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BOURGIN-YANG VERSIONS OF THE BORSUK-ULAM THEOREM FOR
(H,G)-COINCIDENCES

DENISE DE MATTOS AND TACIANA OLIVEIRA SOUZA

Abstract. Let G = Zpk be a cyclic group of prime power order, or repectively G = Zk
p be

the p-torus of rank k. We estimate the size of the (H,G)-coincidences set of a continuous
map from S(V ) into a real vector space W ′.

1. Introduction

Let G be a finite group which acts freely on a space X and let f : X → Y be a continuous
map from X into another space Y . If H is a subgroup of G, then H acts on the right on
each orbit Gx of G as follows: if y ∈ Gx and y = gx, g ∈ G, then hy = gh−1x. A point
x ∈ X is said to be a (H,G)- coincidence point of f (as introduced by Gonçalves, Pergher
and Jaworowski in [3]) if f sends every orbit of the action of H on the G-orbit of x to a
single point. Let us denote by A(f,H,G) the set of all (H,G)-coincidence points. Of course,
if H is the trivial subgroup, then every point of X is a (H,G)-coincidence. If H = G, this
is the usual definition of G-coincidence, that is,

A(f,G,H) = A(f) = {x ∈ X | f(x) = f(gx), for all g ∈ G}.

Borsuk-Ulam theorems type consists in estimating the dimension of the set A(f,H,G).
For the case that G = H = Z2, X = Sn and Y = Rn, we have the classical Borsuk-Ulam
theorem [2].

Let G = Zpk be a cyclic group of prime power order, k ≥ 1. For given two powers
1 ≤ m ≤ n ≤ pk−1 of p we set

(1) Am,n := {G/H |H ⊂ G; m ≤ |H| ≤ n },

where |H| is the cardinality of H. We shall write AX for a set of all the G-orbits of a space
X (up to a homeomorphism, thus up to an isomorphism of finite G-sets).

Let V be an orthogonal representation of G = Zpk , p prime, k ≥ 1, such that V G = {0}, for
the set of fixed points of G. For G = Zpk , with p odd, every nontrivial irreducible orthogonal
representation is even dimensional and admits the complex structure ([4]), thus V admit it
too. We denote by d(V ) = dimC V = 1

2
dimR V the integral numerical invariant of V . If

G = Z2k and V is a real orthogonal representation of G, then we denote d(V ) = dimR V .
Given W ′ a real vector space and a continuous map f : S(V ) → W ′, in this work we

estimate the size of A(f,Zpi ,Zpk) the Zpk-coincidences set of f , as follows.
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Theorem 1.1. Let V be a complex orthogonal representation of the cyclic group G = Zpk ,
p prime, k ≥ 1, such that V G = {0} and let W ′ be a real vector space. Let f : S(V ) → W ′

be a continuous map.

(1) If AS(V ) ⊂ A1,pk−1, then for all 1 ≤ i ≤ k,

dim A(f,Zpi ,Zpk) ≥ 2

(
d(V )− 1

pk−1

)
− (pk − pk−i)d(W ′).

(2) If AS(V ) ⊂ A1,pi−1 for some 1 ≤ i ≤ k, then

dimA(f,Zpi ,Zpk) ≥ 2

(
d(V )− 1

pi−1

)
− (pk − pk−i)d(W ′).

Theorem 1.2. Let V be a real orthogonal representation of the cyclic group G = Z2k , k ≥ 1,
such that V G = {0} and let W ′ be a real vector space. Let f : S(V ) → W ′ be a continuous
map.

(1) If AS(V ) ⊂ A1,2k−1, then for all 1 ≤ i ≤ k,

dim A(f,Z2i ,Z2k) ≥
(
d(V )− 1

2k−1

)
− (2k − 2k−i)d(W ′).

(2) If AS(V ) ⊂ A1,2i−1 for some 1 ≤ i ≤ k, then

dimA(f,Z2i ,Z2k) ≥
(
d(V )− 1

2i−1

)
− (2k − 2k−i)d(W ′).

