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1. Introduction

In recent years, the selection principles and topological games have become very important in describing 
many topological properties. The formal definition of selection principles was born in [11], and is as follows:

1. Let A and B be classes of sets. We say that S1(A,B) holds if, for any sequence 〈An : n ∈ ω〉 of elements 
in A, there is a sequence 〈bn : n ∈ ω〉 with, for all n ∈ ω, bn ∈ An and such that {bn : n ∈ ω} ∈ B.

2. Let A and B be classes of sets. We say that Sfin(A,B) holds if, for any sequence 〈An : n ∈ ω〉 of elements 
in A, there is a sequence 〈Fn : n ∈ ω〉 with, for all n ∈ ω, Fn ∈ [An]<ℵ0 and such that 

⋃
n∈ω

Fn ∈ B.

For several years, many different results have involved selection principles, with the most diversity of classes 
A and B appearing in the literature.

We must emphasize that in the notation, the sub-index 1 and fin indicate the number of elements selected 
from each element of the sequence (fin indicates that is selected finitely many elements). Then, naturally, 
we can define variations of these selection principles, such as S2(A,B), S3(A,B),...; and, more generally, 
Sf (A,B), with f : ω → ω\{0} being an arbitrary function.
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On the other hand, the term ``topological property defined for a game'' was introduced for Telgársky in 
[18]. The formal definitions of selective topological games are as follows:

1. Let A and B be classes of sets. The game of two players G1(A,B) is played as: in each round n ∈ ω, 
Player I chooses An ∈ A. Player II responds bn ∈ An. Player II wins if {bn : n ∈ ω} ∈ B. Otherwise, 
Player I wins.

2. Let A and B be classes of sets. The game for two players Gfin(A,B) is played as: in each round n ∈ ω, 
player I chooses An ∈ A. Player II responds Fn ∈ [An]<ℵ0 . Player II wins if 

⋃
n∈ω

Fn ∈ B. Otherwise, 

Player I wins.

Informally, a strategy in a game G is a form of how a determinate player decides his play in a specific 
inning. We use the notation I ↑ G to state that there is a winning strategy (that is, a strategy that cannot 
be defeated for any strategy of his opponent) for Player I in the game G (and I �↑ G if not). For more 
information about topological games, see [3].

Note that we can analogously define a game by changing the number of elements chosen by Player II
and we can define G2(A,B), G3(A,B),...; and Gf (A,B), with f : ω → ω\{0} an arbitrary function.

We can easily see that if I �↑ G1(A,B) then S1(A,B) holds and the same result applies to Gfin(A,B). An 
interesting question is whether one will know if the reciprocal result is valid, too. There are some particular 
cases where this is true, as well as cases where it is not valid.

The Hurewicz’s and Pawlikowski’s theorems (the original versions were born in [8] and [10], respectively) 
state that the reciprocal result is true, in the case where A and B are both families of open covers. Interesting 
and recent applications in topological games, particularly of the results just mentioned, is to establish results 
with respect to colorings of edge sets of complete graphs with vertices in infinite semigroups (also called 
Ramsey results). For a little more of information, see [16], [17].

By a topological space (X, τ), we say that a family U of subsets of X is an open cover if any element of 
U is open and 

⋃
U = X. We denote by OX a family of all open covers in X.

We say that a open cover U of X is a k-cover if for any compact K ⊂ X there is U ∈ U such that K ⊂ U . 
We denote by KX a family of all k-covers in X.

If B is a family of subsets in X, then a family U , of open subsets of X, is a B-cover if X / ∈ U and for all 
B ∈ B, there is U ∈ U such that B ⊂ U . For B fixed, we denote by OX

B the family of all B-covers.
We say that B is a bornology if it is ideal and covers the entire space X. We say that a subset B′ is a 

compact base of B, if it is cofinal and every element is a compact set.
The i-weight of X is the smallest cardinality w(Y ) (recall that w(Y ) is the smallest cardinality of a basis 

of Y ), where Y is a continuous one-to-one image of X. Denote the i-weight of X as iw(X).
The set of all dense subsets of a topological space X is denoted by DX .
In [2] the following problem was proposed:

Question 1.1. What can be said about the relation between the various games Gk(A,B), Gf (A,B) and 
Gfin(A,B)-and their associated selective properties- for other pairs (A,B)?

In this paper we focus in the study of relations about games. In the case that A = B = OX an equivalence 
of the games G1(OX ,OX) and Gf (OX ,OX), with f : ω → ω\{0} be an arbitrary function, is obtained when 
X is a Hausdorff space (the case when X is not Hausdorff is still open!).

In the same work [2] was proved that the games Gk(Ωx,Ωx), Gk+1(Ωx,Ωx), Gf (Ωx,Ωx), with k ∈ ω are 
all different (recall that Ωx = {A ⊂ X : x ∈ A}, for x ∈ X). Here, we proved an equivalence of these games 
in the case of A = B = KX in the case when X is a regular space (section 2), and an equivalence in the 
case of A = B = DCk(X), when X is a Tychonoff space and iw(X) = ℵ0 (section 3). Finally, in section 4 we 
make emphasis in open problems and additional commentaries about equivalences in topological games.
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By definitions that not include here, we cite: about general topology [7] and about topological games [3].

2. Equivalence in variations of selective topological games that involves k-covers

We start by recalling the following result establishes an equivalence for games with respect to Player I
in the case of B-covers

Theorem 2.1. ([4]) Let (X, τ) be a topological space, B be a family of subsets of X and f : ω → ω\{0} be a 
function. The following assertions are equivalent:

1. I ↑ G1(OX
B,OX

B);
2. I ↑ Gf (OX

B,OX
B).

In particular, I ↑ G1(KX ,KX) if, and only if, I ↑ G2(KX ,KX).
Let B be a bornology. By B ∈ B, we define τB = {U ∈ τ : B ⊆ U} and BB = {τB : B ∈ B}. With this 

notation, we can define the following

Definition 2.2. The game B-open is played as follows: in each inning n ∈ ω, Player I chooses B ∈ B and 
Player II responds with Un ∈ τB . Player I wins if {Bn : n ∈ ω} ∈ OB. Otherwise, Player II is the winner.

The following definitions were introduced in [5]

Definition 2.3. Let X and Y be two sets. Then X is called coinitial in Y with respect to ⊆, denote this by 
X � Y , if X ⊆ Y and for all y ∈ Y , there is an x ∈ X such that x ⊆ y.

