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Resumo

Modelos multiestado permitem que indivíduos se movimenten por uma série de estados ao
longo do tempo, possibilitando a estimativa das probabilidades de transição e intensidades
entre estados e o efeito de covariáveis associadas a cada transição. Modelos multiestado
são úteis para o estudo da evolução de indivíduos ao longo do tempo, particularmente
em dados agrupados, em que os indivíduos estão próximos e podem compartilhar fatores
de risco comuns. A fragilidade pode ser usada em modelos multiestado para capturar a
heterogeneidade entre grupos em risco para diferentes tipos de transições, assim como a es-
trutura de dependência entre as transições de indivíduos no mesmo grupo. As fragilidades
são variáveis aleatórias não observadas, assumidas independentes entre diferentes tipos
de transições, mas compartilhadas por grupos de indivíduos. Neste trabalho, propomos
um modelo multiestado com fragilidade para capturar a heterogeneidade entre grupos em
risco para diferentes tipos de transições, assim como a estrutura de dependência entre as
transições de indivíduos no mesmo grupo. Supomos que as fragilidade são independentes
entre diferentes tipos de transições, mas compartilhadas por grupos de indivíduos. Discu-
timos a estimação paramétrica e semiparamétrica dos parâmetros do modelo e avaliamos
o desempenho do modelo em estudos de simulação. Finalmente, aplicamos o modelo a um
conjunto de dados de pacientes em recuperação de transplante de medula óssea.
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1 Introdução
Na vida de um indivíduo ou sistema existem diversas causas de falha presentes ao mesmo
tempo e esses eventos são os chamados eventos competitivos. Então, dizemos que essas
causas competem entre si para que ela falhe. Porém, apenas uma dessas causas é respon-
sável por determinada falha, evitando assim a ocorrência das demais. Esta abordagem foi
desenvolvida por diferentes autores (Klein and Andersen, 2005; Bakoyannis and Touloumi,
2012; Hudgens et al., 2014; Andersen and Keiding, 2002; Putter et al., 2007; Pintilie, 2006;
Andersen et al., 2012; Willekens, 2014).
O modelo de risco competitivo é um caso especial de modelos multiestados, que descreve
transições entre eventos intermediários. Modelos multiestado são frequentemente usados
para descrever dados longitudinais, que são definidos por um processo estocástico de tempo
contínuo. Neste trabalho, os indivíduos transitam por um número finito de estados, possi-
bilitando estimar as probabilidades e os riscos de transição entre eles, bem como os efeitos
das covariáveis associadas a cada transição. A complexidade dos modelos multiestados
depende do número de estados definidos e do número de transições permitidas entre eles.
Em contraste, o problema da heterogeneidade devido a factores de risco não observados,
tais como variáveis ambientais e genéticas, ou factores que foram inadvertidamente omi-
tidos durante a fase de planeamento, foi investigado pela primeira vez por Vaupel et al.
(1979) e propuseram um modelo de efeitos aleatórios para dar conta desta heterogenei-
dade inerente, que posteriormente abriu caminho para um extenso corpo de literatura
agora referido como modelos de fragilidade. Hoje, numerosos esforços de investigação
aplicaram modelos de fragilidade para enfrentar este desafio, exemplificados por estudos
notáveis como Molina et al. (2021); Calsavara et al. (2020); Vasquez et al. (2022); Cancho
et al. (2020); Caroni et al. (2010); Ata and Özel (2013), e muitos outros.

2 Modelo multiestado com fragilidade aninhada
O modelo de fragilidade aninhado é apropriado em situações onde os dados são natural-
mente agrupados em diferentes níveis hierárquicos. Portanto, para considerar a hetero-
geneidade entre grupos em risco para diferentes tipos de transição, devido a fatores de
risco comuns não observados, e para considerar a estrutura de dependência entre tran-
sições de indivíduos dentro do mesmo grupo, um modelo multiestado com fragilidade
aninhada é definido através da transição- função de risco condicional específica do tipo
q (q = 1, . . . , Q). Inicialmente consideraremos que existem grupos H, que são indepen-
dentes entre si. Porém, existe dependência entre os indivíduos dentro de cada grupo
h(h = 1, . . . , H), e dentro de cada grupo h, existe dependência entre as transições de
seus indivíduos. Portanto, para alguns individuos i(i = 1, . . . , nh) do grupo h e transição
específica q, a função de risco condicionada à fragilidade uqh é dada por

