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Abstract
We determine the complete solution of the Einstein field equations for the case of a
spherically symmetric distribution of gaseous matter, characterized by a polytropic
equation of state. We show that the field equations automatically generate two sharp
boundaries for the gas, an inner one and an outer one, given by radial positions r1 and
r2, and thus define a shell of gaseous matter outside of which the energy density is
exactly zero. Hence this shell is surrounded by an outer vacuum region, and surrounds
an inner vacuum region. Therefore, the solution is given in three regions, one being the
well-known analytical Schwarzschild exterior solution in the outer vacuum region, one
being determined analytically in the inner vacuum region, and one being determined
partially analytically and partially numerically, within the matter region, between the
two boundary values r1 and r2 of the Schwarzschild radial coordinate r . This solution
is therefore somewhat similar to the one previously found for a spherically symmetric
shell of liquid fluid, and is in fact exactly the same in the cases of the inner and outer
vacuum regions. The main difference is that here the boundary values r1 and r2 are
not chosen arbitrarily, but are instead determined by the dynamics of the system. As
was shown in the case of the liquid shell, also in this solution there is a singularity at
the origin, that just as in that case does not correspond to an infinite concentration of
matter, but in fact to zero matter energy density at the center. Also as in the case of
the liquid shell, the spacetime within the spherical cavity is not flat, so that there is a
non-trivial gravitational field there, in contrast with Newtonian gravitation. This inner
gravitational field has the effect of repelling matter and energy away from the origin,
thus avoiding a concentration of matter at that point.
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1 Introduction

In a previous paper [1] we established the exact static solution of the Einstein field
equations for the case of a spherically symmetric shell of liquid fluid located between
two arbitrary radial positions r1 and r2 of the Schwarzschild system of coordinates.
In this paper we will give the complete solution for a similar problem, that of a
spherically symmetric distribution of a gaseous fluid that satisfies the equation of state
of a polytrope. We will see that for most sets of values of the physical parameters of
the system the Einstein field equations coupled with the polytropic equation of state
automatically imply the existence of certain radii r1 and r2 where the energy density
of the gas becomes exactly zero, thus giving rise to two gas-vacuum interfaces. These
two values of the radial variable are not imposed by hand, but are a consequence of
the equations describing the dynamics of the system. There are no geometrical free
parameters, all the free parameters of the system are those describing the state and
properties of the matter.

This puts us in a position, in the current problem, and in a very natural way, which is
very similar to the onewe had in [1], with a shell of fluidmatter surrounding an internal
vacuum region and surrounded by an external vacuum region. In these two vacuum
regions the solutions of the field equations are known exactly, and were in fact derived
and discussed in detail in [1]. Consequently, all that was said in that paper regarding
the inner and outer vacuum regions is valid here without any change. However, our
current problem in this paper is far less academic in nature, being much closer to the
astrophysical applications. The family of solution that we find here can be considered
a generalization of the particular family of solutions originally found by Tooper [2].

Results similar to the oneswepresent herewere obtained for the case of neutron stars
by Ni [3], including the automatic generation of the inner and outer matter-vacuum
interfaces. However, the crucial consideration of the interface boundary conditions
was missing from that analysis, thus leading to incomplete results. The discussion of
the interface boundary conditions was subsequently introduced by Neslušan [4, 5],
thus completing the analysis of the case of the neutron stars. Just as in [1] and in the
present work, the discussion of the interface boundary conditions led, also in that case,
to an inner vacuum region containing a singularity at the origin and a gravitational
field leading matter and energy away from that origin.

There is a connection between the purely numerical results presented in [3] and [4]
and the ones we present here, which are partly analytical and partly numerical. This is
so because the equation of state for a neutron star can be approximated by a polytrope
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under certain particular conditions. On the other hand, however, the results we present
here are not limited to cold neutron stars or some other particular type of object, but
can be applied as well to normal stars of any type and size, at any temperature range,
such as main sequence stars, red giants and white dwarfs, including configurations
with two or more layers, with a different behavior of the matter in each layer.

In regard to the solution within the region containing the polytropic matter, we will
present a solution which is partially analytical and partially numerical.Wewill reduce,
by analytic means, all the quantities and functions involved to a single real function
that is the solution of a second-order ordinary differential equation. We will show
analytically that this function has a very simple behavior, which can be rigorously
established without any recourse to numerical means. This function, which we will
denote by β(r), is the single element of the whole system that eventually has to be
determined in detail numerically, but its most important properties are analytically
established beforehand.

The two radial positions r1 and r2 where the energy density becomes zero are soft
singular points of the function β(r), where by “soft” we mean that the function is not
analytic, but also does not diverge to infinity at those points. Besides, the positions of
these points are not knownbeforehand, since they are a consequence of the dynamics of
the system. Due to all this, it is not really possible to integrate the differential equation
numerically from these positions, which constitute the boundary of the region of space
containing the matter, into the interior of the matter region. We will therefore have
to develop an alternative way to solve this kind of differential problem numerically,
since it is significantly different from a typical boundary value problem.

This paper is organized as follows. In Sect. 2 we gill give the full statement of the
problem and describe the resolution method; in Sect. 3 we will obtain analytically the
main properties of the solutions; in Sect. 4 we will present a few examples of complete
numerical solutions; in Sect. 5 we will analyze and comment on the numerical results
obtained; and in Sect. 6 we will present our conclusions.

2 The problem and its solution

We will present, in the case of a spherically symmetric distribution of gaseous fluid
satisfying a polytropic equation of state, the complete static solution, over all the three-
dimensional space, of the Einstein field equations of General Relativity. In this work
we will use the time-like signature (+,−,−,−), following [6]. We will start from
the same differential system already described in [1], which we will succinctly review
here. Just as in [1], the solution will be given in terms of the coefficients of the metric,
for an invariant interval given in terms of the Schwarzschild coordinates (t, r , θ, φ)

by

ds2 = e2ν(r)c2dt2 − e2λ(r)dr2 − r2
[
dθ2 + sin2(θ)dφ2

]
, (1)

where exp[ν(r)] and exp[λ(r)] are two positive functions of only r . As was shown
in detail in [1], under these conditions the independent components of the Einstein
field equations and the Bianchi consistency condition are equivalent to the set of three
first-order differential equations
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{
1 − 2

[
rλ′(r)

]}
e−2λ(r) = 1 − κr2ρ(r), (2){

1 + 2
[
rν′(r)

]}
e−2λ(r) = 1 + κr2P(r), (3)

[ρ(r) + P(r)]
[
rν′(r)

] = − [
r P ′(r)

