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1. Introduction

In recent years, the selection principles and topological games have become very important in describing
many topological properties. The formal definition of selection principles was born in [11], and is as follows:

1. Let A and B be classes of sets. We say that S;(A, B) holds if, for any sequence (A4,, : n € w) of elements
in A, there is a sequence (b, : n € w) with, for all n € w, b, € A,, and such that {b, : n € w} € B.

2. Let A and B be classes of sets. We say that Say(A, B) holds if, for any sequence (4, : n € w) of elements
in A, there is a sequence (F), : n € w) with, for all n € w, F,, € [A,,]<®° and such that U F, e B.

new

For several years, many different results have involved selection principles, with the most diversity of classes
A and B appearing in the literature.

We must emphasize that in the notation, the sub-index 1 and fin indicate the number of elements selected
from each element of the sequence (fin indicates that is selected finitely many elements). Then, naturally,
we can define variations of these selection principles, such as Sa(A, B), S3(A, B),...; and, more generally,
Ss(A, B), with f: w — w\{0} being an arbitrary function.
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On the other hand, the term “topological property defined for a game” was introduced for Telgarsky in
[18]. The formal definitions of selective topological games are as follows:

1. Let A and B be classes of sets. The game of two players G;(A, B) is played as: in each round n € w,
Player I chooses A, € A. Player II responds b,, € A,. Player I wins if {b, : n € w} € B. Otherwise,
Player I wins.

2. Let A and B be classes of sets. The game for two players Gan(A, B) is played as: in each round n € w,
player I chooses A, € A. Player I responds F, € [A,]<®. Player I wins if U F,, € B. Otherwise,

new
Player I wins.

Informally, a strategy in a game G is a form of how a determinate player decides his play in a specific
inning. We use the notation I 1 G to state that there is a winning strategy (that is, a strategy that cannot
be defeated for any strategy of his opponent) for Player I in the game G (and I ¥ G if not). For more
information about topological games, see [3].

Note that we can analogously define a game by changing the number of elements chosen by Player 17
and we can define Go(A, B), G3(A, B),...; and G¢(A, B), with f: w — w\{0} an arbitrary function.

We can easily see that if I ¥ Gi(A, B) then S;(A, B) holds and the same result applies to G, (A, B). An
interesting question is whether one will know if the reciprocal result is valid, too. There are some particular
cases where this is true, as well as cases where it is not valid.

The Hurewicz’s and Pawlikowski’s theorems (the original versions were born in [8] and [10], respectively)
state that the reciprocal result is true, in the case where A and B are both families of open covers. Interesting
and recent applications in topological games, particularly of the results just mentioned, is to establish results
with respect to colorings of edge sets of complete graphs with vertices in infinite semigroups (also called
Ramsey results). For a little more of information, see [16], [17].

By a topological space (X, 7), we say that a family U of subsets of X is an open cover if any element of
U is open and | JU = X. We denote by Ox a family of all open covers in X.

We say that a open cover U of X is a k-cover if for any compact K C X there is U € U such that K C U.
We denote by Kx a family of all k-covers in X.

If B is a family of subsets in X, then a family U, of open subsets of X, is a B-cover if X ¢ U and for all
B € B there is U € U such that B C U. For ‘B fixed, we denote by (’)% the family of all B-covers.

We say that 9B is a bornology if it is ideal and covers the entire space X. We say that a subset B’ is a
compact base of B, if it is cofinal and every element is a compact set.

The i-weight of X is the smallest cardinality w(Y") (recall that w(Y") is the smallest cardinality of a basis
of Y'), where Y is a continuous one-to-one image of X. Denote the i-weight of X as iw(X).

The set of all dense subsets of a topological space X is denoted by Dx.

In [2] the following problem was proposed:

Question 1.1. What can be said about the relation between the various games Gp(A,B), Gf(A,B) and
Gsin (A, B)-and their associated selective properties- for other pairs (A, B)?

In this paper we focus in the study of relations about games. In the case that A = B = Ox an equivalence
of the games G1(Ox,Ox) and G¢(Ox,Ox), with f : w — w\{0} be an arbitrary function, is obtained when
X is a Hausdorff space (the case when X is not Hausdorff is still open!).

In the same work [2] was proved that the games Gy (Qy,Qy), Gr+1(Qq, Q2), Gr(Qy, Qy), with k € w are
all different (recall that Q, = {4 C X : x € A}, for x € X). Here, we proved an equivalence of these games
in the case of A = B = Kx in the case when X is a regular space (section 2), and an equivalence in the
case of A = B = D¢, (x), when X is a Tychonoff space and iw(X) = Rg (section 3). Finally, in section 4 we
make emphasis in open problems and additional commentaries about equivalences in topological games.



J.F. Camasca Ferndndez / Topology and its Applications 370 (2025) 109435 3

By definitions that not include here, we cite: about general topology [7] and about topological games [3].
2. Equivalence in variations of selective topological games that involves k-covers

We start by recalling the following result establishes an equivalence for games with respect to Player I
in the case of B-covers

Theorem 2.1. (/}]) Let (X, 1) be a topological space, B be a family of subsets of X and [ :w — w\{0} be a
function. The following assertions are equivalent:

1. 116G (0%,0%);
2. I1Gy(03,0q).

