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 A B S T R A C T

The literature suggests that Markov-switching (MS) models can address the exchange rate 
disconnect puzzle, yet they assume a fixed transmission lag for fundamentals. We test whether 
this timing restriction is the key limitation and introduce a regime-switching regression with AR 
errors and state-dependent lags. Regimes are defined by volatility and reaction times vary across 
low- and high-volatility states. Each regime selects its own lag length from an economically 
plausible grid and selected lags range from 0 to 12 months. Allowing timing to vary across 
regimes improves medium- and long-horizon forecasts, and the dominant transmission channels 
remain currency specific.

. Introduction

Exchange rate (ER) forecasting remains one of the most challenging problems in international finance. The classic disconnect 
etween fundamentals and exchange rates (Meese and Rogoff, 1983) persists despite decades of research. Nonlinear relationships 
elp explain this gap, and Markov-switching (MS) models (Hamilton, 1989) have become a natural tool because they improve the 
it for many currencies (Engel, 1994), sometimes even forecasts (Dewachter, 2001), and show that the real interest differential 
RID) relation (Frankel, 1979) changes across market states (Frömmel et al., 2005). Recent work develops a fully Bayesian MS-
ECM with time-varying transition probabilities for BRICS–USD exchange rates, enabling clear regime identification and forecasting 
ains (Kumar et al., 2024).
Most MS applications fix fundamentals’ lags, limiting the capture of temporal heterogeneity. Recent MS–VAR work allows state-

ependent autoregressive orders (Li and Kwok, 2021) but not state-dependent exogenous lags, and many ER studies still keep fixed 
ags in MS settings (Stillwagon and Sullivan, 2020). We argue that transmission timing is itself state dependent, and recent external 
vidence supports this across complementary fronts.
Bayesian dynamic learning across 512 VARs yields sizable FX portfolio gains despite modest point-forecast gains over a random 

alk (Beckmann et al., 2020). Fundamentals-based expectations matter mainly at longer horizons (Beckmann and Czudaj, 2025), 
nd policy uncertainty comoves with volatility regimes—in a GARCH–MIDAS, the Sino–US EPU ratio improves long-run CNY/USD 
olatility forecasts vs. standard GARCH (Zhou et al., 2020). DL results are mixed: LSTM improves statistical accuracy over vanilla 
NN yet offers weak economic performance (Dautel et al., 2020); during COVID-19, stacked Bi-LSTMs with a Bagging–Ridge meta-
earner beat classical ML on errors across 21 USD pairs, but effects are heterogeneous (Abedin et al., 2025), and loss-metric gains 
arely translate into robust economic gains, favoring parsimonious, interpretable timing models.
We address these restrictions with a regime-dependent regression in which each fundamental’s lag is jointly selected by BIC. 

nlike the TVP-VAR of Primiceri (2005) and the smooth-transition VAR of Lundbergh et al. (2003), where lag orders are fixed and 
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time variation lies in smoothly evolving coefficients with no discrete regimes, our approach places time variation in the lags of the 
fundamentals rather than in the coefficients. This yields explicit state-level lag vectors and regime durations, and it makes the priced 
information set visible in each regime.

Transmission timing is regime specific and dominant channels are currency specific, and forecasts beat a random walk and a fixed-
lag MS across some horizons, with gains validated by Diebold and Mariano (2002) and Clark and West (2007) tests. Excess returns 
are positive and economically meaningful by the Sharpe ratio, the Lo-adjusted Sharpe ratio (Lo, 2002), and a high probabilistic 
Sharpe ratio (Bailey and Lopez de Prado, 2012), confirming that state-dependent timing matters for ER dynamics.

