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1. Introduction

Since the notion of Lie coalgebra was developed in [3], coalgebras in varieties of non-associative
algebras have been studied. In particular, it is interesting to draw comparisons between results of
the classic case of (co)associative coalgebras. One particular result that does not hold for non-
associative coalgebras in general is the Fundamental Theorem of Coalgebras.

The Fundamental Theorem of Coalgebras states that every finitely generated associative coalge-
bra is finite dimensional. It was proved in [3] that an analogue of this result is not true for Lie
coalgebras. W. Michaelis constructed a number of examples [4, 5] of infinite dimensional finitely
generated Lie coalgebras.

It is still an open problem to find a necessary and sufficient condition in order to every finitely
generated coalgebra of a given variety to be finite dimensional. The reader can refer to [7] for
more information on varieties whose finitely generated coalgebras are known to be finite dimen-
sional. On the other hand, examples of finitely generated coalgebras with infinite dimension are
scarce and the Lie coalgebras constructed by W. Michaelis are still the only known ones to
the authors.

Our first objective in this work is to study the finite dual of an algebra under certain circum-
stances in order to guarantee a well-behaved structure of coalgebra. Then, we use our results to
construct an example of right alternative coalgebra that is finitely generated but infinite
dimensional.

Proposition 1 and Theorem 2 gives us many examples of coalgebras in varieties, while
Example 1 is an application of the latter to construct our desired example of right alternative
coalgebra. As the variety of right alternative algebras does not admit locally nilpotent radical, the
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Paulo, Brazil.
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existence of this example agrees with the following conjecture due to I. Shestakov: the finitely
generated coalgebras of a given variety are finite dimensional if, and only if, this variety admits
locally nilpotent radical (in the sense of Amitsur-Kurosh).

2. Bimodules and coalgebras

Let F be a field. In this article, algebras are assumed to be algebras over this field F and are not
necessarily associative. If V is a vector space, then we denote by End (V) the space of all linear
endomorphisms of V. The dual space of V, which is denoted by V*, is the space of all linear
functionals of the space V. If « € V* and v € V, then we will denote the image of v through o
by (o, v).

If A is an algebra, then an A-bimodule is a triple (M, 4, p), in which M is a vector space and
A:A — End(M),p: A— End (M) are linear maps called the left action and the right action,
respectively. When there is no risk of mistake about the definition of the actions, we simply refer
to the A-bimodule M. If a € A, then we denote the image of a through the linear maps 4 and p,
respectively, by 4, and p,,.

Let A be an algebra and a € A. The linear maps L,, R, € End A given by L,(x) = ax and
R,(x) = xa, for any x € A, are called respectively the left and right multiplication operators by a.
The triple (A, L, R) is an A-bimodule called the regular A-bimodule.

If N C M is a subspace of the A-bimodule M, then we say that N is an A-subbimodule of M if
the spaces

AN = {2,(x)|x € N,a € A} and NA = {p,(x)|x € N,a € A}

are subspaces of N.
If (M, 7, p) is an A-bimodule and S C M then we can define the subspaces

BY(S) = span (S)
B®(S) = span <T£11> W m) [, .., 7™ e {Lp}, ar,..a, €A, meS)

ol

for each positive integer k. The A-subbimodule of M generated by S C M, here denoted by
Bimody (S), is given the intersection of all A-subbimodules of M that contain the subset S. It is
easy to check that

Bimod, (S) = Y~ BY(s).
k=0
If (M, J,p) is an A-bimodule, then we can define a multiplication over the vector space A+M
given by

(@ +m)(b+n) = ab+ (Z(m) + py(n)),

for any a,b € A and any m,n € M. With this product, A+M is an algebra called the split-null
extension of the A-bimodule M. If V is a variety of algebras, then we say that the A-bimodule M
is a bimodule of V, if the split-null extension of M is an algebra of V.