In particular, I 1T G1(Kx,Kx) if, and only if, I 1T G2 (Kx,Kx).
Let 9B be a bornology. By B € B, we define 75 = {U € 7: BC U} and By = {75 : B € 6}. With this

notation, we can define the following

Definition 2.2. The game B-open is played as follows: in each inning n € w, Player I chooses B € 8 and
Player IT responds with U,, € 7. Player I wins if {B,, : n € w} € Og. Otherwise, Player I is the winner.

The following definitions were introduced in [5]

Definition 2.3. Let X and Y be two sets. Then X is called coinitial in Y with respect to C, denote this by
X Y,if X CY and for all y € Y, there is an = € X such that = C y.

Definition 2.4. A set R is called a reflection of a family A if {range(f) : f € C(R)} =< A, where C(X) =
{feU X)X :x € X = f(xz) € x} is the collection of all choice functions on X.

Theorem 2.5. (/5]) Let R be a reflection of a family A. Then G1(A, B) and G1 (R, —B) are dual games, where
=B denotes P (|JA)\B.

Additionally we can note the following
Proposition 2.6. By is a reflection of Og.

Proof. Let U € OF and 75 € By, with B € B. So, there is Ug € U such that B C Ug. Define f(r5) =
Up € 7. It is clear that range(f) € Ox and range(f) CU. O

With the last result, we can obtain the following
Theorem 2.7. The games B-open and G1(Ox, Oxp) are dual.

Proof. Note that the game B-open is equivalent to Gl(B%,ﬁOé ). The result follows from the previous
proposition and Theorem 2.5. O

In particular, when B8 = K := {4 C X : A is compact}, we call the game B-open as Kx -open.
Now, we can obtain

Lemma 2.8. Let (X, 1) be a regular topological space. The following assertions are equivalent:
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1. X is compact;
2. For allU € Kx, there isU' CU finite such that X C JU'

Observation 2.9. Note that the previously result is true if we change, in the statement (2), Kx by O%, where
B is a bornology with a compact base.

With the above lemma we obtain the following

Lemma 2.10. Let (X, 7) be a reqular space. Let o be a strategy for Player IT in Go(Kx,Kx). For all
s € (Kx)<¥, define:

c.= N Yot~y

UeK x

Then Cs is a compact subset of X.

Proof. Let U € K¢,. According to the Lemma 2.8, it suffices to prove that there is a finite 4’ C U such
that C, c JU'.

Let a compact K C X. By the regularity, we can obtain {A, : x € K N (X\Cs)} an open cover of
K N (X\Cs), where the closure of A, is disjoint of Cs. Then,

K=(KNC,)U[K N (X\Cs)] C Ug U U 4.
zeKN(X\C,)

Due to the compactness of K, we have

VY= {UK U (U Ax,i> : K C X compact, {w; : 1 <i<rg}ec[KN(X\Cs)] N, rg € w\{O}} € Kx.

i=1

TKy TKo
So, Cs c Jao(s™V). As U A,y and U Az are disjoint from Cs, these elements can be removed from the

i=1 i=1

set [Jo(s™V). So, Cs C Uk, UUk,. Therefore, C; is a compact subset of X. O

Lemma 2.11. Suppose that a topological space (X, T) satisfies the requirement that for allU € Kx there is
a countable U' € Kx such that U’ CU. If A C X is closed, then A satisfies the requirement that for all
V € K4 there is a countable V' € K4 such that V' C V.

Observation 2.12. The previous lemma is also valid in the following form: If, in a topological space (X, T),
for allU € O there is a countable U' € O (resp. Ox) with U’ C U, then any closed subset A of X has
the following property: for any V € OF, there is a countable V' € OF (resp. O4) with V' CV (here B is a
bornology with compact base and € = {BNA: B € B}).

Based on the proof in [6], we can obtain the following result.

Theorem 2.13. Let (X, T) be a regular space. Then G1(Kx,Kx) and Go(Kx,Kx) are equivalent.

Proof. It is sufficient to prove 171 Go(Kx,Kx) = 11 1 G1(Kx,Kx).
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Let o be a winning strategy for Player IT in the game G2(Kx,Kx) We define a winning strategy p for
Player I in the game Kx-open as follows. Consider Cy := Cy, where Cj is, as in Lemma 2.10, the first move
of the strategy p in the game Kx -open.

Suppose that Player IT responds with Vy € 7 such that Cy C V. Then X\Vy C X\Cy. Let K C X\V,
be a compact set. For all x € K, by definition of Cy, there is U, € Kx such that x € X\(Jo({U)). So

Kc | x\Ue()

zeK

As {X\Uo((Uz)) : x € K} is an open cover of K, it follows from the compactness of K that there exist
nk € N and a finite set A = {2z : 1 <i <ng} C K such that

xc U x\Jows) Us))

1€F K

where U} == Uy and Fc == {1,2,...,nx}.
Then,

{ U X\U K CX\W compact} € Kx\vp-

i€ Fi

By Lemma 2.11, we can fix a set

U x\Ue@") :mewp € Kxw,

1€F(m)

where Z/[((”)”) : Z/[(Iz.()(m) and F(m) = FK(,,,L)-
Fix any bijection ¢ : w<* — w such that if s C ¢ then (s) < ¢(t) and we define (Fy;,)%m®) =

