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Note that any group is a Moufang loop and any associative ring is alternative and the
converse is “nearly” true. Alternative rings and Moufang loops are diassociative: the subring
(or subloop) generated by any pair of elements is associative. In fact, if three elements in
an alternative ring (or Moufang loop) associate, then they generate an associative ring (or
a group). :

A torsion element in a loop is an element of finite order. In an RA loop, the set of torsion
elements forms a subloop which is clearly normal. It is locally finite and, if L is finitely
generated, actually finite [GIM96, Lemma VIIL4.1}, [GM95, Lemma 2.1]. A loop is torsien
if every element is a torsion element and torsion-free if it has no nonidentity elements of
finite order.

The set of units (invertible elements) of an alternative ring with 1 is a Moufang loop.
In an integral loop ring ZL, the elements +¢, £ € L, are clearly units. These are known as
trivial units. A classical theorem of Higman says that if G is a torsion group, then the only
units of ZG are trivial if and only if G is an abelian group of exponent 1, 2, 3, 4 or 6, or
a hamiltonian 2-group [Hig40]. This theorem in fact can be generalized to torsion loops L
for which ZL is an alternative ring [GIM96, Theorem VIIL.3.2], [GP86].

Of significance in this paper is the alternative vector mairiz algebra 3(F) over a field F

of Max Zorn and its loop of units, the general linear loop GLL(2, F). The elements of 3(F)
are 2 x 2 matrices of the form [y }], where 4,5 € F, x,y € F3. Such matrices are added in

the obvious way, but multiplied according to the following variation of the usual rule,

[al Xl] a7 x| _ a1az2+x1+y; a1xz + bax; — y1 X ¥2
yi b y2 ba azy1 +biya +x; X x2 bibs+y1-x; f

where - and x denote the dot and cross products respectively in F3.

Zorn’s algebra comes with a determinant function, [§}] ~— ab—x-y, and the units of 3(F)
are precisely those matrices whose determinant is nonzero. These units form a loop which is
denoted GLL(2, F) and called the general linear loop. It was first explored by Paige [Pai56)
who showed that the centre of GLL(2, F) is [} 9] and that, modulo its centre, GLL(2,F)
is simple (and not associative). This result was proven again more recently, by different
means, by Polcino Milies and Merlini Giuliani [MG].

Let A denote a quaternion algebra over a field F of characteristic different from 2. Let
a be a nonzero element of F and u an element not in A. Let C = A + Au with obvious
addition, but multiplication defined by

(1.2) (8 + bu)(c+ du) = (ad + ad*b) + (da + bc*)u

for a,b,c,d € A, ¢ — ¢* denoting any involution in A. The algebra C is called a Cayley-
Dickson algebra. Such an algebra is alternative, but not associative; moreover, it is known
that every such algebra is either a division algebra or isomorphic to Zorn’s vector matrix
algebra over F [GIM96, Corollary 1.4.17}, [ZSSS82, Theorem 2.4.7].

Not all Moufang loops determine alternative loop rings. Those that do (independent of
the characteristic of the coefficient ring) are called RA loops. The basic properties of RA
loops themselves can be found in Section I1.5.2 and Chapter IV of {GIMO6). See also [CGE6]
and [GP87].
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Let G be a nonabelian group with commutator subgroup G’ = {1,s} of order 2, centre
Z(G) and G/Z(G) = C; x Cy, the Klein 4-group. Defining

-_J9 9€Z2(G)
(3 ¢ ‘{sg 0 ¢ 2(G)

one can show that g — g* is an involution of G (an antiautomorphism of order 2). Let
L = G U Gu for some indeterminate u and extend the multiplication from G to L by the
rules

9(hu) = (hg)u

(1.4) (gu)h = (gh™)u

(gu)(hu) = goh”g
where u? = gg € Z(G). Then L is an RA loop which we denote M(G, +, go). Of fundamental
importance is the fact that a loop is RA if and only if it is a loop of the form M(G, *, go)
[GIM96, Theorem IV.3.1, Theorem 111.3.3, Proposition 111.3.6]. See also [CG86) and the
introduction to [GP87]. We also note that if L = M(G,*,go) is RA, then ZL = ZG and

£ ¢ Z(L) for all £ € Z(L). Moreover, the unique nonidentity commutator, s, of G is a
unique nonidentity commutator and a unique nonidentity associator of L.

