
**BOURGIN-YANG VERSIONS OF THE BORSUK-ULAM THEOREM
FOR (H,G)-COINCIDENCES**

DENISE DE MATTOS
TACIANA OLIVEIRA SOUZA

Nº 427

NOTAS DO ICMC
SÉRIE MATEMÁTICA

São Carlos – SP
Out./2016

BOURGIN-YANG VERSIONS OF THE BORSUK-ULAM THEOREM FOR (H, G)-COINCIDENCES

DENISE DE MATTOS AND TACIANA OLIVEIRA SOUZA

ABSTRACT. Let $G = \mathbb{Z}_{p^k}$ be a cyclic group of prime power order, or respectively $G = \mathbb{Z}_p^k$ be the p -torus of rank k . We estimate the size of the (H, G) -coincidences set of a continuous map from $S(V)$ into a real vector space W' .

1. INTRODUCTION

Let G be a finite group which acts freely on a space X and let $f : X \rightarrow Y$ be a continuous map from X into another space Y . If H is a subgroup of G , then H acts on the right on each orbit Gx of G as follows: if $y \in Gx$ and $y = gx$, $g \in G$, then $hy = gh^{-1}x$. A point $x \in X$ is said to be a (H, G) -coincidence point of f (as introduced by Gonçalves, Pergher and Jaworowski in [3]) if f sends every orbit of the action of H on the G -orbit of x to a single point. Let us denote by $A(f, H, G)$ the set of all (H, G) -coincidence points. Of course, if H is the trivial subgroup, then every point of X is a (H, G) -coincidence. If $H = G$, this is the usual definition of G -coincidence, that is,

$$A(f, G, H) = A(f) = \{x \in X \mid f(x) = f(gx), \text{ for all } g \in G\}.$$

Borsuk-Ulam theorems type consists in estimating the dimension of the set $A(f, H, G)$. For the case that $G = H = \mathbb{Z}_2$, $X = S^n$ and $Y = \mathbb{R}^n$, we have the classical Borsuk-Ulam theorem [2].

Let $G = \mathbb{Z}_{p^k}$ be a cyclic group of prime power order, $k \geq 1$. For given two powers $1 \leq m \leq n \leq p^{k-1}$ of p we set

$$(1) \quad \mathcal{A}_{m,n} := \{G/H \mid H \subset G; m \leq |H| \leq n\},$$

where $|H|$ is the cardinality of H . We shall write \mathcal{A}_X for a set of all the G -orbits of a space X (up to a homeomorphism, thus up to an isomorphism of finite G -sets).

Let V be an orthogonal representation of $G = \mathbb{Z}_{p^k}$, p prime, $k \geq 1$, such that $V^G = \{0\}$, for the set of fixed points of G . For $G = \mathbb{Z}_{p^k}$, with p odd, every nontrivial irreducible orthogonal representation is even dimensional and admits the complex structure ([4]), thus V admit it too. We denote by $d(V) = \dim_{\mathbb{C}} V = \frac{1}{2} \dim_{\mathbb{R}} V$ the integral numerical invariant of V . If $G = \mathbb{Z}_{2^k}$ and V is a real orthogonal representation of G , then we denote $d(V) = \dim_{\mathbb{R}} V$.

Given W' a real vector space and a continuous map $f : S(V) \rightarrow W'$, in this work we estimate the size of $A(f, \mathbb{Z}_{p^i}, \mathbb{Z}_{p^k})$ the \mathbb{Z}_{p^k} -coincidences set of f , as follows.

2010 *Mathematics Subject Classification.* Primary 55M20 Secondary 55M35, 55N91, 57S17.

Key words and phrases. equivariant maps, covering dimension, orthogonal representation, equivariant K -theory.