]
, (4)

where the primes indicate differentiation with respect to r , ρ(r) is the energy density
of the matter, P(r) is its isotropic pressure, and where we have the constant κ =
8πG/c4, in which G is the universal gravitational constant and c is the speed of
light. Note that all the derivatives are written as what we will call homogeneous
derivatives, that is, the product of the derivative by a single power of r . In our case here
the matter distribution will be characterized by four parameters, the two parameters
defining the polytropic equation of state, the total asymptotic gravitational mass M ,
associated to the Schwarzschild radius rM , and a parameter associated to the value of
the energy density ρ(r) at its point of maximum. We will assume that the gas satisfies
the polytropic equation of state

P(r) = K [ρ(r)]1+1/n , (5)

over the whole three-dimensional space, involving a positive real constant K and the
integer or half-integer n ≥ 1, which we assume not to be smaller than one. In principle
n could be any real number larger than one, and we assume that it is either an integer
of a half integer just for simplicity, since this seems to cover all cases of interest. At
this point we will introduce an auxiliary function, also just for simplicity, since it will
appear repeatedly in all that follows,

F(r) = K [ρ(r)]1/n , (6)

which is a dimensionless function, so that the polytropic equation of state reduces to

P(r) = F(r)ρ(r). (7)

Note that from its definition we immediately have for the derivative of F(r),

[
r F ′(r)

] = 1

n

F(r)

ρ(r)

[
rρ′(r)

]
. (8)

Given this, our system of differential equations shown in Eqs. (2)–(4) can now be
written as

{
1 − 2

[
rλ′(r)

]}
e−2λ(r) = 1 − κr2ρ(r), (9){

1 + 2
[
rν′(r)

]}
e−2λ(r) = 1 + κr2F(r)ρ(r), (10)

[1 + F(r)] ρ(r)
[
rν′(r)

] = − n + 1

n
F(r)

[
rρ′(r)

]
, (11)

still in terms of homogeneous derivatives. Our problem is therefore that of finding
three functions, ρ(r), λ(r) and ν(r), that solve these equations and that satisfy the
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correct boundary conditions at asymptotic radial infinity. We will start our analysis
by partially solving some of the equations by analytic means, in order to write all
relevant quantities in terms of a single function. In order to do this we first change
variables from the dimensionless function λ(r) to the equally dimensionless function
β(r), which is defined to be such that

e2λ(r) = r

r − rMβ(r)
, (12)

which then implies that we have for the corresponding homogeneous derivatives

2
[
rλ′(r)

] = − rMβ(r) − rM
[
rβ ′(r)

]

r − rMβ(r)
. (13)

The functionβ(r) is analogous to the function u(r) found in Equation (2.9) of the paper
by Tooper [2], but it is used here in a completely different context. Note that the asymp-
totic boundary condition on λ(r), that it must behave as the exterior Schwarzschild
solution for sufficiently large r , translates here as β(r) → 1 under that same condition.
Substituting these expressions in the component field equation shown in Eq. (9) a very
simple relation giving the derivative of β(r) in terms of ρ(r) results,

β ′(r) = κr2ρ(r)

rM
. (14)

Therefore, the energy density ρ(r) is given in terms of the derivative of β(r), and
wherever ρ(r) = 0, characterizing a region where there is a vacuum, we have that
β(r) is a constant. Since by Eqs. (6) and (7) F(r) and P(r) are both given in terms
of ρ(r), and since λ(r) is given in terms of β(r), it follows at this point that, given a
function β(r), the functions ρ(r), P(r), F(r) and λ(r) are all determined. The only
function that has yet to be determined in terms of β(r) is ν(r). We can obtain ν(r)
in terms of F(r), and therefore of β(r), using the consistency condition in Eq. (11),
which with the use of Eq. (8) can be written as

ν′(r) = −(n + 1)
F ′(r)

1 + F(r)
. (15)

Note that Eq. (11) cannot be used within the vacuum regions, but only within the
matter region. In the vacuum regions one must use Eq. (10) instead, in order to obtain
ν(r). In all cases in which there is an outer matter-vacuum interface at r2 this can now
be integrated from r2 to r , and recalling that we have that F(r2) = 0, because for
n > 0 we have the boundary condition ρ(r2) = 0, we get

ν(r) − ν(r2) = −(n + 1) ln[1 + F(r)], (16)

which determines ν(r) in terms of F(r), up to the integration constant ν(r2), that is
to be obtained from the asymptotic boundary conditions at radial infinity, which in
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the case of ν(r) is simply ν(∞) = 0. Therefore, given β(r), this determines ν(r) in
terms of it, through F(r). Note, for future use, that in all cases in which there is an
inner matter-vacuum interface at r1 as well, the fact that we also have that F(r1) = 0,
because for n > 0 we have the boundary condition ρ(r1) = 0, implies that we always
have that ν(r1) = ν(r2). We see therefore that the determination of the function β(r)
leads with no further difficulty to the determination of all the functions that describe
both the matter and the geometry of the system,

ρ(r) = rMβ ′(r)
κr2

, (17)

P(r) = K

[
rMβ ′(r)

κr2

]1+1/n

, (18)

F(r) = K

[
rMβ ′(r)

κr2

]1/n
, (19)

λ(r) = 1

2
ln

[
r

r − rMβ(r)

]
, (20)

ν(r) = ν(r2) − (n + 1) ln[1 + F(r)]. (21)

The free parameters of the system are K , n and M , all of which describe the nature
and state of the matter, and the value of β ′(r) at its point of maximum, which can
also be seen as related to the matter, since it determines the general scale of the matter
energy density, as can be seen from Eq. (17).

Both for the subsequent analysis and for the numerical approach, it is convenient to
transform variables at this point, in order to write everything in terms of dimensionless
variables and functions. In order to do this we must now introduce an arbitrary radial
reference position r0 > 0. For now the value of this parameter remains completely
arbitrary, other than that it must be strictly positive, and has no particular physical
meaning. It is only a mathematical device that allows us to define a dimensionless
radial variable and a dimensionless parameter associated to the mass M by

ξ = r

r0
, (22)

ξM = rM
r0

, (23)

as well as to define the dimensionless function of ξ , to assume the role of β(r),

γ (ξ) = ξMβ(r). (24)

Note that the asymptotic condition that β(r) → 1 for sufficiently large r translates
here as the condition that γ (ξ) → ξM for sufficiently large ξ . It is important to observe
that under the change of variables from r to ξ the homogeneous derivatives transform
in a very simple way, for example in the case of β(r),

123



Complete solution of the Einstein field equations for a spherical... Page 7 of 25 67

r
dβ(r)

dr
= ξ

dβ(ξ)

dξ
. (25)

We will also introduce at this point a notation for the derivative of γ (ξ), which will
be useful in order to deal with the second-order differential equation for γ (ξ) that we
will arrive at,

π(ξ) = γ ′(ξ), (26)

where in this case the prime denotes differentiation with respect to ξ . We adopt the
convention that whenever there is a prime indicating a derivative, it is to be taken with
respect to the explicitly indicated variable of the function. From now on the problem
will be formulated in terms of the two functions γ (ξ) and π(ξ), that will be treated
as independent variables. In terms of these new variables we have for the system of
differential equations shown in Eqs. (9)–(11), where from now on, given that we have
the expressions in Eqs. (6) and (14), the auxiliary function F(r) will be written as
F(ξ, π),