2. MAIN RESULTS

The notion of augmentation is important for us. Let R be a commutative and associative
ring with 1. Let A be a normal subloop of an RA loop (or a group) Z and let €4: RL —
R[L/A] denote the linear extension to RL of the natural homomorphism L — L/A. This
map is a ring homomorphism whose kernel is the ideal

A(L,A) ={)_od(a—1)|a, € RL}.

o€EA
Since €4 is surjective, we have R[L/A] = RL/A(L, A). In the special case A = L, we write
€ = ¢z, calling this the augmentation map on RL and we call ¢(a) the augmentaiion of
a € RL. For a =Y ayf € RL, note that e(c) = Y . We define A(L) = A(L, L) and call
A(L) the augmentation ideal of L. The identity £; (2 —1) = (&2 — 1) — (£ — 1) shows that

A(L) = {d_a(t-1), ac € R}.

teL
If A is a normal subloop of L, note that A(L, A) = (RL)A(A). We refer the reader to
Section VL1 of [GIM96] where the ideas of this paragraph are explained in more detail.

Lemma 2.1, Let A be a normal subloop of an RA loop L and let 5 € A(L, A). Then there
erists a € A such that § = a — 1 (mod A(L)A(A)).
Proof. The identity
ab-1=(a-1)@F-1D+(a-1)+(b-1)
and its consequence
al-1l=-(a-1)—(a-1)(at-1)
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imply that ¢" —1 = n(a—1) (mod A(A)?) for any a € A and n € Z. Thus, for any integers
ny,n3,-..,n; and any ay,4z,...,ax € A,

k k
(2.1) Y nifei-1) = (Ha"‘) -1 (mod A(A)?).

i=1 i=1
Let 6 € A(L, A) and wtite § = E;JS;jZ;(aj -1),65€Z, €L, a; € A. Since
fa—-1)=(-1)(a-1)+(a-1)=a-1 (mod A(L)A(4)),

wehaved = 3. 4;(e;~1) (mod A(L)A(A)),d; =Y, 8;j,and 808 = a—1 (mod A(L)A(A)),
a= Haﬁ", by (2.1). 0

At this point, we require the concept of the “support” of an element in a loop ring. If
a=3 50, oy € R, is in a loop ring RL, the support of « is the set

supp(a) = {£.€ L | a # 0}.
Lemma 2.2. Let L be a finite RA loop with centre 2. Then LN (1+ A(L, 2)) = 2.
Proof. Since a =1+ (a—1) and e —1 € A(L, £), certainly Z C 14+ A(L, 2). For the other
inclusion, we first write L = quQ Zq as the disjoint union of cosets of 2. Without loss of
generality, we may assume that 1 is in the transversal Q. Suppose 8 € A(L,Z). Then é is
an integral linear combination of terms of the form £(g — 1), 8¢ L, a € 2. Writing £ = gb,
with ¢ € Q and b € Z, we notice that
fa—1)=gb(a—~1) =g(ba—~1) —g(b-1).

(In this calculation, we may associate freely since elements of 2 associate with all other
elements of ZL.) It follows that § = h 5 9i50i(a; ~1),8; €Z, ¢ € Q and a; € Z. Now
suppose £ € 14+ A(L, Z). Then =1 +E,-,J- 8;59:(e; — 1) and, with the understanding that
certain &;; may be 0, we may assume in the summation that every a; € Z and every ¢; € Q
appears. Moreover, we assume that ¢ = a; = 1. Thus

(2.2) t=1+4 226‘59"(“5 -1)=1 +EZ:6,'jq.'aj - E(Z‘#l 5,'_,')q,'.

i A i gl i
I £=1, then £ € Z as desired. If £ % 1, then 1 is not in the support of the right hand side
of (2.2). Since ¢ = 1, no ¢;a; = 1 with j # 1. Thus 2 #1815 = 1; in particular, &, # 0
for some jo. It follows that 65, is in the support of the right hand side and hence in the
support of the left. Thus £ =a;, € 2. o
Corollary 2.3. Let L be a finite RA loop with centre 2. Then LN (1+A(D)A@) = {1}.

