the IG process has an explicit form)19. Notably, Zhang et al.22 proposed a mixed IG process for degradation
data, wherein the optimal burn-in policy to screen out weak components are based on burn-in time and a single cutoff point in
the decision rule.
Although the IG process is already widely used, this work presents a new proposal in the field of burn-in policies. We consider

an inverse Gaussian mixing process, which has not yet been explored widely, and then focus on burn-in termination time and a
set of cutoff points thus making a novel contribution in this direction.
As a motivating example, in this work, we consider the LASER data of an experiment described by Meeker et al.23. The

QC of a LASER device is its operating current. To keep nearly constant light output, the LASER device contains a feedback
mechanism for increasing the operating current when the light output degrades. The successful performance of a degradation
test depends strongly on the appropriateness of the model that represents a product’s degradation path. Degradation models
based on gamma and Wiener processes have been extensively studied in the reliability literature, as previously mentioned.
Nevertheless, when both these degradation-based processes do not suitably fit certain data19, the IG process is considered an
adequate alternative degradation model for describing the degradation path. The mixture IG process model is used to capture
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the heterogeneity in the degradation paths, where the degradation paths consist of two groups with different mean functions and
the same volatility parameter. We state a decision rule for classifying an item as normal or weak based on burn-in time and a
collection of cutoff points. Then, an economic cost model is used to determine the optimal burn-in time and the optimal cutoff
points, whose estimation is based on analytical method or approximated method involving copula theory. Copulas are parametric
functions that join or “couple” univariate distributions into multivariate distribution functions24. Many of them have convenient
parametric forms, which allows the modeling of the dependence structure among marginal distribution functions25. The use of
copula functions is an appealing way for dealing with multivariate distributions constructed from marginal densities, which is
much more flexible and realistic. Additionally, we developed a simulation study which showed that the model misspecification
affects the misclassification probabilities, and consequently, the computation of the costs and the achievement of an optimal
burn-in policy. The optimal burn-in policy based on a collection of cutoff points is a more flexible method, which improves the
way the weak components are separated from the normal ones in a production row.
This paper aims to determine the optimal burn-in policy, which includes the optimal burn-in time and a set of optimal cutoff

points rather than a single cutoff point. The main novelty is that this approach exhibits several scenarios for the burn-in time and
the cutoff points, in which we can choose the burn-in time and the number of cutoff points that lead to minimum cost. Moreover,
the use of multiple cutoff points offers many other benefits as compared to a procedure based on a single cutoff point. Therefore,
we propose a decision rule for classifying an item as normal or weak based on a cost model, wherein the main interest is to
minimize the associated costs. This process involves the derivation of misclassification probabilities, which are obtained through
an analytical method and an approximate method based on copula theory. The entire methodology developed here is based on
the mixture IG degradation process model.
The rest of this paper is organized as follows. Section 2 describes the proposed method based on the mixture IG process.

Section 3 describes the optimal burn-in procedure based on the proposed cost model. Section 4 contains a numerical example
of LASER data and Section 4.2 presents some comments and concluding remarks.

2 MIXTURE IG DEGRADATION PROCESS MODEL

In this work, we consider the IG process as an effective degradation model. This process has a monotone degradation path
and was first proposed by Wasan18, using properties of the IG distribution, see, e.g., Chhikara and Folks26 for several of the
univariate IG properties.
Often, electronic devices and other similar units consist of two groups, the weak group and the normal one, wherein the weak

group has a shorter mean lifetime than the normal one22. Mixture distributions have been usually applied to capture this kind
of heterogeneity, in which the degradation paths are modeled via a mixture degradation process.
Let g�1(t) and g�2(t) be the mean functions of the weak and normal groups of items, respectively. Also, let � > 0 be the same

volatility (or shape) parameter. Thus, the degradation path D(t) in the mixture IG process is given by

D(t) ∼

{

IG(g�1(t), �g
2
�1
(t)), for the weak group,

IG(g�2(t), �g
2
�2
(t)), for the normal group, (1)

where g�1(t) > g�2(t) > 0,∀t ≥ 0, that is, the mean function of the degradation process is greater in the weak group than in
the normal one, and the volatility parameter from both groups is supposed to be equal. We opted for this approach, which is
the same used in Zhang et al.27. It is worth mentioning that the variances of the two processes are distinct due to properties of
the IG distribution, even though the parameter � being equal. As a result of (1) and from the well-known properties of the IG
distribution, the degradation increment Y = D(t + Δt) − D(t) corresponding to the time interval [t, t + Δt], with Δt > 0, has
the following probability density function (pdf):

fY (y) = p
√

�
2�y3

Δg�1(t)e
−
�(y−Δg�1 (t))

2

2y + (1 − p)
√

�
2�y3

Δg�2(t)e
−
�(y−Δg�2 (t))

2

2y ,

where 0 < p < 1 is the mixing parameter, Δg�1(t) = g�1(t+Δt) − g�1(t) is the time-function increment during the time interval
Δt under weak units, andΔg�2(t) = g�2(t+Δt)−g�2(t) is the time-function increment in the time intervalΔt under normal units.
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2.1 Lifetime estimation
In degradation modeling, the first passage time (FPT) of a unit is the time at which its degradation path first hits a fixed threshold
level �. The FPT distribution defined below, or equivalently, the unit’s lifetime distribution, plays an important role in predicting
the remaining useful life as well as in determining optimal maintenance strategies (Noortwijk28):