2. Research methods

2.1. Proposed model

We ask whether the timing of fundamentals depends on the state. Do the relevant lags change when the regime changes? We 
allow each fundamental to have a regime-specific delay and to capture the time-varying nature of market reaction speeds, we specify 
an MS model where the transmission lag of each macroeconomic fundamental is state-dependent. The exchange rate return, 𝛥𝑒𝑡, 
is driven by a set of monetary fundamentals, including differentials in industrial production (𝛥𝑦𝑡), short-term interest rates (𝛥𝑖𝑠,𝑡), 
long-term interest rates (𝛥𝑖𝑙,𝑡), and money supply (𝛥𝑚𝑡). The model is specified as:

𝛥𝑒𝑡 = 𝛼𝑠𝑡 + 𝛽(𝑦)𝑠𝑡
𝛥𝑦𝑡−𝓁(𝑦)𝑠𝑡

+ 𝛽(𝑖𝑠)𝑠𝑡
𝛥𝑖𝑠,𝑡−𝓁(𝑖𝑠)𝑠𝑡

+ 𝛽(𝑖𝑙)𝑠𝑡
𝛥𝑖𝑙,𝑡−𝓁(𝑖𝑙)𝑠𝑡

+ 𝛽(𝑚)𝑠𝑡
𝛥𝑚𝑡−𝓁(𝑚)𝑠𝑡

+ 𝑢𝑡,

𝑢𝑡 = 𝜙𝑠𝑡𝑢𝑡−1 + 𝜀𝑡, 𝜀𝑡 ∼  (0, 𝜎2𝑠𝑡 ),

where the unobserved state variable, 𝑠𝑡 ∈ {1, 2}, follows a first-order Markov chain and governs all parameters, including the lag 
𝓁(𝑥)
𝑠𝑡  for each fundamental. Errors follow an AR(1) process and |𝜙𝑘| < 1 ensures stationarity in each regime.
For each regime 𝑗 ∈ {1, 2}, we allow for regime-specific transmission lags by selecting the optimal pair (𝓵1,𝓵2) over a grid of 

economically plausible lag lengths and the selection was based on BIC. The model is estimated by maximum conditional likelihood 
using the expectation–maximization (EM) algorithm with the Hamilton and Kim filters (Kim and Nelson, 1999). The estimation 
procedure is detailed in Appendix  A.

To address identification and economic plausibility, we fix the labels by ordering variances at every EM step. Regime 1 is the 
low variance state and regime 2 is the high variance state, with 𝜎1 ≤ 𝜎2. Both regimes can choose long or short lags, so the turbulent 
state can be fast or slow depending on the data.

Delayed reaction under turbulence is economically plausible: noise trading and multiple equilibria can amplify volatil-
ity (Jeanne and Rose, 2002), while balance-sheet constraints on intermediaries slow price discovery when risk bearing capacity is 
strained (Gabaix and Maggiori, 2015). Liquidity premia co-move with exchange rates across G10, reinforcing this mechanism (Engel 
and Wu, 2023). Our specification does not impose contemporaneous transmission in either regime. If a regime chooses zero lags for 
all fundamentals the model collapses to the classic contemporaneous monetary specification in Dornbusch (1976), Frankel (1979).

2.2. Data

We analyze GBP/USD, CAD/USD, and JPY/USD, the only USD pairs from G7 economies with their own currencies. We 
choose them for market depth, data quality, and comparability. All series are monthly. The sample periods vary due to data 
availability: September 1987 to November 2023 for GBP/USD (435 observations), January 1972 to October 2023 for CAD/USD 
(622 observations), and January 1990 to June 2021 for JPY/USD (378 observations). For our forecast exercise, the period from 
January 2019 onward is used as the out-of-sample window for all series. Most are sourced from the Federal Reserve Economic Data 
(FRED), except the U.S. broad money (M3) series, which comes from the OECD Data Explorer.

Following Frömmel et al. (2005), we construct four monthly differentials with respect to the United States. For industrial 
production and money (M3), we used the annual log-difference: 

𝛥12 ln
(

𝑥𝑡
𝑥∗𝑡

)

= ln
(

𝑥𝑡
𝑥∗𝑡

)

− ln

(

𝑥𝑡−12
𝑥∗𝑡−12

)

, (1)

where 𝑥𝑡 and 𝑥∗𝑡  denote, respectively, the foreign and U.S. series.
For the 3-month (short) and 10-year (long) rates, we defined the interest-rate regressors as the 12-month percentage-change 

differentials:

𝛥𝑖𝑠,𝑡 ≡
𝑖𝑠,𝑡 − 𝑖𝑠,𝑡−12

𝑖𝑠,𝑡−12
−

𝑖∗𝑠,𝑡 − 𝑖∗𝑠,𝑡−12
𝑖∗𝑠,𝑡−12

, 𝛥𝑖𝑙,𝑡 ≡
𝑖𝑙,𝑡 − 𝑖𝑙,𝑡−12

𝑖𝑙,𝑡−12
−

𝑖∗𝑙,𝑡 − 𝑖∗𝑙,𝑡−12
𝑖∗𝑙,𝑡−12

,

where the symbol ∗ denotes the U.S.
Most differential variables1 rejected a unit root at the 5% level in Augmented Dickey–Fuller tests (ADF) (Said and Dickey, 1984). 