1 − 2
[
ξλ′(ξ)

] = ξ [1 − π(ξ)]
ξ − γ (ξ)

, (27)

1 + 2
[
ξν′(ξ)

] = ξ [1 + F(ξ, π)π(ξ)]
ξ − γ (ξ)

, (28)

[1 + F(ξ, π)]π(ξ)
[
ξν′(ξ)

] = − n + 1

n
F(ξ, π)

[
ξπ ′(ξ) − 2π(ξ)

]
, (29)

where the primes now indicate differentiation with respect to ξ . We therefore have for
all the relevant quantities written in terms of ξ , γ (ξ) and π(ξ),

ρ(ξ) = 1

κr20

π(ξ)

ξ2
, (30)

P(ξ) = C

κr20

[
π(ξ)

ξ2

]1+1/n

, (31)

F(ξ, π) = C

[
π(ξ)

ξ2

]1/n
, (32)

λ(ξ) = − 1

2
ln

[
ξ − γ (ξ)

ξ

]
, (33)

ν(ξ) = ν(ξ2) − (n + 1) ln[1 + F(ξ, π)], (34)

where C = K/
(
κr20

)1/n
is a dimensionless constant. We see therefore that the deter-

mination of γ (ξ) and thus of π(ξ) leads to the complete solution of the problem. We
have therefore reduced the solution of the problem to the determination of the single
function γ (ξ). In order to determine γ (ξ), we obtain an ordinary differential equation
for it by eliminating ν′(ξ) from Eqs. (28) and (29). Equation (28) can be written as

[
ξν′(ξ)

] = γ (ξ) + ξF(ξ, π)π(ξ)

2[ξ − γ (ξ)] , (35)
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and Eq. (29) can be written as

[
ξν′(ξ)

] = − n + 1

n

F(ξ, π)

1 + F(ξ, π)

ξπ ′(ξ) − 2π(ξ)

π(ξ)
, (36)

so that equating the two right-hand sides we get

π ′(ξ) = π(ξ)

{
2

ξ
− n

n + 1

1

ξ − γ (ξ)

1 + F(ξ, π)

2F(ξ, π)

[
γ (ξ)

ξ
+ F(ξ, π)π(ξ)

]}
. (37)

Since π(ξ) is the derivative of γ (ξ), this can be interpreted either as a second-order
ordinary differential equation for γ (ξ), or as one of a pair of first-order coupled
ordinary differential equations determining γ (ξ) and π(ξ), the other equation being
simply

γ ′(ξ) = π(ξ). (38)

This second interpretation is the onewewill adopt here. This pair of first-order ordinary
differential equations can be used for the numerical integration of this differential
system, as we will in fact do later on, in Sect. 4. However, before we plunge into the
numerical approach, let us first show that γ (ξ) is in fact a very simple function, as is
β(r), and that it has some properties which are, perhaps, somewhat unexpected.

3 Main properties of the solutions

Let us start by recalling that, if it turns out that there are indeed inner and outer vacuum
regions, then we already know the form of the solutions in those regions. From the
derivations in [1], we have that in the inner vacuum region, where ξ < ξ1, the solution
is given, in terms of our current set of dimensionless variables, by

λi (ξ) = − 1

2
ln

(
ξ + ξμ

ξ

)
, (39)

νi (ξ) = A + 1

2
ln

(
ξ + ξμ

ξ

)
, (40)

where ξμ = rμ/r0, and where rμ and A are integration constants, and that in the outer
vacuum region, where ξ > ξ2, the solution is the exterior Schwarzschild solution,
which can be written, in terms of our set of dimensionless variables, as

λs(ξ) = − 1

2
ln

(
ξ − ξM

ξ

)
, (41)

νs(ξ) = 1

2
ln

(
ξ − ξM

ξ

)
, (42)

where ξM = rM/r0 and rM is the Schwarzschild radius. The constant A can be
determined with the use of the consistency condition and of the interface boundary
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conditions for P(ξ), which as we saw before imply that we always have ν(ξ1) = ν(ξ2)

within the matter region. This fact allows us to determine the value of A, using also
the fact that ν(ξ) is a continuous function, thus leading to ν(ξ1) = νi (ξ1) and ν(ξ2) =
νs(ξ2), which imply that we have

νi (ξ1) = νs(ξ2) ⇒ (43)

A + 1

2
ln

(
ξ1 + ξμ

ξ1

)
= 1

2
ln

(
ξ2 − ξM

ξ2

)
. (44)

This gives us the solution for A in terms of the other quantities,

A = 1

2
ln

(
ξ1

ξ2

ξ2 − ξM

ξ1 + ξμ

)
. (45)

We can therefore write out the complete solution in both vacuum regions,

λi (ξ) = − 1

2
ln

(
ξ + ξμ

ξ

)
, (46)

νi (ξ) = 1

2
ln

(
ξ1

ξ2

ξ2 − ξM

ξ1 + ξμ

)
+ 1

2
ln

(
ξ + ξμ

ξ

)
, (47)

λs(ξ) = − 1

2
ln

(
ξ − ξM

ξ

)
, (48)

νs(ξ) = 1

2
ln

(
ξ − ξM

ξ

)
. (49)

The quantities ξ1 and ξ2 used in these sectors of the solutions are obtained during the
resolution of the differential equation within the matter region, as are the other two
quantities, ξμ and ξM , which once γ (ξ) is determined are given by

γ (ξ1) = −ξμ, (50)

γ (ξ2) = ξM , (51)

as consequences of the interface boundary conditions related to the continuity of λ(ξ)

across the interfaces. The consequences of the interface boundary conditions related
to the continuity of ν(ξ) are reflected on the condition that the matter energy density
and the pressure must be zero at the matter-vacuum interfaces, thus leading to the
result shown in Eq. (45). It is important to emphasize that when we use the values of
ξμ and ξM obtained in the matter region in order to define the geometries of the inner
and outer vacua, we are in effect satisfying the interface boundary conditions. Wemay
now derive some crucially important properties of the solutions of the field equations
analytically, by obtaining these properties directly from the differential equations.

Property (1). The first important fact about the solution γ (ξ), away from the origin,
comes from Eqs. (14) and (24). From the first of these, since all quantities on the
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right hand side are non-negative, and the only one that can be zero away from the
origin is ρ(r), it follow that β ′(r) is a non-negative function, that is zero only within a
vacuum region. It therefore follows that β(r) is a monotonically increasing function,
which is a constant if and only if we are within a vacuum region. In addition to this,
since according to the asymptotic boundary condition we have that β(∞) = 1, it also
follows that β(r) is limited from above by 1. It then follows from Eq. (24) that similar
conclusions can be drawn for γ (ξ), which is therefore a monotonically increasing
function which is limited from above, the limit in this case being the parameter ξM ,
and which is constant within vacuum regions.
There are two more important properties of the solutions γ (ξ) and π(ξ) of Eqs. (37)
and (38), away from the origin, that we can establish analytically. Let us therefore
consider Eq. (37), in which F(ξ, π) is given as in Eq. (32). Let us also recall that we
are working under the assumption that we have n ≥ 1.