T = inf {t ≥ 0|D(t) ≥ �} . (2)
Due to the monotone behavior of the IG process, the lifetime distribution for T is expressed from (2) as

FT (t) = P (D(t) ≥ �).
Since D(t) ∼ IG(g�k(t), �g

2
�k
(t)), with k = 1 for the weak group and k = 2 for the normal group, we can obtain the lifetime

cumulative distribution function (cdf) for the k-th group as

Fk(t) = Φ
(

−
√

�
�
(

� − g�k(t)
)

)

− exp{2�g�k(t)}Φ
(

−
√

�
�
(

� + g�k(t)
)

)

, (3)

where Φ(⋅) is the standard normal cdf.
Thus, the pdf of the lifetime distribution for the k-th group is readily obtained from (3) as

fk(t) =
√

�
�
�
(

−
√

�
�
(

� − g�k(t)
)

) )g�k(t)
)t

− 2� exp{2�g�k(t)}Φ
(

−
√

�
�
(

� + g�k(t)
)

)

×
)g�k(t)
)t

+
√

�
�
exp

{

2�g�k(t)
}

�
(

−
√

�
�
(

� + g�k(t)
)

) )g�k(t)
)t

, (4)

where �(⋅) is the standard normal pdf. Notice that (4) has a closed-form, unlike the gamma process model, wherein the pdf of
the FPT must be obtained via numerical methods; see Pandey and Noortwijk29.
Peng21 obtained the meantime to failure (MTTF) from (4), for the special case when g�k(t) = �kt, as

MTTF =
(

�
�k
+ 1
��k

)

Φ
(√

��
)

+
√

�
�
1
�k
�
(√

��
)

− 1
2��k

. (5)

The quantiles of the lifetime distribution and the MTTF can be easily obtained upon substituting the maximum likelihood
estimates of the parameters from model (1) in equations (3) and (5), respectively.
The lifetime distribution information will be useful in establishing a warranty policy for the units.

2.2 Inferential methods for the model parameters
Consider a sample of n units. For each unit i, we have the degradation collecting points ti0 = 0, ti1,… , tini , with the corresponding
degradation valuesDi1,… , Dini . Let Yij = Dij −Di,j−1 be the degradation increment in the time interval [ti,j−1, tij] for unit i. Its
contribution to the likelihood function consists of all degradation values up to burn-in time tb or the number ni of degradation
values (if ni < b):

L(g�1(t), g�2(t), �, p ) =
n
∏

i=1

⎧

⎪

⎨

⎪

⎩

p
b∗
∏

j=1

√

�
2�y3ij

Δg�1(tij) exp

{

−
�(yij − Δg�1(tij))

2

2yij

}

+(1 − p)
b∗
∏

j=1

√

�
2�y3ij

Δg�2(tij) exp

{

−
�(yij − Δg�2(tij))

2

2yij

}⎫

⎪

⎬

⎪

⎭

,

where b∗ = min{ni, b}, Δg�1(tij) = g�1(tij)−g�1(ti,j−1) is the time-function increment in the time interval [ti,j−1, tij] under weak
units, and Δg�2(tij) = g�2(tij) − g�2(ti,j−1) is the time-function increment in the time interval [ti,j−1, tij] under normal units.
Note that the maximum likelihood estimates (MLEs) are conditioned to the stopping time. Besides, the term b∗ is useful in

experiments where the units have different numbers of degradation values due to soft failures. Hence, the log-likelihood function
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is given by

l(g�1(t), g�2(t), �, p) =
n
∑

i=1
log

⎧

⎪

⎨

⎪

⎩

p
b∗
∏

j=1

√

�
2�y3ij

Δg�1(tij) exp

{

−
�(yij − Δg�1(tij))

2

2yij

}

+(1 − p)
b∗
∏

j=1

√

�
2�y3ij

Δg�2(tij) exp

{

−
�(yij − Δg�2(tij))

2

2yij

}⎫

⎪

⎬

⎪

⎭

.

(6)

Here, the functions g�1(⋅) and g�2(⋅) need to be specified. The MLEs can then be obtained by direct maximization of (6) with
regard to the model parameters. Besides, interval estimates and hypothesis tests can be developed by utilizing the asymptotic
properties of the MLEs.

3 OPTIMAL BURN-IN POLICY BASED ON A SET OF CUTOFF POINTS

Optimal burn-in policies are often determined based on one of the following four criteria30:

• Maximization of the mean residual lifetime of the product;

• Achievement of prescribed mission reliability;

• Minimization of cost;

• Optimization of an objective function subject to some constraints.

Most of the proposed procedures are efficient for estimating the life characteristics of the product, as long as sufficient infor-
mation becomes available on lifetimes of units. However, as mentioned earlier, even the weakest units today are quite reliable
and so may take a long time to fail even under an accelerated burn-in test. A suitable alternative is to base the data collection on
degradation tests, which are especially useful in scenarios wherein there is a QC whose degradation over time is closely associ-
ated with the lifetime of the unit under test. For highly reliable units resulting in very few or no failures, then this procedure is
a hypothesis testing of the following form:

{

H0 ∶ The unit belongs to the normal group,
H1 ∶ The unit belongs to the weak group,

whereH0 denotes the null hypothesis, andH1 stands for the alternative hypothesis.
A decision rule to separate the weak units from the normal ones declares when H0 needs to be rejected. Here, the decision

rule (DR) is based on the burn-in time tb and a set of s cutoff points �1,… , �s, with 1 ≤ s ≤ b, and is as follows:

DR: For fixed tb and s, a unit is considered normal if and only if

D(tb−s+w) ≤ �w,∀w = 1,… , s, with 1 ≤ s ≤ b, (7)

which means that we are making use of several cutoff points rather than a single one.