2. Bourgin-Yang versions of the Borsuk-Ulam theorem for G = Zpk

Recently, in [5], the authors proved the following Bourgin-Yang version of the Borsuk-Ulam
theorem for complex orthogonal representations of G = Zpk , p prime, k ≥ 1

Theorem 2.1. [5, Theorem 3.6] Let V , W be two complex orthogonal representations of the

cyclic group G = Zpk , p prime, k ≥ 1, such that V G = WG = {0}. Let f : S(V )
G→ W be

an equivariant map and Zf := f−1(0) = {v ∈ S(V ) | f(v) = 0}. Suppose AS(V ) ⊂ Am,n and
AS(W ) ⊂ Am,n. Then

dim(Zf ) ≥ 2
(((d(V )− 1)m

n

)
− d(W )

)
.

They also proved the following Bourgin–Yang version of the Borsuk-Ulam theorem for real
orthogonal representations of G = Z2k , k ≥ 1.

Theorem 2.2. [5, Theorem 3.9] Let V , W be two real orthogonal representations of the

cyclic group G = Z2k , k ≥ 1, such that V G = WG = {0}. Let f : S(V )
G→ W be an

equivariant map and Zf = f−1(0). Suppose that AS(V ) ⊂ Am,n and AS(W ) ⊂ Am,n. Then

dim(Zf ) ≥
((d(V )− 1)m

n

)
− d(W ).
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3. Proof of the main results

Proof of Theorem 1.1 Let i be fixed, with 1 ≤ i ≤ k and let us consider the real vector space
pk

⊕
j=1

W ′, which is the direct sum of pk copies of W ′. We have that
pk

⊕
j=1

W ′ admits an action of

the cyclic group G = Zpk , given by

g(w1, w2, . . . , wpk) = (w2, . . . , wpk , w1),

for a fixed generator g ∈ G and for each (w1, . . . , wpk) ∈
pk

⊕
j=1

W ′.

Let us denote by ∆(W ′pk−i

) the diagonal of

pk

⊕
j=1

W ′ = W ′pk−i

⊕ · · · ⊕W ′pk−i

.

We have
pk

⊕
j=1

W ′ = ∆(W ′pk−i

)⊕ (∆(W ′pk−i

))⊥,

where ∆(W ′pk−i

)⊥ is the orthogonal complement of ∆(W ′pk−i

). Since ∆(W ′pk−i

) is a

pk−i dimW ′ - dimensional G-subspace of
pk

⊕
i=1

W ′, let us observe that ∆(W pk−i
)⊥ is a

(pk − pk−i) dimW ′ - dimensional G-subrepresentation of
pk

⊕
i=1

W ′, for which (∆(W ′pk−i

)⊥)G =

{0}.
Now, we denote by a1, . . . , ar a set of representatives of the left lateral classes of G/Zpi ,

where r = pk−i. Consider the map

F : S(V )→ ∆(W ′pk−i

)⊕∆(W ′pk−i

)⊥

defined by

F (x) = (f(a1x), . . . , f(arx), f(a1hx), . . . , f(arhx), . . . , f(a1h
pi−1x), . . . , f(arh

pi−1x)),

for a fixed generator h ∈ Zpi . The linear orthogonal projection along the diagonal

∆(W ′pk−i

) defines a G-equivariant map ρ : ∆(W ′pk−i

) ⊕ ∆(W ′pk−i

)⊥ → ∆(W ′pk−i

)⊥. Let
us denote by l the composition

S(V )
F→ ∆(W ′pk−i

)⊕∆(W ′pk−i

)⊥
ρ→ ∆(W ′pk−i

)⊥,

with Zl = l−1(0) = (ρ ◦ F )−1(0) = F−1(∆(W ′pk−i

)) = A(f,Zpi ,Zpk).
For a fixed generator g ∈ G, we can consider

h = gp
k−i

and a1 = e, a2 = g, . . . , ar = gp
k−i−1,

then F is a G-equivariant map. Moreover

A
S(∆(W ′p

k−i
)⊥)
⊂ A1,pi−1 ⊂ A1,pk−1 .(2)

To check the validity of inclusion A
S(∆(W ′p

k−i
)⊥)
⊂ A1,pi−1 , it suffices to prove that the car-

dinality of the orbit Zpkw belongs to the set {pk, pk−1, . . . , pk−i+1}, for all w = (w1, . . . , wpk) ∈
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S(∆(W ′pk−i

)⊥). According to [1, Chapter 1, Proposition 4.1], the cardinality of the orbit
Zpkw belongs to the set {pk, pk−1, . . . , p, p0 = 1}. Let w = (w1, . . . , wpk) an element in

S(∆(W ′pk−i

)⊥) and suppose that

|Zpkw| ∈ {pk−i, pk−i−1, . . . , p0 = 1},
that is |Zpkw| = pj, for some 0 ≤ j ≤ k − i.

Assertion. We have Zpkw = {w, gw, · · · , gpj−1w}, for a fixed generator g of Zpk .

In fact, consider a cyclic group G, g ∈ G a fixed generator and {w, gw, · · · , gs−1w} the
maximum set of the s first elements of the orbit Gw that are distinct from each other. By
definition of the set {w, gw, · · · , gs−1w} we have

gsw ∈ {w, gw, · · · , gs−1w}.
Suppose that

gsw = giw, for some 1 ≤ i ≤ s− 1,

then

gs−iw = w, 1 ≤ s− i ≤ s− 1,

but this contradicts the definition of {w, gw, · · · , gs−1w}.
Now, if gtw ∈ Gw, for some t ∈ N, we have t = ns+ r with 0 ≤ r ≤ s− 1. Therefore

gtw = gns+rw = gr(gns)w = grw ∈ {w, gw, · · · , gs−1w},
since

gnsw = (gs · · · gs)w = w

and 0 ≤ r ≤ s− 1.

Thus, for a fixed generator g of Zpk , we have

w = gp
j

w = gp
j

(w1, . . . , wpj , . . . , w(pk−j−1)pj+1, . . . , wpk)

= (wpj+1, . . . , w2pj , . . . , w(pk−j−1)pj+1, . . . , wpk , w1, . . . , wpj)

therefore w ∈ ∆(W ′pj). Since

∆(W ′) ⊂ ∆(W ′p) ⊂ · · · ⊂ ∆(W ′pk−i−1

) ⊂ ∆(W ′pk−i

)

and j ∈ {0, 1, . . . , k − i}, we conclude that

w ∈ ∆(W ′pj) ⊂ ∆(W ′pk−i

),

which is a contradiction because

∆(W ′pk−i

) ∩ S(∆(W ′pk−i

)⊥) = ∅.
Thus the Theorem 2.1 implies the claim. 2

Proof of Theorem 1.2 For G = Z2k , k ≥ 1, using the same steps of the proof of Theorem 1.1
and applying Theorem 2.2 we have the result. 2
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Remark 3.1. We emphasize that in the Theorems 1.1 and 1.2 the action of G on S(V ) is not
necessarily free. Moreover, we have an estimate for the size of the set of (H,G)-coincidence
points for all subgroups H = Zpi of G = Zpi. These two characteristics make the Theorems
1.1 and 1.2 different of classical results about (H,G)-coincidences.

4. Case of G being a p-torus

Now, let V , W be two orthogonal representations of the p-torus group G = Zkp of rank

k ≥ 1, p prime, such that V G = WG = {0} for the sets of fixed points of G. Let f :
S(V )→ W ′ be a G-equivariant map, in [6, Theorem 2.7] we have the following estimate for
the covering dimension of Zf

dim(Zf ) ≥ d(V )− d(W )− 1.

Using this result we can estimate the covering dimension of the set of (H,Zkp)-coincidences,
as follows.

Corollary 4.1. Let V , W ′ be two orthogonal representation of the group G = Zkp, such that

V G = W ′G = {0}. Let f : S(V )→ W ′ be a G-equivariant map, then

dimA(Zip,Zkp) ≥ d(V )− (pk − pk−i)d(W ′)− 1

for all 1 ≤ i ≤ k.

Proof: Let i be fixed, with 1 ≤ i ≤ k. As in the proof of the Theorem 1.1, we consider a
map

F : S(V )→
pk

⊕
j=1

W ′

defined by

F (x) = (f(a1h1x), . . . , f(arh1x), f(a1h2x), . . . , f(arh2x), . . . , f(a1hpix), . . . , f(arhpix)),

where a1, . . . , ar are representatives of the left lateral classes of G/Zip, r = pk−i and Zip =
{h1, . . . , hpi}.

Considering the diagonal action of G on
pk

⊕
j=1

W ′, F becomes G-equivariant. Thus the

composition

S(V )
F→ ∆(W ′pk−i

)⊕∆(W ′pk−i

)⊥
ρ→ ∆(W ′pk−i

)⊥,

is also G-equivariant. Finally, we apply [6, Theorem 2.7] to estimate the size of the set
Zρ◦F = A(Zip,Zkp). 2
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