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ABSTRACT
We consider a quintessence model with Yukawa interaction between dark energy and dark
matter and constrain this model by employing the recent cosmological data including the
updated cosmic microwave background (CMB) measurements from Planck 2015, the weak
gravitational lensing measurements from Kilo Degree Survey (KiDS), and redshift-space
distortions. We find that an interaction in the dark sector is compatible with observations. The
updated Planck data can significantly improve the constraints compared with the previous
results from Planck 2013, while the KiDS data have less constraining power than Planck. The
Yukawa interaction model is found to be moderately favoured by Planck and able to alleviate
the discordance between weak lensing measurements and CMB measurements as previously
inferred from the standard Lambda cold dark matter model. N-body simulations for Yukawa
interaction model is also performed. We find that using the halo density profile is plausible to
improve the constraints significantly in the future.
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1 IN T RO D U C T I O N

Planck Collaboration has released updated results on the cosmic
microwave background (CMB) anisotropies in 2015 (Planck Col-
laboration I 2016a), which provide the observations on temperature
and polarization of the photons from the last scattering surface.
The updated data have made significant improvements compared
with the previous data in 2013. This allows the derivation of more
reliable scientific results and tighter constraints on the cosmological
models.

The standard Lambda cold dark matter (�CDM) model is
the most accepted model to explain the cosmic acceleration of
our Universe at present. In this model, the driving force of the
universe acceleration is assumed due to the cosmological constant
�. Although the �CDM model is proved to be consistent with
several observations, it still faces some challenges. Recently, the
�CDM model was examined by employing weak lensing data
taken from a 450 deg2 observed field of the Kilo Degree Survey
(KiDS; Hildebrandt et al. 2017), where the cosmic shear is measured
from distorted images of distant galaxies that can effectively map
a three-dimensional dark matter structure in the late universe. It
was revealed that there exists a ‘substantial discordance’ between
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the KiDS data (de Jong et al. 2015; Kuijken et al. 2015; Fenech
Conti et al. 2017; Hildebrandt et al. 2017) and the Planck 2015
CMB data (Planck Collaboration I 2016a; Planck Collaboration XI
2016b; Planck Collaboration XIII 2016c) in the �CDM model at
the level of 2.3σ .

Besides the discordance between weak lensing measurements
and the CMB measurements, the standard �CDM model is also
challenged by other observations. For example, the value of the
Hubble constant which is directly measured by the Hubble Space
Telescope (HST) presents about 3σ tension in comparison with the
value inferred from CMB measurements if the �CDM model is
considered (Riess et al. 2011, 2016). Meanwhile, another evidence
against the standard �CDM model has been presented by the
Baryon Oscillation Spectroscopic Survey experiment of the Sloan
Digital Sky Survey (Delubac et al. 2015), which is based on
measurements of the baryon acoustic oscillations (BAO) from the
flux correlation functions of the Ly α forest with 158 401 quasars at
high redshifts (2.1 ≤ z ≤ 3.5). Their results indicate a 2.5σ deviation
from the �CDM model in the measurements of the Hubble constant
and angular distance at an average redshift z = 2.34. Recently, the
Experiment to Detect the Global Epoch of Reionization Signature
reported the detection of an absorption profile in the sky-averaged
radio spectrum centred at 78 MHz (Bowman et al. 2018). Their
observation indicates a 21 cm signal with an amplitude of 0.5
kelvin, which is more than a factor of 2 greater than the theoretical
prediction of the standard �CDM paradigm (Cohen et al. 2017).
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Theoretically, the �CDM model suffers more severe challenges,
such as the cosmological constant problem (Weinberg 1989), i.e.
the observed value is many orders of magnitude smaller than the
prediction from quantum field theory, and the coincidence problem
(Chimento et al. 2003), i.e. in the �CDM model it is difficult to
explain why the dark energy dominates the evolution in the late
universe and why the universe is accelerating just now but neither
earlier nor later.

Due to these observational and theoretical problems in the
standard �CDM model, there are many attempts to find a better
model that can solve or alleviate these problems and explain the late
time accelerated expansion of our Universe. Considering that dark
energy and dark matter are two major components in the universe, it
is natural, in the framework of field theory, to consider that these two
dark sectors have some interaction rather than evolve individually. It
was argued that an appropriate interaction can provide a mechanism
to alleviate the coincidence problem (Amendola 2000; Amendola &
Quercellini 2003; Pavón & Zimdahl 2005; Amendola, Tsujikawa &
Sami 2006; Olivares, Atrio-Barandela & Pavón 2006; Böhmer et al.
2008; Chen, Wang & Jing 2008; Del Campo, Herrera & Pavón
2008). It can also accommodate an effective dark energy equation
of state in the phantom region at the present time (He, Wang &
Abdalla 2009). However, because of the lack of information on the
nature and dynamics of dark energy and dark matter, it is difficult to
drive the precise form of the interactions. Many alternative models
have been proposed in the literature from phenomenology or field
theory (Amendola 2000; Amendola & Quercellini 2003; Pavón &
Zimdahl 2005; Olivares et al. 2006; Bertolami, Gil Pedro & Le
Delliou 2007; Böhmer et al. 2008; Micheletti, Abdalla & Wang
2009; Lopez Honorez et al. 2010; Costa et al. 2017). For a review
on the interaction between dark matter and dark energy, please refer
to Wang et al. (2016).

In this work, we will concentrate on the scenario in which
dark matter takes the form of a spin 1

2 fermionic field and dark
energy is described by an evolving and fluctuating scalar field, the
quintessence. An interaction between these two components will
affect the expansion history of the universe and the evolution of the
density perturbation, changing the growth history of cosmological
structure. Consequently, the interaction could be constrained with
observations of the background evolution and the emergence of
large scale structure. Following Costa, Olivari & Abdalla (2015),
we will consider a Yukawa coupling of the dark energy field to the
dark matter, which is renormalizable and has been well studied in
cosmology (Farrar & Peebles 2004; Pavan et al. 2012).

The main motivation of this paper is to confront the Yukawa
interaction model to the latest cosmological data, including the
updated CMB data from Planck 2015, the recent weak gravitational
lensing data from KiDS and the redshift-space distortion (RSD)
data. We are going to compare the constraints with the previous
results from Planck 2013 (Costa et al. 2015) and see whether
the updated precise data can help to improve the limits on the
cosmological parameters. We will also investigate the discordance
problem between Planck and KiDS with the Yukawa interaction
model and check whether an appropriate interaction can help to
alleviate the tension between these two data sets. Meanwhile, the
Dark Energy Survey (DES) collaboration has recently published the
analyses of its first year of data, based on the two-point statistics
of galaxy clustering and weak gravitational lensing (Abbott et al.
2018; DES Collaboration et al. 2018), which will also be included
in our analysis. Moreover, we will examine the effectiveness of
tightening the constraints on model parameters by including the
complementary RSD observable.

Besides, we will use the ME-GADGET code (Zhang et al. 2018b)
to perform several simulations for Yukawa interaction model to
investigate the non-linear structure formation. N-body simulations
have been established as a standard method to study the non-linear
evolution of the large-scale structure of the universe. Because the
Yukawa coupling between dark matter and dark energy is absent in
the �CDM model, it is important to use a fully self-consistent
simulation pipeline to study the non-linear structure formation.
Zhang et al. has developed the simulation pipeline suitable for the
Yukawa interaction model (Zhang et al. 2018b).

The paper is organized as follows. In Section 2, we describe the
Yukawa interaction model with background dynamics equations and
linear perturbations. In Section 3, we introduce the observational
data sets we are going to use. In Section 4, we report the main results
by confronting the Yukawa interaction model to cosmological
observations. In Section 5, we discuss the results from N-body
simulations. Finally, we present our conclusions in Section 6.