Proof. As in the proof of Lemma 2.2, any § € A(L, Z) can be written
(2.3) §= E&'jq.'(aj -1),
iJ

aj € Z, §;; € Zand g; € Q, a transversal of Z containing 1. Since g;a; = g.a, implies
Z2g; = Zq, and hence ¢; = ¢, a; = q,, it is easy to see that the coefficients ;5 in (2.3) are
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unique. Thus the map ¢: A(L, 2) — Z defined by
]
Y Gisgila; — 1) = [Is7 8 =X:8;
1 i

is well-defined and a homomorphism from the abelian group (A(L, 2),+) to Z. Under ¢,
the element

(2.4) {¢p—1{a—1)=¢qdba-1)—g(b—1)— (a— 1)

maps to (ba)b~la=1 = 1; thus A(L)A(Z) C ker .

Now suppose £ € 1+ A(L)A(Z) and write £ =1+6, § € A(L)A(Z). We have @(8) = 1.
On the other hand, since A(L)A(Z) € A(L, Z), £ € Z by Lemma 2.2 so, by definition of
@, p(8) = p(£ ~ 1) = €. It follows that £ = 1. O

Since the augmentation map €: ZL —+ Z is a homomorphism, if s € ZL is a unit, e(p) =
+1. We call 2 normalized if e(u) = +1. The set Uy of normalized units in ZL is a loop
(containing L) and that Z(ZL) = £/ It follows that if A is a normal complement for L
in Uy, then A is a normal complement for +L in the full unit loop.

Theorem 2.4. Let L be a finite RA loop with centre Z. Then N' = (1+A(L)A(2))NU(ZL)
is a torsion-free normal complement for L in the loop Uy of normalized units in ZL.

Proof. The set A{L)A(Z) is an ideal of ZL because A(L) is an ideal and A(Z) is central.
This implies that A is a normal subloop of U;. By Corollary 2.3, it remains only to prove

that LN = and that N is torsion-free.

Let €: ZL — Z[L/Z] denote the ring homomorphism which is the linear extension to
ZL of the natural loop homomorphism L — L/Z which maps £ to 2¢= . Let @ denote
the image in Z[L/Z)] of a € ZL under the homomorphism €z. Let u € U,. Since L/Z =
C, x C, the units in Z[L/Z] are trivial by Higman’s Theorem. Thus the image 7 of p
in ZL/A(L, £) = Z[L/Z] is an element of the form 4%, ¢ € L, and, in fact, +£ since the
augmentation of 7f is +1. So p — £ € kerez = A(L, Z) and we have p = £(1 + 8) for some
5 € A(L,Z). By Lemma 2.1, = ¢ — 1 (mod A(L)A(Z)) for some a € Z, so, for some
81,6, € A(L)A(Z), we have p=¢(1+a—1+01) = {(a+ §) =fa}(1+83) € LN. Thus
LN = 111.

We now show that A is torsion-free. Because a torsion unit with a central element in its
support is necessarily an element of L [GIM96, Corollary VII1.1.2], [GM89, Corollary 2.2]
and in view of Corollary 2.3, it suffices to show that each element of 1+ A(L)A(Z) has a
central element in its support. Let then a € 1 + A(L)A(Z). Using (2.4), we may write

(2.5) a=1+ Y opea-1+) Ab-1),

qEQ.aEZ beZ2
@€z, abeZandQa transversal of 2 in L containing 1. In the right hand side of
(2.5), a fixed ao € Z, ag # 1, has coeflicient @ya; + Foo- Thus, if @1g, + PBap # 0, then ag is
in the support of a and we have the desired result. On the other hand, if ay, + 8, =0 for
all a € Z, then the coefficient of 1 on the right side of (2.5) is

l-zah_ZﬂuEZ=1#o

a€Z k



[} EDGAR G. GOODAIRE AND CESAR POLCINO MILIES

so 1is in the support of . O

The original proof of the following “isomorphism theorem” appeared in [GM89]. See also
[(GIM96, Theorem IX.1.1).