The DR in (7) is subject to misclassification errors, and so we now present the misclassification probabilities associated with
this DR.
Considering (1), the probability of Type I error (i.e., of misclassifying a normal unit as weak), for each tb and s, is given by

�(�1,… , �s|tb, s) = P (D(tb−s+w) > �w, for some w = 1,… , s|H0)
= 1 − P

(

D(tb−s+1) ≤ �1,… , D(tb) ≤ �s|H0
)

. (8)

Similarly, the probability of Type II error (i.e., of misclassifying a weak unit as normal), for each tb and s, is given by

�(�1,… , �s|tb, s) = P (D(tb−s+w) ≤ �w,∀w = 1,… , s|H1)
= P

(

D(tb−s+1) ≤ �1,… , D(tb) ≤ �s|H1
)

. (9)
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These misclassification probabilities can be obtained either through analytical methods or through approximate methods,
depending on the number of cutoff points s used.

3.1 Analytical methods for determining the misclassification probabilities
For s = 1, we have a single cutoff point, in which case the probabilities in (8) and (9) are obtained analytically by the use of the
IG cdf as follows:

�(tb) = P
(

D(tb) > �(tb)||H0) = 1 − FIG(g�2(tb), �g
2
�2
(tb)), (10)

�(tb) = P
(

D(tb) < �(tb)||H1) = FIG(g�1(tb), �g
2
�1
(tb)), (11)

where FIG(⋅) is as defined in (3).
For s = 2, we have two cutoff points, in which case the misclassification probabilities are calculated analytically by the use

of the bivariate IG cdf. In this context, we use Theorem 1 stated below and due to Al-Hussaini et al.31.

Theorem 1. Let X1 and X2 be two random variables with IG distribution, i.e., X1 ∼ IG(�X1
, �X1

) and X2 ∼ IG(�X2
, �X2

).
Then, the joint cdf FX1,X2

(x1, x2) is given by

FX1,X2
(x1, x2) = [Φ(a1) + exp{2�X1

�X1
}Φ(−b1)][Φ(a2) + exp{2�X2

�X2
}Φ(−b2)]

+16

√

�X1
�X2

�X1
�X2

�X1,X2
exp

{

4

(

�X1

�X1

+
�X2

�X2

)}

Φ(−
√

2b1)Φ(−
√

2b2),

where ak =
√

�Xk (xk−�Xk )

�Xk
√

xk
, bk =

√

4�Xk
�Xk

+ a2k, for k = 1, 2, and �X1,X2
= Corr(X1, X2).

Proof. For detailed proof, one may refer to Al-Hussaini et al.31.

The expression for �X1,X2
= Corr(X1, X2) can be obtained fromWasan32, who showed that the covariance of any two variables

coming from an IG process is given by
Cov(X(s), X(t)) = Var(X(s)),

where 0 < s < t.

3.2 Approximate methods using copulas for determining the misclassification probabilities
When s > 2, i.e., when we have more than two cutoff points, the misclassification probabilities can be determined approximately
through the use of multivariate copulas with dimension equal to s.
A copula is a multivariate distribution whose marginals are all uniform on the interval (0, 1). For a s-dimensional random

vector U =
(

U1,… , Us
)′

on the unit cube, a copula C is given by

C(u1,… , us) = P (U1 ≤ u1,… , Us ≤ us).

Let F be a s-dimensional cdf with marginals F1,… , Fs. From Sklar33, there exists a s-dimensional copula C such that, for
all x =

(

x1,… , xs
)′

in the domain of F , we have

F (x1,… , xs) = C
(

F1(x1),… , Fs(xs)
)

.

In this work, wemake use of elliptical copulas, which allow a flexible unstructured correlationmatrix. For a detailed discussion
on elliptical distributions, see, e.g., Fang et al.34. Let F be the multivariate cdf of an elliptical distribution. Also, let Fw be the cdf
of thew-th marginal and F −1w be its inverse or quantile function, forw = 1,… , s. Then, the elliptical copula determined by F is

C(u1,… , us) = F
(

F −11 (u1),… , F −1s (us)
)

. (12)

By differentiating (12), we find that the density of an elliptical copula is given by

c(u1,… , us) =
f
(

F −11 (u1),… , F −1s (us)
)

s
∏

w=1
fw

(

F −1w (uw)
)

,
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where f is the joint pdf of the elliptical distribution, and f1,… , fs are the marginal density functions.
We use the R package copula35. The actual elliptical copula classes implemented in this package are the Gaussian and Stu-

dent’s t copulas, which are specified by the multivariate normal and Student’s t distributions, respectively. Both these copulas
have a dispersion matrix, inherited from the elliptical distribution, and Student’s t copula (or, t copula) has one additional param-
eter, which is the degrees of freedom parameter. As copulas are invariant to monotone transformations of the marginals, the
correlation matrix determines the dependence structure. Commonly used correlation matrix structures include the exchangeable,
autoregressive of order 1, Toeplitz, and unstructured35. This method then calculates the multivariate cumulative probabilities,
and subsequently gives approximate misclassification probabilities from (8) and (9) for fixed tb and s.