Fypp X Fypa X oo X Fygom(t)- Suppose that up to the inning n € w in the game Kx-open, the sequence Cj,

Vos--,Cn—1, Vn—1 has been played, where V; is an open set that contains C}, for all 0 < j < n — 1, and

Z/{fil(j)ﬁm, with 7 € (Fy)®m(@ ()7 m) | were also defined and satisfies the following, for all m € w. If

s = 1(j) and r € (Fyx)%™*) then:

1.

sl s12 l[dom(s
ﬂ UU(<Mr[rl7us[r27""u [dom(r))’u>)

UeEK x

for 0 < 7 <n — 1. Note that this set is a compact subset of X by Lemma 2.10. So,

C; = U cr

TE(Ftrk)d"m(s)

is a compact subset of X.
2. By Lemma 2.11, there is

s s sldom(s s—m
U ﬂ X\U U(<MT f[ll’uT F[22 . u dom(r))7u >) € K:X\V7 .
1€Fs~m  re(Fypy)dom(s) mew
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Now, we define the choice of Player I using p in this inning. Let ¢ = ¢~ *(n). For all r € (Fyx)%™®), we
define:

t11 t12 tldom(t)
() U@l U5, Uy jgom ) U)).-

UeK x

Note that this set is compact by Lemma 2.10. So, if we define

Cn = U C;rm

Te(Ftrk)d(wn(t)

is a compact subset.
If V,, is a choice of Player II, by Lemma 2.11, it follows that there is:

dom —~
U N U@ U, U aom) U= ) € Kx\v,-

1€F ~m  re(Fypp)dom(®) e

This completes the definition of the strategy p : <“(Bxk) — K for Player I in the game Ky -open. We
now prove that p is a winning strategy. In fact, suppose that Cy, Vy, C1, Vi,... is a play in the Kx-open
game, where Player I uses strategy p.

Suppose that {V,, : n € w} ¢ Kx. Then, there is a compact K C X such that K ¢ V,,, for all n € w. In
particular, there is ¢ € K and xo ¢ Vj. So, there is mg € w such that

ve |J X\Uolw(h)

1€ E(mg)

Then, there is 79 € F{,,,) such that

X € X\U mo)

Let n1 = ¢((myg)). There is 21 € K such that x1 ¢ V,,,. So, there is m; € w such that

ne U N xUe@™ a5,

1€F(mg,my)  TEF(mg))*

So, there is i1 € F{;,m,) such that

= ﬂ X\U (mo) u(mo,m1)>).

T€(F(mg))*

In particular:

T € X\UO’((I/{(WO) u(mq,m1)>)'

(i0) 77 (d0,i1)

In general, suppose that we have defined mq, m1,...,m;_1 € w and ig, i1, ..., iy—1, With ix. € Flrng my,....mp)
0 <k <1l-1, such that

Tk € X\U Z/{(,mo.’ml),“.7Z/[(T”C)/Tnl..',m/c)>)7

(lo) > (i0,41) (90,81 5-++57k)
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for all 0 < k <1 —1. Let n; = ¢((mog,m1,...mj—1)) = p(t). As there is 2; € K such that z; ¢ V,,,, it follows
that there is m; € w such that

ne U N XYo@ o) gy,

ieF(m,O,ml ..... my) TG(F”;C)dom(t)

Then there is i; € F(yn,,....m,_,,m,;) sSuch that

ne () X\ ot gy

T
T€(Fypp)dom(®)

In particular:

zre X\ (Jo (@), .y mmie) yylmomim) )

(i0) (30,01 +-0s01—1) P (40,581,001 —1,11))

So, we obtain {Z/{((Zn‘;lm1 ’m‘)}lew, a sequence of ICx-covers such that there is a K C X compact, with

the property that

(mo) (mo,....mi)
K¢LJ (UG s Uy,

for all [ € w. That is, this sequence defines a strategy of Player I to defeat o in the game G2(Kx,Kx). But
this contradicts the fact that o is a winning strategy for Player IT in the game G2 (Kx,Kx).

Therefore, p is a winning strategy for Player I in the Kx-open game. By duality, there is a winning
strategy for Player IT in G;(Kx,Kx). This concludes the proof. O

By Observation 2.9, we can obtain the following results

Lemma 2.14. Let (X, 7) be a regular space and B be a bornology with compact base. Let o be a strategy for
Player II in Ggn(Og, O ). For s €2 OF, define:

N Uels—w)

UeOF
Then Cs is a compact subset of X.

Lemma 2.15. Let (X, 7) be a regular space, B be a bornology with a compact base, and f : w — w\{0} be a
function. Let o be the strategy of Player I in Gf(O&f, O%). For all s €¥ O%, define:

N Uals— )

UcOF
Then Cy is a compact subset of X.
From these results and with a few modifications to Theorem 2.13, we can obtain the following results.

Corollary 2.16. Let (X, T) be a reqular space. Then the games Gin(Kx,Kx) and G1(Kx,Kx) are equivalent
for to Player I1.