λqhi(t|uqh) = uqhλq0(t) exp(β⊤
q Xqhi), (1)

onde, λq0(t) é a função de risco basal, β⊤
q é o vetor de parâmetros de regressão e Xqhi é

o vetor de covariáveis para a transição q. Consideramos o termo de fragilidade uqh para
a transição q dos indivíduos do grupo h como uma realização não observada da variável
aleatória, tal que

Uqh = VhWqh,



com

Vh
iid∼ fV (v, θv), h = 1, . . . , H,

Wqh
iid∼ fW (w, θq), h = 1, . . . , H,

Vh⊥Wqh, ∀ (h, q), (2)

onde Vh representa o efeito geral do grupo e Wqh representa o efeito aleatório no nível de
transição no grupo h, considerando a interação entre o tipo de transição e o grupo (Rotolo,
2013).
Na Figura 1, mostramos os casos particulares obtidos a partir do modelo de fragilidade
aninhado (1):

1. Modelo multiestado sem fragilidade: ocorre quando vh ≡ 1 e wqh ≡ 1, ∀ h e q.

2. Modelo multiestado com fragilidade compartilhada apenas para o efeito de grupo:
Se wqh ≡ 1, então são obtidas fragilidades compartilhadas, resultando em uqh =
uq′h = vh. Assim, temos o modelo com efeito aleatório apenas para o grupo, que é
o caso do modelo de fragilidade compartilhada

3. Modelo multiestado com fragilidade compartilhada apenas para o efeito de interação
do grupo de transição: Quando vh ≡ 1, as fragilidades são consideradas indepen-
dentes entre as transições, e o modelo se reduz ao caso em que Corr(Uqh, Uq′h) = 0
(Uqh ⊥ Uq′h), semelhante aos modelos propostos por Ma et al. (2010), Yen et al.
(2010) e Liquet et al. (2012). Esta suposição de fragilidade independente dentro
de grupos ignora a estrutura de correlação de diferentes eventos que são influencia-
dos pelos mesmos fatores de risco não observados para indivíduos dentro do mesmo
grupo

Modelo multiestado com fragilidade aninhada

λqhi = uqhλq0(t) exp(β⊤
q Xqhi)

vh = 1 e wqh = 1

Sem fragilidade

λq0 (t) exp
(

β⊤
q Xq

)

wqh = 1

Com fragilidade compartilhada (grupo)

νhλq0 (t) exp
(

β⊤
q Xqhi

)

vh = 1

Com fragilidade (grupo de transição)

ωqhλq0 (t) exp
(

β⊤
q Xqhi

)
Figure 1: Casos particulares do modelo multiestado com fragilidade aninhada.

3 Inferência
Para este trabalho o procedimento inferencial para os parâmetros do modelo com base nas
abordagens paramétrica e semiparamétrica. Rotolo (2013) mostrou que os indivíduos só
estarão em risco para um determinado tipo de evento a partir do momento em que entrarem
no estado inicial associado a esse evento. De acordo com a estrutura multiestado, para cada



indivíduo i (i = 1, . . . , nh), existem Q tipos de transição possíveis. Consideraremos um
total de n indivíduos agrupados em grupos H de tamanhos n1, . . . , nH , com n =

∑H
h=1 nh.

O tempo de transição, tqhi, para o indivíduo i no grupo h pode ser observado ou censurado,
com o indicador de evento/censura δqhi definido como:

δqhi =
{

1, se o tempo na transição q para o indivíduo i dentro do grupo h for observado,
0, se o tempo na transição q para o indivíduo i dentro do grupo h for censurado.