2 TH E Y U K AWA I N T E R AC T I O N MO D E L

We consider a model with an interaction between two dark sectors,
where dark matter is described by a spin 1

2 fermionic field and dark
energy is described by a canonical scalar field. The action for this
model is given by

S =
∫

d4x
√−g

{
1

2κ
R − 1

2
∂μφ∂μφ − V (φ)

−m(φ)ψ̄ψ + LK[ψ]

}
, (1)

where g is the determinant of the metric, R is the Ricci scalar,
and κ = 8πG where G represents the gravitational constant. φ

is the scalar field and its potential function V(φ) can be chosen
freely. To be specific, in this paper we will study the exponential
form V (φ) = Ae−λφ/Mpl , where A is a normalization constant, λ

is a dimensionless parameter, and Mpl = 1/
√

8πG is the reduced
Planck mass. ψ is the fermionic field and LK[ψ] is the kinetic
part of the fermionic Lagrangian. m(φ) is the effective fermionic
mass and its choice represents the coupling to φ. In our model, the
function m(φ) is given by m(φ) = M − ζφ, where M is the fermionic
mass and ζ is the Yukawa coupling constant. This coupling can be
treated as an external source in the conservation equations for the
dark sectors of the universe

∇νT
ν

(c)μ = −Qμ, (2)

∇νT
ν

(d)μ = Qμ, (3)

where ∇ν represents a covariant derivative, T ν
(i)μ is the stress energy

tensor of the ‘i’ component in the universe, the subscripts ‘c’ denotes
dark matter, and ‘d’ denotes dark energy. The source term Qμ

implies that these two components are not conserved, while for
the whole system the energy momentum conservation still holds.

We assume that our Universe is described by a flat Friedmann–
Lemaitre–Robertson–Walker (FLRW) metric, in which the line
element can be written as

ds2 = −a2(η)dη2 + a2(η)δij dxidxj , (4)

where η is the conformal time and a(η) is the scalar factor of
the universe. For the rest of the paper, a dot will denote the
derivative with respect to the conformal time. The zero component
of equations (2) and (3) provide the conservation equations for the
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energy densities of the dark sectors

ρ̇c = −3Hρc − Q0, (5)

ρ̇d = −3Hρd(1 + ω) + Q0, (6)

where H = ȧ
a

is the Hubble function and ω ≡ Pd/ρd is the dark
energy equation of state. Here, we treat each component of the dark
sector as a fluid with the general stress-energy tensor Tμν = (ρ i +
Pi)uμuν + Pigμν , where uμ = (−a, 0, 0, 0) is the fluid four-velocity.
Dark energy is described by a scalar field φ rolling down a self-
interaction potential V(φ), such that its energy density and pressure
can be expressed as

ρd = φ̇2

2a2
+ V (φ), Pd = φ̇2

2a2
− V (φ). (7)

The external source term Qμ is related to the effective fermionic
mass m(φ) via the expression

Qμ = −∂ ln m(φ)

∂φ
ρc∇μφ, (8)

which gives the coupling term

Q0 = ζ

M − ζφ
ρcφ̇ = r

1 − rφ
ρcφ̇, (9)

where r ≡ ζ

M
. We can rewrite the conservation equations (5) and

(6) as

ρ̇c + 3Hρc = − r

1 − rφ
ρcφ̇, (10)

ρ̇d + 3Hρd(1 + ω) = r

1 − rφ
ρcφ̇. (11)

To avoid the diverging point at rφ = 1, we will stay in the region
rφ < 1. The signs of r and φ̇ determine the direction of the energy
flow, if they have the same sign the energy flows from dark matter
to dark energy while the different sign signalling the opposite. For
what concerns the background dynamics, the evolution of the scalar
field is described by the modified Klein Gordon equation via

φ̈ + 2Hφ̇ + a2 dV

dφ
= a2 r

1 − rφ
ρc. (12)

From the Einstein field equation, we can get the Friedmann equation
as follows:

H2 = 8πG

3
a2

(
ρr + ρb + ρc + φ̇2

2a2
+ V (φ)

)
. (13)

Here, the relativistic component ‘r’ and the baryons ‘b’ are assumed
to be uncoupled to the scalar field in this model, hence the evolutions
of their energy densities still obey the standard conservation
equations

ρ̇r + 4Hρr = 0, ρ̇b + 3Hρb = 0. (14)

In the linear theory, equations of the first-order perturbations for
dark matter can be written as

δ̇c = −θc − ḣ

2
− r

1 − rφ
ϕ̇ + r2

(1 − rφ)2
φ̇ϕ, (15)

θ̇c = −Hθc + r

1 − rφ
θcφ̇ − k2 r

1 − rφ
ϕ, (16)

where δc is the perturbed density contrast and θc = ikj v
j
c is the

gradient of velocity field for dark matter. The variable h is the trace

part in the synchronous gauge metric perturbation. Perturbation in
the scalar field ϕ ≡ δφ evolves according to the perturbed Klein
Gordon equation, which can be written as

ϕ̈ + 2Hϕ̇ + k2ϕ + a2 d2V

dφ2
ϕ + ḣφ̇

2

= −a2 r2

(1 − rφ)2
ϕρc + a2 r

1 − rφ
ρcδc. (17)

For the other components, radiation and baryon, the perturbation
equations follow from Boltzmann equations, which are the same as
those in the �CDM model.

3 C O S M O L O G I C A L DATA S E T S

We use the latest available results of the CMB measurements from
Planck 2015 (Planck Collaboration XIII 2016c) to derive constraints
for the Yukawa interaction model, which can be directly compared to
the previous ones from Planck 2013 (Costa et al. 2015). The updated
Planck 2015 data have made significant improvements in reducing
the systematic errors and increasing the overall level of confidence.
The most notable one is that its residual systematics in polarization
maps have been dramatically reduced compared to Planck 2013, and
its agreement to Wilkinson Microwave Anisotropy Probe (WMAP)
is within a few tenths of a per cent on angular scales from the
dipole to the first acoustic peak (Planck Collaboration I 2016a).
These results can make important contributions in the theoretical
analyses in cosmology and contain smaller uncertainties compared
with those determined in Planck 2013 results.

In Costa et al. (2015), the authors analyse the effects in the CMB
and matter power spectrum for the Yukawa interaction model. We
can see that the scalar potential parameter λ has a small effect on the
CMB and matter power spectrum, affecting mainly the low-l CMB
power spectrum, while the coupling parameter r not only modifies
the CMB spectrum at low-l but also influences the acoustic peaks at
large multipoles. These effects allow us to constrain the parameters
of such a model through Planck measurements.

In our analysis, we take the low multipole (l = 2 − 29)
temperature and polarization data, and combine with high multipole
(l ≥ 30) TT, TE, and EE CMB data. Also, the CMB lensing
data will be considered in this work. For the rest of this paper,
‘Planck13’ and ‘Planck15’ denote the data sets including only
CMB temperature and polarization spectrum from Planck 2013 and
Planck 2015, respectively, ‘Planck15(+lensing)’ denotes Planck15
data sets together with CMB lensing.