Property (2). For the second important property, if we assume that there is a radial
position ξ = ξe, where the subscript e stands for extremum, at which we have that
π ′(ξe) = 0 and π(ξe) �= 0, then there is a definite and unique solution to these
conditions that presents itself, namely the expression within braces in Eq. (37) must
vanish, leading to

4(n + 1)
[
ξ − γ (ξ)

]
F(ξ, π) = n [1 + F(ξ, π)]

[
γ (ξ) + ξπ(ξ)F(ξ, π)

]
. (52)

Since we already know that γ (ξ) must be a monotonically increasing function that
is limited from above by ξM , the condition π ′(ξ) = 0 with π(ξ) �= 0 identifies the
inflection point ξe of γ (ξ), which is also the point of maximum of π(ξ). The equation
above then identifies in a definite way the value of γ (ξe) as a certain function of
πe = π(ξe) at that inflection point, a relation that is given explicitly by

γ (ξe) = ξeF(ξe, πe)
4(n + 1) − nπ(ξe) [1 + F(ξe, πe)]

n + (5n + 4)F(ξe, πe)
. (53)

This relation is the second important property of the solutions, which identifies the
radial position ξe of the inflection point. This constitutes a radial position ξe and a
pair of values γ (ξe) and π(ξe) of γ (ξ) and π(ξ) that can be used as the starting point
for a numerical integration of the equation, to either one of the two sides of ξe. When
there is a well-defined matter region, it allows us to perform the numerical integration
starting from a regular point in the interior of the matter interval, rather than at one of
the two ends of that interval which, as we will see shortly, are soft singular points.

Property (3). The third important property of the solutions is that, if there is a radial
position ξ = ξb where π(ξ) = 0, then Eq. (37) implies that π ′(ξ) = 0 at that radial
position. Since the equation forγ (ξ) is a second-order one, and in this situationwehave
that both π ′(ξ) = 0 and γ ′(ξ) = 0 when we approach that radial position integrating
from one side, then on the other side of that radial position we will have that both
π(ξ) and γ (ξ) are constant, and in particular that π(ξ) = 0 is the null constant. Since
we have that the energy density ρ(ξ) is proportional to π(ξ), this implies that on that
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other side we have a vacuum, so that the radial position ξb represents the boundary of
the matter. Note that this also implies that, if there is such a radial position ξb, then
we must conclude that the dynamics of the system leads to the formation of a sharp
boundary for the matter, even in the case of a gas, so long as it satisfies the polytropic
equation of state exactly.

Let us now consider the consequences of Eq. (37) regarding the manner in which
such a radial position ξb is approached by π(ξ). Wemust consider separately the cases
in which the radial position is approached from the left and from the right. We start by
the case in which the radial position ξb is approached by the integration process from
the right, from values ξ > ξb. We will assume that the function π(ξ) goes to zero at
ξb as a power m ≥ 1, and verify whether we can find a solution of Eq. (37) in a right-
neighborhood of ξb. Since we know that π(ξ)must be real and positive, whilem is not
necessarily an integer, this means that we should assume that in a right-neighborhood
of ξb we have

π(ξ) = Bm⊕(ξ − ξb)
m, (54)

where we must have that B⊕ > 0 and that m ≥ 1, given that π(ξ) is real and non-
negative and that π ′(ξ) must exist. The question is then whether or not we can find
values of m and B⊕ such that the equation is satisfied in that neighborhood. If we
denote the difference shown by δξ = ξ − ξb, we may then write for all the quantities
involved in Eq. (37), in a right-neighborhood of ξb,

γ (ξ) = γ (ξb) + Bm⊕
m + 1

(δξ)m+1, (55)

π(ξ) = Bm⊕(δξ)m, (56)

π ′(ξ) = mBm⊕(δξ)m−1, (57)

F(ξ, π) = D⊕ξ−2/n(δξ)m/n, (58)

where D⊕ = CBm/n
⊕ . Substituting all the quantities in Eq. (37), recalling that we are

interested only in the δξ → 0 limit, assuming that γ (ξb) �= 0, which allows us to
use for γ (ξ) just its dominant term γb = γ (ξb), and dropping negligible terms where
possible, we get

m = − n

n + 1

ξ
2/n−1
b γb

2D⊕(ξb − γb)
(δξ)1−m/n . (59)

It then follows from the δξ → 0 limit that the only possible solution with m �= 0 is
m = n, thus confirming that m ≥ 1. Recalling the value of D⊕, we then have for B⊕

B⊕ = ξ
2/n−1
b

2C(ξb − γb)

(−γb)

n + 1
. (60)

Note that, since B⊕ must be strictly positive, it follows from this that we must have
γb < 0, thus confirming a posteriori that γb �= 0, so long as we are not dealing with
just the identically null solution for π(ξ). Since in the resulting internal vacuum we
have that γb = −ξμ = −rμ/r0, we once more conclude that we must have rμ > 0,
just as we did in [1], but in a very different way.
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It is important to note that, just as was the case in that previous paper, this result
depends on the condition that r1 > 0, because otherwise there would be no inner
vacuum region, and hence no interface boundary conditions at r1, so that all the
derivations done up to this point would cease to be valid. It is interesting to observe
that what we have proved here about rμ can be stated as

r1 > 0 	⇒ rμ > 0, (61)

which then implies that we must also have, just as in the previous paper, that

rμ = 0 	⇒ r1 = 0. (62)

This means that making rμ = 0 takes us from the shell solutions presented here to the
Tooper solutions for filled spheres [2].