Definition 2.4. A set R is called a reflection of a family A if {range(f) : f ∈ C(R)} � A, where C(X) =
{f ∈ (

⋃
X)X : x ∈ X ⇒ f(x) ∈ x} is the collection of all choice functions on X.

Theorem 2.5. ([5]) Let R be a reflection of a family A. Then G1(A,B) and G1(R,¬B) are dual games, where 
¬B denotes P (

⋃
A) \B.

Additionally we can note the following

Proposition 2.6. BB is a reflection of OX
B.

Proof. Let U ∈ OX
B and τB ∈ BB, with B ∈ B. So, there is UB ∈ U such that B ⊆ UB . Define f(τB) =

UB ∈ τB . It is clear that range(f) ∈ OX
B and range(f) ⊆ U . �

With the last result, we can obtain the following

Theorem 2.7. The games B-open and G1(OB,OB) are dual.

Proof. Note that the game B-open is equivalent to G1(BB,¬OX
B). The result follows from the previous 

proposition and Theorem 2.5. �
In particular, when B = K := {A ⊂ X : A is compact}, we call the game B-open as KX-open.
Now, we can obtain

Lemma 2.8. Let (X, τ) be a regular topological space. The following assertions are equivalent:
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1. X is compact;
2. For all U ∈ KX , there is U ′ ⊂ U finite such that X ⊂

⋃
U ′

Observation 2.9. Note that the previously result is true if we change, in the statement (2), KX by OX
B, where 

B is a bornology with a compact base.

With the above lemma we obtain the following

Lemma 2.10. Let (X, τ) be a regular space. Let σ be a strategy for Player II in G2(KX ,KX). For all 
s ∈ (KX)<ω, define:

Cs =
⋂

U∈KX

⋃
σ(s�〈U〉)

Then Cs is a compact subset of X.

Proof. Let U ∈ KCs
. According to the Lemma 2.8, it suffices to prove that there is a finite U ′ ⊂ U such 

that Cs ⊂
⋃

U ′.
Let a compact K ⊂ X. By the regularity, we can obtain {Ax : x ∈ K ∩ (X\Cs)} an open cover of 

K ∩ (X\Cs), where the closure of Ax is disjoint of Cs. Then,

K = (K ∩ Cs) ∪ [K ∩ (X\Cs)] ⊂ UK ∪

⎛
⎝ ⋃

x∈K∩(X\Cs)

Ax

⎞
⎠ .

Due to the compactness of K, we have

V =
{
UK ∪

(
rK⋃
i=1

Axi

)
: K ⊂ X compact, {xi : 1 ≤ i ≤ rK} ∈ [K ∩ (X\Cs)]<ℵ0 , rK ∈ ω\{0}

}
∈ KX .

So, Cs ⊂
⋃

σ(s�V). As 
rK1⋃
i=1 

Ax1
i

and 
rK2⋃
i=1 

Ax2
i

are disjoint from Cs, these elements can be removed from the 

set 
⋃
σ(s�V). So, Cs ⊂ UK1 ∪ UK2 . Therefore, Cs is a compact subset of X. �

Lemma 2.11. Suppose that a topological space (X, τ) satisfies the requirement that for all U ∈ KX there is 
a countable U ′ ∈ KX such that U ′ ⊆ U . If A ⊆ X is closed, then A satisfies the requirement that for all 
V ∈ KA there is a countable V ′ ∈ KA such that V ′ ⊆ V.

Observation 2.12. The previous lemma is also valid in the following form: If, in a topological space (X, τ), 
for all U ∈ OX

B there is a countable U ′ ∈ OX
B (resp. OX) with U ′ ⊆ U , then any closed subset A of X has 

the following property: for any V ∈ OA
C , there is a countable V ′ ∈ OA

C (resp. OA) with V ′ ⊆ V (here B is a 
bornology with compact base and C = {B ∩A : B ∈ B}).

Based on the proof in [6], we can obtain the following result.

Theorem 2.13. Let (X, τ) be a regular space. Then G1(KX ,KX) and G2(KX ,KX) are equivalent.

Proof. It is sufficient to prove II ↑ G2(KX ,KX) ⇒ II ↑ G1(KX ,KX).
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Let σ be a winning strategy for Player II in the game G2(KX ,KX) We define a winning strategy ρ for 
Player I in the game KX-open as follows. Consider C0 := C∅, where C∅ is, as in Lemma 2.10, the first move 
of the strategy ρ in the game KX-open.

Suppose that Player II responds with V0 ∈ τ such that C0 ⊆ V0. Then X\V0 ⊆ X\C0. Let K ⊂ X\V0
be a compact set. For all x ∈ K, by definition of C∅, there is Ux ∈ KX such that x ∈ X\

⋃
σ(〈Ux〉). So

K ⊆
⋃
x∈K

X\
⋃

σ(〈Ux〉).

As {X\
⋃

σ(〈Ux〉) : x ∈ K} is an open cover of K, it follows from the compactness of K that there exist 
nK ∈ N and a finite set AK = {xK

i : 1 ≤ i ≤ nK} ⊂ K such that

K ⊆
⋃

i∈FK

X\
⋃

σ(〈UK
(i)〉),

where UK
(i) := UxK

i
and FK := {1, 2, ..., nK}.

Then,

{ ⋃
i∈FK

X\
⋃

σ(〈UK
(i)〉) : K ⊆ X\V0 compact

}
∈ KX\V0 .

By Lemma 2.11, we can fix a set
⎧⎨
⎩

⋃
i∈F(m)

X\
⋃

σ(〈U (m)
(i) 〉) : m ∈ ω

⎫⎬
⎭ ∈ KX\V0 ,

where U (m)
(i) := UK(m)

(i) and F(m) := FK(m) .
Fix any bijection ϕ : ω<ω −→ ω such that if s ⊂ t then ϕ(s) ≤ ϕ(t) and we define (Ft↾k)dom(t) :=

Ft↾1 × Ft↾2 × ... × Ft↾dom(t). Suppose that up to the inning n ∈ ω in the game KX-open, the sequence C0, 
V0,...,Cn−1, Vn−1 has been played, where Vj is an open set that contains Cj, for all 0 ≤ j ≤ n − 1, and 

Uϕ−1(j)�m
r , with r ∈ (Ft↾k)dom(ϕ−1(j)�m), were also defined and satisfies the following, for all m ∈ ω. If 

s = ϕ−1(j) and r ∈ (Ft↾k)dom(s), then:
1.