In addition to the Planck data sets, we also consider the weak
gravitational lensing measurements from the KiDS (Hildebrandt
et al. 2017). The KiDS is designed to measure shapes of galaxies
with photometric redshifts, and it performs a study of weak lensing
tomography. The lensing observables are given by the two-point
shear correlation function ξ

ij
± between two redshifts bins i and j at

the angular position θ on the sky, which can be expressed by the
convergence power spectrum P ij

κ via

ξ
ij
± (θ ) = 1

2π

∫
dllP ij

κ J0,4(lθ ), (18)

where l is the angular wavenumber, and J0,4(lθ ) is the zeroth (for
ξ+) or the fourth (for ξ−) order Bessel functions of the first kind.
Using the Limber approximation, the convergence power spectrum
P ij

κ can be related to the matter power spectrum Pδ via

P ij
κ =

∫ χH

0
dχ

Wi(χ )Wj (χ )

χ2
Pδ

(
l

χ
, χ

)
, (19)
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where χ is the comoving radial distance and χH is the comoving
distance evaluated at an infinite redshift. The lensing weighting
function Wi(χ ) is given by Schaefer, Caldera-Cabral & Maartens
(2008) and An, Feng & Wang (2017, 2018)

Wi(χ ) = 3a(χ )2H (χ )2�m(χ )

2c2
χ

∫ χH

χ

dχ ′ni(χ
′)

χ ′ − χ

χ ′ , (20)

where �m = ρm/ρcrit with the critical density ρcrit = 3H2/(8πG),
c is the speed of light, ni(χ )dχ is the effective number of galaxies
in redshift bin i within the range of dχ and it is normalized
as

∫ χH

0 n(χ )dχ = 1. We use the modified CAMB code (Lewis,
Challinor & Lasenby 2000) to calculate the linear matter power
spectrum and the non-linear correction is approximately derived
by a halofit model (Takahashi et al. 2012), which is inconsistent
with the Yukawa interaction model. Therefore, we use the N-
body simulation, which is modified to be consistent with the
interacting dark matter and dark energy model (Zhang et al.
2018b), to test whether the halofit model can provide reasonable
calculation of the non-linear matter power spectrum for the Yukawa
interaction model. The N-body simulation results are introduced in
Section 5.

The KiDS data sets consist of four tomographic redshift bins
between z = 0.1 and z = 0.9 with equal widths �z = 0.2, and nine
angular bins with central values at θ = [0.7134, 1.452, 2.956, 6.017,
12.25, 24.93, 50.75, 103.3, 210.3 arcmin]. For each tomographic
redshift pair (ij), the measurements cover seven angular bins smaller
than 72 arcmin for ξ

ij
+ and six angular bins larger than 4.2 arcmin

for ξ
ij
− , which means that the last two angular bins are marked out

for ξ
ij
+ and the first three bins are marked out for ξ

ij
− . This equates

to a total of 130 angular band powers in this data sets (Hildebrandt
et al. 2017; Joudaki et al. 2017).

Cosmic shear has also been recently measured using DES
data (Abbott et al. 2018; Troxel et al. 2018). The DES is a 5
yr observing programme using the 570 megapixel Dark Energy
Camera (Flaugher et al. 2015) on the Blanco telescope at the Cerro
Tololo Inter-American Observatory, to image the South Galactic
Cap in the griz Y filters. DES collaboration has presented the
cosmological results from a combined analysis of galaxy clustering
and weak gravitational lensing, using 1321deg2 of griz imaging
data taken during its first year of observations, where three sets of
two-point correlation functions are included: (i) Galaxy clustering:
the autocorrelation of lens galaxy positions in each redshift bin
ω(θ ), (ii) Cosmic shear: the autocorrelation of source galaxy shapes
within and between the source redshift bins ξ±(θ ), (iii) Galaxy–
galaxy lensing: the mean tangential ellipticity of source galaxy
shapes around lens galaxy positions for each pair of redshift
bins γ t(θ ) (Abbott et al. 2018). In our analysis, we make use of
all three correlation function measurements to test the Yukawa
interaction model. Although in Planck Collaboration VI (2018),
the authors showed some consistency between DES and Planck
2018 data, after some more careful photo-z calibration, DES result
was found more consistent with KiDS and thus showed more
tension with Planck 2018 data (Joudaki et al. 2019). In this work,
we will examine whether the Yukawa interacting dark energy
model can alleviate the tension between Planck and weak lensing
datasets.

Another observable employed in this work, RSD, is an im-
portant probe to investigate the growth of large scale structure,
and it is considered as a powerful complementary observation
to obtain tight constrains on cosmological parameters, and also
break the possible degeneracy in diverse cosmologies. In the past
few years, a lot of measurements on RSD have been reported

Table 1. RSD data.

z fσ 8(z) Reference

0.02 0.360 ± 0.040 (Hudson & Turnbull 2012)
0.067 0.423 ± 0.055 (Beutler et al. 2012)
0.10 0.37 ± 0.13 (Feix et al. 2015)
0.17 0.51 ± 0.06 (Song & Percival 2009)
0.22 0.42 ± 0.07 (Blake et al. 2011)
0.25 0.3512 ± 0.0583 (Samushia et al. 2012)
0.30 0.407 ± 0.055 (Tojeiro et al. 2012)
0.35 0.440 ± 0.050 (Song & Percival 2009)
0.37 0.4602 ± 0.0378 (Samushia et al. 2012)
0.40 0.419 ± 0.041 (Tojeiro et al. 2012)
0.41 0.45 ± 0.04 (Blake et al. 2011)
0.50 0.427 ± 0.043 (Tojeiro et al. 2012)
0.57 0.427 ± 0.066 (Reid et al. 2012)
0.6 0.43 ± 0.04 (Blake et al. 2011)
0.6 0.433 ± 0.067 (Tojeiro et al. 2012)
0.77 0.490 ± 0.180 (Song & Percival 2009)
0.78 0.38 ± 0.04 (Blake et al. 2011)
0.80 0.47 ± 0.08 (de la Torre et al. 2013)

Figure 1. The growth rate f as a function of wavenumber k at redshift
z = 0.3. The solid and dashed lines correspond to f ≡ d lnδm

d lna
and f ≡

[σ (vd)
8 (z)]2/[σ (dd)

8 (z)]2, respectively.

(Song & Percival 2009; Blake et al. 2011; Beutler et al. 2012;
Hudson & Turnbull 2012; Reid et al. 2012; Samushia, Percival &
Raccanelli 2012; Tojeiro et al. 2012; de la Torre et al. 2013; Feix,
Nusser & Branchini 2015). We list the low-z measurement on fσ 8

from previous work in Table 1. Note that the data at z = 0.02
(Hudson & Turnbull 2012) is not a result from RSD observation
but one inferred from the peculiar velocity obtained during distance
measurement.

The growth rate f is considered to be model independent, which
is defined as the logarithmic derivative of total matter density
perturbation with respect to the logarithm of scale factor

f ≡ d lnδm

d lna
= H−1

δm
δ̇m, (21)

where δm = (ρcδc + ρbδb)/ρm. From Fig. 1, we can see that another
definition (Planck Collaboration XIII 2016c)

f ≡
[
σ

(vd)
8 (z)

]2
/
[
σ

(dd)
8 (z)

]2
, (22)

where σ
(dd)
8 is the variance of density field smoothed within

8h−1Mpc and σ
(vd)
8 is the same scale smoothed velocity–density
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correlation, fits well with equation (21) for the �CDM model, as
well as the quintessence model on small scale. We present a brief
derivation below, to explain why these two definitions are equivalent
in the standard �CDM model.