Remark 2.17. If (X, 7) is not a regular space the corollary above is false.
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Indeed, let 7g be the usual topology in R and consider X as the set of real numbers equipped with the
topology generated by the following basis:

B ={U\C :U € g and C is countable}

Note that X is a Hausdorff space, but it is not a regular space (because X\Q is open and the closure of
any open set in X must contain an element in Q).

We have that every compact subset K in X is finite, because otherwise we can obtain the open cover
{K\{z; : j > i} :i € w} of K, where {x; : i € w} is a countable subset of K, which does not contain a finite
subcover. So, Qx = Kx. By Theorem 17 in [13] we have that S1(Kx,Ox) does not hold (R does not hold
S1(Ogr,ORr)). Then S;(Kx,Kx) does not hold, and so IT ¥ G;(Kx,Kx).

We claim the following statement: let (X, 7) be a topological space and IT 1T Gan(Oxn,Oxn) for all
n € w\{0}, then IT 1 Gy;,(Qx,Qx). The technique used in the demonstration of this fact is the same as
that used in the analogous result for selective principles, we will perform the proof here for the interested
reader. Indeed, consider o,, a winning strategy for Player IT in the game Gap(Oxn, Oxn), with n € w\{0}.

Let t = Uy, ...,Ux) € <“Qx, with k € w and {A,, : n € w\{0}} be a partition of w into infinite sets.

We claim that if Uy, € Q and n € w\{0} then V;, ={U" : U € Uy} € Oxn. Indeed, let (z1,..,2,) € X™.
As F = {xy,...,xz,} € [X]<N, it follows that there is U € Uy, such that FF C U. So, (21, ...,¥,) € U". Then
Vi € Oxn.

Now, suppose that k € A, , with n; € w\{0}. Consider

t = <VJ 1 j € Ank,] < k> S <WOX“1C
Define
ot)={U:U™ € o, (t")}.

As oy, (') is finite then o(¢) is finite. So o defines a strategy by Player I in the game Gap(Qx, Qx).
We have that o is a winning strategy. Indeed, consider the following complete play in Gg,(2x,Qx):

<M0,0’(<UQ>),U1, 0'(<U0,Z/{1>), ...,Uk, 0'(<U0, ,Z/{k>), >
So,

<Va?70n(<va">)7 Va}”a Un(<va?ava§>)a '~~Va}”a Tn(Vaps s Va?>)a )

0 1

is a complete play in Ggn(Oxn,Oxn). for all n € w\{0}, where A, = {a} : j € w}. As 0, is a winning
strategy then

U 0”(<Va?a "'aVa;‘>) € OXn.

JEW

So

U oo, i) = U U {U U™ € a((Vay, ...,Va;}) € Ox

kEew new\{0} jew

Thus, o is a winning strategy by Player IT in Gg,(Qx,Qx). Therefore, IT 1 Ggn(Q2x,Qx). This concludes
our claim.
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We know that IT 1 Gan(Ox,Ox) (see Example 3.5 in [1]). As IT 1 Gan(Orn,Orn) (because R" is
o-compact), with a few modifications in the argument in Example 3.5 in [1] we can obtain that IT 1
Ggin(Oxn,Oxn), for all n € w\{0}. By the last claim proved, we have IT 1 Ggn(Q2x,x). Therefore,
IT 1 Gan(Kx,Kx).

Corollary 2.18. Let (X, 7) be a reqular space and f : w — w\{0} be a function. Then, the games G¢(Kx,Kx)
and G1(Kx,Kx) are equivalent.

Additionally, the following result is a slight modification of the proof performed by Scheepers in [12]. We
will leave the proof here for the purposes of the interested reader.

Theorem 2.19. Let (X, 7) be a separable metrizable space, and let B be a bornology with a compact base. If
I 1 Gan(Og,0%) then X is o-compact.

Proof. Let C be a countable basis of X and ¢ be a winning strategy of Player I] in Gﬁn((/)%,O%). We
denote by Oc the family of all families in Og whose elements belong to C. Note that {o({U)) : U € Oc} is
countable. In the same way as in the proof of Lemma 2.10, we can prove that

Co= [ Jo(Uim))

is a compact subset of X.
For all m € w fixed, we see that {o((U,),U)) : U € Oc} is countable. Then

Cimy = () (Wi Uty ))

new

is a compact subset of X.
In general, given s = (s, ..., sx) €<“ w, with k € w\{0}, we have that the following set

{J(<u(80)7u(so,sl>» ...7L{S,Ll>) U e Oc}

is countable. Then

Cs = ﬂ Uo—(<u<50>’u(30781)7 "'?usvus’“n>)

necw

is a compact subset of X.
We claim that X = U Cs. In fact, suppose that there is x € X\ (U c<w,, Cs). In particular, x ¢ Cj.
sE<Ww
So, there is ng € w such that = ¢ (Jo((Uny)))- Also, x ¢ Cyy,yy. Then, there is ny € w such that = ¢
Uo({Umey> Uing,niy))- Suppose that for all k € w\{0}, we have defined no,...,ny € w. As & Cyy, .. ny)s it
follows that there is ng41 € w such that

2 &\ Jo(Uingys s Uinorooomi) Uimooommiin))-

Then

u(n()},u(nl)v ~'~au<n0,...,nk)v

is a play for Player I in Gﬁn(O&f, O% ) that defeats o, a contradiction. Therefore, X is o-compact. O
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3. Equivalent games in Ci(X)

The following result shows some translations of a topological space (X, 7) into the space of continuous
functions Csy (X)

Theorem 3.1. Let (X, 7) be a Tychonoff space and B be a bornology with a compact base. Let f : w — w\{0}
be a function. The following assertions are equivalent

1. S§(O%,0) holds;
2. S§(Qg, Q) holds, for all g € Cn(X);
3. S§(Dey(x),Qg) holds, for all g € Cos(X).

The game version of this result is given in the following result.