Theorem 1.1. *Let V be a complex orthogonal representation of the cyclic group $G = \mathbb{Z}_{p^k}$, p prime, $k \geq 1$, such that $V^G = \{0\}$ and let W' be a real vector space. Let $f : S(V) \rightarrow W'$ be a continuous map.*

(1) *If $\mathcal{A}_{S(V)} \subset \mathcal{A}_{1,p^{k-1}}$, then for all $1 \leq i \leq k$,*

$$\dim A(f, \mathbb{Z}_{p^i}, \mathbb{Z}_{p^k}) \geq 2 \left(\frac{d(V) - 1}{p^{k-1}} \right) - (p^k - p^{k-i})d(W').$$

(2) *If $\mathcal{A}_{S(V)} \subset \mathcal{A}_{1,p^{i-1}}$ for some $1 \leq i \leq k$, then*

$$\dim A(f, \mathbb{Z}_{p^i}, \mathbb{Z}_{p^k}) \geq 2 \left(\frac{d(V) - 1}{p^{i-1}} \right) - (p^k - p^{k-i})d(W').$$

Theorem 1.2. *Let V be a real orthogonal representation of the cyclic group $G = \mathbb{Z}_{2^k}$, $k \geq 1$, such that $V^G = \{0\}$ and let W' be a real vector space. Let $f : S(V) \rightarrow W'$ be a continuous map.*

(1) *If $\mathcal{A}_{S(V)} \subset \mathcal{A}_{1,2^{k-1}}$, then for all $1 \leq i \leq k$,*

$$\dim A(f, \mathbb{Z}_{2^i}, \mathbb{Z}_{2^k}) \geq \left(\frac{d(V) - 1}{2^{k-1}} \right) - (2^k - 2^{k-i})d(W').$$

(2) *If $\mathcal{A}_{S(V)} \subset \mathcal{A}_{1,2^{i-1}}$ for some $1 \leq i \leq k$, then*

$$\dim A(f, \mathbb{Z}_{2^i}, \mathbb{Z}_{2^k}) \geq \left(\frac{d(V) - 1}{2^{i-1}} \right) - (2^k - 2^{k-i})d(W').$$

2. BOURGIN-YANG VERSIONS OF THE BORSUK-ULAM THEOREM FOR $G = \mathbb{Z}_p$

Recently, in [5], the authors proved the following Bourgin-Yang version of the Borsuk-Ulam theorem for complex orthogonal representations of $G = \mathbb{Z}_{p^k}$, p prime, $k \geq 1$

Theorem 2.1. [5, Theorem 3.6] *Let V, W be two complex orthogonal representations of the cyclic group $G = \mathbb{Z}_{p^k}$, p prime, $k \geq 1$, such that $V^G = W^G = \{0\}$. Let $f : S(V) \xrightarrow{G} W$ be an equivariant map and $Z_f := f^{-1}(0) = \{v \in S(V) \mid f(v) = 0\}$. Suppose $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m,n}$. Then*

$$\dim(Z_f) \geq 2 \left(\left(\frac{(d(V) - 1)m}{n} \right) - d(W) \right).$$

They also proved the following Bourgin-Yang version of the Borsuk-Ulam theorem for real orthogonal representations of $G = \mathbb{Z}_{2^k}$, $k \geq 1$.

Theorem 2.2. [5, Theorem 3.9] *Let V, W be two real orthogonal representations of the cyclic group $G = \mathbb{Z}_{2^k}$, $k \geq 1$, such that $V^G = W^G = \{0\}$. Let $f : S(V) \xrightarrow{G} W$ be an equivariant map and $Z_f = f^{-1}(0)$. Suppose that $\mathcal{A}_{S(V)} \subset \mathcal{A}_{m,n}$ and $\mathcal{A}_{S(W)} \subset \mathcal{A}_{m,n}$. Then*

$$\dim(Z_f) \geq \left(\frac{(d(V) - 1)m}{n} \right) - d(W).$$

3. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.1 Let i be fixed, with $1 \leq i \leq k$ and let us consider the real vector space $\bigoplus_{j=1}^{p^k} W'$, which is the direct sum of p^k copies of W' . We have that $\bigoplus_{j=1}^{p^k} W'$ admits an action of the cyclic group $G = \mathbb{Z}_{p^k}$, given by

$$g(w_1, w_2, \dots, w_{p^k}) = (w_2, \dots, w_{p^k}, w_1),$$

for a fixed generator $g \in G$ and for each $(w_1, \dots, w_{p^k}) \in \bigoplus_{j=1}^{p^k} W'$.