In linear perturbation theory, assuming baryon tracing CDM, we
have

δ′
m = −kvm − 3φ′, (23)

where k is the wavenumber, vm is the peculiar velocity of matter, and
φ is the gravitational potential in Newtonian gauge. The contribution
from 3φ

′
can be neglected on small scales. By using equation (21),

we can get the relation between vm and δm,

vm = − δ′
m

k
= −Hf

δm

k
. (24)

While from observations, what we really obtain is v = −∇ · vm/H.
Correlating δm and v in Fourier space where v = −kvm/H, we
have

< δmv >= f < δmδm >, (25)

which is equivalent to Pδmv(k) = f Pδmδm (k). After that, we calculate
σ

(vd)
8 and σ

(dd)
8 through the convention

[σ (vd)
8 ]2 =

∫
Pδmv(k)W 2(kR)k2dk, (26)

[σ (dd)
8 ]2 =

∫
Pδmδm (k)W 2(kR)k2dk, (27)

where W(kR) is a top-hat filter on the scale R = 8h−1Mpc. Since f
is k-independent, we obtain

[σ (vd)
8 ]2 = f [σ (dd)

8 ]2, (28)

which proves that these two definitions (21) and (22) are equivalent
in the standard �CDM model.

However, for the Yukawa interaction model, as shown in Fig. 1,
the second definition (22) does not fit equation (21), which indicates
that this definition is not generally valid for the interaction models
(Marcondes et al. 2016; Costa et al. 2017; Costa et al. 2019). Starting
from equations (10) and (15), we obtain the form of equation (21)
under Yukawa interaction in the synchronous gauge

f = H−1

δm

{
−θm − ḣ

2
+ ρc

ρm

[
r

1 − rφ
(φ̇δm − φ̇δc − ϕ̇)

+ r2

(1 − rφ)2
φ̇ϕ

]}
, (29)

where θm = (ρcθ c + ρbθb)/ρm. In addition to the different cosmic
evolution from the �CDM model, Yukawa interaction also induces
an extra term that is proportional to ρc/ρm on the right-hand side of
equation (29). Both of these effects account for the misalignment
between green solid and dashed lines in Fig. 1. This expression of
f intrinsically describes the growth rate in the context of Yukawa
interaction.

In �CDM model, the galaxy continuity equation θG =
−HβδG − ḣ

2 that characterizes the coherent motion of galaxies is

built upon the matter continuity equation θm = −Hf δm − ḣ
2 via the

assumption that galaxies trace the matter field according to δG =
bδm and θG = θm. The measurements of RSD parameter β = f/b are
based on its correspondence with velocity divergence as established
by the continuity equation. However in the interaction models, this
continuity equation does not hold anymore (Marcondes et al. 2016;

(a)

(b)

Figure 2. Evolutions of f̃ σ8 as a function of redshift z at k = 0.1h/Mpc in
the �CDM and Yukawa interaction models. The error bars correspond to
the RSD data listed in Table. 1.

Costa et al. 2017; Costa et al. 2019), we need to find the correct
quantity that corresponds to the velocity field.

In Yukawa interaction model, the continuity equation (15) for
dark matter in the first-order perturbations includes an extra inter-
action term. For baryon, we still have δ̇b = −θb − ḣ

2 . Combining
these two equations, we get the continuity equation for total matter
altered by Yukawa interaction

θm = −Hf̃ δm − ḣ

2
, (30)

where

f̃ = d lnδm

d lna
− H−1

δm

ρc

ρm

[
r

1 − rφ
(φ̇δm − φ̇δc − ϕ̇)

+ r2

(1 − rφ)2
φ̇ϕ

]
(31)

is the growth rate which makes the continuity equation compatible
with the RSD measurements for the Yukawa interaction model. We
find that the extra term on the right-hand side of this equation can
completely cancel the extra term in equation (29).

In Fig. 2, we show the evolutions of f̃ σ8 at k = 0.1h/Mpc (k 	
H) in �CDM and Yukawa interaction models. Here, the �CDM
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Table 2. Priors on cosmological parameters.

Parameter Prior

�bh2 [0.005,0.1]
�ch2 [0.001,0.99]
100θ [0.5,10]
τ [0.01,0.8]
ns [0.9,1.1]
log(1010As) [2.7,4]
λ [0.1,1.5]
r = ζ

M
[ − 0.1,0.1]

model is implemented with the best-fitting parameters from Planck
2015 results (Planck Collaboration XIII 2016c), where �bh2 =
0.02225, �ch2 = 0.1198, 100θMC = 1.04077, ln(1010As) = 3.094,
ns = 0.9645, and H0 = 67.27km s−1 Mpc−1. We can see that the
low-z evolution of f̃ σ8 in �CDM model is slightly higher than the
observational data, which implies some freedom for non-standard
cosmological models to alleviate this discordance. We first present
the results for non-interacting models (r = 0) with different scalar
potential parameter λ. As shown in Fig. 2(a), f̃ σ8 is depressed
with the increase of λ, which is compatible with the results in
fig. 1 of Costa et al. (2015). For the quintessence model without
interaction, larger λ leads to higher dark energy density at late
universe, this in turn will bring more suppression to the growth of
overdensity. Then we fix λ and extend our discussion to interaction
models with varying coupling parameter r. In Fig. 2(b), we observe
that the Yukawa interaction prefers to increase the values of f̃ σ8

comparing to the non-interaction model r = 0 (red line), and this
phenomenon manifests some symmetry around the axis of r = 0.
But it is not absolutely symmetric, we can see that the misalignment
appears when z � 0.6. From above discussions, we conclude that
the Yukawa interaction model with large λ and small r ∼ 0 is more
compatible with the RSD measurements at late universe.

Note that Costa et al. (2015) already put constraints on this
Yukawa interaction model by using the CMB measurements from
the Planck satellite together with BAO, SNIa and H0 data, and
detailedly investigate the evidence induced by these extra low-
redshift measurements. So these three data sets will not be included
in this work.

In order to test the Yukawa interaction model, we implement the
background and linear density perturbation equations as described
in the previous section into the CAMB code (Lewis et al. 2000) and,
then, use a modified COSMOMC code package (Lewis & Bridle 2002;
Lewis 2013) that has already integrated the weak lensing module
to estimate the parameters that best describe the observational data
(Joudaki et al. 2017). For the MCMC runs, we fix the effective
number of neutrino species to Neff = 3.046, the sum of neutrino
masses to �mν = 0.06 eV, and the helium abundance to Yp = 0.24.
The convergence criterion is set to R − 1 = 0.03, where R is the
Gelman–Rubin threshold (Gelman & Rubin 1992).

4 FITTING R ESULTS

We consider a Yukawa interaction between two dark sectors and
constrain this model by employing the cosmological data sets
introduced in the previous section. We first report the results by
using the CMB data from Planck and the weak gravitational lensing
data from KiDS. In our numerical analysis, we have let the coupling
parameter r and the scalar potential parameter λ to vary freely. The
flat priors on the cosmological parameters are chosen the same as the
ones in Costa et al. (2015), listed in Table 2, so that the comparisons
can be carried out by using the Planck13 results obtained in Costa
et al. (2015) and our new results from Planck15, and also the
concordance problem can be examined between the Planck data
sets and the KiDS data sets.

The constraints on the parameters and the best-fitting values are
reported in Table 3, where we also include the previous results
in Costa et al. (2015) for comparison. Here, the mean values and
68 per cent limits are obtained from the marginalized distribution,
and the best-fitting values are determined by the maximum N-
dimensional likelihood of the samples. Fig. 3 shows the 1D
marginalized posterior distributions by using Planck data sets, and
the 2D distributions for some parameters of interest are plotted
in Fig. 4. We employ a criteria – Figure of Merit (FoM) – to
evaluate the constraining ability of the updated Planck data set.
FoM can be defined in different ways, as long as its value can reflect
how tightly or loosely the data constrain parameters. Here for the
convenience of our analysis, we adopt the simple definition FoM =
SPlanck15/SPlanck13, where S represents the area of 1σ region. The

Table 3. Best-fitting values and 68 per cent confidence levels for the cosmological parameters.

Parameter Planck13 Planck15 Planck15(+lensing) KiDS
Best fit 68 per cent limits Best fit 68 per cent limits Best fit 68 per cent limits Best fit 68 per cent limits

�bh2 0.02186 0.02195+0.000279
−0.00028 0.02203 0.0222+0.000157

−0.000157 0.02225 0.0222+0.000156
−0.000156 0.01982 0.03785+0.0103

−0.0287

�ch2 0.1159 0.1171+0.00477
−0.00315 0.1201 0.1181+0.00305

−0.00157 0.1196 0.1174+0.00331
−0.00161 0.1126 0.1239+0.0179

−0.0281

100θMC 1.041 1.041+0.000651
−0.000645 1.041 1.041+0.000336

−0.000338 1.041 1.041+0.000335
−0.000334 1.152 1.077+0.0489

−0.064

τ 0.08589 0.08879+0.0125
−0.0139 0.0814 0.08287+0.0172

−0.017 0.06774 0.06663+0.0133
−0.0133 0.23 0.3224+0.101

−0.312

ns 0.9589 0.959+0.0075
−0.00753 0.9632 0.9644+0.00488

−0.00485 0.9663 0.9653+0.00478
−0.00479 0.9434 1.001+0.0993

−0.101

log(1010As) 3.084 3.086+0.0246
−0.0249 3.1 3.102+0.0334

−0.0331 3.068 3.067+0.0246
−0.0243 3.555 3.307+0.693

−0.607

λ 0.5627 0.7497+0.75
−0.65 0.2902 0.6858+0.231

−0.676 1.098 0.7084+0.792
−0.698 0.9991 0.8493+0.651

−0.256

r − 0.06695 −0.009795+0.046
−0.0613 − 0.02669 −0.01074+0.0424

−0.0426 − 0.01847 −0.009974+0.0463
−0.0469 0.07272 0.004417+0.0956

−0.104

�� 0.7175 0.6882+0.03
−0.037 0.6827 0.6835+0.0224

−0.0268 0.6608 0.6873+0.0241
−0.0285 0.8547 0.7895+0.0559

−0.0437

�m 0.2825 0.3118+0.037
−0.03 0.3173 0.3165+0.0268

−0.0224 0.3392 0.3127+0.0285
−0.0241 0.1453 0.2105+0.0437

−0.0559

zre 10.71 10.94+1.08
−1.08 10.37 10.36+1.62

−1.37 9.026 8.86+1.32
−1.16 23.11 20.07+8.68

−12.

H0 69.99 67.16+2.41
−3.3 67.09 66.89+2.09

−2.3 64.8 67.13+2.14
−2.59 95.67 88.45+11.6

−3.93

Age/Gyr 13.65 13.75+0.157
−0.0744 13.81 13.76+0.112

−0.037 13.83 13.75+0.125
−0.0435 11.19 11.55+0.853

−1.37
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Figure 3. 1D distributions for the cosmological parameters using Planck data.

Figure 4. 2D distributions for selected parameters using Planck data.
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304 R. An et al.

Figure 5. 1D distributions for the cosmological parameters using Planck and KiDS data.

values of FoM for �ch2 − λ, �ch2 − r, and λ − r planes are 1.582,
2.378, and 1.274, respectively, which indicates that Planck15 data
can produce a significant improvement in the constraints compared
with the previous results by using Planck13 data. We can see that
the 1σ range for the coupling parameter r is much smaller and the
best-fitting value of it becomes less negative by using new Planck
data. For the scalar potential parameter λ, the new Planck data
has improved the 1σ range, but it is still not enough to constrain
this parameter as shown in Fig. 3. From Fig. 4, we find that the
degeneracies between the parameters �ch2, λ, and r do not have
any significant difference from the previous results obtained from
Planck13.

Fig. 5 shows the 1D marginalized posterior distributions by using
KiDS data sets. Due to large band power uncertainties in the weak
lensing measurements, the constraints from KiDS data have wider
68 per cent confidence regions compared to that from Planck data.
Note that the amplitude of scalar perturbation As and the scalar

spectral index ns are mainly constrained by the priors rather than
by the KiDS data. We find that the KiDS data presents a preference
for larger values of the scalar potential parameter λ than the Planck
data, and the best-fitting values of the coupling parameter r becomes
positive which is opposite to the results obtained from Planck data.
We also show the impact of baryonic feedback B and intrinsic
alignment amplitude AIA of the weak lensing analysis. In Fig. 6, we
can see that the KiDS data do not strongly constrain the baryon feed-
back amplitude B, which indicates that this astrophysical effect is
relatively unimportant in our analysis. Future cosmic shear surveys
with higher signal-to-noise measurements and finer binning in angle
and redshift or cross-correlations between lensing and baryonic
probes may constrain B to a reasonable level (Hildebrandt et al.
2017). In Joudaki et al. (2017), they found an almost 2σ preference
for a non-zero intrinsic alignment amplitude in the �CDM model,
where −0.45 < AIA < 2.3, which is similar to the constraint of
−0.24 < AIA < 2.5 when considering the fiducial treatment of the
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Yukawa-type DM/DE interaction 305

Figure 6. Marginalized posterior distributions of the baryon feedback am-
plitude B and the intrinsic alignment amplitude AIA for Yukawa interaction
model by using KiDS data.

Figure 7. Time evolution of the ratio between the energy densities of
dark matter and dark energy. The dashed lines correspond to the Yukawa
interaction model with different best-fitting values of λ and r listed in Table 3,
where the blue line corresponds to Planck13, the red line corresponds to
Planck15, the green line corresponds to Planck15(+lensing), and the grey
one corresponds to KiDS.

systematic uncertainties. As shown in Fig. 6, the constraint on the
intrinsic alignment amplitude in the Yukawa interaction model is
only marginally affected by the extra two free parameters r and λ

in our analysis, where −0.15 < AIA < 2.1(95 per cent CL). We will
consider the combination of Planck15+RSD+KiDS below, where
this constraint can improve to 0.65 < AIA < 1.96(95 per cent CL).

Besides, we find that the best-fitting values we obtained for λ

and r in Table 3 can help to alleviate the coincidence problem. As
shown in Fig. 7, we present the time evolution of the ratio between
the energy densities of dark matter and dark energy, we can see that
the energy densities of dark matter and dark energy in the Yukawa
interaction models have more time to be comparable in the past.

For the purposes of model selection, we use the deviance
information criterion (DIC; Spiegelhalter et al. 2002; An et al.
2018) to investigate whether the Yukawa interaction model is more
favoured by Planck15 and KiDS data sets, as compared to the
�CDM model. DIC is composed of the sum of goodness of fit
of a given model and its Bayesian complexity, which is defined as

DIC = χ2
eff (θ̂) + 2pD, (32)

where χ2
eff (θ̂ ) = −2lnLmax is the best-fitting effective χ2 and θ̂ is

the parameter vector at the maximum-likelihood point. The second
term in equation (32) is the Bayesian complexity expressed as pD =

Figure 8. Marginalized confidence contours in the σ 8–�m plane for the
�CDM model (�) and Yukawa interaction model (Y). 68 per cent and
95 per cent confidence levels are shown as inner and outer regions.

〈χ2
eff (θ )〉 − χ2

eff (θ̂ ), where 〈χ2
eff (θ )〉 represents the mean χ2 averaged

over the posterior distribution. A difference of 10 in DIC between
two models constitutes strong preference in favour of the model
with the lower DIC estimate, and a difference of 5 in DIC between
two models constitutes moderate preference in favour of the model
with the lower DIC estimate. When the difference is close to zero,
it means one model is not favoured over the other (Joudaki et al.
2017). In comparing the Yukawa interaction model with the �CDM
model, we take negative values of �DIC to indicate a preference
in favour of the Yukawa interaction model. We find that Planck15
data sets moderately favours the Yukawa interaction model with a
negative value �DIC = −5.152, while the KiDS data sets do not
show any preference for the Yukawa interaction model due to the
small positive value �DIC = 0.395.