Theorem 3.2. Let (X, 7) be a Tychonoff space, B be a bornology with a compact base, and f : w — w\{0}
be a function. Then, the game Gy(Ow, On), and the games G (2y,Qy) and Gy (Dey, (x),$2y) in Cn(X) are
equivalent for all g € Cy(X).

In particular, it follows that the game G;(Kx,Kx) is equivalent to G¢(€y,2,) in Cj(X), for all function
frw— w\{0}.

Based in the proof of [15], we can obtain the following

Theorem 3.3. Let (X, 7) be a topological space and B be a family of subsets of X. The following assertions
are equivalent:

1. Sin(Og, 0F) holds;
2. 19 Gan(Og,0%).

So, we can obtain the following result.

Theorem 3.4. Let (X, 7) be a Tychonoff space, B be a bornology with compact base, f : w — w\{0} be a
function and g € Cx(X). The following assertions are equivalent:

1. S§(Qy,Qy) holds in Cy(X);
2. TYG(Qg,Qy) in Cu(X);

Proof. The result follows from Theorems 3.1, 3.2, and 3.3. O
In addition, from Corollary 2.18 and Theorem 3.2, the following result follows.

Corollary 3.5. Let (X, 7) be a Tychonoff space and f : w — w\{0} be a function. Then, the games G1(€y, Q)
and Gy(g, ) are equivalent in Cy(X), for all g € Cy(X).

From this last result also follows:

Corollary 3.6. Let (X,7) be a Tychonoff space and f : w — w\{0} be a function. Then, the games
G1(Dey(x),g) and Gy (D, (x),§Yy) are equivalent in Cy(X), for all g € Cr(X).

The following results were obtained in [14]
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Theorem 3.7. Let (X, 7) be a separable metrizable space and g € C,(X). The following assertions are
equivalent

1. Sin(9y, Q,);

2. 19 Gan(y, Q);

3. 1Y Gan(De, (x), Doy, (x))s
4- San(De, (x), Doy (x))-

Theorem 3.8. Let (X, 7) be a separable metrizable space and g € C,(X). The following assertions are
equivalent

1. 51(4,9y) holds;

2. 196G1(Qy,9,);

3. 1YG1(De,(x) Pe,(x))s
4. SI(DCP(X)aDCp(X)) holds.

We can obtain the versions of Theorems 3.7 and 3.8 in Oy (X)), with 9B a bornology with a compact base.
We have the following

Theorem 3.9. [9] Let (X, 7) be a Tychonoff space. Then
d(Cp(X)) = d(Cr(X)) = iw(X).
That result can be generalized to the following

Theorem 3.10. Let (X, 7) be a Tychonoff space and B be a bornology with a compact base. Then d(Cx (X)) =
iw(X). In particular if iw(X) = RXq then Cx(X) is separable.

The proof is practically the same given in [9], we only need the following

Theorem 3.11. Let (X, 7) be a Tychonoff space and B be a bornology with a compact base. Let D C C(X)
be a family that separates points and contains the constant function 1. Therefore, the subalgebra generated
by D is dense in Coyp(X).

This result can be obtained from

Theorem 3.12. (Stone-Weierstrass) Let (X, 1) be a Hausdorff and compact topological space. If D C C(X)
separates points and contains a constant function 1, then the algebra generated by D is dense in C(X)
(C(X) with the uniform topology).

The following lemma is a particular property obtained on selection principle S; in the case of A = B = (2,,.

Lemma 3.13. Let (X, 7) be a Tychonoff space such that S1(Qo, ) holds in Ce(X). Then, for all sequences
(A, i n € w) of elements in Q,, there is a pairwise disjoint sequence (B, : n € w) of elements in Q, and
such that B, C A,,.

Proof. Let (A4,, : n € w) be a sequence of elements in 2,. By hypotheses, we can assume that each A, is
countable. Note that f € €, if, and only if, | f| € ©Q,. Then we can also assume that the elements of A,, are
positives. Suppose that, for all n € w, 4,, = {f : m € w}.
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We define a strategy o for I in G1(,,,). In the first inning, we define o(f) = Ay € Qp. Suppose that
Player I1 chooses the element fr?qg'

Define 0(<f7918>) = {f,go + f,il D ko k1 € w,|{f318,f,80,f,%1}| = 3}. To see that it belongs to Q,, let
[0, B, €] be a basic neighborhood, with B € B and e > 0. So, there are f) € (Ao\{fn,,}) N [o, B, §] and
fao€ (AN{fY: fR}) N[0, B, §]. Then fp + fi € [o,B,¢|. Suppose that Player IT responds with the
element fglé + fiﬁ'

Now, define

U(<f1?187f7%[1) +f111%>) = {fl(c)g J'_flil +f132 : k07k1’k2 € w, |{f?ng?f1?1(1]afilpflgmfliyfli}' = 6}'

Let [0, B, €] be a basic neighborhood, with B € B and € > 0. Then, there are

18, € (AN iy Sy Fa ) N [0, B, 5],

Ty € (AN S SRy i 1) 0 [0, B, 5] and
TRy € (AN{S0hs Iy Sy g I 1) 0 [0 B, ).