Cr
j =

⋂
U∈KX

⋃
σ(〈Us↾1

r↾1 ,U
s↾2
s↾2 , ...,U

s↾dom(s)
r↾dom(r) ,U〉),

for 0 ≤ j ≤ n− 1. Note that this set is a compact subset of X by Lemma 2.10. So,

Cj =
⋃

r∈(Ft↾k)dom(s)

Cr
j

is a compact subset of X.
2. By Lemma 2.11, there is

⎧⎨
⎩

⋃
i∈Fs�m

⋂
r∈(Ft↾k)dom(s)

X\
⋃

σ(〈Us↾1
r↾1 ,U

s↾2
r↾2 , ...,U

s↾dom(s)
r↾dom(r) ,Us�m

r�i 〉)

⎫⎬
⎭

m∈ω

∈ KX\Vj
.
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Now, we define the choice of Player I using ρ in this inning. Let t = ϕ−1(n). For all r ∈ (Ft↾k)dom(t), we 
define:

Cr
n =

⋂
U∈KX

⋃
σ(〈U t↾1

r↾1,U
t↾2
r↾2, ...,U

t↾dom(t)
r↾dom(r),U〉).

Note that this set is compact by Lemma 2.10. So, if we define

Cn =
⋃

r∈(Ft↾k)dom(t)

Cr
n,

is a compact subset.
If Vn is a choice of Player II, by Lemma 2.11, it follows that there is:

⎧⎨
⎩

⋃
i∈Ft�m

⋂
r∈(Ft↾k)dom(t)

X\
⋃

σ(〈U t↾1
r↾1,U

t↾2
r↾2, ...,U

t↾dom(t)
r↾dom(r),U t�m

r�(i)〉)

⎫⎬
⎭

m∈ω

∈ KX\Vn
.

This completes the definition of the strategy ρ : <ω(BK) → K for Player I in the game KX-open. We 
now prove that ρ is a winning strategy. In fact, suppose that C0, V0, C1, V1,... is a play in the KX-open 
game, where Player I uses strategy ρ.

Suppose that {Vn : n ∈ ω} / ∈ KX . Then, there is a compact K ⊂ X such that K �⊂ Vn, for all n ∈ ω. In 
particular, there is x0 ∈ K and x0 / ∈ V0. So, there is m0 ∈ ω such that

x0 ∈
⋃

i∈F(m0)

X\ 
⋃

σ(〈U (m0)
(i) 〉).

Then, there is i0 ∈ F(m0) such that

x0 ∈ X\
⋃

σ(〈U (m0)
(i0) 〉).

Let n1 = ϕ((m0)). There is x1 ∈ K such that x1 / ∈ Vn1 . So, there is m1 ∈ ω such that

x1 ∈
⋃

i∈F(m0,m1)

⋂
r∈(F(m0))1

X\
⋃

σ(〈U (m0)
r ,U (m0,m1)

r�(i) 〉).

So, there is i1 ∈ F(m0,m1) such that

x1 ∈
⋂

r∈(F(m0))1
X\

⋃
σ(〈U (m0)

r ,U (m0,m1)
r�(i1) 〉).

In particular:

x1 ∈ X\
⋃

σ(〈U (m0)
(i0) ,U (m0,m1)

(i0,i1) 〉).

In general, suppose that we have defined m0,m1, ...,ml−1 ∈ ω and i0, i1, ..., il−1, with ik ∈ F(m0,m1,...,mk), 
0 ≤ k ≤ l − 1, such that

xk ∈ X\
⋃

σ(〈U (m0)
(i0) ,U (m0,m1)

(i0,i1) , ...,U (m0,m1..,mk)
(i0,i1,...,ik) 〉),
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for all 0 ≤ k ≤ l− 1. Let nl = ϕ((m0,m1, ...ml−1)) = ϕ(t). As there is xl ∈ K such that xl / ∈ Vnl
, it follows 

that there is ml ∈ ω such that

xl ∈
⋃

i∈F(m0,m1,...,ml)

⋂
r∈(Ft↾k)dom(t)

X\ 
⋃

σ(〈U (m0)
r↾1 , ...,U (m0,m1,...,ml−1)

r↾l ,U (m0,m1,...,ml)
r�i 〉).

Then there is il ∈ F(m0,...,ml−1,ml) such that

xl ∈
⋂

r∈(Ft↾k)dom(t)

X\ 
⋃

σ(〈U (m0)
r↾1 , ...,U (m0,m1,...,ml−1)

r↾l ,U (m0,m1,...,ml)
r�il

〉).

In particular:

xl ∈ X\ 
⋃

σ(〈U (m0)
(i0) , ...,U (m0,m1,...,ml−1)

(i0,i1...,il−1) ,U (m0,m1,...,ml)
(i0,i1,...,il−1,il))〉).

So, we obtain {U (m0,m1...,ml)
(i0,i1,...,il }l∈ω, a sequence of KX-covers such that there is a K ⊂ X compact, with 

the property that

K �⊂
⋃

σ(〈U (m0)
(i0) , ...,U (m0,...,ml)

(i0,...,il) 〉),

for all l ∈ ω. That is, this sequence defines a strategy of Player I to defeat σ in the game G2(KX ,KX). But 
this contradicts the fact that σ is a winning strategy for Player II in the game G2(KX ,KX).

Therefore, ρ is a winning strategy for Player I in the KX-open game. By duality, there is a winning 
strategy for Player II in G1(KX ,KX). This concludes the proof. �

By Observation 2.9, we can obtain the following results

Lemma 2.14. Let (X, τ) be a regular space and B be a bornology with compact base. Let σ be a strategy for 
Player II in Gfin(OX

B,OX
B). For s ∈ω OX

B, define:

Cs =
⋂

U∈OX
B

⋃
σ(s�〈U〉).

Then Cs is a compact subset of X.

Lemma 2.15. Let (X, τ) be a regular space, B be a bornology with a compact base, and f : ω → ω\{0} be a 
function. Let σ be the strategy of Player II in Gf (OX

B,OX
B). For all s ∈ω OX

B, define:

Cs =
⋂

U∈OX
B

⋃
σ(s�〈U〉).

Then Cs is a compact subset of X.

From these results and with a few modifications to Theorem 2.13, we can obtain the following results.