3.3 Optimal burn-in time and cutoff points
A concern in burn-in policy is to seek a DR that maximizes the economic benefits2. Based on this principle, we develop an
economic cost model, consisting of the following components:

• C�: the cost of Type I error, which is the per-unit cost of misclassifying a normal unit as weak;

• C� : the cost of Type II error, which is the per-unit cost of misclassifying a weak unit as normal;

• Cop: the cost of operating the burn-in procedure (from 0 up to tb) for each unit;

• Cmea: the cost of collecting data for each unit;

• n: the total number of units subject to the burn-in test;

• p: the proportion of weak units.

The cost parameters are inherent quantities to build a degradation test. In this paper, these costs are caught from the paper of
Tsai et al.17. The misclassification cost is the average of C� and C� , weighted by their respective probabilities. Thus, for each tb
and s, the misclassification cost is a function of the cutoff points �1,… , �s in the form:

MC
(

�1,… , �s|tb, s
)

= C�n(1 − p)�(�1,… , �s|tb, s) + C�np�(�1,… , �s|tb, s), (13)

where �(�1,… , �s|tb, s) and �(�1,… , �s|tb, s) are as given in (8) and (9), respectively.
Hence, the total misclassification cost is the sum of misclassification cost in (13) and additional costs for a whole sample and

is of the form:
TC

(

�1,… , �s|tb, s
)

=MC
(

�1,… , �s|tb, s
)

+ Copntb + Cmean(b + 1). (14)
The optimal cutoff points are the ones that result in minimal misclassification cost in (13) for tb and s, i.e.,

�̂1,… , �̂s = arg min�1,…,�s
MC

(

�1,… , �s|tb, s
)

.

When s = 1, the optimal cutoff point is computed analytically using the result given below22.

Theorem 2. For fixed tb, the optimal cutoff point under model (1) is given by

�̂(tb) =

[

g�1(tb) − g�2(tb)
] [

g�1(tb) + g�2(tb)
]

�

2
[

g�1(tb) − g�2(tb)
]

� − 2 log
(

C�(1−p)g�2 (tb)

C�pg�1 (tb)

) . (15)

Proof. For a single cutoff point (s = 1), the misclassification cost in (13) becomes

MC
(

�
(

tb
))

= C�n(1 − p)�
(

tb
)

+ C�np�
(

tb
)

, (16)

where �
(

tb
)

and �
(

tb
)

are as given in (10) and (11), respectively.
Taking the first derivative of (16) with respect to �(tb), we get

)MC
(

�(tb)
)

)�(tb)
=

n

(

C�e
− (�(tb)−g�1 (tb))

2
�

2�(tb) g�1(tb)p
√

�
�(tb)

)

�(tb)
√

2�
−

n

(

C�e
− (�(tb)−g�2 (tb))

2
�

2�(tb) g�2(tb)(1 − p)
√

�
�(tb)

)

�(tb)
√

2�
.

(17)
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Equating (17) to zero, i.e.,
)MC

(

�(tb)
)

)�(tb)
= 0,

we obtain
[

−
(

�(tb) − g�1(tb)
)2 +

(

�(tb) − g�2(tb)
)2
]

�

2�(tb)
= log

(

C�(1 − p)g�2(tb)
C�pg�1(tb)

)

,

which leads to a linear equation with respect to �(tb), whose root, after some simple algebraic manipulations, can be expressed
as in (15).

However, when s > 1, the optimal cutoff points must be obtained numerically by iterative methods. Here, we have used the
Quasi-Newton optimization method through Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm36 in R software37, for this
numerical determination process. The optimal tb and s are values that result in minimal total misclassification cost in (14), i.e.,

t̂b, ŝ = argmintb,s
TC

(

�1,… , �s|tb, s
)

.

In practical applications, the functions g�1(t) and g�2(t), the volatility parameter � and the proportion p are all unknown
quantities. For this reason, one may get the MLEs of the model parameters as described earlier in Section 2.2, and then make
use of these values in (8), (9), (13) and (14).

4 APPLICATION

In this section, we present a numerical example based on LASER data to illustrate the applicability of the proposedmethodology.

4.1 The LASER data revisited
Some devices for light amplification by stimulated emission of radiation (LASER) exhibit degradation of operating current
over time, which leads to a decrease in the irradiated light. When the operating current reaches a pre-fixed threshold level, the
device is considered to have failed. Meeker et al.23 presented a sample of 15 gallium arsenide LASERs, whose degradation
paths are shown in Figure 1, wherein a unit is considered to have failed when its degradation measure attains 10%. We note
that the degradation paths have a linear pattern and can be divided into two groups: the weak group and the normal one. Then,
the mixture IG degradation process model in (1) for these data can be represented by the mean functions g�1(t) = �1t and
g�2(t) = �2t, for the weak and normal groups, respectively, with �1 > �2 > 0. The MLEs for the parameters of model (1) based
on the LASER data, with a burn-in time of 4,000 hours, are (standard error in parentheses): �̂1 = 2.6902 (0.1264), �̂2 = 1.8004
(0.0463), �̂ = 18.2340 (1.8417) and p̂ = 0.2661 (0.1143). From these results, we observe that the weak group presents higher
estimated angular coefficient than the normal group (i.e., �̂1 > �̂2), and the estimated proportion of weak items in the sample
turns out to be 26.61%.