So, fo, + fi, + f7, € [0, B,¢|. Then U(<f218, f&é + f;q}» € Q,. This way, we define for all inning n € w.
By Theorem 3.4, we see that o is not a winning strategy. So, there is a set C' in §2,, with elements of the
form

0 40 1. 10 1 2
Jimgo g T Fonts Fonz + Tz + fings

Then we can consider, for all n € w, the sets B, = {f; :i >n}. As C € §,, it follows that, for all n € w,
B, € Q,, and by the construction performed, all sets B,, are pairwise disjoint. O

With the lemma above we can obtain the following

Theorem 3.14. Let (X, 1) be a Tychonoff space and with iw(X) = Rg. Let g € Cs(X), the following asser-
tions are equivalent:

1. 51(4,8y) holds in Cp(X);
2. 1YG1(Q2g,9Q) in Cp(X);
8. 1Y G1(Dey(x), Dog(x));
4. Sl(’DC%(X),'DCfB(X)) holds.

Proof. (1) < (2). It follows from Theorem 3.4. As Cz(X) is homogeneous, it follows that it is sufficient to
prove (2) = (3) and (4) = (1), for the case g = o.

(2) = (3). Let o be a strategy for Player I in game Gi(Dcy, (x); Doy (x)) in On(X). As Op(X) is
separable we can assume that o chooses countable subsets, and we fix {g, : n € w} € D¢, (x). Let us define
a strategy p for Player I in the game G1(Q,,€,) in Cx (X).

Suppose that o(0) = {fn : n € w} € Dy (x). Defining p(0) = {[fn—go| : n € w}. We claim that p()) € Q.
In fact, let [0, B, €] be a basic neighborhood, with B € % and € > 0. As [go, B, €] is an open subset of Cs (X))
and o(0) € Dey, (x), it follows that there is k € w such that fi € [go, B, €]. So, |fx — go| € [0, B, €].

Suppose that Player /1 chooses, in the game G1(£2,€2,) in Cp(X), the element |f,0 — gol, and that
0((fa9)) = {fagn 1 € w} € Dy (xy- We define p(([fug — g0l)) = {Ifups — gl + [fags — 1] = 127 € wh.
Similarly to the previous case (in this case, consider the open set [g;, B, §], with B € B e i = 0, 1), it follows
that p({|fg — gol)) € 2.
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Suppose that Player IT chose, in the game Gy (£, §2,) in Cy(X), the element |fn8,n(1] — ol + |fn8,n% — a1
Also, suppose that

O—(<fn87fn8,n(1)>) = {fng,n(l),n ne w} € DC%(X) and

o((fngs fngm1)) = {fugnin 1 1 € w} € Doy (x)-

So, we can define p(<|fn8 _90|a |fn8,n(1) _go| + ‘fng,nl _gl|>) = {|fn8,ncl,,i1 _go| + ‘fng,né,ig - gl‘ + |fn8,n(1),i3 -
G2l + | fagnt iy — ol + [fngnt jo — 91l + [fagnt js — G2l © i1, 12,13, 51,2, j3 € w}. Similarly to the previous
case (in this case, consider the open set [g;, B, §], with B € B and i = 0,1,2), it follows that p({|fng —
gO|a |fn8,n(1j - gO| + |fn8,n% - gl|>) S Qo-

Following the construction above in the entire game n € w, it follows that p : <“ ([JQ) — Q, is a
strategy for Player I in the game G1(£2,,2,) in Cyu(X). By (2), we can choose a sequence of Player IT
choices, which form a set C' € (2, with elements of the form:

|fn8 - gO'? |fn8,n(1) - 90‘ + |fn8,n% - g1|, |fn8,né,n% - .90| + ‘fng,n[l,,nf - gOH_
| fagmang — 92l + [fugntnz — 9ol + | fngmt mz — 911 + [fugnt nz — g2l -

Then, by Lemma 3.13, we can obtain a partition of C' in countable many pairwise disjoint B,, € €,. For all
n € w, we define J,, as the set of all m € w such that Player IT has chosen an element of B,, in the inning
m. Note that these sets are pairwise disjoint and we can assume, for all n € w, that min(J,) > n.

Thus, we define mg = n8. Now, since the only possibilities are 1 € Iy or 1 € Jy, define m; = njl-, where
j € 0,1} is the term |fm07n} —g;| of the choice of Player I7 in the inning 1. In general, for all £ > 2, since the
unique possibilities are k € J;, com ¢ < k, we define my = nf, where j < k is the term |fm0,...,mk_1,n§‘ — gj
of the choice of Player I1 in the inning k. So, for all k& € w, {|fmq,....m; — 9&| : J € Ix} € Qo. In fact, let
[0, B, €] be a basic neighborhood, with B € B and € > 0. As By, € Q,, it follows that there is r € w such
that |fm,...m, — k| € [0, B, €].