Corollary 2.16. Let (X, τ) be a regular space. Then the games Gfin(KX ,KX) and G1(KX ,KX) are equivalent 
for to Player II.

Remark 2.17. If (X, τ) is not a regular space the corollary above is false.
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Indeed, let τR be the usual topology in R and consider X as the set of real numbers equipped with the 
topology generated by the following basis:

B = {U\C : U ∈ τR and C is countable}

Note that X is a Hausdorff space, but it is not a regular space (because X\Q is open and the closure of 
any open set in X must contain an element in Q).

We have that every compact subset K in X is finite, because otherwise we can obtain the open cover 
{K\{xj : j ≥ i} : i ∈ ω} of K, where {xi : i ∈ ω} is a countable subset of K, which does not contain a finite 
subcover. So, ΩX = KX . By Theorem 17 in [13] we have that S1(KX ,OX) does not hold (R does not hold 
S1(OR,OR)). Then S1(KX ,KX) does not hold, and so II �↑ G1(KX ,KX).

We claim the following statement: let (X, τ) be a topological space and II ↑ Gfin(OXn ,OXn) for all 
n ∈ ω\{0}, then II ↑ Gfin(ΩX ,ΩX). The technique used in the demonstration of this fact is the same as 
that used in the analogous result for selective principles, we will perform the proof here for the interested 
reader. Indeed, consider σn a winning strategy for Player II in the game Gfin(OXn ,OXn), with n ∈ ω\{0}.

Let t = 〈U0, ...,Uk〉 ∈ <ωΩX , with k ∈ ω and {An : n ∈ ω\{0}} be a partition of ω into infinite sets.
We claim that if Uk ∈ Ω and n ∈ ω\{0} then Vk = {Un : U ∈ Uk} ∈ OXn . Indeed, let (x1, .., xn) ∈ Xn. 

As F = {x1, ..., xn} ∈ [X]<ℵ0 , it follows that there is U ∈ Uk such that F ⊂ U . So, (x1, ..., xn) ∈ Un. Then 
Vk ∈ OXn .

Now, suppose that k ∈ Ank
, with nk ∈ ω\{0}. Consider

t′ = 〈Vj : j ∈ Ank
, j ≤ k〉 ∈ <ωOXnk

Define

σ(t) = {U : Unk ∈ σnk
(t′)}.

As σnk
(t′) is finite then σ(t) is finite. So σ defines a strategy by Player II in the game Gfin(ΩX ,ΩX).

We have that σ is a winning strategy. Indeed, consider the following complete play in Gfin(ΩX ,ΩX):

〈U0, σ(〈U0〉),U1, σ(〈U0,U1〉), ...,Uk, σ(〈U0, ...,Uk〉), ...〉.

So,

〈Van
1 , σn(〈Van

0 〉),Van
1 , σn(〈Van

1 ,Van
2 〉), ...Van

j
, σn(〈Van

1 , ...,Van
j
〉), ...〉,

is a complete play in Gfin(OXn ,OXn). for all n ∈ ω\{0}, where An = {anj : j ∈ ω}. As σn is a winning 
strategy then

⋃
j∈ω

σn(〈Van
1 , ...,Van

j
〉) ∈ OXn .

So

⋃
k∈ω

σ(〈U0, ...,Uk〉) =
⋃

n∈ω\{0}

⋃
j∈ω

{
U : Un ∈ σn(〈Van

1 , ...,Van
j

}
) ∈ ΩX

Thus, σ is a winning strategy by Player II in Gfin(ΩX ,ΩX). Therefore, II ↑ Gfin(ΩX ,ΩX). This concludes 
our claim.
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We know that II ↑ Gfin(OX ,OX) (see Example 3.5 in [1]). As II ↑ Gfin(ORn ,ORn) (because Rn is 
σ-compact), with a few modifications in the argument in Example 3.5 in [1] we can obtain that II ↑
Gfin(OXn ,OXn), for all n ∈ ω\{0}. By the last claim proved, we have II ↑ Gfin(ΩX ,ΩX). Therefore, 
II ↑ Gfin(KX ,KX).

Corollary 2.18. Let (X, τ) be a regular space and f : ω → ω\{0} be a function. Then, the games Gf (KX ,KX)
and G1(KX ,KX) are equivalent.

Additionally, the following result is a slight modification of the proof performed by Scheepers in [12]. We 
will leave the proof here for the purposes of the interested reader.

Theorem 2.19. Let (X, τ) be a separable metrizable space, and let B be a bornology with a compact base. If 
II ↑ Gfin(OX

B,OX
B) then X is σ-compact.

Proof. Let C be a countable basis of X and σ be a winning strategy of Player II in Gfin(OX
B,OX

B). We 
denote by OC the family of all families in OX

B whose elements belong to C. Note that {σ(〈U〉) : U ∈ OC} is 
countable. In the same way as in the proof of Lemma 2.10, we can prove that

C∅ =
⋂
n∈ω

⋃
σ(〈U〈n〉〉)

is a compact subset of X.
For all m ∈ ω fixed, we see that {σ(〈U〈m〉,U〉) : U ∈ OC} is countable. Then

C〈m〉 =
⋂
n∈ω

⋃
σ(〈U〈m〉,U〈m,n〉〉)

is a compact subset of X.
In general, given s = 〈s0, ..., sk〉 ∈<ω ω, with k ∈ ω\{0}, we have that the following set

{σ(〈U〈s0〉,U〈s0,s1〉, ...,Us,U〉) : U ∈ OC}

is countable. Then

Cs =
⋂
n∈ω

⋃
σ(〈U〈s0〉,U〈s0,s1〉, ...,Us,Us�n〉)

is a compact subset of X.
We claim that X =

⋃
s∈<ωω

Cs. In fact, suppose that there is x ∈ X\(
⋃

s∈<ωω Cs). In particular, x / ∈ C∅. 

So, there is n0 ∈ ω such that x / ∈
⋃
σ(〈U〈n0〉〉). Also, x / ∈ C〈n0〉. Then, there is n1 ∈ ω such that x / ∈⋃

σ(〈U〈n0〉,U〈n0,n1〉〉). Suppose that for all k ∈ ω\{0}, we have defined n0, ..., nk ∈ ω. As x / ∈ C〈n0,...,nk〉, it 
follows that there is nk+1 ∈ ω such that

x / ∈
⋃

σ(〈U〈n0〉, ...,U〈n0,...,nk〉,U〈n0,...,nk,nk+1〉〉).