4.2 Generated data set
In practical situations, we have a large batch of items to be inspected. In order to apply the proposed methodology, a data set of
size n = 200, with the same features of the LASER data, was generated using the MLEs presented in Section 4.1. The aim is
to classify the units as normal or weak based on a burn-in test of 4, 000 hours of operation. The generated data set is available
as supplementary material and Figure 2 displays the simulated degradation paths, indicating the critical value associated with
failure.
In this artificial data set, we see that there are 58 (29%) weak units and 142 (71%) normal ones. Due to the randomness in the

data generation process, the proportion of weak units in the synthetic data set is not the same as the estimated proportion of weak
units in the original LASER data set. Therefore, it is usual that when the burn-in time approaches the total time of the simulated
sample, the parameter estimates are close to the sample estimate, and do not necessarily become close to the parameter values
used to generate it. Notably, this generated data set has an interesting aspect precisely to verify the classification efficiency of
the proposed burn-in policy addressed in this work.
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FIGURE 1 Degradation paths from the LASER data.
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FIGURE 2 Simulated degradation paths of 200 LASER units.

From Figure 2, we see that the degradation paths show a linear pattern and are quite similar to the original ones in the LASER
data.
Table 1 displays the MLEs for different tb values (starting from 500 hours), and the true parameter values are shown in

parentheses. Notice that, in general, the MLEs get closer to the corresponding true values as the burn-in time increases.
In order to develop the burn-in procedure described in Section 3.3, we set the cost parameters:C� = 65,C� = 90,Cop = 0.0009

and Cmea = 0.0005. These cost parameters are caught from the paper of Tsai et al.17 in an illustrative example with LASER
components. The results are split into two situations: 1 ≤ s ≤ 2 and s > 2.

• When 1 ≤ s ≤ 2:

Table 2 displays the estimated total costs and the misclassification probabilities, under different values of tb (starting
from 500 hours) and s (from 1 up to 2). The optimal burn-in time and number of cutoff points are 2, 750 hours and
s = 2, respectively, resulting in the minimal total cost of 599.4861. The optimal cutoff points are 6.0180 and 6.5004,
that is, the optimal burn-in policy consists of observing the items up to 2, 750 hours of operation, and all the units with
D(2, 500) > 6.0180 or D(2, 750) > 6.5004 need to be rejected and not delivered to the market.

For the sake of analysis, one can refer to the data set in the supplementary material. For instance, the weak items 5 and 61
are rejected by the optimal burn-in policy, since for unit 5,D(2, 500) = 6.62 > 6.0180, and for unit 61,D(2, 500) = 6.96 >
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6.0180. Nevertheless, the weak items 1 and 100 are not rejected by this policy, since for unit 1,D(2, 500) = 5.69 < 6.0180
and D(2, 750) = 6.33 < 6.5004, and for unit 100, D(2, 500) = 5.79 < 6.0180 and D(2, 750) = 6.39 < 6.5004.

Under the optimal burn-in policy, three weak items are not rejected and delivered to the market, resulting in the observed
probability of Type II error of 0.0517, which is higher than the estimated one (0.0081). Concerning the normal items, all
of them are accepted and delivered to the market.

• When s > 2:

The Gaussian and t copulas (the latter one with degrees of freedom parameter which varies from 1 to 5) were applied to
compute the misclassification probabilities for more than two cutoff points (i.e., s > 2).

The criterion used to select the best copula consists of finding out the copula whose estimated misclassification proba-
bilities for s = 2 were the closest to the corresponding values obtained via the analytical method. Thus, we chose the t
copula with 1 degree of freedom (or t1 copula).

Table 3 displays the estimated total costs considering the copula theory (i.e., using the t1 copula), from which we see that
the optimal burn-in time and number of cutoff points are 3, 000 hours and s = 12, respectively, resulting in the minimal
total cost of 686.6687.

Tables 4 and 5 display the estimated probabilities of Type I and Type II errors, respectively, from which we see that the
misclassification probabilities tend to decrease as the burn-in time increases. It is worth mentioning that there is an optimal
combination and the probabilities of misclassification are not related to the number of cutoff points in a monotonic way.

The optimal cutoff points associated with the minimal total cost are presented in Table 6. Hence, the optimal burn-in
policy consists of observing the items up to 3, 000 hours, and all the units need to satisfyD(250) ≤ �̂1,. . . ,D(3, 000) ≤ �̂12
in order to be declared to be normal and then delivered to the market.

From the exploratory analysis of the data set available in the supplementary material, we have that the weak units 51 and 92
are rejected by the optimal burn-in policy, since for unit 51, D(2, 250) = 5.80 > �̂9 = 5.6336, and for unit 92, D(2, 000) =
5.56 > �̂8 = 5.3350. Nevertheless, the weak unit 1 is not rejected by the optimal burn-in policy.
Under this optimal burn-in policy, only one weak item is delivered to the market, resulting in the observed probability of Type