Devido às suposições de independência condicional dadas em (2), a função de verossimil-
hança condicional para o modelo (1) pode ser obtida como o produto de todos os grupos
e as contribuições dos indivíduos apenas nas transições pelas quais eles estão em risco ,
Ou seja, aqueles que têm tempo de truncamento esquerdo finito. Desta forma, a função
de verossimilhança condicional é definida como:

LC(ξ, β) =
H∏

h=1
Lc,h(ξ, β) =

H∏
h=1

nh∏
i=1

Q∏
q=1

[λqhi(tqhi|vhwqh)]δqhi
S(tqhi|vhwqh)
S(τqhi|vhwqh)

=
H∏

h=1

nh∏
i=1

Q∏
q=1

[
vhwqhλq0(tqhi) exp

(
β⊤

q Xqhi

)]δqhi

× exp
{

−vhwqh [Λq0(tqhi) − Λq0(τqhi)] exp
(
β⊤

q Xqhi

)}
, (3)

onde τqhi são os tempos de truncamento à esquerda, ou seja, aqueles correspondentes ao
tempo da transição anterior, ξ =

(
ξ⊤

1 , . . . , ξ⊤
Q

)⊤
é o vetor de parâmetros da função de risco

de linha de base, e β =
(
β⊤

1 , . . . , β⊤
Q

)⊤
é o vetor de parâmetros de regressão. As variáveis

aleatórias não são observáveis e a função de verossimilhança (3) não pode ser maximizada
diretamente, portanto consideraremos uma abordagem semiparamétrica.

4 Aplicação
Para ilustrar a aplicabilidade dos modelos previamente estudados, utilizamos um conjunto
de dados de transplante de medula óssea. Utilizamos o conjunto de dados do livro de Klein
and Moeschberger (2003), que também está disponível no pacote de Wreede et al. (2010); ?
do software R (R Core Team, 2019). Este conjunto de dados trata do processo de recuper-
ação do transplante de medula óssea, que é um tratamento padrão para a leucemia aguda.
A recuperação após o transplante é um processo complexo, pois o prognóstico de recuper-
ação pode depender de fatores de risco conhecidos no momento do transplante, como a
idade do paciente e do doador, além de outros fatores. O prognóstico final também pode
mudar à medida que a história pós-transplante do paciente se desenvolve com a ocorrência
de eventos durante o processo de recuperação, como o desenvolvimento de doença aguda
do enxerto versus hospedeiro (AGvHD), recuperação de plaquetas para níveis normais,
retorno de granulócitos para níveis normais ou o desenvolvimento de infecções. O trans-
plante pode ser considerado um fracasso quando há recorrência da leucemia no paciente
ou quando o paciente morre enquanto a doença está em remissão, ou seja, a morte está
relacionada ao tratamento.
Estudamos quatro modelos semiparamétricos para o conjunto de dados do transplante de



medula óssea. Os modelos propostos para a aplicação foram, Modelo 1 que é o modelo
multiestado sem fragilidade (MMWF), Modelo 2 é modelo multiestado com fragilidade
compartilhada apenas para efeito de grupo (MMSF1), Modelo 3 é modelo multiestado com
fragilidade compartilhada apenas para efeito de interação de grupo de transição (MMSF2)
e o Modelo 4 é o modelo multiestado com fragilidade aninhada (MMNF). Ajustamos os
modelos semiparametricamente e as estimativas dos parâmetros dos modelos MMWF,
MMSF1 e MMSF2 foram obtidas com o auxílio do pacote mstate, enquanto o MMNF foi
ajustado com o auxílio do pacote mlfm(Rotolo and Horny, 2012), sob a restrição que todas
as interações do grupo de transição Wqh têm a mesma variância (θW := θ1 = . . . = θ10),
esta interação sendo agora denotada por Wq. Em 1 são dados os resultados das estimativas
dos parâmetros de regressão βq = (β1, β2) (q = 1, . . . , 10) e os respectivos erros padrão
(SE) para estes modelos. Em relação aos resultados dos Table 1, as estimativas dos
parâmetros de regressão permanecem positivas ou negativas em todos os modelos, os seus
valores são geralmente muito próximos entre si e os EP são próximos de zero para estes
modelos.
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Table 1: Regression parameter estimates(β̂q) and standard error of the regression param-
eters SE(β̂q) for the MMWF, MMSF1, MMSF2 and MMNF.

MMWF MMSF1

β̂q exp(β̂q) SE(β̂q) β̂q exp(β̂q) SE(β̂q)

β1,1 0.0211 1.0213 0.0156 0.0278 1.0282 0.0163
β1,2 0.0933 1.0978 0.0624 0.0978 1.1027 0.0632
β1,3 0.0840 1.0876 0.1079 0.1003 1.1055 0.1108
β1,4 -0.0610 0.9409 0.0552 -0.0535 0.9479 0.0561
β1,5 0.0114 1.0115 0.0373 0.0184 1.0186 0.0378
β1,6 0.0356 1.0362 0.0267 0.0431 1.0441 0.0271
β1,7 0.0135 1.0136 0.0364 0.0217 1.0220 0.0371
β1,8 -0.0430 0.9579 0.1001 -0.0675 0.9347 0.1004
β1,9 -0.1586 0.8533 0.1202 -0.1758 0.8388 0.1291
β1,10 0.0413 1.0422 0.0517 0.0462 1.0473 0.0526
β2,1 -0.0134 0.9867 0.0136 -0.0150 0.9851 0.0141
β2,2 0.0016 1.0016 0.0508 0.0017 1.0017 0.0522
β2,3 -0.0133 0.9868 0.0869 -0.0196 0.9806 0.0885
β2,4 0.0972 1.1021 0.0468 0.0967 1.1015 0.0481
β2,5 0.0198 1.0200 0.0392 0.0175 1.0176 0.0400
β2,6 -0.0205 0.9798 0.0268 -0.0241 0.9762 0.0274
β2,7 -0.0265 0.9738 0.0363 -0.0311 0.9694 0.0369
β2,8 0.0808 1.0842 0.0856 0.0791 1.00824 0.0839
β2,9 0.1483 1.1599 0.1770 0.1618 1.1756 0.1743
β2,10 -0.0320 0.9685 0.1034 -0.0367 0.9640 0.1037

Variance of random effects

Hospital - 0.0471
Transition - -

MMSF2 MMNF
β̂q exp(β̂q) SE(β̂q) β̂q exp(β̂q) SE(β̂q)

β1,1 0.0398 1.0406 0.0170 0.0272 1.0276 0.0159
β1,2 0.0953 1.0999 0.0628 0.0974 1.1023 0.0631
β1,3 0.0840 1.0876 0.1079 0.0987 1.1037 0.1101
β1,4 -0.1062 0.8992 0.0611 -0.0541 0.9474 0.0560
β1,5 0.0114 1.0115 0.0373 0.0181 1.0182 0.0377
β1,6 0.0356 1.0362 0.0267 0.0426 1.0436 0.0270
β1,7 0.0244 1.0247 0.0377 0.0212 1.0214 0.0370
β1,8 -0.0430 0.9579 0.1001 -0.0657 0.9364 0.1000
β1,9 -0.1586 0.8533 0.1202 -0.1742 0.8401 0.1282
β1,10 0.1269 1.1353 0.0808 0.0463 1.0474 0.0522
β2,1 -0.0217 0.9785 0.0149 -0.0148 0.9854 0.0138
β2,2 0.0027 1.0027 0.0515 0.0017 1.0017 0.0520
β2,3 -0.0133 0.9868 0.0869 -0.0188 0.9814 0.0880
β2,4 0.1122 1.1187 0.0417 0.0967 1.1015 0.0479
β2,5 0.0198 1.0200 0.0392 0.0176 1.0177 0.0399
β2,6 -0.0205 0.9797 0.0268 -0.0239 0.9764 0.0273
β2,7 -0.0319 0.9686 0.0374 -0.0308 0.9697 0.0368
β2,8 0.0808 1.0842 0.0856 0.0794 1.0827 0.0840
β2,9 0.1483 1.1599 0.1770 0.1606 1.1742 0.1743
β2,10 -0.1037 0.9015 0.1260 -0.0367 0.9640 0.1036

Variance of random effects

Hospital - 0.0401
Transition * 2.1381
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