Let us denote by $\Delta(W'^{p^{k-i}})$ the diagonal of

$$\bigoplus_{j=1}^{p^k} W' = W'^{p^{k-i}} \oplus \dots \oplus W'^{p^{k-i}}.$$

We have

$$\bigoplus_{j=1}^{p^k} W' = \Delta(W'^{p^{k-i}}) \oplus (\Delta(W'^{p^{k-i}}))^\perp,$$

where $\Delta(W'^{p^{k-i}})^\perp$ is the orthogonal complement of $\Delta(W'^{p^{k-i}})$. Since $\Delta(W'^{p^{k-i}})$ is a $p^{k-i} \dim W'$ - dimensional G -subspace of $\bigoplus_{i=1}^{p^k} W'$, let us observe that $\Delta(W'^{p^{k-i}})^\perp$ is a $(p^k - p^{k-i}) \dim W'$ - dimensional G -subrepresentation of $\bigoplus_{i=1}^{p^k} W'$, for which $(\Delta(W'^{p^{k-i}})^\perp)^G = \{0\}$.

Now, we denote by a_1, \dots, a_r a set of representatives of the left lateral classes of G/\mathbb{Z}_{p^i} , where $r = p^{k-i}$. Consider the map

$$F : S(V) \rightarrow \Delta(W'^{p^{k-i}}) \oplus \Delta(W'^{p^{k-i}})^\perp$$

defined by

$$F(x) = (f(a_1x), \dots, f(a_rx), f(a_1hx), \dots, f(a_rhx), \dots, f(a_1h^{p^i-1}x), \dots, f(a_rh^{p^i-1}x)),$$

for a fixed generator $h \in \mathbb{Z}_{p^i}$. The linear orthogonal projection along the diagonal $\Delta(W'^{p^{k-i}})$ defines a G -equivariant map $\rho : \Delta(W'^{p^{k-i}}) \oplus \Delta(W'^{p^{k-i}})^\perp \rightarrow \Delta(W'^{p^{k-i}})^\perp$. Let us denote by l the composition

$$S(V) \xrightarrow{F} \Delta(W'^{p^{k-i}}) \oplus \Delta(W'^{p^{k-i}})^\perp \xrightarrow{\rho} \Delta(W'^{p^{k-i}})^\perp,$$

with $Z_l = l^{-1}(0) = (\rho \circ F)^{-1}(0) = F^{-1}(\Delta(W'^{p^{k-i}})) = A(f, \mathbb{Z}_{p^i}, \mathbb{Z}_{p^k})$.

For a fixed generator $g \in G$, we can consider

$$h = g^{p^{k-i}} \text{ and } a_1 = e, a_2 = g, \dots, a_r = g^{p^{k-i}-1},$$

then F is a G -equivariant map. Moreover

$$(2) \quad \mathcal{A}_{S(\Delta(W'^{p^{k-i}})^\perp)} \subset \mathcal{A}_{1,p^{i-1}} \subset \mathcal{A}_{1,p^{k-1}}.$$

To check the validity of inclusion $\mathcal{A}_{S(\Delta(W'^{p^{k-i}})^\perp)} \subset \mathcal{A}_{1,p^{i-1}}$, it suffices to prove that the cardinality of the orbit $\mathbb{Z}_{p^k}w$ belongs to the set $\{p^k, p^{k-1}, \dots, p^{k-i+1}\}$, for all $w = (w_1, \dots, w_{p^k}) \in$