II error of 0.0172, which is close to the estimated one (0.0127). Concerning the normal items, all of them are delivered to the
market. We also observe that the probability of Type II error under this policy is lower than in the policy with two cutoff points.
Finally, we can estimate the items’ lifetime distribution based on the MLEs from Table 1 and assuming a fixed threshold

level � = 10%. Table 7 shows the lifetime information for the weak and normal groups, under the burn-in times 2, 750 hours
(obtained by the analytical method) and 3, 000 hours (obtained through the approximate method). From this table, we see that
the estimated lifetime quantiles and MTTF in the weak group are distant from the ones in the normal group, and almost all the
weak units are supposed to have failed by 4, 175 hours. The results are analogous for different burn-in times. Figure 3 shows the
plots of the estimated cdf and pdf for the burn-in time 3, 000 hours, from which we see that the pdf and cdf curves are different
from each other.
Asmentioned earlier in Section 1, the optimization of the burn-in policy has been done in all the precedingwork by considering

one cutoff point in deciding between strong and weak products. Here, however, we have developed the theory for the use of
multiple cutoff points and have also described the corresponding implementation part in the preceding sections. The use of
multiple cutoff points offers many benefits as compared to the procedure based on a single cutoff point. For example, it can
result in reducing the total cost of the experiment besides having a small Type II error (with Type I error being fixed). As an
illustration, let us consider the case when s = 1 or 2, in which the optimal burn-in time tb = 2.75, shown in Table 2. In this
situation, we see that the total cost is 723.4917 for a plan with one cutoff point, but only 599.4861 for a plan with two cutoff
points. Moreover, the Type I and Type II error rates for the plan with one cutoff point are 0.0131 and 0.0203, respectively, while
the plan with two cutoff points has 0.0066 and 0.0081 correspondingly. Thus, the plan with the use of two cutoff points results
in benefits concerning the budget as well as the error rates. Furthermore, we observe from the last two columns of Table 2 that
while the cutoff point is 6.1910 for the plan with one cutoff point, the cutoff points are 6.0180 and 6.5004 for the plan with two
cutoff points.
Similarly, for the case with more than two cutoff points (s > 2), we have the results in Table 3. In this case, tb = 3.00 and the

total cost varies from 686.6687 (when s = 12) up to 774.3641 (when s = 11). Moreover, the Type I and Type II error rates for the
plan with less than 12 cutoff points are higher than the ones with 12 cutoff points. In practice, the burn-in policy with 12 cutoff
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FIGURE 3 Lifetime distribution for the weak and normal groups, considering the simulated data: (a) Lifetime pdf, (b) Lifetime
cdf.

points means observing the units from 0 up to 3 thousand hours and checking that their corresponding degradation values should
not exceed these limits: 1.2083, 1.7824, 2.7676, 3.3106, 3.8165, 4.9439, 5.1440, 5.3350, 5.6336, 6.1722, 6.5208 and 6.8040 to be
declared as normal and sent to the market.
What this highlights is that the plan with various cutoff points creates early cutoffs to wean off some weak products early

and then the later cutoffs to wean off other weak products. This results in yet another benefit as it enables the removal of weak
products early on due to the smaller first cutoff point values.
In Tables 2 and 3, such a benefit can be seen throughout, except when tb (the burn-in time) itself is quite short, in which case

the plan with a set of cutoff points shows no advantages as compared to the plan with one cutoff point (see, for example, the
results for tb = 1.0 in Table 2).

5 CONCLUDING REMARKS AND FUTURE RESEARCH

In this paper, inspired by a real data set on LASERs, we have proposed a mixture IG process model to analyze the degradation
of very reliable products. Although it is rather challenging to find the optimal burn-in time within a short period of life testing,
such a problem can be adequately solved if there exists a QC whose degradation over time can be associated with the product’s
reliability. First, we presented a burn-in procedure whose main goal was to determine the optimal burn-in policy to screen out
the weak units from the normal ones in a production row. We have considered a set of cutoff points and two methods for the
calculation of misclassification probabilities; more specifically, an analytical method for the situation when we have at most 2
cutoff points and an approximate method based on copulas for the situation when we have more than 2 cutoff points. Moreover,
we built up an economic cost model, in which the optimal burn-in policy was directly related to the minimum cost. Finally, we
illustrated the proposed methodology by using a simulated LASER data with a size of 200 and the same features as the original
one from the reliability literature. The Quasi-Newton optimization method via the BFGS algorithm available in R software was
used to achieve the MLEs of the model parameters, as well as to obtain the optimal cutoff points when s > 1. For s > 2, we
resorted to the R package copula along with the BFGS algorithm to determine the optimal cutoff points. Such methods showed
convergence in the situations mentioned before. The optimal burn-in time and cutoff points were found for both analytical (s ≤ 2)
and approximate (s > 2) cases. The approximate method based on copulas provided better results for the simulated data set.
It is worth noting that the main objective of this work was not to point to the best model but to propose a new and more

flexible methodology to obtain a decision rule for classifying a unit under test as normal or weak based on burn-in time and a set
of cutoff points. However, future research may include carrying out a misspecification study to compare different degradation-
based burn-in models.We also leave for further investigation, a comparison through simulations, the theoretical misclassification
probabilities obtained from elliptical copulas with the empirical ones, in addition to applying goodness-of-fit criteria to compare
different copula models38. Finally, as pointed out by an anonymous reviewer, the influence of the interval length of two adjacent
cutoff points on the optimal results of the burn-in policy (with the possible existence of an optimal interval length) is another
relevant issue that deserves further attention. We plan to consider all these problems for our future study.
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TABLES

TABLE 1 MLEs of the parameters of model (1) according to different burn-in times tb, based on the simulated data.