Then

U〈n0〉,U〈n1〉, ...,U〈n0,...,nk〉, ...

is a play for Player I in Gfin(OX
B,OX

B) that defeats σ, a contradiction. Therefore, X is σ-compact. �
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3. Equivalent games in Ck(X)

The following result shows some translations of a topological space (X, τ) into the space of continuous 
functions CB(X)

Theorem 3.1. Let (X, τ) be a Tychonoff space and B be a bornology with a compact base. Let f : ω → ω\{0}
be a function. The following assertions are equivalent

1. Sf (OX
B,OX

B) holds;
2. Sf (Ωg,Ωg) holds, for all g ∈ CB(X);
3. Sf (DCB(X),Ωg) holds, for all g ∈ CB(X).

The game version of this result is given in the following result.

Theorem 3.2. Let (X, τ) be a Tychonoff space, B be a bornology with a compact base, and f : ω → ω\{0}
be a function. Then, the game Gf (OB,OB), and the games Gf (Ωg,Ωg) and Gf (DCB(X),Ωg) in CB(X) are 
equivalent for all g ∈ CB(X).

In particular, it follows that the game Gf (KX ,KX) is equivalent to Gf (Ωo,Ωo) in Ck(X), for all function 
f : ω → ω\{0}.

Based in the proof of [15], we can obtain the following

Theorem 3.3. Let (X, τ) be a topological space and B be a family of subsets of X. The following assertions 
are equivalent:

1. Sfin(OX
B,OX

B) holds;
2. I �↑ Gfin(OX

B,OX
B).

So, we can obtain the following result.

Theorem 3.4. Let (X, τ) be a Tychonoff space, B be a bornology with compact base, f : ω → ω\{0} be a 
function and g ∈ CB(X). The following assertions are equivalent:

1. Sf (Ωg,Ωg) holds in CB(X);
2. I �↑ Gf (Ωg,Ωg) in CB(X);

Proof. The result follows from Theorems 3.1, 3.2, and 3.3. �
In addition, from Corollary 2.18 and Theorem 3.2, the following result follows.

Corollary 3.5. Let (X, τ) be a Tychonoff space and f : ω → ω\{0} be a function. Then, the games G1(Ωg,Ωg)
and Gf (Ωg,Ωg) are equivalent in Ck(X), for all g ∈ Ck(X).

From this last result also follows:

Corollary 3.6. Let (X, τ) be a Tychonoff space and f : ω → ω\{0} be a function. Then, the games 
G1(DCk(X),Ωg) and Gf (DCk(X),Ωg) are equivalent in Ck(X), for all g ∈ Ck(X).

The following results were obtained in [14]
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Theorem 3.7. Let (X, τ) be a separable metrizable space and g ∈ Cp(X). The following assertions are 
equivalent

1. Sfin(Ωg,Ωg);
2. I �↑ Gfin(Ωg,Ωg);
3. I �↑ Gfin(DCp(X),DCp(X));
4. Sfin(DCp(X),DCp(X)).

Theorem 3.8. Let (X, τ) be a separable metrizable space and g ∈ Cp(X). The following assertions are 
equivalent

1. S1(Ωg,Ωg) holds;
2. I �↑ G1(Ωg,Ωg);
3. I �↑ G1(DCp(X),DCp(X));
4. S1(DCp(X),DCp(X)) holds.

We can obtain the versions of Theorems 3.7 and 3.8 in CB(X), with B a bornology with a compact base.
We have the following

Theorem 3.9. [9] Let (X, τ) be a Tychonoff space. Then

d(Cp(X)) = d(Ck(X)) = iw(X).

That result can be generalized to the following

Theorem 3.10. Let (X, τ) be a Tychonoff space and B be a bornology with a compact base. Then d(CB(X)) =
iw(X). In particular if iw(X) = ℵ0 then CB(X) is separable.

The proof is practically the same given in [9], we only need the following

Theorem 3.11. Let (X, τ) be a Tychonoff space and B be a bornology with a compact base. Let D ⊆ CB(X)
be a family that separates points and contains the constant function 1. Therefore, the subalgebra generated 
by D is dense in CB(X).

This result can be obtained from

Theorem 3.12. (Stone-Weierstrass) Let (X, τ) be a Hausdorff and compact topological space. If D ⊂ C(X)
separates points and contains a constant function 1, then the algebra generated by D is dense in C(X)
(C(X) with the uniform topology).

The following lemma is a particular property obtained on selection principle S1 in the case of A = B = Ωp.

Lemma 3.13. Let (X, τ) be a Tychonoff space such that S1(Ωo,Ωo) holds in CB(X). Then, for all sequences 
〈An : n ∈ ω〉 of elements in Ωo, there is a pairwise disjoint sequence 〈Bn : n ∈ ω〉 of elements in Ωo and 
such that Bn ⊆ An.

Proof. Let 〈An : n ∈ ω〉 be a sequence of elements in Ωo. By hypotheses, we can assume that each An is 
countable. Note that f ∈ Ωo if, and only if, |f | ∈ Ωo. Then we can also assume that the elements of An are 
positives. Suppose that, for all n ∈ ω, An = {fn

m : m ∈ ω}.
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We define a strategy σ for I in G1(Ωo,Ωo). In the first inning, we define σ(∅) = A0 ∈ Ω0. Suppose that 
Player II chooses the element f0

m0
0
.

Define σ(〈f0
m0

0
〉) = {f0

k0
+ f1

k1
: ko, k1 ∈ ω, |{f0

m0
0
, f0

k0
, f1

k1
}| = 3}. To see that it belongs to Ωo, let 

[o,B, ε] be a basic neighborhood, with B ∈ B and ε > 0. So, there are f0
k0

∈ (A0\{f0
m0

}) ∩ [o,B, ε 
2 ] and 

f1
k1

∈ (A1\{f0
m0

, f0
k0
}) ∩ [o,B, ε 

2 ]. Then f0
k0

+ f1
k1

∈ [o,B, ε]. Suppose that Player II responds with the 
element f0

m1
0
+ f1

m1
1
.

Now, define

σ(〈f0
m0

0
, f0

m1
0
+ f1

m1
1
〉) = {f0

k0
+ f1

k1
+ f2

k2
: ko, k1, k2 ∈ ω, |{f0

m0
0
, f0

m1
0
, f1

m1
1
, f0

k0
, f1

k1
, f2

k2
}| = 6}.