We may also identify that in this case we have ξb = ξ1, the inner boundary of the
matter, and hence we may write that

B⊕ = ξ
(2−n)/n
1

2C(n + 1)

ξμ

ξ1 + ξμ

. (63)

We now consider the case in which the radial position ξb is approached by the integra-
tion process from the left, from values ξ < ξb. Again we will assume that the function
π(ξ) goes to zero at ξb as a power m ≥ 1, and verify whether we can find a solution
of Eq. (37) in a left-neighborhood of ξb. Since we know that π(ξ) must be real and
positive, while m is not necessarily an integer, this means that this time we should
assume that in a left-neighborhood of ξb we have

π(ξ) = Bm
(ξb − ξ)m, (64)

where once again we must have that B
 > 0 and that m ≥ 1. If we now denote the
difference shown by δξ = ξb − ξ , we may then write for all the quantities involved in
Eq. (37), in a left-neighborhood of ξb,

γ (ξ) = γ (ξb) − Bm

m + 1

(δξ)m+1, (65)

π(ξ) = Bm
(δξ)m, (66)

π ′(ξ) = −mBm
(δξ)m−1, (67)

F(ξ, π) = D
ξ−2/n(δξ)m/n, (68)

where D
 = CBm/n

 . As before, substituting all the quantities in Eq. (37), recalling

once again that we are interested only in the δξ → 0 limit, assuming that γ (ξb) �= 0,
which allows us to use for γ (ξ) just its dominant term γb = γ (ξb), and dropping
negligible terms where possible, we get
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m = n

n + 1

ξ
2/n−1
b γb

2D
(ξb − γb)
(δξ)1−m/n . (69)

It follows once more from the δξ → 0 limit that the only possible solution withm �= 0
ism = n, once again confirming that m ≥ 1. Recalling the value of D
, we then have
for B


B
 = ξ
2/n−1
b

2C(ξb − γb)

γb

n + 1
. (70)

Note that, since B
 must be strictly positive, in this case it follows that we have γb > 0,
once again confirming a posteriori that γb �= 0. Besides, the quantity γb can be written
in terms of the parameters of the resulting external vacuum as γb = ξM = rM/r0,
which also implies that it cannot be zero. We may also identify that in this case we
have ξb = ξ2, the outer boundary of the matter, and hence we may write that

B
 = ξ
(2−n)/n
2

2C(n + 1)

ξM

ξ2 − ξM
, (71)

where we necessarily have that ξ2 > ξM since the integration cannot produce the
coordinate singularity of a horizon. This gives us the exact asymptotic behavior of
π(ξ), and hence also of γ (ξ), as we approach the radial positions ξ1 and ξ2 that
delimit the region containing the matter, from within that region.

Whether or not the points ξ1 and ξ2 exist in each particular case, for various values
of the parameters that define the physical system, has to be determined numerically.
If they do, then there is more that can be established about γ (ξ). In this case, not only
is this a monotonically increasing function that is limited from above, but we now
know that it is also limited from below, since it is a constant within the inner vacuum
region. In fact, it must go from a constant negative value within the inner vacuum
region, to a constant positive value in the outer vacuum region. In addition to this,
so long as n ≥ 0 it is a continuous and differentiable function on the whole positive
real semi-axis. In particular, it follows from this that γ (ξ) must have a single zero
in the open interval (ξ1, ξ2), which therefore is always within the matter region. This
completes the discussion of the third property.

Property (4). We can easily determine the circumstances in which the weak and
dominant energy conditions [7] are satisfied for the solutions we present here. Since
in our case here both gμν and T ν

μ are diagonal, with

diag[gμν] =
[
e2ν(r),− e2λ(r),−r2,−r2 sin2(θ)

]
, (72)

diag[T ν
μ ] = [ρ(r),−P(r),−P(r),−P(r)] , (73)

it follows that, as was explained in the previous paper [1], the weak energy condition
is always satisfied, for all values of the parameters of the model. In addition to this, as
was also explained in that paper, the dominant energy condition is satisfied so long as
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one has the condition that
ρ(r) ≥ P(r), (74)

for all r within the matter region. This is equivalent to the condition that

P(r)

ρ(r)
≤ 1. (75)

In our specific case here we have that the polytropic equation of state between ρ(r)
and P(r) given in Eq. (5) holds, and that it can be written as

[
κr20 P(r)

]
= C

[
κr20ρ(r)

]1+1/n
, (76)

which implies that
P(r)

ρ(r)
= C

[
κr20ρ(r)

]1/n
. (77)

Recalling from Eq. (30) that we have that κr20ρ(r) = π(ξ)/ξ2, where ξ = r/r0, it
follows that the dominant energy condition reduces to

π(ξ)

ξ2
≤ 1

Cn
. (78)

This must be true for all values of ξ within the matter region. It suffices therefore to
impose this condition only at the point where ρ(r) is maximum, that is where π(ξ)/ξ2

is maximum. However, as one can see in Fig. 4, for the larger values of ρ(r) the points
of maximum of ρ(r) and of π(ξ) tend to coincide, as do the values of these two
quantities at their points of maximum, if we use the value ξe = 1 for the point of
maximum of π(ξ), which we can do because it corresponds simply to a choice of the
arbitrary parameter r0 as the position re of the inflection point.

Therefore, ifwe consider the point ξe = 1, the position of the inflection point ofγ (ξ)

at which we start the numerical runs, where π(ξ) = γ ′(ξ) has its global maximum πe,
then we see that it is a fair estimate for high-density solutions to consider the dominant
energy condition only at this point, and thus we arrive at a simple constraint among
the free parameters of the model,

πe ≤ 1

Cn
, (79)

which therefore establishes a physically valid region within the (πe,C, n) parameter
space of the model, for the smaller values of C , and correspondingly larger values of
πe. In the general case it may be necessary to find the maximum value of π(ξ)/ξ2 by
numerical means, in order to determine with precision the maximum possible value
of πe for each value of C . In any case, we can state with confidence that there is a
region in the parameter space of the solutions where the dominant energy condition is
satisfied.
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Property (5). Since the solutions presented in this paper have the same form, within
the inner vacuum region, as the solutions presented in [1], they therefore have exactly
the same singularity at the origin ξ = 0. It follows therefore that the same calculations
and comments about the Riemann curvature tensor, the left-dual curvature tensor and
the double-dual curvature tensor, as well as about the various curvature scalars that
can be derived from them, that were presented in [1], are equally valid here.

It is worth the trouble exploring now some of the consequences of the facts just
established about γ (ξ) and π(ξ). Note that the two boundary points ξ1 and ξ2 are
soft singular points of both functions γ (ξ) and π(ξ), since these functions cannot be
analytic at these points. This follows from the fact that they are constant on one side of
the points and behave as a strictly positive power on the other side. Due to this there is
no power series centered at ξb that can converge to these functions on a neighborhood
of these points, and therefore they are not analytic. However, both functions are still
well-defined at the boundary points, thus characterizing the singularities as soft ones.

Added to the fact that the position of the boundary points is not known beforehand,
this makes it impossible to integrate the equation numerically starting at these points.
Since the equation for γ (ξ) is a second-order one, and since in this situation we have
that both π ′(ξ) = 0 and γ ′(ξ) = 0 hold at the positions of the boundaries, if we try to
integrate from these points into thematter regionwewill simply get a constant for γ (ξ)

and the constant value π(ξ) = 0, which corresponds to a vacuum rather than to the
matter that is there. Therefore, the solution within the matter region is not determined
by its values at the boundaries, and hence this problem cannot be characterized as a
typical boundary value problem.