Full results are in Table S1 in Supplementary Material (SM).

1 Two exceptions are GBP money supply and GBP long-term interest but while ADF does not reject a unit root for these series, the Phillips–Perron test rejects 
at the one percent level, indicating stationarity once serial correlation and heteroskedasticity are accommodated.
2 
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Table 1
Estimation results for RID and Two-State MS Fixed Lags with AR(1) errors.
 GBP/USD CAD/USD JPY/USD

 State 1 State 2 State 1 State 2 State 1 State 2  
 RID
 Constant 0.0037 0.0093 −0.0241  
 Industrial production 0.5226*** 0.5698*** −0.0926  
 Short-term rate −0.0046** −0.0029* 0.0056***  
 M3 0.1588* −0.2070*** −0.3856  
 Long-term rate −0.1539*** −0.0483* −0.0219***  
 𝜎 0.0865 0.0626 0.1040  
 MS-FL-AR(1)
 Constant −0.0054 0.0149 0.0274 0.1072 0.1143 −0.0314  
 Industrial production −0.0137 −0.0708 −0.0590 0.2985** 0.0473 −0.2903*** 
 Short-term rate 0.0009 −0.0007 0.0160* 0.0003 0.0006 −0.0050  
 M3 0.0956 0.5705** −0.0240 0.6497*** 2.3807*** −0.5607  
 Long-term rate −0.1303*** −0.0233 0.0527* −0.1215*** 0.0007 −0.0138  
 𝜙 0.9391 0.9343 0.9399 0.9890 0.9651 0.9348  
 𝜎 0.0224 0.0412 0.0141 0.0245 0.0283 0.0361  
Asterisks refer to significance at *10%, **5%, ***1%.

2.3. Out-of-sample prediction

We performed an out-of-sample (OOS) forecasting exercise2 that were generated with our two-state MS-SL-AR(1) model with 
both regimes using their BIC-selected lag vectors. All forecasts use ex post revised fundamentals in place of real-time data, which 
may overstate implementable predictability. The AR term enters as a function of the lagged residual, 𝜙̂𝑠𝑡 (𝛥𝑒𝑡−1− 𝜇̂𝑠𝑡−1 (𝑡−1)), which is 
why the lagged dependent variable, 𝛥𝑒𝑡−1, is not included as a separate regressor. For each OOS origin 𝑡, the model is re-estimated 
by EM on a rolling window ending at 𝑡, yielding filtered regime probabilities Pr(𝑆𝑡 = 𝑖 ∣ 𝑡) and estimated transition matrix 𝑃 = {𝑝̂𝑖𝑗}. 
The strict one-step forecast is

𝛥𝑒𝑡+1∣𝑡 =
2
∑

𝑖=1

2
∑

𝑗=1
Pr(𝑆𝑡 = 𝑖 ∣ 𝑡) 𝑝̂𝑖𝑗

{

𝜇̂𝑗 (𝑡 + 1) + 𝜙̂𝑗
[

𝛥𝑒𝑡 − 𝜇̂𝑖(𝑡)
]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑢(𝑖)𝑡

}

,

𝜇̂𝑗 (𝜏) = 𝛼̂𝑗 + 𝛽(𝑦)𝑗 𝛥𝑦𝜏−𝓁(𝑦)𝑗
+ 𝛽(𝑖𝑠)𝑗 𝛥𝑖𝑠,𝜏−𝓁(𝑖𝑠)𝑗

+ 𝛽(𝑖𝑙)𝑗 𝛥𝑖𝑙,𝜏−𝓁(𝑖𝑙)𝑗
+ 𝛽(𝑚)𝑗 𝛥𝑚𝜏−𝓁(𝑚)𝑗

.

and forecast errors are assessed ex post using the Mean Error (ME), the Mean Absolute Error (MAE), the Root Mean Squared Error 
(RMSE), and the Mean Squared Prediction Error (MSPE).