tb �1 (2.6902) �2 (1.8004) � (18.2340) p (0.2661)
0.50 2.7317 1.7946 18.4390 0.2795
0.75 2.6346 1.7769 18.4340 0.3045
1.00 2.6991 1.7947 18.8340 0.2912
1.25 2.7041 1.7877 18.3590 0.2704
1.50 2.7106 1.7818 18.9600 0.2668
1.75 2.7057 1.7811 18.7440 0.2731
2.00 2.6893 1.7885 18.4040 0.2835
2.25 2.6787 1.7850 18.3140 0.2954
2.50 2.6826 1.7935 18.6010 0.2877
2.75 2.6909 1.7950 18.4630 0.2893
3.00 2.6858 1.7923 18.5290 0.2889
3.25 2.6777 1.7899 18.6690 0.2896
3.50 2.6770 1.7882 18.7420 0.2901
3.75 2.6753 1.7920 18.6990 0.2899
4.00 2.6779 1.7924 18.6780 0.2900

TABLE 2 Estimated total costs and probabilities of Type I and Type II errors, for different values of tb and s.

TC(�̂1,… , �̂s|tb, s) �(�̂1,… , �̂s|tb, s) �(�̂1,… , �̂s|tb, s) �̂1,… , �̂s
tb s = 1 s = 2 s = 1 s = 2 s = 1 s = 2 s = 1 s = 2
0.50 2388.8818 2389.9284 0.1208 0.1203 0.2320 0.2332 1.1586 (1.1607; 1.1608)
0.75 2085.3670 2139.5356 0.1104 0.1109 0.1736 0.1827 1.6694 (1.6731; 1.6732)
1.00 1481.0536 1552.3542 0.0731 0.0818 0.1197 0.1179 2.2677 (2.2519; 2.2520)
1.25 1183.8672 1205.4909 0.0521 0.0683 0.0954 0.0683 2.8416 (2.4899; 2.8627)
1.50 929.1636 864.4140 0.0360 0.0414 0.0657 0.0415 3.4036 (3.0558; 3.4728)
1.75 835.7277 737.7367 0.0289 0.0297 0.0501 0.0287 3.9567 (3.6281; 4.0638)
2.00 823.5396 710.2523 0.0263 0.0250 0.0427 0.0228 4.5041 (4.1950; 4.6410)
2.25 784.4533 664.5760 0.0220 0.0188 0.0332 0.0162 5.0405 (4.7578; 5.2121)
2.50 744.2518 632.0652 0.0168 0.0130 0.0265 0.0118 5.6194 (5.3566; 5.8207)
2.75 723.4917 599.4861 0.0131 0.0066 0.0203 0.0081 6.1910 (6.0180; 6.5004)
3.00 720.1626 616.3793 0.0104 0.0048 0.0160 0.0059 6.7403 (6.5888; 7.0725)
3.25 728.8519 641.7614 0.0083 0.0036 0.0127 0.0043 7.2827 (7.1517; 7.6362)
3.50 741.7310 670.8933 0.0064 0.0026 0.0098 0.0030 7.8364 (7.7268; 8.2125)
3.75 768.5201 707.4199 0.0053 0.0020 0.0082 0.0024 8.3992 (8.3094; 8.7969)
4.00 793.8918 744.0632 0.0042 0.0015 0.0064 0.0017 8.9635 (8.8952; 9.3840)

6 SUPPLEMENTAL MATERIAL

How to cite this article: L.H.M. Morita, V.L. Tomazella, P.H. Ferreira, P.L. Ramos, N. Balakrishnan, and F. Louzada (2020),
Optimal burn-in policy based on a set of cutoff points using mixture inverse Gaussian degradation process and copulas, 00:1–15.
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TABLE 3 Estimated total costs for different values of tb and s, under t1 copula.

tb s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9
0.75 1991.6201 − − − − − −
1.00 1416.1506 1390.1332 − − − − −
1.25 1179.9117 1126.1684 1105.0808 − − − −
1.50 906.6678 882.4789 871.5606 894.8505 − − −
1.75 859.5467 801.9121 841.4275 794.1043 806.0926 − −
2.00 925.6880 808.7921 832.7379 777.5438 907.7153 816.8192 −
2.25 790.1508 880.6685 861.1221 755.9416 753.5009 766.0018 755.8983
2.50 793.5968 831.0500 726.8199 726.2244 721.3627 785.5936 714.4065
2.75 774.8139 718.6646 775.0801 706.3131 719.2641 741.3324 694.3394
3.00 759.3138 717.5317 711.4677 722.9218 707.5732 704.6590 703.5339
3.25 731.6504 795.1480 792.6829 724.6223 738.7455 719.2114 726.5759
3.50 765.5756 780.0877 808.4916 739.9365 835.5413 786.9763 759.8619
3.75 774.9722 800.7395 821.6631 834.2503 882.3471 855.0226 808.4283
4.00 789.5514 811.7325 790.2724 843.6182 849.9019 870.4556 788.7533

tb s = 10 s = 11 s = 12 s = 13 s = 14 s = 15 s = 16
2.50 716.8341 − − − − − −
2.75 712.3644 700.3879 − − − − −
3.00 705.5082 774.3641 686.6687 − − − −
3.25 707.9439 740.3831 720.9134 727.9581 − − −
3.50 731.3081 732.3586 782.0207 732.2095 746.2420 − −
3.75 838.4097 828.8112 796.8803 755.4353 755.4589 752.7242 −
4.00 787.3475 878.9960 803.7143 830.5440 795.4435 785.3977 777.7445
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TABLE 4 Estimated probabilities of Type I error for different values of tb and s, under t1 copula.