Since n ≥ 1, the two functions π(ξ) and γ (ξ)will be continuous at these boundary
points, but there will be some higher-order derivative that does not exist there. For
example, if n = 1 the derivativeπ(ξ) = γ ′(ξ)will be continuous but not differentiable
at these points, so that the second derivative π ′(ξ) = γ ′′(ξ) does not exist there. A
relevant example is n = 3/2, which is typical of the convective layer of a star, in which
caseπ ′(ξ)will not be differentiable at these points, although it is still continuous there,
so that the third derivative π ′′(ξ) of γ (ξ)will not exist, since it diverges at these points.
As another relevant example, if n = 3, which is typical of the radiative layer of a star,
then the fourth derivative π3′(ξ) of γ (ξ) will be discontinuous at these points, so that
its fifth derivative π4′(ξ) will not exist there.

This same singular character of the interface boundary points has the global conse-
quence that, given definite boundary conditions at radial infinity, the complete solution
of the problem is not determined, and is therefore not unique. On the one hand, if one
integrates inwards from a point ξ > ξ2, then one produces just a continuation of
the exterior Schwarzschild solution of the outer vacuum region, until one reaches its
horizon, and never any solution associated to the matter. On the other hand, if one
integrates outwards from a point ξ < ξ2, then there will be many sets of values of the
parameters that describe different states and characters of the matter, but which are
such that the solution arrives at ξ2 with the same π(ξ2) = 0 and γ (ξ2) = ξM . There
are therefore many interior solutions that correspond to the same exterior solution.
This is simply an instance of the uniqueness theorem of the exterior Schwarzschild
solution, shown by Jebsen and Birkhoff [8, 9].
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The numerical analysis indicates that the boundary points ξ1 and ξ2 exist for all
values of the parameters of the system, within a wide range of variation of these
parameters, within physically reasonable bounds. The boundary point ξ2 seems to
always exist, for all physically allowed values of the parameters. The boundary point
ξ1 seems to exist for most sets of values of the parameters. When it does not exist,
the integration for the matter density diverges to infinity towards the origin, so that
there is no inner vacuum region, and a truly hard singularity develops at the origin,
with an infinite concentration of matter there. In such cases there is no acceptable
solution at all. This seems to indicate that, if a static solution exists at all, then it has
the property that these two boundary points are present. Next we will describe in detail
the numerical approach that leads to this conclusion.

4 Examples of numerical solutions

Let us now describe in detail our strategy for the numerical solution of Eq. (37). We
will consider this to be a system of two coupled first-order differential equations for
the functions γ (ξ) and π(ξ), leading to a pair of numerical development equations,
which can be easily obtained, and that are given by

δγ = π δξ, (80)

δπ = π
4(1 + 1/n)Fξ − [1 + (5 + 4/n)F]γ − F(1 + F)ξπ

2(1 + 1/n)Fξ(ξ − γ )
δξ, (81)

where F is the value of the auxiliary function F(ξ, π), where δξ is a small increment of
the variable ξ and where δγ and δπ are the corresponding increments of the functions
γ (ξ) and π(ξ). This system can be integrated by the use of the Runge–Kutta fourth-
order algorithm in a straightforward way, so long as one has a sensible starting point
for the integration process.

We must now discuss where to start the integration process. There are two alter-
natives that we have used. The first alternative is to start at the inflection point ξe
of the function γ (ξ). As we saw in Sect. 3, Eq. (37) itself provides us with a fixed
relation between γ (ξe) and π(ξe) at this point. This means that, given a value of π(ξe)

at this point, which will have the role of a free parameter of the system, we have the
corresponding value of γ (ξe), which then allows us to start the integration process.
The second alternative is to start at the root ξz of γ (ξ), which we know necessarily
exists and is necessarily located within the matter region. Once again the value of
π(ξz) at this point will have the role of a free parameter of the system, and in this
case we just start with γ (ξz) = 0. The first alternative seems to work better for the
larger initial values of π(ξe), which corresponds to the more dense objects, and the
second alternative seems to work better for the smaller initial values of π(ξz), which
corresponds to the less dense objects.

In either case, we must start with a choice for the initial value of ξ . Taking the
position ξe = re/r0 of the inflection point as the example of a starting point for this
discussion, we note that a choice of value for ξe is tantamount to a choice of a relation
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between re and r0, without implying the choice of a definite value for either one.
Therefore the choice of the initial value of ξ can be quite arbitrary, without leading
to any loss of generality. For example, if we start with ξe = 1, this only means that
we choose the arbitrary parameter r0 = re to be the position of the inflection point,
without actually choosing a value for re. Therefore, a solution found in this way is
not just a single solution, but a one-parameter family of solutions, parametrized by
the values of r0. A similar argument can be made in the case in which we start at the
position ξz = rz/r0 of the zero of γ (ξ).

Note that the physical constants K , κ and r0 do not appear individually in either
the numerical propagation equations or the initial values. They appear only as the
combination seen in the definition of the dimensionless constant C , which in turn
appears only in the expression for F(ξ, π),

F(ξ, π) = C

(
π

ξ2

)1/n

, (82)

C = K(
κr20

)1/n . (83)

We will therefore adopt C as one of our free parameters for the numerical work, the
others being n and the initial value of π(ξ), which will then result in a certain value
of ξM . Note that the parameters ξM that contains the mass M also does not appear in
either the equation or the initial values. It appears only as the asymptotic boundary
condition for γ (ξ), which is obtained only at the end of the integration process in the
outward direction.

Having chosen an arbitrary initial value for ξ , and depending on whether we are
starting at the zero of γ (ξ) or at its inflection point, for example with either ξz = 1 or
ξe = 1, we then choose a value for either π(ξz) or π(ξe), and we use either the value
γ (ξz) = 0 or the value of γ (ξe) given in Eq. (53), as implied by πe = π(ξe), which is
given by

γ (ξe) = ξeF(ξe, πe)
(4 + 4/n) − [1 + F(ξe, πe)]πe

1 + (5 + 4/n)F(ξe, πe)
. (84)

Departing from the chosen initial point, we then integrate out in both directions, of
increasing and decreasing ξ , until π(ξ) approaches zero in each case, with a high
degree of numerical precision. Subsequently we concatenate the results into a single
function from ξ1 to ξ2. The values obtained for γ (ξ) at the two boundary points are
then used to generate analytically the correct exact solutions in the inner and outer
vacuum regions, which are plotted alongside the corresponding numerical solution,
from some point to the left of ξ1 to some point to the right of ξ2. In doing this we are
in effect satisfying the interface boundary conditions at the matter-vacuum interfaces.
In order to do this, at the outer boundary we just use the fact that

γ (ξ2) = ξM , (85)

as given in Eq. (51), in order to generate the correct exterior Schwarzschild solution
as given in Eqs. (41) and (42), thus satisfying the interface boundary conditions. In
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order to obtain the dimensionfull physical parameters, we must recall that

ξM = rM
r0

. (86)

We can then simply choose any positive value that we want for rM , and thus obtain the
corresponding value of the parameter r0 = rM/ξM . This value of r0 can then be used
to obtain the values of all the other dimensionfull physical parameters of the system.
In the case of the inner boundary we use the fact that