Let [o,B, ε] be a basic neighborhood, with B ∈ B and ε > 0. Then, there are

f0
k0

∈ (A0\{f0
m0

.f0
m1

0
, f1

m1
1
}) ∩ [o,B,

ε 
3 ],

f1
k1

∈ (A1\{f0
m0

, f0
m1

0
, f0

k0
, f1

m1
1
}) ∩ [o,B,

ε 
3 ] and

f2
k2

∈ (A2\{f0
m0

, f0
m1

0
, f0

k0
, f1

m1
1
, f1

k1
}) ∩ [o,B,

ε 
3 ].

So, f0
k0

+ f1
k1

+ f2
k2

∈ [o,B, ε]. Then σ(〈f0
m0

0
, f0

m1
0
+ f1

m1
1
〉) ∈ Ωo. This way, we define for all inning n ∈ ω.

By Theorem 3.4, we see that σ is not a winning strategy. So, there is a set C in Ωo, with elements of the 
form

f0
m0

0
, f0

m1
0
+ f1

m1
1
, f0

m2
0
+ f1

m2
1
+ f2

m2
2
, ...

Then we can consider, for all n ∈ ω, the sets Bn = {fn
mi

n
: i ≥ n}. As C ∈ Ωo, it follows that, for all n ∈ ω, 

Bn ∈ Ωo, and by the construction performed, all sets Bn are pairwise disjoint. �
With the lemma above we can obtain the following

Theorem 3.14. Let (X, τ) be a Tychonoff space and with iw(X) = ℵ0. Let g ∈ CB(X), the following asser
tions are equivalent:

1. S1(Ωg,Ωg) holds in CB(X);
2. I �↑ G1(Ωg,Ωg) in CB(X);
3. I �↑ G1(DCB(X),DCB(X));
4. S1(DCB(X),DCB(X)) holds.

Proof. (1) ⇔ (2). It follows from Theorem 3.4. As CB(X) is homogeneous, it follows that it is sufficient to 
prove (2) ⇒ (3) and (4) ⇒ (1), for the case g = o.

(2) ⇒ (3). Let σ be a strategy for Player I in game G1(DCB(X),DCB(X)) in CB(X). As CB(X) is 
separable we can assume that σ chooses countable subsets, and we fix {gn : n ∈ ω} ∈ DCB(X). Let us define 
a strategy ρ for Player I in the game G1(Ωo,Ωo) in CB(X).

Suppose that σ(∅) = {fn : n ∈ ω} ∈ DCB(X). Defining ρ(∅) = {|fn−g0| : n ∈ ω}. We claim that ρ(∅) ∈ Ωo. 
In fact, let [o,B, ε] be a basic neighborhood, with B ∈ B and ε > 0. As [g0, B, ε] is an open subset of CB(X)
and σ(∅) ∈ DCB(X), it follows that there is k ∈ ω such that fk ∈ [g0, B, ε]. So, |fk − g0| ∈ [o,B, ε].

Suppose that Player II chooses, in the game G1(Ωo,Ωo) in CB(X), the element |fn0
0
− g0|, and that 

σ(〈fn0
0
〉) = {fn0

0,n
: n ∈ ω} ∈ DCB(X). We define ρ(〈|fn0

0
− g0|〉) = {|fn0

0,i
− g0| + |fn0

0,j
− g1| : i, j ∈ ω}. 

Similarly to the previous case (in this case, consider the open set [gi, B, ε 
2 ], with B ∈ B e i = 0, 1), it follows 

that ρ(〈|fn0
0
− g0|〉) ∈ Ωo.
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Suppose that Player II chose, in the game G1(Ωo,Ωo) in CB(X), the element |fn0
0,n

1
0
− g0|+ |fn0

0,n
1
1
− g1|. 

Also, suppose that

σ(〈fn0
0
, fn0

0,n
1
0
〉) = {fn0

0,n
1
0,n

: n ∈ ω} ∈ DCB(X) and

σ(〈fn0
0
, fn0

0,n
1
1
〉) = {fn0

0,n
1
1,n

: n ∈ ω} ∈ DCB(X).

So, we can define ρ(〈|fn0
0
− g0|, |fn0

0,n
1
0
− g0|+ |fn0

0,n
1
1
− g1|〉) = {|fn0

0,n
1
0,i1

− g0|+ |fn0
0,n

1
0,i2

− g1|+ |fn0
0,n

1
0,i3

−
g2| + |fn0

0,n
1
1,j1

− g0| + |fn0
0,n

1
1,j2

− g1| + |fn0
0,n

1
1,j3

− g2| : i1, i2, i3, j1, j2, j3 ∈ ω}. Similarly to the previous 
case (in this case, consider the open set [gi, B, ε 

6 ], with B ∈ B and i = 0, 1, 2), it follows that ρ(〈|fn0
0
−

g0|, |fn0
0,n

1
0
− g0| + |fn0

0,n
1
1
− g1|〉) ∈ Ωo.

Following the construction above in the entire game n ∈ ω, it follows that ρ : <ω (
⋃

Ωo) → Ωo is a 
strategy for Player I in the game G1(Ωo,Ωo) in CB(X). By (2), we can choose a sequence of Player II
choices, which form a set C ∈ Ωo, with elements of the form:

|fn0
0
− g0|, |fn0

0,n
1
0
− g0| + |fn0

0,n
1
1
− g1|, |fn0

0,n
1
0,n

2
0
− g0| + |fn0

0,n
1
0,n

2
1
− g0|+

|fn0
0,n

1
0,n

2
2
− g2| + |fn0

0,n
1
1,n

2
3
− g0| + |fn0

0,n
1
1,n

2
4
− g1| + |fn0

0,n
1
1,n

2
5
− g2|, ...

Then, by Lemma 3.13, we can obtain a partition of C in countable many pairwise disjoint Bn ∈ Ωo. For all 
n ∈ ω, we define Jn as the set of all m ∈ ω such that Player II has chosen an element of Bn in the inning 
m. Note that these sets are pairwise disjoint and we can assume, for all n ∈ ω, that min(Jn) ≥ n.