$S(\Delta(W'^{p^{k-i}})^\perp)$. According to [1, Chapter 1, Proposition 4.1], the cardinality of the orbit $\mathbb{Z}_{p^k}w$ belongs to the set $\{p^k, p^{k-1}, \dots, p, p^0 = 1\}$. Let $w = (w_1, \dots, w_{p^k})$ an element in $S(\Delta(W'^{p^{k-i}})^\perp)$ and suppose that

$$|\mathbb{Z}_{p^k}w| \in \{p^{k-i}, p^{k-i-1}, \dots, p^0 = 1\},$$

that is $|\mathbb{Z}_{p^k}w| = p^j$, for some $0 \leq j \leq k - i$.

Assertion. We have $\mathbb{Z}_{p^k}w = \{w, gw, \dots, g^{p^j-1}w\}$, for a fixed generator g of \mathbb{Z}_{p^k} .

In fact, consider a cyclic group G , $g \in G$ a fixed generator and $\{w, gw, \dots, g^{s-1}w\}$ the maximum set of the s first elements of the orbit Gw that are distinct from each other. By definition of the set $\{w, gw, \dots, g^{s-1}w\}$ we have

$$g^s w \in \{w, gw, \dots, g^{s-1}w\}.$$

Suppose that

$$g^s w = g^i w, \text{ for some } 1 \leq i \leq s - 1,$$

then

$$g^{s-i} w = w, \quad 1 \leq s - i \leq s - 1,$$

but this contradicts the definition of $\{w, gw, \dots, g^{s-1}w\}$.

Now, if $g^t w \in Gw$, for some $t \in \mathbb{N}$, we have $t = ns + r$ with $0 \leq r \leq s - 1$. Therefore

$$g^t w = g^{ns+r} w = g^r (g^{ns}) w = g^r w \in \{w, gw, \dots, g^{s-1}w\},$$

since

$$g^{ns} w = (g^s \cdots g^s) w = w$$

and $0 \leq r \leq s - 1$.

Thus, for a fixed generator g of \mathbb{Z}_{p^k} , we have

$$\begin{aligned} w = g^{p^j} w &= g^{p^j} (w_1, \dots, w_{p^j}, \dots, w_{(p^{k-j-1})p^j+1}, \dots, w_{p^k}) \\ &= (w_{p^j+1}, \dots, w_{2p^j}, \dots, w_{(p^{k-j-1})p^j+1}, \dots, w_{p^k}, w_1, \dots, w_{p^j}) \end{aligned}$$

therefore $w \in \Delta(W'^{p^j})$. Since

$$\Delta(W') \subset \Delta(W'^p) \subset \dots \subset \Delta(W'^{p^{k-i-1}}) \subset \Delta(W'^{p^{k-i}})$$

and $j \in \{0, 1, \dots, k - i\}$, we conclude that

$$w \in \Delta(W'^{p^j}) \subset \Delta(W'^{p^{k-i}}),$$

which is a contradiction because

$$\Delta(W'^{p^{k-i}}) \cap S(\Delta(W'^{p^{k-i}})^\perp) = \emptyset.$$

Thus the Theorem 2.1 implies the claim. \square

Proof of Theorem 1.2 For $G = \mathbb{Z}_{2^k}$, $k \geq 1$, using the same steps of the proof of Theorem 1.1 and applying Theorem 2.2 we have the result. \square

Remark 3.1. We emphasize that in the Theorems 1.1 and 1.2 the action of G on $S(V)$ is not necessarily free. Moreover, we have an estimate for the size of the set of (H, G) -coincidence points for all subgroups $H = \mathbb{Z}_{p^i}$ of $G = \mathbb{Z}_{p^i}$. These two characteristics make the Theorems 1.1 and 1.2 different of classical results about (H, G) -coincidences.

4. CASE OF G BEING A p -TORUS

Now, let V, W be two orthogonal representations of the p -torus group $G = \mathbb{Z}_p^k$ of rank $k \geq 1$, p prime, such that $V^G = W^G = \{0\}$ for the sets of fixed points of G . Let $f : S(V) \rightarrow W'$ be a G -equivariant map, in [6, Theorem 2.7] we have the following estimate for the covering dimension of Z_f

$$\dim(Z_f) \geq d(V) - d(W) - 1.$$

Using this result we can estimate the covering dimension of the set of (H, \mathbb{Z}_p^k) -coincidences, as follows.

Corollary 4.1. Let V, W' be two orthogonal representation of the group $G = \mathbb{Z}_p^k$, such that $V^G = W'^G = \{0\}$. Let $f : S(V) \rightarrow W'$ be a G -equivariant map, then

$$\dim A(\mathbb{Z}_p^i, \mathbb{Z}_p^k) \geq d(V) - (p^k - p^{k-i})d(W') - 1$$

for all $1 \leq i \leq k$.

Proof: Let i be fixed, with $1 \leq i \leq k$. As in the proof of the Theorem 1.1, we consider a map

$$F : S(V) \rightarrow \bigoplus_{j=1}^{p^k} W'$$

defined by

$$F(x) = (f(a_1 h_1 x), \dots, f(a_r h_1 x), f(a_1 h_2 x), \dots, f(a_r h_2 x), \dots, f(a_1 h_{p^i} x), \dots, f(a_r h_{p^i} x)),$$

where a_1, \dots, a_r are representatives of the left lateral classes of G/\mathbb{Z}_p^i , $r = p^{k-i}$ and $\mathbb{Z}_p^i = \{h_1, \dots, h_{p^i}\}$.

Considering the diagonal action of G on $\bigoplus_{j=1}^{p^k} W'$, F becomes G -equivariant. Thus the composition

$$S(V) \xrightarrow{F} \Delta(W'^{p^{k-i}}) \oplus \Delta(W'^{p^{k-i}})^\perp \xrightarrow{\rho} \Delta(W'^{p^{k-i}})^\perp,$$

is also G -equivariant. Finally, we apply [6, Theorem 2.7] to estimate the size of the set $Z_{\rho \circ F} = A(\mathbb{Z}_p^i, \mathbb{Z}_p^k)$. \square

REFERENCES

- [1] Bredon, G., *Introduction to compact transformation groups*, Vol. **46**, Academic Press, New York and London, (1972).
- [2] Borsuk, K., *Drei Sätze über die n -dimensionale euklidische Sphäre*, Fund. Math. **20** 177–190, 1933.
- [3] Gonçalves, D.L.; Jaworowski, J.; Pergher, Pedro L.Q., *Measuring the size of the coincidence set*, Topology Appl. **125** (2002), 465–470.

- [4] Serre, J. P. *Linear representations of finite groups*. Translated from the second French edition by Leonard L. Scott., Graduate Texts in Mathematics 42, Springer-Verlag, New York-Heidelberg, (1977).
- [5] Waclaw Marzantowicz, D. de Mattos, Edivaldo L. dos Santos, *Bourgin-Yang version of the Borsuk-Ulam theorem for \mathbb{Z}_{p^k} -equivariant maps*, Algebraic & Geometric Topology, to appear 2012.
- [6] Waclaw Marzantowicz, D. de Mattos, Edivaldo L. dos Santos, *Bourgin-Yang versions of the Borsuk-Ulam theorem for p -toral groups*.

INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO, UNIVERSIDADE DE SÃO PAULO, DEPARTAMENTO DE MATEMÁTICA, CAIXA POSTAL 668, SÃO CARLOS-SP, BRAZIL, 13560-970.

E-mail address: deniseml@icmc.usp.br

E-mail address: taciolli@icmc.usp.br