3. Results

We fit a Real Interest Differential (RID) model and a two-state fixed-lag Markov-switching (MS-FL-AR(1)) with fixed contempo-
raneous transmission, then benchmark them against our switching lag model (MS-SL-AR(1)). The MS-FL-AR(1) redistributes average 
effects across states but still blurs timing, while the switching lag model separates channels. For GBP/USD the calm state is led by 
the long rate and turbulence is driven by money, with industrial production and the short rate largely secondary. Tables  1 and 2 
report the corresponding estimates.

For CAD/USD the long rate flips sign across regimes and the switching lag model magnifies this asymmetry, with the calm state 
anchored by the long rate and turbulence loading more on real activity and money. For JPY/USD the linear model is weak, switching 
concentrates the signal in money, and the switching lag model delivers a clear calm state multifactor structure with money and rates 
jointly informative while the turbulent state collapses to a narrow money channel. AR persistence remains high for GBP and CAD 
and mean reversion is faster for JPY in calm periods.

Fig.  1 reports BIC-selected lags by regime. In GBP/USD the calm state sets industrial production to three months and the short 
rate to one while money and the long rate are contemporaneous, and in turbulence the delay shifts to the long rate at three with 
the others near zero. In CAD/USD the calm state is near contemporaneous with only one month for industrial production, and 
in turbulence money reaches six months with industrial production at three and the short rate at one. In JPY/USD the calm state 
places six months on money with one month on industrial production and the short rate and zero on the long rate, and in turbulence 
money falls to zero while industrial production and the long rate move to three and the short rate stays at one. Across pairs short 
rates adjust within zero to one month and money carries the longest state-dependent delays. Table  3 confirms the stability of these 
regime-specific lag choices across the Top-10 BIC models per currency and regime.

2 We evaluate predictions, not operational forecasts. At horizon 𝑘, when the model sets 𝓁 = 0, we use the observed fundamentals 𝑥𝑡+𝑘 to calculate the expected 
value 𝜇̂𝑗 (𝑡+ 𝑘). The reported results measure conditional predictive content given future fundamentals, not real-time forecasting performance. Comparisons with 
the random walk (RW) follow the Meese–Rogoff tradition (Meese and Rogoff, 1983).
3 
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Table 2
Estimated coefficients for the switching lag MS model.
 𝐺𝐵𝑃∕𝑈𝑆𝐷 𝐶𝐴𝐷∕𝑈𝑆𝐷 𝐽𝑃𝑌 ∕𝑈𝑆𝐷  
 State 1
 Constant −0.0092 0.0246 0.1809 ∗∗∗ 
 Industrial production 0.0591 0.0433 −0.6916 ∗∗∗ 
 Short-term rate 0.0023 ∗ 0.0026 ∗ −0.1211 ∗∗∗ 
 M3 0.0833 0.0520 4.2175 ∗∗∗ 
 Long-term Rate −0.1323 ∗∗∗ 0.0776 ∗∗∗ 0.1175 ∗∗∗ 
 State 2
 Constant 0.0025 −0.0031 0.0355  
 Industrial Production −0.0871 0.5430 ∗ −0.0843  
 Short-term Rate −0.0027 −0.0003 0.0017  
 M3 0.5420 ∗∗∗ 0.4938 ∗∗ 0.9388 ∗∗∗ 
 Long-term Rate 0.0316 −0.2040 ∗∗∗ 0.0007  
 𝜙1 0.9438 ∗∗∗ 0.9589 ∗∗∗ −0.3894 ∗∗  
 𝜙2 0.9364 ∗∗∗ 0.9462 ∗∗∗ 0.9542 ∗∗∗ 
 𝜎1 0.0210 0.0152 0.0224  
 𝜎2 0.0406 0.0311 0.0316  
 𝑝11 0.9817 0.9917 0.9676  
 𝑝22 0.9716 0.9706 0.9967  
 Expected duration of the regimes in months
 State 1 54.64 121.00 30.82  
 State 2 35.22 34.00 301.26  
Switching Lag MS. Significance at *** 1%, ** 5%, * 10%.