γ (ξ1) = −ξμ, (87)

as given in Eq. (50), as well as the fact that we have for the integration constant A

A = 1

2
ln

(
ξ1

ξ2

ξ2 − ξM

ξ1 + ξμ

)
, (88)

in order to generate the correct interior vacuum solution as given in Eqs. (39) and (40),
thus satisfying the interface boundary conditions, with

ξμ = rμ
r0

. (89)

Note that the integration constant for the function ν(ξ) within the matter region must
be chosen so that at the outer interface we have that ν(ξ2) = νs(ξ2) has the correct
value, given by Eq. (42). This is easily accomplished by just correcting the values of
ν(ξ) afterwards, by simply adding a constant to them. From Eq. (32) we can see that,
since at the outer interface we have that F(ξ2, π2) = 0, where π2 = π(ξ2), it follows
that if we just ignore the integration constant we get ν(ξ2) = 0. Therefore, all that we
have to do is to add νs(ξ2) to ν(ξ) afterwards, for which we may take advantage of
the fact that νs(ξ2) = −λs(ξ2) is already known.

We have used three sets of values of the parameters in order to generate the data
seen on the graphs, the first two starting from the inflection point of the function γ (ξ),
and the last one starting from the zero of that function. These sets of parameters are
as follows.

Set 1: C = 0.05, n = 1.5, ξe = 1.0, πe = 1.0.

Set 2: C = 0.01, n = 3.0, ξe = 1.0, πe = 100.0.

Set 3: C = 1/3, n = 1.5, ξz = 1.0, πz = 1.0 × 10−3.

The first set uses some arbitrary mid-range values of the parameters, that have the
property of just displaying in a simple and clear way all the main characteristics of the
solutions. The second set of parameters corresponds qualitatively to the configuration
of a high-density object such as a white dwarf or neutron star. In these two cases the
integration was started from the inflection point ξe of γ (ξ). The third set of parameters
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corresponds qualitatively to the configuration of a low-density object, such as a normal
main sequence star. In this case the integration was started from the zero ξz of γ (ξ).

5 Analysis of the numerical results

The graph seen in Fig. 1 shows most of the functions involved in the solution, for a
typical mid-range set of the dimensionless parameters, namely n = 3/2, C = 0.05,
and πe = 1.0. The crucial function, from which everything else stems, is the function
γ (ξ), which in all cases has the same qualitative behavior shown in that graph, for any
values of the parameters for which a solution exists. It is a very simple function, that
slopes up monotonically from a constant negative value to a constant positive value.
These two constant values determine ξμ and ξM respectively. Its derivative π(ξ) is
also a simple function, with a single well-defined point of maximum. It is closely
related to the matter energy density ρ(ξ), which is also shown in the graph, but in its
dimensionless version given by ρ̄(ξ) = κr20ρ(ξ), which is the same as π(ξ)/ξ2, as
one can see in Eq. (30). The second derivative π ′(ξ) gives the numerical propagation
function. For the value n = 3/2, which is used in this case, it clearly marks the
positions of the interface points, where its graph hits the ξ axis at right angles.

The general behavior of the solution is that almost always there are two interface
points and thus both an inner vacuum region and an outer vacuum region. However,
the parameters can be judiciously adjusted so as to decrease the width of the inner
vacuum region to zero, in which case the shell becomes a filled sphere. In this case one
gets ξ1 = 0, so that the inner interface tends to the origin, and then one gets ξμ = 0
as well, so that we have that γ (ξ) is zero at the origin, that is, the Tooper boundary
condition γ (0) = 0 holds, as is the case in most treatments, such as in [7, 10–12].
Therefore, this takes us back to the solutions found by Tooper [2].

For each given value of C there is a minimum positive and non-zero value of πe

that is allowed, which is the one that gives the Tooper solution. Below that minimum

Fig. 1 Graph of the functions
γ (ξ), π(ξ), π ′(ξ) and
ρ̄(ξ) = κr20ρ(ξ) in a typical
case, with the parameters
C = 0.05, n = 3/2 and
πe = 1.0, resulting in
ξM � 0.5392 and ξμ � 0.1668.
The vertical dotted lines mark
the positions of the
matter-vacuum interfaces
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Fig. 2 Graph of the functions
ν(ξ) and λ(ξ) in a typical case,
with the parameters C = 0.05,
n = 3/2 and πe = 1.0, resulting
in ξM � 0.5392 and
ξμ � 0.1668. The vertical
dotted lines mark the positions
of the matter-vacuum interfaces

Fig. 3 Logarithmic graph
depicting π(ξ) in the approach
to the inner interface from
within the matter region. That
approach proceeds to the left in
the graph. Small error bars are
barely visible at the left end of
the graph. The line seen was
obtained by linear regression
from the data points shown

value of πe a hard singularity of π(ξ) is generated, corresponding to an infinite matter
energy density, and then there is no acceptable solution to the problem. On the other
hand, the outer interface point seems to always exist, for all allowed values of the
parameters of the system. The only limitation on the values of the parameters due to
existence conditions for the solutions are those related to the inner interface.

The graph in Fig. 2 shows the functions ν(ξ) and λ(ξ) that describe the geometry
of the solution for this same set of input parameters. Outside the outer interface these
are the just the functions of the exterior Schwarzschild solution, for which we have
that ν(ξ) = −λ(ξ), with λ(ξ) > 0 and ν(ξ) < 0. Somewhere within the matter
region there is a crossing of the graphs of ν(ξ) and λ(ξ), so that for sufficiently small
ξ these signs are reversed, and we then have that λ(ξ) < 0 and ν(ξ) > 0. Inside
the inner interface these are the functions of the exact solution for the inner vacuum.
Since these two functions have singularities at the origin, the graphs are limited to a
region within which the graphs stay below certain maximum absolute values of ν(ξ)

and λ(ξ). It is worth emphasizing that these are the only two functions involved that
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Fig. 4 Graph of the functions
γ (ξ), π(ξ) and ρ̄(ξ) = κr20ρ(ξ)

in a high-density case, with the
parameters C = 0.01, n = 3 and
πe = 100.0, resulting in
ξM � 1.0096 and
ξμ � 15.0838. The vertical
dotted lines mark the positions
of the matter-vacuum interfaces

diverge somewhere in their domains, and that such divergences only happen at the
origin.

The graph in Fig. 3 shows the quantity log(π) as a function of log(ξ − ξ1), for this
first set of values of the parameters. This graph depicts the behavior of the function
π(ξ) in the approach of the inner interface at ξ1 from within the matter region, which
proceeds from the right to the left in the graph. In this limit π(ξ) behaves indeed as
(ξ − ξ1)

3/2, as one can see from the fact that the slope of the straight line shown in
the graphs is exactly 3/2, within the numerical precision level in use. This straight
line was obtained by linear regression from the numerical data. This result confirm
the analysis made in Sect. 3, and it also shows that π(ξ) in fact hits zero at ξ1, since
otherwise this log-log graph could not turn out to be a straight line.