A coalgebra is a pair (C,A) where C is a vector space and A: C — C® C is a linear map
called comultiplication. When there is no risk of mistake about the definition of A, we simply
refer to the coalgebra C. We shall use the Sweedler notation for the comultiplication of elements
of the coalgebra C, that is, if x € C, then we will denote

Alx) = me ® X(2)-
()
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A subspace D C C is a subcoalgebra of C if A(D) CD®D. If S C C, then the subcoalgebra
generated by S, denoted by Coalg (S), is the smallest subcoalgebra of C (in the sense of inclusion)
that contains the subset S. We say that a coalgebra C is locally finite if every subcoalgebra gener-
ated by a finite subset of C is also finite dimensional.

Let C be a coalgebra with comultiplication A:C — C® C. then a multiplication m:
C* ® C* — C* can be constructed on the dual space C* in the following way

(M@ B),x) = (oxu) (B xp)
(%)

for each o, f € C* and x € C. With this multiplication, C* is called the dual algebra of C. For any
subspace V, we can consider the linear transformation 1: V* @ V* — (V. ® V)", given by (1(¢ ®
B),v@w) = (o,v) (f,w), for any o, f € V* and any v,w € V. In the case where V=C, then the
multiplication of the dual algebra of C can be written as m = 10 A, where A is the comultiplica-
tion of C.

The transformation 1 is injective and it is a natural transformation in the sense that it does
not depend on the choice of any basis on C* @ C* or (C® C)". For this reason we will use it to
identify C* ® C* as a subset of (C® C)".

Let V be a variety of algebras. If C is a coalgebra such that its dual algebra belongs to V, then
we say that C is a coalgebra of V. A classic result in the theory of associative coalgebras is the
Fundamental Theorem of Coalgebras, which states that every associative coalgebra is locally finite.
Analogues of the Fundamental Theorem of Coalgebra have been proved for a number of varieties
(refer to [7]). It is still an open problem to find necessary and sufficient conditions in order to all
coalgebras of a given variety to be locally finite.

If Cis a coalgebra, then it has a structure of C*-bimodule with left and right actions given,
respectively, by

r—x= Z (o, x(2)) (1) X — o0 = Z (o, x(1))X(2)» (1)
(%) (x)

where x € C and o € C*.

3. Finite dual

As seen in the previous section, the dual space of a coalgebra has a natural structure of algebra.
However, the same does not happen in the case of the dual space of an algebra (not even in the
associative case). The finite dual of an algebra is, roughly speaking, the biggest subspace of the
dual space in which the transpose of the multiplication defines a comultiplication. When looking
for examples of coalgebras, it can be useful to study the finite dual of algebras.

Let A be an algebra. If S is a subspace of the dual space A*, then S is called a good subspace of
A* if m*(S) CS® S (by using the previously mentioned linear transformation 1 to identify the
sets S®S and 1(S®S)), in which m: A® A — A is the multiplication of A and m*: A* —
(A® A)" is the transpose of m. The finite dual of A, denoted by A°, is defined as the sum of the
good subspaces of A*. For more details on the construction the finite dual, the reader can check
[1, p. 4699, 4670]. It is easy to show that A° is a coalgebra with comultiplication given by m*.

It is worth mentioning two special cases of the finite dual.

First, let A be a finite dimensional algebra. The dual space of A is also finite dimensional and
the finite dimensional spaces A* ® A* and (A ® A)" are isomorphic through the linear transform-
ation 1: A* ® A* — (A® A)". In this case, we can define the comultiplication A : A* — A* ® A*
given by the composition A = m* o 1~!, where m is the multiplication of A and m* is the trans-
pose transformation of m. Therefore, we have A° = A*.
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Now let A be an associative algebra (of arbitrary dimension). It is well known [8] that the
finite dual of A can be defined as

A° = {f € A" |kerf contains a finite codimensional ideal of A}.

It was proved in [1] that this characterization is also true for any algebra A as long as A° is a
locally finite coalgebra.

Let A be an algebra. The dual space A* has a structure of A-bimodule with left and right
actions given, respectively, by

4a(f) = f o Rapa(f) = f © Las (2)

for any a € A, f € A*, where L, and R, are respectively the left and right multiplication opera-
tors by a.

Note that if A is an algebra, then we can construct its finite dual A°, which is a coalgebra, and
therefore we can also construct (A°)", the dual algebra of A°. The elements of the coalgebra A°
are subject to the actions of two bimodule structures: one is the structure of (A°)*-bimodule,
given by the fact that A° is a coalgebra and, therefore, a bimodule over its dual algebra with
actions given by (1); the second is due to the fact that A° is a subset of A* and A* is an A-bimod-
ule with actions given by (2). The relation between these actions will be clarified in the
next section.

For the rest of this work, we will often refer to the following result proved by [1, p. 4704] that
offers a criterion for good subspaces of the dual space of an algebra.

Corollary 2.5 [1]. Let A be an algebra and let S be a vector subspace of A*. Then the following
are equivalent:

i. The subspace S is an A-sub-bimodule of A* such that, for any f € S, the subspaces
Af ={4(f)lac A} fA={p,(f)]ac A}

are finite dimensional.
ii. S is good.
Through the application of Corollary 2.5 from [1] to the split-null extension of an A-bimodule
M, we can prove the following proposition, that may be useful to find examples of coalgebras in
a specific variety.

Proposition 1. Let A be a finite dimensional algebra and M be a bimodule over A. Then the finite
dual of the split-null extension A+M is the dual space (A+M)". Furthermore, if V is a variety of
algebras and M is a bimodule of V, then (A+M) is a coalgebra of V.

Proof. We shall show that, for any f € (A+M)", the space
BW(f) = span (A«(f), p(f) | x € A+M)

is finite dimensional which, in consequence, shows that the condition (i) of Corollary 2.5 from
[1] is true, as Af and fA are subspaces of B (f). By consequence of the same corollary, (A+M)*
is a good subspace, that is, a coalgebra.

Let {aj,...,a,} be a basis of A. The space A* is finite dimensional and can be considered a
subspace of (A+M)". Therefore, we can define the following finite dimensional subspace of
(A+M)*

V = A" +span (g, (f), -+ 40, (s £, (F)> s P, ()

We shall prove that for any x € A+M, the elements A.(f) and p,(f) belong to V. By linearity,
it is sufficient to consider the cases in which x € A and x € M.
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If x € A, then by linearity again, we can assume that x € {ay,...,a,} and, trivially, we have
2x(f), p(f) € V. If x € M, then for any m € M,

(2<(f),m) = (f,mx) = (f,0) =0
(px(f)sm) = (f,xm) = (f,0) =0
and we can conclude that 1,(f), p,(f) € A* C V. As desired, we proved that B()(f) is a finite
dimensional space and, by the discussion in the beginning of this proof, (A+M)" is a coalgebra.
Furthermore, if M is a bimodule of the variety V, that is, if the split-null extension A+M is
an algebra of V, then by the Corollary 4.3 from [1], the finite dual (A+M)° is a coalgebra of
V. O

Although Proposition 1 gives us many examples of coalgebras (provided that we know exam-
ples of bimodules over finite dimensional algebras), we may still be difficult to determine the
comultiplication of its elements. Later we shall prove Theorem 2, that gives us, under certain cir-
cumstances, examples of coalgebras with more well-behaved comultiplications.

4, Subcoalgebras of the finite dual

Let A be an algebra, A° be its finite dual and f € A°. Our objective is to determine the subcoalge-
bra of A° generated by f. As A° is a coalgebra, it has the structure of bimodule over its dual
algebra. As a consequence of Corollary 1.5 from [1], the desired subcoalgebra is the (A°)"-sub-
bimodule of A° generated by f. In other words,

Coalg (f) = Bimod -y (f)- (3)

Equation (3) is not immediately useful from a practical point of view as we must determine all
the elements of A° in order to understand the action of the algebra (A°)*. To simplify the task of
determining Coalg (f), we shall use the structure of A-bimodule on A* given by (2).

We must recall that a subspace of A* is a good subspace if, and only if, it is a subcoalgebra of
A°. Therefore, in view of (3), Bimod 4.+ (f) is a good subspace of A*. As a consequence of
Corollary 2.5 from [1], Bimod4-)- (f) is an A-subbimodule of A* and as f € Bimod4.)- (f), we
also have

Bimod, (f) C Bimod, 4.y (f) (4)
Now, Bimody (f) is trivially an A-subbimodule of A*. By the fact that Bimod, 4. (f) is a good
subspace of A*, by inclusion (4) and by Corollary 2.5 from [1], we can conclude that, for each

g € Bimody (f), the spaces gA and Ag are finite dimensional. Again, by Corollary 2.5 from [1]
implies that Bimod, (f) is a good subspace of A* and a subcoalgebra of A°. In particular,

Coalg (f) C Bimod, (f) (5)
From (3, 4) and (5) we can conclude the following proposition.
Proposition 2. Let A be an algebra and f € A*. If f € A®, then
Coalg (f) = Bimod,-y- (f) = Bimody (f).

As an application of Proposition 2, we have Theorem 1, which can be considered a “local” ver-
sion of the Corollary 2.5 from [1]. First we need to prove the following lemma.

Lemma 1. Let A be an algebra and f € A°. Then the space

BY(f) = span (4u(f), pa(f)]a € A)

is finite dimensional.
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Proof. Let A : A° — A° ® A° be the comultiplication of A° and gy, ..., gy, b1, ..., h, € A° such that
Af) = g
k=1

Then, for any a € A,

n n

4a(f) =) (ha)ge and p,(f) =) (ga)hk
k=1 k=1

and therefore 4,(f), p,(f) € span (g1, ... gn> 1, ..., hn), for any a € A. O

Theorem 1. Let A be an algebra and f € A*. The following statements are equivalent:
(i) feA%
(ii)  For every o € Bimody, (f), one of the following spaces (and equivalently, both)
oA = {p,(a)|a € A} and Ao={A,(a)]ac A}
is finite dimensional;
(iii) ~ For every positive integer k, the space

B®(f) = span <‘L'!(l{). W) lay, o ar € ATV, 1W € {4, p})

Ty
is finite dimensional.
Proof. (i) <= (ii) : Simply apply Corollary 2.5 from [1] for S = Bimod, (f) and note that f € A°
if, and only if, Bimod, (f) C A°.

(i) = (iii) : If f € A°, then by Lemma 1, B<1)(f> = span (g, ...,g,) is finite dimensional. The

desired conclusion follows by induction after noting that, for any positive integer k, if B (f) =
span (g1, ...,gn), for some g1,...,g, € A°, then

BRU(F)y = BW (g)) + ... + B (g,).
(iii) = (ii) : Let f € A*. Note that
Bimod, (f) = > B¥(f),

k=0

let o € Bimody {f) and suppose, without loss of generality, that o € BY)(f) for some positive inte-
ger t. Because of linearity, we can also consider that o = r,(li)...r,(f} (f), for some ay,...,a; € A and
™, ..,1% € {1, p}. Then,

oA = span (A,(a) | a € A)
= span (Z, 7.7 () |a € A)
g B([+1) <f>

and we can conclude that ¢A (similarly, Aa) is a finite dimensional subspace. O
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5. Applications

Now we shall apply Theorem 1 to study when a certain subspace of A* is a subcoalgebra of the
finite dual. This will give us another source of examples of coalgebras and we will use it to obtain
a nonlocally finite right alternative coalgebra.

Let A be an algebra, let B be a basis of A and let B* = {f, € A* | b € B} be the dual set of B,
in which for every b € B, the linear map f, : A — F is given by

1, ifx=b

{fox) = {0, if x£b
for x € B. If A is a finite dimensional algebra, then for every basis B, it is easy to check (using
Theorem 1, for instance) that f, € A°, for each b € B. In this case, B* is a basis of A* called the

dual basis (with respect to 1) and we have A° = A*.
On the other hand, if A is an infinite dimensional algebra with basis 53, then the subspace

Vi = span {f;, | b € B)
is a proper subspace of A*. Also, the inclusion Vs C A° is no longer necessarily true. As an appli-

cation of Theorem 1 we shall present a sufficient condition over a basis B of an infinite dimen-
sional algebra A in order to guarantee this inclusion.

Definition 1. Let A be an algebra, 5 a basis of A and x € A. If x =), o;b;, where a; € F is
nonzero and b; € B for each i = 1,...,n, then the support of x (with respect to the basis B) is the
set suppx = {by, ..., b, }.

Lemma 2. Let A be an algebra and B be a basis of A. Suppose that x € B is an element such that
the set

P(x) = {(b1,b,) € Bx B|x € supp(b1b,)}
is finite. Let (1, p) be the action of the A-bimodule A*. Then

/Lb(fx - Z gx’abf“
(a, b)EP(x)

pu(fx) = Z (fe- ba)fa

(bya)eP(x)
and the space

Wife) = span (Za(f)s pa(f) |a € A) = A + fiA

is finite dimensional.

Proof. If x € B is such that P(x) is a finite set, then
= span (f, | (a,b) € P(x), for some b € B)

is a finite dimensional space. We will show that B (f,) is a subspace of V.
If a,b € B, then

(Z(fx)>a) = (fo Ro(a)) = (fx,ab) = {“ #0  se x & supp(ab)

otherwise.

Let b € B. If there exists no element a € B such that x € supp(ab), then A;(f;) = 0 belongs to V.
Otherwise, as P(x) is finite, there exists a finite number of elements ay,...,a, € B such that x €
supp(a1b), ..., supp(a,b). Then, the functional ;(f,) coincides with

(foarb)fa, + ... + (foanb)fa,



8 (&) G.SANTOS FILHO ET AL.

when evaluated on elements of the basis B. Therefore,

M@——E: (fe- ab)f (6)
(a, b)eP(x)

In particular, 1,(f;) belongs to V.
In conclusion,

Af, = span (A4(f;)|b € B) C V.

Similarly, we prove that

)= >, (foba)fe (7)

(bya)eP(x)
and that f,A is a finite dimensional space. Therefore, B (f,) = Af, + f,A is a finite dimensional
space. O

Theorem 2. Let A be an algebra and B be a basis of A. Suppose that for every x € BB the set
P(x) = {(b1,b2) € B x B|x € supp(b1b2)}
is finite. Then the space Vg = span {f, | b € B) is a subcoalgebra of the finite dual A°.

Proof. Let b € B and g = f,. We shall prove by induction over k that for every positive integer
there exists a finite subset {b1, ..., b,} C B such that

B®(g) = span <r£ll). 29 (g) Jay, . ar € ATV, 10 e {4, p})

ak

is a subspace of span (f,, ..., fp,). The base of induction follows from Lemma 2.
Let t be a positive integer such that B'(g) is a subspace of span(fy,,....fs,), for some
b, ....b, € B. As BV (f) = A BY(g) + B (g) A, it follows that

B (g) C Afy, + ..+ Afy, + fu A+ o+ fi, A
= (Afo, +fo,A) + - + (Afo,, + f,A)
(1><fb Yt B! (fb )

By Lemma 2, the spaces B (f,),...,B1(f, ) are finite dimensional subspaces of V3 and,
therefore, so is B+ (f).

By induction, BX)(f,) C Vj is a finite dimensional subspace of V3 for each nonnegative integer
k. By Theorem 1, f, belongs to the coalgebra A° for each x € B and the space V3 is a subspace of
A°. By (6) and (7), Vg is an A-subbimodule of A° and, by Proposition 2, Vj is a subcoalgebra of
A°, concluding our proof. O

As an application of Theorem 2, we will construct an example of a right alternative coalgebra
that is not locally finite.

Example 1. Let A = M,(F) = span {ej;, €12, €21, €22) be the algebra of 2 x 2 matrices with entries

in F. For every h € Z, let M) = span (m, ®) mg),mg) mflh)>, where {m1 ,mg ) m (h) h} are

linearly independent elements, and con51der M = @z MW, The space M is a A- b1module with
action given by



COMMUNICATIONS IN ALGEBRA® 9

m"ery = m{" myen =0
{ m® )
m§h>e12 =0 0 )e” =
m<h>e21 —m m, ey =0
s ml? ()
my’en = 0 €n =m,
mPeyy = m® mPe, =
( ) " 0 ’ m( )612 m(h)
e = 4 1
h h ( P
m; ey = m(z) & )e21 - ®)
m§h>€zz =0 my-ex»n =my
enm(h> = m(h) e”m(z ) = 0
W _o epm® — _m®
ennm;’ = ) =My
h h () _
e21m§hi - e
exm =0 eZZmz = m2
enmy’ = —m{"*" enmy = mi” —m{""
0) eraml® = m®
eum%h) 0 ) ) ) o0 12 (hy | (h+1) (b1
nflly "= ts M ez1m?h) _ _<hT12> T
ezzm(h> ; ] + mﬁh“) exnm,’ = m

for any h € Z. With the previously described action, we have the following results:

e M is a right alternative A-bimodule;
o the set

B={e,en,en en}tU {mﬁm,méh),mgh),mih) |heZ}

is a basis of the split-null extension A+ M that satisfies the hypothesis of Theorem 2;
e the coalgebra Vi =span(f,|b € B) contains a right alternative coalgebra that is not
locally finite.

Proof. One can easily conclude that the A-bimodule described is right alternative by observing
the definition of a similar M,(F)-bimodule in [6, p. 911]. In other words, the split-null extension
A+M is a right alternative algebra and, by Corollary 4.3 from [1], (A4+M)° is a right alterna-
tive coalgebra.

Observing the action of A over the elements of M, we can conclude that any element of the
basis B occurs a finitely many times in the table of multiplication of A+M (when written in
terms of the basis B). In particular, for any x € B, the set P(x) = {(b1,b,) |b1, b, € B, x €
supp(b1by)} is finite. By Theorem 2, the space Vg =span(f,|be€ B) is a subcoalgebra
of (A+M)°.

Let k be a integer. By observing the action of the algebra A over M described above, we can
note that

P(mgk)) = {(mgk), 311), (mf;k), 612)> (611, m(lk)), (611, mék’”), (611, mz(;kil)),
(612, mz(lk))7 (621, mz(;kil)), (622, mg}ﬁl)), (622, mz(;kfl))}
from which we can conclude using formula (6) that

pellf f (" fmgkfl) _fmgk—l)
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Similarly,
pezlfmgk) = 0
peufm;k—l) = _fm(lk—l) +fmgk—2) +fmgk—z)
Pesfyin = ~Fpr = fe0
and thus

Peyy Py m(lk) :me“U ’

In particular, if D is subcoalgebra of (A4+M)° and . w € D, then f « € D. Thus, the linearly
independent set {f, « |k € Z,k < 1} is a linearly 1ndependent subset of the A-bimodule generated
(i.e. the coalgebra generated) by f .

In conclusion, the coalgebra of (A+M)° generated by f (k is an infinite dimensional right
alternative coalgebra. The infinite dimensional coalgebra Coa g(f (k> is evidently finitely gener-
ated and, thus, it is not a locally finite coalgebra. O

As far as the authors know, Example 1 is the only example of a non-locally finite coalgebra
that is not a Lie coalgebra. In view of Shestakov’s conjecture, we can highlight the following cor-
ollary of Example 1.

Corollary. Not every right alternative coalgebra is locally finite. In other words, an analogue of the
Fundamental Theorem of Coalgebras is not true for right alternative coalgebras.

The corollary gives us another example of variety for which its finitely generated coalgebras
are not necessarily finite dimensional. As the variety of right alternative algebras does not admit
locally nilpotent radical, Shestakov’s conjecture remains open.

Considering other varieties that do not admit locally nilpotent radical and determining if its
coalgebras are locally finite may help us understand whether Shestakov’s conjecture is true
or not.
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