Theorem 2.5. Let L and L, be finite RA loops with L, torsion and suppose that ZL, = 7.
Then Ly & L.

Proof. Note first that L and L, have the same order, since each is the rank of the same free Z-
module. Suppose ¢: ZL) — ZL is the given isomorphism and let A’ be a torsion-free normal
complement for Ly in Uy (ZL,). Then ¢(N) is torsion-free in 24, (ZL) and s0o LNp(N) = {1}.
Since [h(ZL): (V)] = |Ls| = |LI = [Lp(N): ¢(N)], we have 24(ZL) = Ly(N). Thus

Ll o u,(ZLl) o Z(1 (ZL) ~ L(pN o L

(= = =L 0O
N W eN ~ LNeN

3. RELATED QUESTIONS

In view of Theorem 2.4, it is natural to ask if L can ever be a direct factor of 1/;. As we
shall see, with L finite, this happens only when U = L.

Theorem 8.1. Let L be a finite RA loop. Then L is normal in U(ZL) if and only ifU(ZL)
is itself an RA loop and this occurs if and only if U (ZL) = £L.

Proof. If U(ZL) is an RA loop, then the torsion units form a subloop of ZL, so the loop T
of torsion elements in L is either abelian group or a hamiltonian Moufang 2-loop [GIM9s,
Corollary XI1.2.14], [GM95, Theorem 3.1). Here, T = L is a hamiltonian Moufang 2-
loop. In this case, the generalization of Higman’s Theorem to alternative loop rings says
U(ZL) = £L, 80 L is certainly normal in U(ZL).

Conversely, assume that L is normal in its unit loop. If v € U(ZL) and £ € L, then v~1£1
is an element of the finite set L. It follows that each u = 2 ter Hel € U(ZL) has just finitely
many conjugates of the form ! uv. Such a loop is called FC and it is known that if U(ZL)
is FC, then (ZL) is RA {GIM96, Corollary 2.14), [GM95, Theorem 3.3). ]

Remark 3.2. The condition that U(ZL) be RA is equivalent to many other conditions on
this unit loop, including nilpotency and the n-Engel and FC properties [GJM96, Corollary
X11.2.14).

Ezample 3.3. There do indeed exist RA loops L with U(ZL) # +L also RA. By Corollary
XI1.2.14 of [GIMY6] (see also [GM95, Theorem 3.3), it is sufficient to construct an RA loop
with a torsion subloop T which is an abelian group such that if z € L does not centralize
T, then z7'tz =t~ for all t € T. To construct such an L, let A=(8) x (b), 5* =1 be the
direct product of a cyclic group of order 2 and an infinite cyclic group (b). Let G be the
group generated by A and elements z, y subject to the relations

6z =z0, ay=yafora € A, 2’ =3, P = b,(z,y) = .

Then G’ = {15}, Z = A and G/Z = (z) X {4) & C; x C;. The loop M(G, +,5)= G UG,
where u? = b, is RA with torsion subloop T = (s, z) and y~lz7ly = (y,z)z" = 521 = g,
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As we now show (Theorems 3.4 and 3.6), in rather dramatic contrast to Theorem 3.1, L
is never normal in the unit loop of a loop algebra over a field F and U(FL) is never RA.

Theorem 3.4. Let L be a finite RA loop and let F be a field. Then L is not normal in
U(FL). )

Proof. Assume that L is indeed normal in Z(FL). As in the proof of Theorem 3.1, U(FL)
must be an FC loop, so F is finite [GIM96, Corollary X11.3.5), [GM86al, say of characteristic
p > 0. Since L is finite, we can write L = Ly X Lo as the direct product of an RA 2-loop
Ly and an abelian group Ly [GIM96, Proposition V.1.1], [CG86, Theorem 6]. If £ € L,
and p € U(FL), then 'y is a 2-element of L and hence in Lz. It follows that we may
assume that L is a 2-loop.