Thus, we define m0 = n0
0. Now, since the only possibilities are 1 ∈ I0 or 1 ∈ J1, define m1 = n1

j , where 
j ∈ {0, 1} is the term |fm0,n1

j
−gj | of the choice of Player II in the inning 1. In general, for all k ≥ 2, since the 

unique possibilities are k ∈ Ji, com i ≤ k, we define mk = nk
j , where j ≤ k is the term |fm0,...,mk−1,nk

j
− gj |

of the choice of Player II in the inning k. So, for all k ∈ ω, {|fm0,...,mj
− gk| : j ∈ Ik} ∈ Ω0. In fact, let 

[o,B, ε] be a basic neighborhood, with B ∈ B and ε > 0. As Bk ∈ Ωo, it follows that there is r ∈ ω such 
that |fm1,..,mr

− gk| ∈ [o,B, ε].
Finally, we claim that {fm0,...,mj

: j ∈ ω} ∈ DCB(X). In fact, let [h,B, ε] be a basic neighborhood, with 
h ∈ CB(X), B ∈ B e ε > 0. As {gk : k ∈ ω} ∈ DCB(X), it follows that there is l ∈ ω such that gl ∈ [h,B, ε 

2 ]. 
So, there is r ∈ ω, such that |fm0,...,mr

− gl| ∈ [o,B, ε 
2 ]. Therefore, fm0,...,mr

∈ [h,B, ε]. So, we obtain a 
sequence of choices of Player II in the game G1(DCB(X),DCB(X)) in CB(X) that defeats the strategy σ.

(4) ⇒ (1). It follows from the implication (3) ⇒ (1) in Theorem 3.1, changing Ωo by DCB
(X). �

With a few modifications to the previous theorem, we can obtain the following results.

Theorem 3.15. Let (X, τ) be a Tychonoff space such that iw(X) = ℵ0. Let f : ω → ω\{0} be a function and 
g ∈ CB(X), the following assertions are equivalent:

1. Sf (Ωg,Ωg) holds in CB(X);
2. I �↑ Gf (Ωg,Ωg) in CB(X);
3. I �↑ Gf (DCB(X),DCB(X));
4. Sf (DCB(X),DCB(X)) holds.

Theorem 3.16. Let (X, τ) be a Tychonoff space such that iw(X) = ℵ0. Let g ∈ CB(X), the following 
assertions are equivalent:

1. Sfin(Ωg,Ωg) holds in CB(X);
2. I �↑ Gfin(Ωg,Ωg) in CB(X);
3. I �↑ Gfin(DCB(X),DCB(X)) in CB(X);
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4. Sfin(DCB(X),DCB(X)) holds in CB(X).

With the following result we can obtain a equivalence of games Gf for the Player II

Theorem 3.17. Let (X, τ) be a separable space and let f : ω → ω\{0} be an increasing function. The following 
assertions are equivalent:

1. II ↑ Gf (DX ,DX);
2. II ↑ Gf (DX ,Ωx), for all x ∈ X.

Finally, by Corollary 3.5, Corollary 3.6, Theorem 3.17, and Theorem 3.15, the following result follows:

Corollary 3.18. Let (X, τ) be a Tychonoff space such that iw(X) = ℵ0. Let f : ω → ω\{0} be an increasing 
function. Then the games Gf (DCk(X),DCk(X)) and G1(DCk(X),DCk(X)) are equivalent.

4. Additional commentaries and induced questions

We see that, in general, selection games in the class of dense subsets in topological spaces are different. 
In fact, consider the space X = <ωω with the topology generated by the basis B = {X\

⋃
f∈F {f ↾ n : n ∈

ω} : F ⊂ ωω is finite }.
Firstly, let k0, k1, ..., km−1 ∈ ω, with m ∈ ω (here k−1 = ∅), we have that the set D = {(k0, k1..., km−1, k) :

k ∈ ω} is dense in X, because for any F ⊂ ωω finite the set {f ↾ m : f ∈ F} is finite, and then there is 
(k0, .., km−1, km) ∈ D such that (k1, .., kn−1, km) �= f ↾ m, for all f ∈ F . So D∪

(
X\

⋃
f∈F {f ↾ n : n ∈ ω}

)
�=

∅.
Now, in the game G1(DX ,DX), in the inning 0, Player I chooses D0 = {(k) : k ∈ ω}. If Player II chooses 

x0 = (k0) ∈ D0, then Player I chooses D1 = {(k0, k) : k ∈ ω}. If Player II chooses x1 = (k0, k1) ∈ D1, 
then Player I chooses D2 = {(k0, k1, k) : k ∈ ω}, and so on. Taking f = (k0, ..., kn, ...) we have {xn : n ∈
ω} ∩X\{f ↾ n : n ∈ ω} = ∅, that is, {xn : n ∈ ω} / ∈ DX . So, I ↑ G1(DX ,DX), and then II �↑ G1(DX ,DX).

On the other hand, suppose that Player I chooses A0 ∈ DX in the inning 0 in the game G2(DX ,DX). As 
A0 is dense, we can choose a0

1, a
0
2 ∈ A1 such that they do not belong to a same branch (branch is a set of 

the form {f ↾ n : n ∈ ω}, with f ∈ ωω). Then, Player II chooses {a0
1, a

0
2}. It is clear that {a0

1} or {a0
2} is a 

set such that no branch contains two elements of it. Namely {t0} as the set {a0
1}.

In the next inning, suppose that Player I chooses A1 ∈ DX . If there is an element a1
1 in A1 such that 

it is not in any branch that does not intersect {t0}, then Player II chooses {a1
1, a

1
2}, with a1

2 an arbitrary 
element in A1. Note that the set {t0, a1

1} is a set such that no branch contains two elements of it. If all the 
elements in A1 are in a branch that intersects {t0}, since A1 is dense, we can choose a1

1 and a1
2 incompatible 

elements (that is, a1
1 �⊂ a1

2 and a1
2 �⊂ a1

1) in A2 such that t0 ⊂ a1
1 and t0 ⊂ a1

2. So, Player II chooses {a1
1, a

1
2}. 

Note that the set is such that no branch contains two elements of it. So, in any of the cases, we have a set 
with 2 elements, namely {t0, t1}, such that no branch contains two elements of it.

In the next inning, suppose that Player I chooses A2 ∈ DX . If there is an element a2
1 in A2 such that it 

is not in any branch that does not intersect {t0, t1}, then Player II chooses {a2
1, a

2
2}, with a2

2 an arbitrary 
element in A1. Note that the set {t0, t1, a2

1} is a set such that no branch contains two elements of it. If all 
the elements in A1 are in a branch that intersects {t0, t1}, since A1 is dense, there is ti such that we can 
choose a2

1 and a2
2 incompatible elements in A2 with ti ⊂ a2

1 and ti ⊂ a2
2. So, Player II chooses {a2

1, a
2
2}. 