Fig. 1. Optimal lag structure from a Switching Lag Markov-Switching model. The heatmap displays selected lags for key covariates across two 
regimes for GBP/USD, CAD/USD, and JPY/USD.

The timing of the regimes aligns with well known episodes. For GBP/USD the high volatility state spikes around 1992 during 
the European Exchange Rate Mechanism crisis known as Black Wednesday and it reappears from 2007 to 2009 during the Global 
Financial Crisis and again from 2015 to 2016 around the United Kingdom referendum on European Union membership. Tranquil 
spans dominate from 1993 to 2006.

For the Canadian dollar against the U.S. dollar turbulence clusters in global and commodity shocks with a clear rise from 2007 
to 2009 during the Global Financial Crisis and from 2014 to 2016 during the collapse in oil prices while the early to mid 2000s are 
calmer. This pattern is consistent with the change in sign of the long rate across states reported in Table  2.

For the yen we find a highly persistent high volatility state with larger variance and very high smoothed probability from the late 
nineteen nineties onward. Peaks align with the Asian financial crisis in 1997–1998 and with the global financial crisis in 2008–2009.

Out of sample the switching–lag model delivers gains that grow with horizon and vary by currency as shown in Table  4. 
Against the random walk it wins for GBP/USD at six and twelve months and for CAD/USD at twelve months while shorter horizons 
underperform. Against the MS-FL benchmark the strongest improvements arise for JPY/USD at three and twelve months and are 
statistically significant. For GBP/USD the twelve–month gain is large in magnitude yet not statistically different and for CAD/USD 
4 
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Fig. 2. Smoothed and filtered probabilities of Regime 2 (high volatility) for GBP/USD, CAD/USD, and JPY/USD under the MS-SL-AR(1) 
specification.

Table 3
Most frequent lags by regime, computed over the Top-10 lowest-BIC models per currency. Entries are mode (share%).
 Currency Regime Industrial production Short-term rate Long-term rate Money (M3) 
 GBP/USD Low Vol 3 (90%) 1 (100%) 0 (100%) 6 (40%)  
 GBP/USD High Vol 0 (50%) 1 (60%) 3 (60%) 0 (100%)  
 CAD/USD Low Vol 0 (50%) 0 (70%) 0 (50%) 12 (40%)  
 CAD/USD High Vol 3 (80%) 1 (90%) 0 (90%) 6 (80%)  
 JPY/USD Low Vol 1 (50%) 1 (60%) 0 (40%) 6 (50%)  
 JPY/USD High Vol 3 (60%) 0 (50%) 0 (60%) 0 (50%)  

the long–horizon gains are modest and not significant. These results indicate that allowing timing to vary across regimes yields 
forecast value mainly at medium and long horizons and that the payoff is currency specific. Our findings align with survey evidence 
that fundamentals weigh more at longer horizons, matching the longer lags in calm states and the 6–12 month gains (Figs.  1–2; 
Table  4) (Beckmann and Czudaj, 2025). In turbulence, frequent short-horizon revisions documented for chartists rationalize near 
contemporaneous lags and currency-specific timing (Dick and Menkhoff, 2013), a pattern consistent with investor learning and 
anchoring in calm states and with weaker policy credibility under stress, without altering identification, estimation, or tests.

3.1. Robustness check

We augment the fundamentals with a risk-sentiment proxy (Chow et al., 1997) given by the 12-month change in the Moody’s 
Baa–Aaa corporate bond yield spread (FRED series BAA and AAA) and a capital-flows proxy 12-month change in U.S. TIC bond 
flows (Brooks et al., 2004) from the U.S. Treasury’s TIC system. Because coverage of the Baa–Aaa spread and TIC flows is limited, 
only the CAD in-sample window shifts to 1978-01 while for GBP and JPY are unchanged.
5 
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Table 4
Out-of-sample predictive performance of the Switching Lag Model. Columns report MSPE ratios versus a random walk (RW) and versus MS-FL-
AR(1); test statistics are from the Clark–West (CW, one-sided; H1: SL outperforms RW) and Diebold–Mariano (DM, two-sided) tests. MSPE ratio 
< 1 favors the Switching Lag model.
 Currency Horizon (h) vs. