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A NORMAL COMPLEMENT FOR AN RA LOOP IN ITS INTEGRAL 
LOOP RING 

EDGAR G. GOODAIRE AND CESAR POLCINO MILIES 

ABSTRACT. We mow that an RA loop has a torsion-free normal complement in the IOOP 
of normalized unita of ita integral loop ring. 

1. INTRODUCTION 

Suppose Lis a loop (perhaps a group) which has an alternative loop ring over the ring Z 
of rational integers. The loop of units (invertible elements) in ZL is a Moufa.ng loop which 
contains L and it is of interest to see how L sits inside U(ZL) . If there exists a normal 
subloop N of U(ZL) such that L n U(ZL) = {1} and U(ZL) == ±LN, then N is called a 
normal complement of L. The search for a normal complement which is torsion-free (no 
nonidentity elements of finite order) is of great interest in group rings since the existence of 
a. torsion-free normal complement implies a positive solution to the isomorphism problem: 
ZG e! ZH implies G e! H. (See Theorem 2.5 in this paper.) On the other hand, the 
two problems are independent since, for example, the answer is "true" to the isomorphism 
problem for metabelian groups (Wbi68] but "not true" to the existence of a torsion-free 
normal complement [RS83]. 

In this paper, we show that in the alternative loop ring of a Moufang loop L which is not 
associative, L indeed has a torsion-free normal complement. This has long been suspected 
and indeed has been established in the case that L/L' has exponent at most 6 (JL93], 
[GJM96, Proposition XII.4.1] . 

We now sketch briefly those facts about Moufang loops, alternative rings and loop rings 
which a.re required by this paper. Virtually all proofs can be found in the monograph 
(GJM96], but we endeavour also to cite original sources as much as possible. 

An altemative ring is a ring which satisfies the identities (11:i:)x = yz2 and (zy)y = zy2 

and a Moufang loop is a loop which satisfies the identity 

(I.I) (zy • z)y = z(yz • y). 
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Note that any group is a Moufang loop and any associative ring is alternative and the 
converse is "nearly" true. Alternative rings and Moufa.ng loops are dicusociative: the su bring 
(or subloop) generated by a.ny pair of elements is associative. In fact, if three elements in 
an alternative ring (or Moufang loop) associate, then they generate an associative ring (or 
a group). 

A torsion element in a loop is an element of finite order. In an RA loop, the set of torsion 
elements forms a subloop which is clearly normal. It is locally finite and, if L is finitely 
generated, actually finite [GJM96, Lemma VIII.4.1), [GM95, Lemma 2.1). A loop is torsion 
if every element is a torsion element and torsio~free if it has no nonidentity elements of 
finite order. 

The set of units (invertible elements) of a.n alternative ring with 1 iii a Moufang loop. 
In an integral loop ring ZL, the elements ±l, l e L, are clearly units. These are known as 
trivial unita. A classical theorem of Higman says that if G is a torsion group, then the only 
unit.s of ZG are trivial ff and only if G is an abelian group of exponent 1, 2, 3, 4 or 6, or 
a hamiltonian 2-group [Hig40]. This theorem in fact can be generalized to torsion loops L 
for which ZL is an alternative ring [GJM96, Theorem VIll.3.2], [GP86]. 

Of significance in this paper is the alternative vector matrix algebm 3(F) over a field F 
of Max Zorn and its loop of unit.s, the geneml linear loop GLL(2, F). The elements of 3(F) 
are 2 x 2 matrices of the form [; ;: J , where a, b E F, x, y E F3. Such matrices are added in 
the obvious way, but multiplied according to the following variation of the usual rule, 

[
a1 XI][ll2 X2]-[ aia2+xI·Y2 aix2+6:ix1-Y1XY2] 
YI b1 Y:i "2 - O2Y1 + b1Y2 + X1 Xx, 61"2 +YI• X2 ' 

where · and X denote the dot and cross products respectively in 113. 
Zorn's algebra comes with a determinant function , (;:) --+ ab-x•y, and the units of 3(F) 

a.re precisely thoee matrices whoee determina.nt is nonzero. These units form a loop whicli is 
denoted GLL(2, F) and called the general linear loop. It was first explored by Paige [Pai56] 
who showed that the centre of GLL(2, F) is ± [i ~J and that, modulo its centre, GLL(2, F) 
is simple (and not associative). This result was proven a.gain more recently, by different 
means, by Polcino Milles and Merlini Giuliani [MG]. 

Let A denote a quaternion algebra over a field F of characteristic different from 2. Let 
a be a nonzero element of F and u a.n element not in A. Let C = A + Au with obvious 
addition, but multiplication defined by 

(1.2) (a+ bu)(c +du)= (ad+ ad"b) + (da + bc•)u 

for 11, b, c, d E A, q ,-+ q• denoting any involution in A. The algebra C is called a Cayley• 
Dickson algebra. Such an algebra is alternative, but not associative; moreover, it is known 
that every such algebra is either a division algebra or isomorphic to Zorn's vector matrix 
algebra over F (GJM96, Corollary 1.4.17], [ZSSS82, Theorem 2.4.7). 

Not all Moufang loops determine alternative loop rings. Thoee that do (independent of 
the characteristic of the coefficient ring) are called RA loops. The basic properties of RA 
loops themselves can be found in Section 11.5.2 and Chapter IV of [GJM96]. See also [CG86) 
and [GP87'.l. 
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Let G be a nonabelian group with commutator subgroup G' = {1,s} of order 2, centre 
Z(G) and G/ Z(G) ~ C2 x C2, the Klein 4-group. Defining 

. {g g E Z(G) 
(La) g = sg gr/. Z(G) 

one can show that g 1-t g• is an involution of G (an antiautomorphism of order 2). Let 
L = GU Gu for some indeterminate u and extend the multiplication from G to L by the 
rules 

(1.4) 
g(hu) = (hg)u 

(gu)h = (gh•)u 

(gu)(hu) = goh*g 

where u2 = g0 E Z(G). Then Lis an RA loop which we denote M(G, •,g0). Of fundamental 
importance is the fact that a loop is RA if and only if it is a loop of the form M(G, •,go) 
[GJM96, Theorem IV .3.1, Theorem Ill.3.3, Proposition IIl.3.6]. See also [CG86] and the 
introduction to [GP87]. We also note that if L = M(G,•,9o) is RA, then ZL = ZG and 
& E Z(L) for all l E Z(L). Moreover, the unique nonidentity commutator, s, of G is a 
unique nonidentity commutator a.nd a unique nonidentity MSOCiator of L. 

2. MAIN RESULTS 

The notion of augmentation is important for us. Let R be a commutative and MSOCiative 
ring with 1. Let A be a normal subloop of an RA loop (or a group) L and let €A: RL ---t 
R[L/A] denote the linear extension to RL of the natural homomorphism L ➔ L/A. This 
map is a ring homomorphism whose kernel is the ideal 

A.(L, A) = {L:0,,.(a - 1) Io" E RL}. 
oeA 

Since EA is surjective, we have R[L/A] E!! RL/ .O.(L, A). In the special case A= L, we write 
f = fL, calling this the augmentation map on RL and we call f(o) the augmentation of 
o ERL. For o = Eo,t ERL, note that E(o) = E o,. We define A.(L) == .O.(L, L) and call 
.O.(L) the augmentation idml of L. The identity l 1(l2 -1) = (l1l2-l)-(l1 -1) shows that 

..1.(L) = {1:::0,(t- 1), a, ER}. 
teL 

If A ill a normal subloop of L, note that A.(L, A) = (RL)..1-(A). We refer the reader to 
Section VI.1 of [GJM96] where the ideas of this paragraph are explained in more detail. 

Lemma 2.1. Let A be a normal ,ubloop of an RA loop L and let o E .O.(L, A). ~n there 
ezi,t, a E A ,uch that o = a - 1 (mod .O.(L).O.(A)). 

Proof. The identity 

ab - 1 = (a - l)(b - 1) + (a - l) + (b- 1) 

a.nd its consequence 
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imply tha.t an -1 = n(a-1) (mod A(A)2) for a.ny a EA and n E Z. Thus, for any integers 
n1,n2,••· ,ni. and any a1,a2,••· ,ai. EA, 

.. .. 
(2.1) L n;(a; - 1) = (TI a~) - 1 (mod A(A)2). 

i•l i=l 

Let 6 E A(L, A) a.nd write 6 = Ei.; 6i;l;(a; - 1), 6;; E Z, ti EL, a; EA. Since 

l(a - 1) = (l - l}(a - 1) + (a - 1) = a - 1 (mod A(L)A(A)), 
we ha.ve 6 = Ej Oj(a;-1) (mod A(L)A(A)), 6; = E; 6;;, and so 6 = a-1 (mod A{L)A(A)), 

6 · □ a= Ila/, by (2.1). 

At this point, we require the concept of the "support" of an element in a loop ring. ff 
a~= LteL 0ttl, 01, E R, is in a loop ring RL, the support of a is the set 

supp(a) = {l EL I at 'f' O}. 

Lemma 2.2. Let L be a finite RA loop with centre Z. Then L n (1 + A(L, z)} = Z. 
Proof. Since o = 1+ (o-1) a.nd a-1 E a(L, Z), certainly Z ~ 1 +a(L, 2). For the other 
inclusion, we first write L = LJ

9
e'2 Zq a.s the disjoint union of cosets of Z. Without loss of 

generality, we may assume that 1 is in the transversal Q. Suppose 6 E A(L, 2). Then 6 is 
a.n integral linear combination of terms of the form l(a - 1), l E L, a E Z. Writing l = qb, 
with q E Q and b E Z, we notice that 

l(a - 1) = qb(a - 1) = q(ba - 1) - q(b - 1). 
(In this ca.lculation, we may associate freely since elements of Z associate with all other 
elements of ZL.) It follows that 6 = L;.; 6;;q;(a; - 1), 6;; E Z, q; E Q and a; E z. Now 
suppose t E 1 + A(L, Z). Then t = 1 + L;.; 6;;q;(a; - 1) and, with the understanding that 
certain 6;; may be 0, we may assume in the summation that every a; E Z and every q; E Q 
appears. Moreover, we assume that q1 = a1 = 1. Thus 

(2.2) l= 1 + LL6;;q;(a; -1) = 1+ LL6;;q;a; - E(E#l 6;;)q;. 
i j""l i j# i 

If l = l, then l E Z a.s desired. If l # 1, then 1 is not in the support of the right hand side 
of (2.2). Since q1 = 1, no q;a; = 1 with j #: 1. Thus L;;H 6i; ::;: 1; in particular, 61;., #: 0 
for some Jo. It follows tha.t a;., is in the support of the right hand side and hence in the 
support of the left. Thus l::::: a.ia E Z. □ 

Corollary 2.3. LetL be a finite RA loop with centre Z. ThenLn(l+A(L)A(Z)) = {1}. 
Proof. As in the proof of Lemma 2.2, any 6 E A(L, Z) can be written 

(2.3) 
;.; 

a; E Z, 6;; E Z and q; E Q, a tra.nsversa.l of Z containing 1. Since q;a; = qra. implies 
Zq; = Zqr and hence q; = 9r, a;= a., it is ea.sy to see that the coefficients 6;; in (2.3) a.re 
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unique. Thus the map <p: A(L, Z) ➔ Z defined by 

L 6;;q;(a; - 1) >-+ IJ a!', 6; = EA;, 
iJ j 

is well-defined and a homomorphism from the abelian group (A(L, Z), +) to z. Under <p, 
the element 

(2.4) (qb - l)(a - 1) = q(ba - 1) - q(b - 1) - (a - 1) 

maps to (ba)b-1a-1 = 1; thus A(L)A(Z) ~ ker<p. 

Now suppose l E 1 + A(L)A(Z) and write l = 1 + 6, o E A(L)A(Z). We have <p(o) = 1. 

On the other hand, since A(L)A(Z) ~ A(L, Z), l E Z by Lemma 2.2 so, by definition of 

<p, <p(o) = <p(l - 1) = e. It follows that l = 1. □ 

Since the augmentation map c ZL ➔ Zia a homomorphism, ifµ E ZL is a unit, E(µ) = 
±1. We call µ normalized if£(µ) = +1. The set U1 of normalized units in ZL ia a loop 

(containing L) and that U(ZL) = -±U1 . It follows that if .N is a normal complement for L 

in U1, then .N is a normal complement for ±L in the full unit loop. 

Theorem 2.4. Let L be a finite RA loop with centre Z. Then.N = (l+A(L)A(Z))f"lU(ZL) 

is a torsion-free normal complement for L in the loop U1 of normalized units in ZL. 

Proof. The set A(L)A(Z) is an ideal of ZL because A(L) ia an ideal and A(Z) is central. 

This implies that N is a. normal subloop of U1• By Corollary 2.3, it remains only to prove 

that LN = U1 and that N is torsion-free. 
Let c ZL ➔ Z[L/Z] denote the ring homomorphism which is the linear extension to 

ZL of the natural loop homomorphism L ➔ L/ Z which maps l to Zl = 'l. Let ii denote 

the image in Z[L/Z) of o E ZL under the homomorphism Ez. Letµ E U1 • Since L/Z !:'!! 

C2 x C2, the units in Z[L/Z] are trivial by Higman's Theorem. Thus the imageµ ofµ 

in ZL/A(L,Z) !:!! Z[L/2) is an element of the form ±i, l EL, and, in fa.ct, +'l since the 

augmentation ofµ is +L Soµ - l E kenz = A(L, Z) and we haveµ= l(l + 6) for some 

o E A(L,Z). By Lemma 2.1, o = a - 1 (mod A(L)A(Z)) for some a E Z, so, for some 

o1, OoJ E A(L)A(Z), we haveµ= l(l + a - 1 + 01) = l(a + 61) = ta-1(1 + o,) E L.N. Thus 

LN=U1. 
We now show that .N is torsion-free. Because a torsion unit with a central element in it.s 

support is necessarily an element of L [GJM96, Corollary VIIl.1.2], [GM89, Corollary 2.2] 

and in view of Corollary 2.3, it suffices to show that ea.ch element of 1 + A(L)ll(Z) has a 

central element in ita support. Let then o E 1 + A(L)A(Z). Using (2.4), we may write 

(2.5) a=l+ E o9 .. q{a-l)+L.8b(b-l), 
qEQ, .. ez beZ 

a 9 .. , /Jb E Z, a, b E Z and Q a transversal of Z in L containing 1. In the right hand side of 

(2.5), a fixed ao E Z, ao /: 1, has coefficient 01aa + (340 • Thus, if 0111G + /3,.. ,f. 0, then ao is 

in the support of a and we have the desired result. On the other hand, if 01 .. + /J., = 0 for 

a.II a E Z, then the coefficient of 1 on the right side of {2.5) is 

1 - L 01 .. - L /3 .. ez = 1 /: 0 
■eZ Jr 
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so 1 is in the support of o. D 
The original proof of the following "isomorphism theorem" appeared in [GM89). See also 

[GJM96, Theorem IX.1.1]. 

Theorem 2.5. Let Land Li be.finite RA loops with Li torsion and suppose that ZL1 !:!! ZL. 
Then L1 ~ L. 

Proof. Note first that Land L1 have the same order, since each is the rank of the same free Z­module. Suppose <p: ZL1 ➔ ZL is the given isomorphism and let N be a torsion-free normal complement for L1 in U1 (ZL1). Then <p(N) is torsion-free in U1(ZL) and so Ln<p(N) = {I}. Since [U1(ZL): <p(.N)] = IL1I = ILi = [L<p(.N): <p(.N)], we have U1 (ZL) = L'f(N). Thus 

L .""' U1(ZL1) ""'Ui(ZL)""' L<pN""' _ L_ = L □ 1 - N - <p(N - rpN - L n rpN . 