In this work, we also aim to investigate whether the Yukawa
interaction model can alleviate the tension between KiDS and
Planck that has been reported for the �CDM model. Fig. 8 shows
the parameter constraints in the σ 8–�m plane for the Yukawa
interaction model and the standard �CDM model that has been
presented in fig. 1 of An et al. (2018). We find that different from
the �CDM model, the KiDS and Planck constraint contours of
the Yukawa interaction model start to overlap with each other.
In order to quantify how much the tension between Planck and
KiDS has been reduced by Yukawa interaction, we employ the
tension parameter diagnostic. Since current lensing data mainly
constrain the S8 = σ8

√
�m parameter combination well, the tension

parameter T can be defined as (Joudaki et al. 2017)

T (S8) = | 〈SK
8

〉 − 〈
SP

8

〉 |√
σ 2

(
SK

8

) + σ 2
(
SP

8

) , (33)

where 〈S8〉 is the mean value over the posterior distribution and
σ refers to the symmetric 68 per cent confidence interval about the
mean. The superscripts K denotes the KiDS data and P denotes
the Planck data. The tension between KiDS and Planck15 data
sets for the �CDM and Yukawa interaction models is 2.11σ and
1.54σ , respectively. If we consider CMB lensing, the discordance
between KiDS and Planck15(+lensing) for the Yukawa interaction
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Table 4. Best-fitting values and 68 per cent confidence levels for the cosmological parameters.

Parameter Planck15 Planck15+RSD Planck15+RSD+KiDS
Best fit 68 per cent limits Best fit 68 per cent limits Best fit 68 per cent limits

�bh2 0.02203 0.0222+0.000157
−0.000157 0.02229 0.02229+0.000172

−0.000173 0.02232 0.02237+0.000153
−0.000151

�ch2 0.1201 0.1181+0.00305
−0.00157 0.1174 0.1167+0.00356

−0.00156 0.1108 0.1162+0.00225
−0.00127

100θMC 1.041 1.041+0.000336
−0.000338 1.041 1.041+0.000356

−0.000357 1.041 1.041+0.000318
−0.000316

τ 0.0814 0.08287+0.0172
−0.017 0.09015 0.08137+0.0273

−0.0249 0.09088 0.08108+0.0168
−0.0169

ns 0.9632 0.9644+0.00488
−0.00485 0.9698 0.9659+0.00554

−0.00549 0.9707 0.9694+0.00456
−0.00454

ln(1010As) 3.1 3.102+0.0334
−0.0331 3.107 3.095+0.0519

−0.0467 3.116 3.082+0.0319
−0.032

λ 0.2902 0.6858+0.231
−0.676 1.395 1.281+0.219

−0.0241 1.2966 1.122+0.378
−0.15

r − 0.02669 −0.01074+0.0424
−0.0426 0.01172 −0.005202+0.0446

−0.0452 0.02748 −0.001688+0.0353
−0.0343

�� 0.6827 0.6835+0.0224
−0.0268 0.644 0.6632+0.0156

−0.0262 0.7392 0.6737+0.0165
−0.0195

�m 0.3173 0.3165+0.0268
−0.0224 0.356 0.3368+0.0262

−0.0156 0.2608 0.3263+0.0195
−0.0165

zre 10.37 10.36+1.62
−1.37 11.03 10.09+2.63

−1.9 11.23 9.705+1.58
−1.41

H0 67.09 66.89+2.09
−2.3 62.78 64.47+0.988

−2.25 71.61 65.39+1.43
−1.86

Age/Gyr 13.81 13.76+0.112
−0.037 13.87 13.79+0.105

−0.0323 13.57 13.79+0.0732
−0.0359

model can reduce to 1.34σ . From this T-parameter test, we find
the Yukawa interaction model can moderately alleviate the tension
between these two data sets.

As shown in Fig. 8, we also examine the discordance between
DES and Planck. We find that the DES constraint is consistent
with that of KiDS in the �CDM model, and the consistency is
unchanged in the Yukawa interaction model. Tension between DES
and Planck15 data sets for the �CDM model is 1.89σ , and it will
reduce to 1.30σ in the Yukawa interaction model. If we consider
CMB lensing, the tension between DES and Planck15(+lensing)
for the Yukawa interaction model will be 0.86σ . These indicate that
the Yukawa interaction model can also alleviate the discordance
between DES and Planck inferred from the �CDM model.

In the following discussion, we add the redshift-space distortions
data from large-scale structure observations to constrain the Yukawa
interaction model. In Table 4, we present the best-fitting values
and 68 per cent limits from the joint analysis of Planck15+RSD
and Planck15+RSD+KiDS. The 1D and 2D posterior distributions
are shown in Figs 9 and 10, respectively. In the discussion above,
we found that the Planck15 data alone cannot constrain the scalar
potential parameter λ, while including the RSD data we see that λ

can be tight constrained, and the RSD data prefers higher values
of λ. For the coupling parameter r, Planck15 data alone puts a
preference for a negative value, while the joint analysis by combing
RSD data together prefers a very small positive interaction term for
the best-fitting value. These results are compatible with the previous
analysis in Section 3. We also find that the joint analysis including
KiDS data can improve the constraint for the coupling parameter r
and prefer a larger positive best-fitting value. For the scalar potential
parameter λ, the combination of these three data sets still presents
a preference for larger value.

From Figs 3, 5, and 9, we observe that the cosmological observa-
tions we employed in this work cannot break the symmetry around
zero value of the coupling parameter r. This is due to the behaviour
of spectrum manifesting some symmetry around the axis of r = 0
(Costa et al. 2015). In the following section, we will go beyond the
linear perturbation study and employ the N-body simulations to test
this model in the non-linear structure formation and find whether the
non-linear perturbation can provide richer physics to break down
the degeneracy between positive and negative r.

5 SI M U L AT I O N S

We perform N-body simulations using ME-GADGET and the related
simulation pipeline (Springel 2005; Crocce, Pueblas & Scoccimarro
2006; Liao 2018; Zhang et al. 2018a, b) to investigate the non-linear
structure formation in the Yukawa-type dark matter and dark energy
interaction model. ME-GADGET is a modified version of publicly
available GADGET2 code. We can use ME-GADGET to perform N-
body simulations for Interacting Dark Energy model (Zhang et al.
2018b). The Yukawa interaction model is one kind of Interacting
Dark Energy model, ME-GADGET can also solve the non-linear
structure formation accurately in the Yukawa interaction model.
In order to take Yukawa-type dark matter and dark energy into
account in the N-body simulation, we need to modify both the initial
condition for the simulation and the simulation procedure. We use
the modified CAMB to generate the linear matter power spectrum at
z = 49, and use a modified version of 2LPTic (Crocce et al. 2006)
to load in the CAMB generated matter power spectrum and generate
the initial condition for the simulation. In the simulation procedure,
four major difference from �CDM simulation need to be taken into
account: (a) the expansion rate of the universe shall be changed
accordingly; (b) ρc ∝ a−3 is no longer true, where a is the scale
factor, therefore, the particle mass in the simulation is varying;
(c) the particles in the simulation receive additional drag force
v̇ = α(a)v due to the interaction with the background dark energy
field, just like a car passes through the wind and feels friction; (d)
additional gravitational force caused by the perturbation of dark
energy field, which can be treated as an effective gravitational
constant. For more details, please refer to Zhang et al. (2018b).
We calculate the Hubble expansion rate H(z)/H0, the particle mass
variation m(a), the drag force parameter α(a) and the change of
effective gravitational constant Geff(a)/G. We take these four effects
into account using ME-GADGET and perform N-body simulations.

Since we have used KiDS weak gravitational lensing data to
set constraints, it is important to notice that in fact the non-
linear correction of matter power spectrum provided in CAMB,
so-called halofit, is not consistent with the Yukawa interaction
model. We use the simulations to confirm that, though halofit
is not consistent with the Yukawa interaction model, it can still
provide reasonably accurate matter power spectrum. Three N-body
simulations with Yukawa interaction, called Yukawa, r = −0.1 and
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Figure 9. 1D distributions for the cosmological parameters using Planck, RSD, and KiDS data.

Figure 10. 2D distributions for selected parameters using Planck, RSD, and KiDS data.
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Table 5. Parameters for N-body simulations.

Parameter �CDM Yukawa r = −0.1 r = 0.1

�bh2 0.02225 0.0222 0.02225 0.02225
�ch2 0.1198 0.1181 0.1198 0.1198
100θMC 1.04077 1.041 1.04077 1.04077
τ 0.079 0.08287 0.079 0.079
ns 0.9645 0.9644 0.9645 0.9645
ln(1010)As 3.094 3.102 3.094 3.094
λ – 0.6858 1.2247 1.2247
r – − 0.01074 − 0.1 0.1
H0 67.27 66.89 67.27 67.27
Boxsize/h−1Mpc 400 400 400 400
NumPart 5123 5123 5123 5123

SoftLen/h−1kpc 25 25 25 25

Figure 11. Upper panel: The measured matter power spectrum of three
simulations are shown in solid lines and the matter power spectrum
calculated by halofit are shown in dashed lines. The black vertical line
on the left (right) shows the boxsize limit (Nyquist limit). Lower panel: The
ratio of difference between the simulation and halofit is given in different
colours. Despite the large difference on the left due to cosmic variance, it is
clear that halofit can provide accurate (< 10 per cent difference) estimation
for the matter power spectrum.

r = 0.1, and one �CDM simulation are performed in this work.
Their parameters are given in Table 5, where NumPart is short for
number of particles, SoftLen is short for softening length, and the
cosmological parameters in Yukawa case are taken from Planck15
constraint results. We use the same random seed to generate the
initial conditions for the simulations and measure the matter power
spectrum with ComputePk code (L’Huillier 2014). The results are
shown in Fig. 11. We found that the difference of matter power
spectrum between simulations and halofit is less than 10 per cent,
which is accurate enough for our calculation of KiDS weak lensing
constraints.

Using N-body simulations, we also confirm that the effects of
r = −0.1 and r = 0.1 on the matter power spectrum are very
similar. We investigate the halo density profile of the most massive
haloes in the simulations in Fig. 12. The haloes are identified by
Amiga’s Halo Finder (Knollmann & Knebe 2009). The red line is
lower than the other three, because it takes a lower value of �ch2.

Figure 12. The halo density profiles of the most massive halo in the
simulations are shown. We have checked that these four haloes are cor-
respondent, which means they share similar environment. Though the halo
density profiles of r = −0.1 and r = 0.1 are similar at R ∼ 2000 kpc h−1,
large difference can be found in the inner region of the haloes.

Comparing to �CDM, r = −0.1 and r = 0.1 depart to different
direction from the edge of the halo to the centre. The halo in
r = −0.1 simulation is more concentrate than the �CDM case,
while in r = 0.1, the halo is looser. The inter region of haloes is
highly non-linear, and the difference is large between r = −0.1
and r = 0.1. Zhang et al. (2018a) introduces that it is possible to
use galaxy-galaxy lensing to distinguish different interacting dark
energy models by investigating the structure of the dark matter
halos. This large difference of halo density profile indicates that
we can use galaxy–galaxy lensing to break the degeneracy between
positive and negative r. The detail discussion is beyond the scope
of this work and will be fully discussed in the future.

6 C O N C L U S I O N S

In this work, we have obtained the observational constraints on the
Yukawa-type dark matter and dark energy interaction model using
both weak gravitational lensing data from the KiDS and the updated
CMB data from Planck. We find that the constraints from Planck15
have been clearly improved compared with that from Planck13.
Due to large band power uncertainties, the KiDS data sets alone
have less constraining power than the Planck data sets. From the
constraint results, we find that the Planck data induces evidence for
a negative value of the coupling parameter r, while the KiDS data
presents a preference for a positive value of r. These two data sets
cannot constrain the scalar potential parameter λ. So we add new
complementary data sets from large-scale structure observations,
RSD, to investigate the constraints on the Yukawa interaction model.
We find that RSD data prefers a very small positive value for r and
can put a tight constraint on λ with higher values. Besides we find
that the interaction in the Yukawa model can help to alleviate the
coincidence problem, accommodating longer period for dark matter
and dark energy comparable to each other.

We also investigate whether the Yukawa interaction model can al-
leviate the �CDM discordance problem between KiDS and Planck
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data sets, and whether the Yukawa interaction model is favoured
by these data sets as compared to the �CDM model. Employing
the DIC and tension parameter diagnostics, the Yukawa interaction
model is found to be moderately favoured by the Planck data sets,
and able to alleviate the tension between KiDS and Planck. We also
find that the tension between DES and Planck data sets inferred
from the �CDM model can be reduced by the Yukawa interaction
model. With the improvement of the weak lensing measurements,
the desired concordance between weak lensing and CMB data sets
can be used to support the interaction between dark sectors.

In July 2018, Planck Collaboration has released their final results
on constraining the cosmological parameters (Planck Collaboration
VI 2018). We would like to use the updated likelihood and data
to test our model, once they are available. We expect that future
more precise Planck 2018 data can help us to draw more accurate
conclusions on examining the Yukawa interaction model. Compared
to Planck 2015 results, the improved measurements of large-scale
polarization allow the reionization optical depth to be measured with
higher precision, this in turn will affect other correlated parameters,
and the improved modelling of the small-scale polarization will
also lead to more robust constraints on the cosmological parameters
(Planck Collaboration VI 2018).

By performing self-consistent N-body simulations, we find that
the assumed halofit model can accurately estimate the non-linear
matter power spectrum for Yukawa interaction model. Thus, the
methodology we use to set constraints from KiDS cosmic shear
measurements is correct. By measuring the halo density profile, we
find that the difference between r = −0.1 and r = 0.1 is significant.
Hopefully, we may break the symmetry around zero value for the
coupling parameter r using galaxy–galaxy lensing. We will study
the non-linear structure formation in Yukawa interaction model in
more detail and put further constraints on this model from galaxy–
galaxy lensing in the future.
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Böhmer C. G., Caldera-Cabral G., Lazkoz R., Maartens R., 2008,

Phys. Rev. D, 78, 023505
Bowman J. D., Rogers A. E. E., Monsalve R. A., Mozdzen T. J., Mahesh

N., 2018, Nature, 555, 67
Chen S., Wang B., Jing J., 2008, Phys. Rev. D, 78, 123503
Chimento L. P., Jakubi A. S., Pavón D., Zimdahl W., 2003, Phys. Rev. D,

67, 083513
Cohen A., Fialkov A., Barkana R., Lotem M., 2017, MNRAS, 472, 1915

Costa A. A. et al., 2019, MNRAS, 488, 78
Costa A. A., Olivari L. C., Abdalla E., 2015, Phys. Rev. D, 92, 103501
Costa A. A., Xu X.-D., Wang B., Abdalla E., 2017, J. Cosmol. Astropart.

Phys., 1, 028
Crocce M., Pueblas S., Scoccimarro R., 2006, MNRAS, 373, 369
de Jong J. T. A. et al., 2015, A&A, 582, A62
de la Torre S. et al., 2013, A&A, 557, A54
Del Campo S., Herrera R., Pavón D., 2008, Phys. Rev. D, 78, 021302
Delubac T. et al., 2015, A&A, 574, A59
DES Collaboration et al., 2019, Phys. Rev. D, 99, 123505
Farrar G. R., Peebles P. J. E., 2004, ApJ, 604, 1
Feix M., Nusser A., Branchini E., 2015, Phys. Rev. Lett., 115, 011301
Fenech Conti I., Herbonnet R., Hoekstra H., Merten J., Miller L., Viola M.,

2017, MNRAS, 467, 1627
Flaugher B. et al., 2015, AJ, 150, 150
Gelman A., Rubin D. B., 1992, StaSc, 7, 457
He J.-H., Wang B., Abdalla E., 2009, Phys. Lett. B, 671, 139
Hildebrandt H. et al., 2017, MNRAS, 465, 1454
Hudson M. J., Turnbull S. J., 2012, ApJ, 751, L30
Joudaki S. et al., 2017, MNRAS, 471, 1259
Joudaki S. et al., 2019, preprint (arXiv:1906.09262)
Knollmann S. R., Knebe A., 2009, ApJS, 182, 608
Kuijken K. et al., 2015, MNRAS, 454, 3500
L’Huillier B., 2014, Astrophysics Source Code Library, record

ascl:1403.015
Lewis A., 2013, Phys. Rev. D, 87, 103529
Lewis A., Bridle S., 2002, Phys. Rev. D, 66, 103511
Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473
Liao S., 2018, MNRAS, 481, 3750
Lopez Honorez L., Reid B. A., Mena O., Verde L., Jimenez R., 2010, J.

Cosmol. Astropart. Phys., 9, 029
Marcondes R. J. F., Landim R. C. G., Costa A. A., Wang B., Abdalla E.,

2016, J. Cosmol. Astropart. Phys., 12, 009
Micheletti S., Abdalla E., Wang B., 2009, Phys. Rev. D, 79, 123506
Olivares G., Atrio-Barandela F., Pavón D., 2006, Phys. Rev. D, 74, 043521
Pavan A. B., Ferreira E. G. M., Micheletti S. M. R., de Souza J. C. C.,

Abdalla E., 2012, Phys. Rev. D, 86, 103521
Pavón D., Zimdahl W., 2005, Phys. Lett. B, 628, 206
Planck CollaborationI, 2016a, A&A, 594, A1
Planck Collaboration et al., 2016b, A&A, 594, A11
Planck Collaboration et al., 2016c, A&A, 594, A13
Planck Collaboration et al., 2018, preprint (arXiv:1807.06209)
Reid B. A. et al., 2012, MNRAS, 426, 2719
Riess A. G. et al., 2011, ApJ, 730, 119
Riess A. G. et al., 2016, ApJ, 826, 56
Samushia L., Percival W. J., Raccanelli A., 2012, MNRAS, 420, 2102
Schaefer B. M., Caldera-Cabral G. A., Maartens R., 2008, preprint (arXiv:

0803.2154)
Song Y.-S., Percival W. J., 2009, J. Cosmol. Astropart. Phys., 10, 004
Spiegelhalter D. J., Best N. G., Carlin B. P., Van Der Linde A., 2002, J. R.

Stat. Soc.: Ser. B (Stat. Methodol.), 64, 583
Springel V., 2005, MNRAS, 364, 1105
Takahashi R., Sato M., Nishimichi T., Taruya A., Oguri M., 2012, ApJ, 761,

152
Tojeiro R. et al., 2012, MNRAS, 424, 2339
Troxel M. A. et al., 2018, Phys. Rev. D, 98, 043528
Wang B., Abdalla E., Atrio-Barandela F., Pavón D., 2016, Rep. Prog. Phys.,

79, 096901
Weinberg S., 1989, Rev. Mod. Phys., 61, 1
Zhang J., An R., Luo W., Li Z., Liao S., Wang B., 2018, ApJL, 875, L11
Zhang J., An R., Liao S., Luo W., Li Z., Wang B., 2018b, Phys. Rev. D, 98,

103530

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 489, 297–309 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/489/1/297/5538815 by guest on 15 M
arch 2021

http://dx.doi.org/10.1103/PhysRevD.98.043526
http://dx.doi.org/10.1103/PhysRevD.62.043511
http://dx.doi.org/10.1103/PhysRevD.68.023514
http://dx.doi.org/10.1016/j.physletb.2005.10.065
http://dx.doi.org/10.1016/j.physletb.2007.08.046
http://dx.doi.org/10.1111/j.1365-2966.2012.21136.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18903.x
http://dx.doi.org/10.1103/PhysRevD.78.023505
http://dx.doi.org/10.1038/nature25792
http://dx.doi.org/10.1103/PhysRevD.78.123503
http://dx.doi.org/10.1103/PhysRevD.67.083513
http://dx.doi.org/10.1093/mnras/stx2065
http://dx.doi.org/10.1088/1755-1315/225/1/012075
http://dx.doi.org/10.1103/PhysRevD.92.103501
http://dx.doi.org/10.1111/j.1365-2966.2006.11040.x
http://dx.doi.org/10.1051/0004-6361/201526601
http://dx.doi.org/10.1051/0004-6361/201321463
http://dx.doi.org/10.1103/PhysRevD.78.021302
http://dx.doi.org/10.1051/0004-6361/201423969
http://dx.doi.org/10.1086/381728
http://dx.doi.org/10.1103/PhysRevLett.115.011301
http://dx.doi.org/10.1093/mnras/stx200
http://dx.doi.org/10.1088/0004-6256/150/5/150
http://dx.doi.org/10.1214/ss/1177011136
http://dx.doi.org/10.1016/j.physletb.2008.11.062
http://dx.doi.org/10.1093/mnras/stw2805
http://dx.doi.org/10.1088/2041-8205/751/2/L30
http://dx.doi.org/10.1093/mnras/stx998
http://adsabs.harvard.edu/abs/2019arXiv190609262J
http://dx.doi.org/10.1088/0067-0049/182/2/608
http://dx.doi.org/10.1093/mnras/stv2140
http://dx.doi.org/10.1103/PhysRevD.87.103529
http://dx.doi.org/10.1103/PhysRevD.66.103511
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1093/mnras/sty2523
http://dx.doi.org/10.1103/PhysRevD.79.123506
http://dx.doi.org/10.1103/PhysRevD.74.043521
http://dx.doi.org/10.1103/PhysRevD.86.103521
http://dx.doi.org/10.1016/j.physletb.2005.08.134
http://adsabs.harvard.edu/abs/2018arXiv180706209P
http://dx.doi.org/10.1111/j.1365-2966.2012.21779.x
http://dx.doi.org/10.1088/0004-637X/730/2/119
http://dx.doi.org/10.3847/0004-637X/826/1/56
http://dx.doi.org/10.1111/j.1365-2966.2011.20169.x
http://adsabs.harvard.edu/abs/2008arXiv0803.2154S
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://dx.doi.org/10.1088/0004-637X/761/2/152
http://dx.doi.org/10.1111/j.1365-2966.2012.21404.x
http://dx.doi.org/10.1103/PhysRevD.98.043528
http://dx.doi.org/10.1088/0034-4885/79/9/096901
http://dx.doi.org/10.1103/RevModPhys.61.1