Note that for j �= i, the set {tj , a2
1, a

2
2} is such that no branch contains two elements of it. So, in any of the 

cases, we have a set with 3 elements, namely {t0, t1, t2}, such that no branch contains two elements of it.
In general, in the inning n ≥ 1, suppose that Player I chooses An ∈ DX . If there is an element an1 in An

such that it is not in any branch that does not intersect {t0, t1, .., tn−1}, then Player II chooses {an1 , an2}, 
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with an2 an arbitrary element in An. Note that the set {t0, t1, ..., tn−1, a
n
1} is a set such that no branch 

contains two elements of it. If all the elements in An are in a branch that intersects {t0, t1, ..., tn−1}, since 
An is dense, there is ti such that we can choose an1 and an2 incompatible elements in An with ti ⊂ an1 and 
ti ⊂ an2 . So, Player II chooses {an1 , an2}. Note that the set {tj : j �= i} ∪ {an1 , an2} is such that no branch 
contains two elements of it. So, in any of the cases, we have a set with n+1 elements, namely {t0, t1, ..., tn}, 
such that no branch contains two elements of it.

In summary, we obtain a strategy σ for Player II such that, for each n ∈ ω, the set of answers played 
includes a set {t0, ..., tn} with the property that no branch contains two elements of it.

We have that σ is a winning strategy. In fact, let D be the set of all the answers of Player II in a play 
using σ. If D / ∈ DX , then there is a basic open U = X\

⋃
F∈ ωω{f ↾ n : n ∈ ω}, with F finite, such that 

D ∩ U = ∅. So, D ⊂
⋃

F∈ ωω{f ↾ n : n ∈ ω}. Suppose that |F | = m. Then, since the set {t0, ..., tm} ⊂ D

is such that no branch contains two elements of it, there is a ti such that ti / ∈
⋃

F∈ ωω{f ↾ n : n ∈ ω}. So, 
D �⊂

⋃
F∈ ωω{f ↾ n : n ∈ ω}, a contradiction. Then D ∈ DX . Therefore, II ↑ G2(DX ,DX).

We can see that X is a T1 space that is not a Hausdorff space. The following question is still open:

Question 4.1. Restricted to Hausdorff spaces, the selection games G1(DX ,DX) and G2(DX ,DX) are equiv
alent?

If X is a P -space and I-countable Problem 4.1 has a positive answer. In fact, if X is a Hausdorff space, then 
X is a discrete space and therefore all games Gk(DX ,DX), Gf (DX ,DX) and Gfin(DX ,DX) are equivalent, 
where k ∈ ω and f : ω → ω\{0} is a function.

On the other hand, if X is not a Hausdorff space, then we have II ↑ G2(DX ,DX) ⇒ II ↑ G1(DX ,DX). In 
fact, let σ be a winning strategy for Player II in G2(DX ,DX). Suppose that Player I chooses D0 ∈ DX in 
the first inning of the game G1(DX ,DX). Suppose that σ(〈D0〉) = {x0, y0}. So, define ϕ(〈D0〉) = x0. Next, 
Player I chooses D1 ∈ DX .

Recall that

II ↑ G2(DX ,DX) ⇒ S2(DX ,DX) ⇒ S1(DX ,DX) ⇒ S1(DX ,Ωx),

for all x ∈ X.
Then, using that S1(DX ,Ωy0) holds, there is {z1

n : n ∈ ω} ⊂ D1 such that {z1
n : n ∈ ω} ∈ Ωy0 . Let 

{U0
n : n ∈ ω} be a local base for y0. Then 

⋂
n∈ω U0

n is an open (because X is P -space) and contains y0. 
Therefore, there is m1 such that z1

m1
∈
⋂

n∈ω U0
n. Define ϕ(〈D0, D1〉) = z1

m1
. Thus, in each inning 2n, n ∈ ω, 

we define ϕ(〈D0, D1, ..., D2n〉) = xn, where σ(〈D0, D2, ..., D2n〉) = {xn, yn}. On the other hand, in each 
inning 2n + 1, with n ∈ ω, we define ϕ(〈D0, D1, ..., D2n+1〉) = z2n+1

m2n+1
, where

z2n+1
m2n+1

∈
⋂
m∈ω

Un
m

and {Un
m : m ∈ ω} is a local base of yn (here we use S1(DX ,Ωyn

)).
Then, we claim {xn : n ∈ ω} ∪ {z2n+1

m2n+1
: n ∈ ω} ∈ DX . In fact, let U ∈ τ . As σ is a winning strategy, we 

see that there is k ∈ ω such that xk ∈ U or yk ∈ U . If the first case is true, we end. Suppose that yk ∈ U . 
Then, there is an l ∈ ω such that yk ∈ Uk

l ∈ U . So z2k+1
m2k+1

∈
⋂

m∈ω Uk
m ⊂ U . Therefore, ϕ is a winning 

strategy for Player II in the game G1(DX ,DX).
As we have seen before, the selection games in the class of dense subsets in Ck(X) (with X Tychonoff 

space) are equivalent. However, the following problems are still open:

Question 4.2. If (X, τ) is a regular space and f : ω → ω\{0} is a function. The games Gf (ΩX ,ΩX) and 
G1(ΩX ,ΩX) are equivalent?
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Question 4.3. Let (X, τ) be a regular space. If s ∈ <ωΩX , then

Cs =
⋂

U∈ΩX

⋃
σ(s�U)

is finite?

If the statements in either of the two problems are true, we can obtain a version of Corollary 3.18 for the 
function space Cp(X).

In particular, when X is a P -space, Problems 4.2 and 4.3 have positive answers and therefore we have 
an equivalence of the topological games G1(DX , DX) and Gf (DX , DX), with f : ω → ω\{0} an increasing 
function.

More generally, we can formulate the following question:

Question 4.4. Let (X, τ) be a regular or Tychonoff space and B a bornology with a compact basis. If s ∈
<ωOX

B and σ is a strategy in Gf (OX
B,OX

B), then

Cs =
⋂

U∈OX
B

⋃
σ(s�U)

is an element of B?
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