Let F, denote the field of p elements and suppose first that p # 2. Then FL is semisimple
and hence the direct sum of fields F; and Cayley-Dickson algebras 4; [GIM96, Corollary
VI.4.8] [GM96b, Theroem 2.8), so U{FL) is the product of the unit loops of these F, and
A;. Since each A, is finite, it is not a division algebra. (A finite alternative division ring is
commutative by Wedderburn’s Theorem, since the subring generated by any two elements
is a finite division ring, and hence associative [ZSSS82, Theorem 3, p. 143].) Thus each A;
is a Zorn’s vector matrix algebra over a field K and the projection of L in A; is a subloop
of the unit loop U(A;) of A;. Since L is normal in #(F L), the projection of L is normal in
U(A;) which, as explained in the introduction is the general linear loop GLL(2, K). Since
+[3 9] is the only one nontrivial normal subloop of GLL(2, K), either the image of £+L is
GLL(2,K) or it is central (perhaps trivial). The first possibility cannot occur, however,
since GG is a nonabelian normal subloop in L and there are no such subloope of GLL(2, K).
The second possibility cannot occur either since the image of L in Z(FL) is not central.
Thus p=2.

Let F;, denote the field of 2 elements. Clearly FoL C FL and L is normal in Z4(F,L). Let
€: F,L — F, be the augmentation map. Since ¢ iz a ring homomorphism, if @ € F;L is a
unit, necessarily ¢(a) = 1. On the other hand, if a € F;L has augmentation 0, then « lies in
the augmentation ideal A(L) which is known to be nilpotent [Goo95], {MZ, Theorem 3.4).
In particular, a is not a unit. Thus a € F;L is a unit if and only if ¢(a) = 1. Let g,h € L
be two elements which do not commute. Then g = 1+g¢+his a unit in F2 L which does not
commute with g, so u~lgu =t € L. We have gu = pt, implying g+ ¢* + gh =t + gt + ht.
Now g% # g, g* # gh and g* # gt; thus g2 = t or ¢* = ht. If g? = ¢, then ¢ is central (the
square of any element of L is central) and so is g = utu~! =t. a contradiction. So g% = ht
which, after cancellation, gives g + gh = ¢ + gt and g € {gh,¢, gt}, which is not true. O
Remark 3.5. Let R be any commutative associative ring with 1 and of characteristic p > 0.
Since R contains Fj, the proof of Theorem 3.4 shows that L is never normal in U(RL).
Such is not the case with group rings over finite rings; for example, the symmetric group
Ss is normal in U(F3S5s) [Seh78, §6.2, p. 215).

Theorem 3.8. Let L be a finite RA loop and F a field. ThenU(FL) is not RA.

Proof. Suppose U(FL) is an RA loop. Since L contains an RA 2-loop, we may assume that
L itself is a 2-loop.

Suppose that the characteristic of F is different from 2. Again, Z/(FL) is the product of
the unit groups of fields and Cayley-Dickson algebras. Let A be one of the Cayley-Dickson
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algebras and U = U(A) its unit loop. As a subloop of the RA loop U(FL), cleatly ¥ is
also RA. If A has zero divisors, then A is a Zorn’s vector matrix algebra and ¥ is a general
linear loop. This loop is not RA for a variety of reasons; for instance, it contains the general
linear group and hence does not possess a unique nonidentity commutator. On the other
hand, if A is a division algebra, then & = A\ {0} contains Qg, the quaternion group of
order 8. In Qs, the unique nonidentity commutator is —1, so this is the unique nonidentity
commutator in i{. Since i 4 j and ¢ do not commute, we would have (i + j)i = —i(i + j),
giving 2i% = 0, a contradiction. Thus char F = 2.

Let F; denote the field of 2 elements. Since F3L € FL, U(F;L) is an RA loop. In partic-
ular, this unit loop has a unique nonidentity commutator-associator which is necessarily the
unique nonidentity commutator-associator, s, of L. As noted in the proof of Theorem 3.4,
a € F;L is a unit if and only if €(a) = 1, there e: F,L —+ F; is the augmentation map. Let
g and h be two elements of L which do not commute. Thus hg == sgh. Then 1+ g+ h is
a unit which does not commute with g, so the commutator of these two elements is also s.
The equation (1+g+h)g = sg(1+g+h) implies g+ g = sg+s9? and hence 1+ g = s+ sg,
an impossibility since g # 1, g # s and g # s¢. O
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