3. RELATED QUESTIONS 

In view of Theorem 2.4, it is natural to ask if L can ever be a direct factor of U1. AA we shall see, with L finite, this happens only when U1 = L. 
Theorem 3.1. Let L be a finite RA loop. Then L ia normal in U(ZL) i/ and only i/U(ZL) is itself an RA loop and this occurs i/ and only i/U(ZL) = ±L. 
Proof. If U(ZL) i11 an RA loop, then the torsion units form a eubloop of ZL, so the loop T of torsion elements in L is eiiher abelian group or a hamiltonian Moufang 2-loop [GJM96, Corollary XII.2.14], [GM95, Theorem 3.1). Here, T = L is a hamiltonian Moufang 2-loop. In this case, the generalization of Higman 's Theorem to alternative loop rings says U(ZL) = ±L, so L is certainly normal in U(ZL). 

Conversely, assume that Lis normal in its unit loop. If II E U(ZL) and t E L, then v-1t11 is an element of the finite set L. It follows that eachµ= LteLJJtl E U(ZL) has just finitely 
many conjugates of the form ,r 1 µ11. Such a loop is called FC and it is known that if U (ZL) is FC, then U(ZL) is RA [GJM96, Corollary 2.14], [GM95, Theorem 3.3]. D 
Remark 3.2. The condition that U(ZL) be RA is equivalent to many other conditions on this unit loop, including nilpotency and the n--Engel and FC properties [GJM96, Corollary XIl.2.14]. 

Ezample 3.3. There do indeed exist RA loops L with U(ZL) # ±L also RA. By Corollary XII.2.14 of [GJM96] (see also [GM9~, Theorem 3.3), it ia sufficient to construct an RA loop with a torsion subloop T which is an abelian group such that if z e L does not centralize T, then z-1tz = t-1 for all t e T. To construct such a.n L, let A= (s) x (b), s2 = 1 be the direct product of a cyclic group of order 2 and an infinite cyclic group (b). Let G be the group generated by A and elements :r, 11 subject to the relations 

a.z = za, a11 = ya for a e A, z2 = s, ,J = II, (z,JI) = s. 
Then G' = {I,.s}, Z = A and G/Z = (:r) x {JI)~ C2 x C2, The loop M(G,•,b) = GUGv., where u2 = b, is RA with torsion subloop T = (a, z) and y-1z-1y = (JI, z)z-1 = ,z-1 = z. 
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As we now show (Theorems 3.4 and 3.6), in rather dramatic contrast to Theorem 3.1, L 
is never normal in the unit loop of a loop algebra over a field F and U(FL) is never RA. 

Theorem 3.4. Let L be a finite RA loop and let F be a field. Then L is not normal in 
U(FL). 

Proof. Assume that Lis indeed normal in U(FL). As in the proof of Theorem 3.1, U(FL) 
must be an FC loop, 80 Fis finite (GJM96, Corollary Xll.3.5), (GM96aj, say of characteristic 
p > O. Since L is finite, we can write L = L2 x £2, as the direct product of an RA 2-loop 
L2 and an abelian group £ 2, [GJM96, Proposition V.1.1], [CG86, Theorem 6]. If L E £ 2 

andµ E U(FL), then µ-1Lµ is a 2-element of Land hence in L2, It follows that we may 
assume that L is a 2-loop. 