In the graph shown in Fig. 4 we display a high-density case, in which we use the
value n = 3, a smaller value of the parameter C , with C = 0.01, and a much larger
value of the parameter πe, with πe = 100.0. In this case the inner vacuum is very wide
in the radial direction, and all the matter is concentrated within a relatively thin shell
located closer to the outer interface than to the inner one.

As one can see in the graph in Fig. 5, in this case the geometry becomes much more
extreme. The constant value of γ (ξ) within the inner vacuum regions becomes large
and negative. For large but finite values of πe this significantly decreases the physical
volume of the inner vacuum region, as compared to its apparent volume. Note that
within the inner vacuum region, since the radial lengths shrink, while the angular ones
remain invariant, the geometry of a two-dimensional spatial section through the origin,
of this four-dimensional geometry, is not embeddable in a flat three-dimensional space,
in the way that the exterior Schwarzschild geometry is.

The data for the third set of parameters, shown in the graphs is Figs. 6, 7, and 8, a
low-density example with n = 3/2,C = 1/3, and πz = 10−3, shows how our solution
approaches the behavior that is expected by our classical Newtonian intuition, along
most of the matter distribution. This example is well along the limit leading to the
Tooper solutions, as indicated by the very small value of ξμ given in the caption of
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Fig. 5 Graph of the functions
ν(ξ) and λ(ξ) in a high-density
case, with the parameters
C = 0.01, n = 3 and
πe = 100.0, resulting in
ξM � 1.0096 and
ξμ � 15.0838. The vertical
dotted lines mark the positions
of the matter-vacuum interfaces

Fig. 6 Graph of the functions
γ (ξ) and π(ξ) in a low-density
case, with the parameters
C = 1/3, n = 3/2 and
πz = 10−3, resulting in
ξM � 0.1848 and
ξμ � 3.3039 × 10−4. The
vertical dotted lines mark the
positions of the matter-vacuum
interfaces

Fig. 7 Graph of the functions
ν(ξ) and λ(ξ) in a low-density
case, with the parameters
C = 1/3, n = 3/2 and
πz = 10−3, resulting in
ξM � 0.1848 and
ξμ � 3.3039 × 10−4. The
vertical dotted line marks the
position of the outer
matter-vacuum interface
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Fig. 8 Graph of the function
ρ̄(ξ) = κr20ρ(ξ) in a
low-density case, with the
parameters C = 1/3, n = 3/2
and πz = 10−3, resulting in
ξM � 0.1848 and
ξμ � 3.3039 × 10−4. The
vertical dotted lines mark the
positions of the matter-vacuum
interfaces

Fig. 6. In this case the inner vacuum region and the singularity that it contains become
reduced to a very small region near the origin. The smaller the value of πz , the smaller
this region becomes, and in the πz → 0 limit it is reduced to a single point. Under
appropriate conditions, with small but non-zeroπz , this very small singular regionmay
then be washed away by the thermal fluctuations of the system, since these fluctuations
certainly violate the spherical symmetry at a sufficiently small length scale, and will
cause the small region containing the singular point to fluctuate rapidly around the
origin, thus smearing that singular point.

In this case the four-dimensional geometry becomes almost flat almost everywhere,
since both ν(ξ) and λ(ξ) become very small, as can be seen in the graph shown
in Fig. 7. What curvature there is becomes quite smooth, and embeddable in three
dimensions, all the way down to the point where λ(ξ) becomes zero. This embedding
only fails to be possible within a very small region near the origin. In Fig. 8 one can
see the matter energy density, which has a maximum quite close to the origin, and is
monotonically decreasing outward from there, just as is hypothesized in the case of
the Tooper solutions. In the πz → 0 limit the radial position of the maximum of the
matter energy density tends to the origin.

Note that while in the low-density case the inner vacuum region that contains the
singularity becomes ever smaller as πz decreases, in the case of the data for the second
set of parameters, with a large value of πe, the inner vacuum region and the effects
of the central singularity spread throughout most of the interior of the object, and
thus cannot be ignored. Therefore, while for low-density objects our solution does not
differ significantly from the Tooper solutions, for dense objects it is rather dramatically
different from it.

6 Conclusions

In this paper we have given the complete static solution of the Einstein field equations
for the case of a spherically symmetric distribution of gaseous matter satisfying the
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equation of state of a polytrope. We have arrived at some of the same important and
rather unexpected conclusions that we had already come across in a previous paper [1]
on the solution for shells of liquid matter.

One new fact, which is different from that previous case, is that in this case the inner
and outer boundaries of the matter, that define a spherical shell, are not imposed by
hand, but arise as inevitable consequences of the dynamics of the system, as determined
by the Einstein field equations. This makes it impossible to ignore these solutions, for
there is no arbitrary choice of a geometrical character involved. All the free parameters
of the system are related only to the physical characteristics of the matter, and all
geometrical characteristics that arise are inevitable consequences of the equations.

The new solutions converge back to the known Tooper [2] family of solutions in
certain limits of the free parameters of the physical system, inwhich the shell becomes a
filled sphere.While for each value of the index n that appears in the polytropic equation
of state the Tooper family of solutions is described by a two-dimensional parameter
space, the family that we present here is described by a three-dimensional parameter
space.

One of the conclusions that is just like those of the previous case involving liquid
matter is that all solutions of this type have a singularity at the origin, within the inner
vacuum region, that does not, however, lead to any kind of pathological behavior
involving the matter. Note that the resulting matter energy density is not imposed by
hand, but is instead a consequence of the dynamical equations of the system. Therefore,
the fact that the matter energy density is zero at the origin, where the singularity lies, is
a consequence of those equations. The other is that, contrary towhat is usually thought,
a non-trivial gravitational field does exist within a spherically symmetric central cavity,
namely the inner vacuum region. This field can be characterized as being repulsive
with respect to the origin, which explains why we do not see an infinite concentration
of matter at that point.

Unlike the problem examined in the previous paper [1], which can be seen as
having a somewhat academic character, the problem we examine here can have direct
applications to astrophysical objects. Not only we can use the isentropic case n = 3/2
to represent the external convective layer of a star, and the case n = 3 to represent its
internal radiative layer, but we might also consider using both, tied up to one another
by means of appropriate interface boundary conditions at an intermediary point, in
order to represent a star in a more complete fashion, including the two main layers
that are known to exist.

Because these new solutions hold over the entire four-dimensional manifold, in
certain limits they have interesting consequences regarding the concept of a black
hole, and specially regarding the geometry of its interior region. However, a detailed
discussion of that topic would be excessively long to be included here, since it would
involve mapping out the whole parameter space of all these possible static solutions.
Therefore, that discussion will be presented in a separate paper.
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