Finally, we claim that {fm,,...m; : J € w} € Dy (x)- In fact, let [h, B, €] be a basic neighborhood, with
heCxp(X),BeBee>0.As{gr:kcw} € Doy (x), it follows that there is I € w such that g, € [h, B, §].
So, there is r € w, such that |f,,...m, — 9| € [0, B, §]. Therefore, fi,....m, € [h,B,€|. So, we obtain a
sequence of choices of Player IT in the game Gi(Dcy, (x), Doy (x)) in O (X) that defeats the strategy o.

(4) = (1). It follows from the implication (3) = (1) in Theorem 3.1, changing Q, by D¢, (X). O

With a few modifications to the previous theorem, we can obtain the following results.

Theorem 3.15. Let (X, 7) be a Tychonoff space such that iw(X) = Rg. Let f : w — w\{0} be a function and
g € Cs(X), the following assertions are equivalent:

1. S¢(Q4,9y) holds in Cou(X);
2. I?Gf(Qg,Qﬁ m CsB(X),'
3. 17 Gy(Doy (x), Dew (x)):
4. S§(Deg (x), Do (x)) holds.

Theorem 3.16. Let (X, 7) be a Tychonoff space such that iw(X) = Ng. Let g € Cy(X), the following
assertions are equivalent:

1. San(24,9y,) holds in Ce(X);
2. 1Y Gan(Qy, Q) in Con(X);
8. 1Y Gan(Doy (x), Do (x)) in Cp(X);
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4. San(Dey (x), Doy (x)) holds in Cos(X).
With the following result we can obtain a equivalence of games Gy for the Player IT

Theorem 3.17. Let (X, 7) be a separable space and let f : w — w\{0} be an increasing function. The following
assertions are equivalent:

1. IITGf(Dx,Dx);
2. II 1 Gy(Dx,Qy), forallz € X.

Finally, by Corollary 3.5, Corollary 3.6, Theorem 3.17, and Theorem 3.15, the following result follows:

Corollary 3.18. Let (X, ) be a Tychonoff space such that iw(X) = Rg. Let f : w — w\{0} be an increasing
Junction. Then the games Gy(D¢, (x), Pcy(x)) and Gi(De, (x), De,(x)) are equivalent.

4. Additional commentaries and induced questions

We see that, in general, selection games in the class of dense subsets in topological spaces are different.
In fact, consider the space X = <“w with the topology generated by the basis B = {X\ User{fInine
w}: F C “w is finite }.

Firstly, let ko, k1, ..., km—1 € w, with m € w (here k_; = (}), we have that the set D = {(ko, k1..., km—1, k) :
k € w} is dense in X, because for any F C “w finite the set {f | m : f € F} is finite, and then there is
(Kos ooy k1, k) € D such that (K1, ... kn_1, km) # f | m, forall f € F. So DU(X\UfeF{f In:ne w}) ”
0.

Now, in the game G;(Dx,Dx), in the inning 0, Player I chooses Dy = {(k) : k € w}. If Player IT chooses
xo = (ko) € Dy, then Player I chooses Dy = {(ko,k) : k € w}. If Player I chooses 21 = (ko, k1) € D1,
then Player I chooses Dy = {(ko,k1,k) : k € w}, and so on. Taking f = (ko, ..., kn,...) we have {z, : n €
wiNX\{f In:new}=0,that is, {z, :n € w} ¢ Dx. So, I T G1(Dx,Dx), and then IT ¥ G1(Dx,Dx).

On the other hand, suppose that Player I chooses Ay € Dx in the inning 0 in the game Go(Dx, Dx). As
Ay is dense, we can choose a?,a9 € A; such that they do not belong to a same branch (branch is a set of
the form {f [ n:n € w}, with f € “w). Then, Player IT chooses {a?,a3}. It is clear that {a9} or {a3} is a
set such that no branch contains two elements of it. Namely {to} as the set {a{}.

In the next inning, suppose that Player I chooses A; € Dx. If there is an element al in A; such that
it is not in any branch that does not intersect {to}, then Player I chooses {a},a}}, with a} an arbitrary
element in A;. Note that the set {tg,al} is a set such that no branch contains two elements of it. If all the
elements in A; are in a branch that intersects {to}, since 4; is dense, we can choose a} and a} incompatible
elements (that is, al ¢ a} and al ¢ a}) in As such that ¢y C a} and to C ad. So, Player IT chooses {a}, al}.
Note that the set is such that no branch contains two elements of it. So, in any of the cases, we have a set
with 2 elements, namely {¢g,¢1}, such that no branch contains two elements of it.

In the next inning, suppose that Player I chooses Ay € Dx. If there is an element a? in Ay such that it
is not in any branch that does not intersect {to,#;}, then Player IT chooses {a?, a2}, with a3 an arbitrary
element in A;. Note that the set {tg,t1,a?} is a set such that no branch contains two elements of it. If all
the elements in A; are in a branch that intersects {to,¢1}, since A; is dense, there is ¢; such that we can
choose a? and a3 incompatible elements in Ay with t; C a? and t; C a3. So, Player IT chooses {a?, a3}.
Note that for j # i, the set {t;,a},a3} is such that no branch contains two elements of it. So, in any of the
cases, we have a set with 3 elements, namely {¢g,¢1,¢2}, such that no branch contains two elements of it.