Let Pp denote the field of p elements and suppose first that p =fi 2. Then FL is semisimple 
and hence the direct sum of fields F; and Cayley-Dick80n algebras A; [GJM96, Corollary 
VI.4.8] (GM96b, Theroem 2.8], 80 U(FL) is the product of the unit loops of these F; and 
A;. Since each A; is finite, it is not a division algebra. (A finite alternative division ring is 
commutative by Wedderburn's Theorem, since the subring generated by any two elements 
is a finite division ring, and hence associative [ZSSS82, Theorem 3, p. 143].) Thus each A; 
is a Zorn's vector matrix algebra over a field Kand the projection of ±Lin A; is a subloop 
of the unit loop U(A;) of A;. Since Lis normal in U(FL), the projection of ±Lis normal in 
U(A;) which, as explained in the introduction is the general linear loop GLL(2, K). Since 
± [A ~] is the only one nontrivial normal subloop of GLL(2, K), either the image of ±L is 
GLL(2, K) or it is central (perhaps trivial). The first possibility cannot occur, however, 
since G is a nonabelian normal Au bloop in Land there,..... no 11nch aubloopa of GLL(2, K). 
The second posmbility cannot occur either since the image of L in U(FL) is not central. 
Thusp=2. 

Let F2 denote the field of2 elements. Clearly F2L ~ FL and Lis normal in U(F2L). Let 
£: F2L ➔ F2 be the augmentation map. Since Eis a ring homomorphism, if a E F2L is a 
unit, necessarily E{a) = 1. On the other hand, if a E F2L has augmentation 0, then a lies in 
the augmentation ideal ~(L) which is known to be nilpotent [Goo95], (MZ, Theorem 3.4]. 
In particular, a is not a unit. Thus a E F2L is a unit if and only if E(a) = 1. Let g, h E L 
be two elements which do not commute. Then µ = 1 + g + h is a unit in F2L which does not 
commute with g, 80 µ- 1gµ = t EL. We have gµ = µt, implying g + g2 + gh = t +gt+ ht. 
Now g2 =fi g, g2 =fi gh and g2 =fi gt; thus g2 = t or g2 = ht. If g2 = t, then t is central (the 
square of any element of L is central) and 80 is g = µtµ- 1 = t. a contradiction. So g2 = ht 
which, after cancellation, gives g + gh = t + gt and g E {gh, t,gt}, which is not true. □ 

Remark 3.5. Let R be any commutative associative ring with 1 and of characteristic p > O. 
Since R contains Fp, the proof of Theorem 3.4 shows that Lis never normal in U(RL). 
Such is not the case with group rings over finite rings; for example, the symmetric group 
Ss is normal in U(F2Ss) (Seh78, §6.2, p. 215]. 

Theorem 3.6. Let L be a finite RA loop and F a field. Then U(FL) is not RA. 

Proof. Suppose U(FL) is an RA loop. Since L contains an RA 2-loop, we may assume that 
L itself is a 2-loop. 

Suppose that the characteristic of Fis different from 2. Again, U(FL) is the product of 
the unit groups of fields and Ca.yley-Dickson algebras. Let A be one of the Cayley-Dickson 
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algebras and U = U(A) its unit loop. AB a subloop of the RA loop U(FL), dearly U is 
also RA. If A has zero divisors, then A is a Zorn's vector matrix algebra and U is a general 
linear loop. This loop is not RA for a variety of reasons; for instance, it contains the general 
linear group and hence does not possess a unique nonidentity commutator. On the other 
hand, if A is a division algebra, then U = A \ {O} contains Qs, the quaternion group of 
order 8. In Qs, the unique nonidentity commutator is -1, so this is the unique nonidentity 
commutator in U. Since i + j and i do not commute, we would ha.ve (i + j)i = -i(i + i), 
giving 2i2 = 0, a contradiction. Thus char F = 2. 

Let F2 denote the field of2 elements. Since F2L ~ FL, U(F2L) is an RA loop. In partic­
ular, this unit loop has a unique nonidentity commutator-associator which is necessarily the 
unique nonidentity commutator-associator, s, of L. AB noted in the proof of Theorem 3.4, 
a E ~Lis a unit if and only if t(a) = 1, there c F2L-+ F2 is the augmentation map. Let 
g a.nd h be two elements of L which do not commute. Thus hg = sgh. Then 1 + g + h is 
a unit which does not commute with g, so the commutator of these two elements is also s. 
The equation (l+g+h)g = sg(l+g+h) implies g+g2 = sg+sg2 and hence l+g = s+sg, 
an impossibility since g f 1, g f s and g f sg. □ 
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