tb s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9
0.75 0.1152 − − − − − −
1.00 0.0704 0.0688 − − − − −
1.25 0.0458 0.0508 0.0513 − − − −
1.50 0.0316 0.0328 0.0302 0.0358 − − −
1.75 0.0281 0.0273 0.0296 0.0244 0.0263 − −
2.00 0.0318 0.0231 0.0271 0.0231 0.0302 0.0370 −
2.25 0.0202 0.0268 0.0211 0.0193 0.0206 0.0242 0.0192
2.50 0.0179 0.0224 0.0153 0.0169 0.0169 0.0172 0.0169
2.75 0.0131 0.0111 0.0154 0.0126 0.0122 0.0143 0.0104
3.00 0.0123 0.0114 0.0101 0.0101 0.0099 0.0089 0.0094
3.25 0.0083 0.0118 0.0122 0.0082 0.0088 0.0082 0.0076
3.50 0.0079 0.0105 0.0080 0.0051 0.0084 0.0086 0.0068
3.75 0.0056 0.0065 0.0061 0.0095 0.0076 0.0059 0.0061
4.00 0.0041 0.0059 0.0048 0.0064 0.0072 0.0050 0.0043

tb s = 10 s = 11 s = 12 s = 13 s = 14 s = 15 s = 16
2.50 0.0156 − − − − − −
2.75 0.0128 0.0130 − − − − −
3.00 0.0102 0.0104 0.0087 − − − −
3.25 0.0070 0.0082 0.0074 0.0047 − − −
3.50 0.0063 0.0058 0.0096 0.0059 0.0077 − −
3.75 0.0102 0.0061 0.0062 0.0045 0.0052 0.0048 −
4.00 0.0046 0.0051 0.0057 0.0035 0.0044 0.0039 0.0034
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TABLE 5 Estimated probabilities of Type II error for different values of tb and s, under t1 copula.

tb s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9
0.75 0.1494 − − − − − −
1.00 0.1127 0.1108 − − − − −
1.25 0.1088 0.0868 0.0818 − − − −
1.50 0.0714 0.0633 0.0660 0.0594 − − −
1.75 0.0584 0.0471 0.0513 0.0511 0.0497 − −
2.00 0.0539 0.0464 0.0448 0.0395 0.0538 0.0228 −
2.25 0.0371 0.0448 0.4999 0.0327 0.0301 0.0267 0.0330
2.50 0.0347 0.0352 0.0269 0.0233 0.0222 0.0340 0.0212
2.75 0.0307 0.0243 0.0271 0.0183 0.0215 0.0222 0.0196
3.00 0.0211 0.0154 0.0154 0.0178 0.0154 0.0157 0.0146
3.25 0.0154 0.0203 0.0194 0.0132 0.0145 0.0112 0.0138
3.50 0.0135 0.0122 0.0200 0.0122 0.0249 0.0158 0.0143
3.75 0.0108 0.0126 0.0185 0.0155 0.0263 0.0250 0.0143
4.00 0.0060 0.0085 0.0616 0.0138 0.0124 0.0194 0.0055

tb s = 10 s = 11 s = 12 s = 13 s = 14 s = 15 s = 16
2.50 0.0240 − − − − − −
2.75 0.0192 0.0161 − − − − −
3.00 0.0139 0.0275 0.0127 − − − −
3.25 0.0111 0.0150 0.0129 0.0192 − − −
3.50 0.0080 0.0096 0.0124 0.0090 0.0090 − −
3.75 0.0141 0.0191 0.0130 0.0073 0.0061 0.0063 −
4.00 0.0050 0.0220 0.0069 0.0150 0.0063 0.0057 0.0048

TABLE 6 Optimal cutoff points for tb = 3, 000 hours and s = 12, under t1 copula.

�̂1 �̂2 �̂3 �̂4 �̂5 �̂6
1.2083 1.7824 2.7676 3.3106 3.8165 4.9439

�̂7 �̂8 �̂9 �̂10 �̂11 �̂12
5.1440 5.3350 5.6336 6.1722 6.5208 6.8040



18 MORITA ET AL.

TABLE 7MLEs and 95% CIs of the lifetime quantiles and MTTF, under different tb values and considering the simulated data.

Weak group Normal group

tb Quantity MLE 95% CI MLE 95% CI
2.75 t0.05 3.2774 [3.2638; 3.2910] 4.9133 [4.9092; 4.9174]

t0.5 3.7263 [3.6679; 3.7847] 5.5862 [5.5711; 5.6014]
t0.8 3.9560 [3.9127; 3.9994] 5.9306 [5.9199; 5.9414]
t0.95 4.1753 [4.1585; 4.1922] 6.2594 [6.2553; 6.2635]

MTTF 3.7263 [3.5774; 3.8753] 5.5863 [5.4995; 5.6731]

3.00 t0.05 3.2844 [3.2715; 3.2973] 4.9218 [4.9179; 4.9257]
t0.5 3.7333 [3.6779; 3.7888] 5.5945 [5.5801; 5.6089]
t0.8 3.9631 [3.9220; 4.0042] 5.9388 [5.9286; 5.9491]
t0.95 4.1824 [4.1665; 4.1984] 6.2675 [6.2636; 6.2714]

MTTF 3.7334 [3.5917; 3.8750] 5.5946 [5.5119; 5.6773]
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