In general, in the inning n > 1, suppose that Player I chooses A,, € Dx. If there is an element af in A,
such that it is not in any branch that does not intersect {to,%1,..,t,—1}, then Player IT chooses {af,a}},
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with af an arbitrary element in A,. Note that the set {to,%1,...,tn—1,a7} is a set such that no branch
contains two elements of it. If all the elements in A,, are in a branch that intersects {tq,t1,...,tn—1}, since
A, is dense, there is ¢; such that we can choose a}" and a¥ incompatible elements in A,, with ¢; C a} and
t; C af. So, Player IT chooses {a},a%}. Note that the set {t; : j # i} U {a}',a}} is such that no branch
contains two elements of it. So, in any of the cases, we have a set with n+ 1 elements, namely {to,t1, ..., tn },
such that no branch contains two elements of it.

In summary, we obtain a strategy o for Player I such that, for each n € w, the set of answers played
includes a set {to, ..., t, } with the property that no branch contains two elements of it.

We have that ¢ is a winning strategy. In fact, let D be the set of all the answers of Player I7 in a play
using o. If D ¢ Dx, then there is a basic open U = X\ Upc v, {f [ 7 :n € w}, with F finite, such that
DNU =0.8S0, D CUpg wo{f I n:n € w}. Suppose that |F| = m. Then, since the set {to,...,t;n} C D
is such that no branch contains two elements of it, there is a ¢; such that ¢; ¢ (Jpc o {f [ 7 :n € w}. So,
D ¢ Upe woif [ m:n € w}, a contradiction. Then D € Dx. Therefore, I1 1 Go(Dx, Dx).

We can see that X is a T7 space that is not a Hausdorff space. The following question is still open:

Question 4.1. Restricted to Hausdorff spaces, the selection games G1(Dx,Dx) and Go(Dx,Dx) are equiv-
alent?

If X is a P-space and I-countable Problem 4.1 has a positive answer. In fact, if X is a Hausdorff space, then
X is a discrete space and therefore all games Gi(Dx,DPx), Gs(Dx,Dx) and Gan(DPx,Dx) are equivalent,
where k € w and f : w — w\{0} is a function.

On the other hand, if X is not a Hausdorff space, then we have IT 1 Go(Dx,Dx) = II T G;(Dx,Dx). In
fact, let o be a winning strategy for Player IT in Go(Dx,Dx). Suppose that Player I chooses Dy € Dx in
the first inning of the game G1(Dx,Dx). Suppose that o({Dg)) = {x0,y0}. So, define p((Dg)) = xo. Next,
Player I chooses Dy € Dx.

Recall that

IIT Gg(Dx,Dx) = Sg(Dx,Dx) = Sl(Dx,Dx) = Sl(Dx,Qx),

for all z € X.

Then, using that S1(Dx,y,) holds, there is {z} : n € w} C Dy such that {2z} : n € w} € Q. Let
{UQ : n € w} be a local base for yo. Then (.,
Therefore, there is my such that 2}, € (), .., US. Define ¢((Dg, D1)) = z},, . Thus, in each inning 2n, n € w,

we define ¢({Dy, D1, ..., Dayp)) = x,, where o({Dg, Da, ..., Dap)) = {Zn,yn}. On the other hand, in each
inning 2n + 1, with n € w, we define ©((Dyg, D1, ..., Do, y1)) = 22n+1

man+1’

U? is an open (because X is P-space) and contains .

where

2n+1 n
ZTﬂ2n+1 E ﬂ U’UL
mew

and {U] : m € w} is a local base of y,, (here we use S1(Dx,y,,)).

2n+1
M2an41

see that there is k € w such that zp € U or y; € U. If the first case is true, we end. Suppose that y, € U.
Then, there is an | € w such that y; € Ulk € U. So z2F+1 ¢ Mo Uk c U. Therefore, ¢ is a winning

mak+1

Then, we claim {z, : n € w}U{z :n €w} € Dx. In fact, let U € 7. As ¢ is a winning strategy, we

strategy for Player IT in the game G;(Dx, Dx).
As we have seen before, the selection games in the class of dense subsets in C(X) (with X Tychonoff
space) are equivalent. However, the following problems are still open:

Question 4.2. If (X, 7) is a regular space and f : w — w\{0} is a function. The games G;(Q2x,x) and
G1(Qx,Qx) are equivalent?
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Question 4.3. Let (X, 7) be a regular space. If s € <“Qx, then

Cs: ﬂ UU(S,\L{)

UeQlx
is finite?

If the statements in either of the two problems are true, we can obtain a version of Corollary 3.18 for the
function space Cp(X).

In particular, when X is a P-space, Problems 4.2 and 4.3 have positive answers and therefore we have
an equivalence of the topological games G1(Dx, Dx) and Gy(Dx, Dx), with f : w — w\{0} an increasing
function.

More generally, we can formulate the following question:

Question 4.4. Let (X, 7) be a regular or Tychonoff space and B a bornology with a compact basis. If s €
<wOF and o is a strategy in Gf(Ox,O0%), then

C.= () Yol

UeOY

is an element of B?
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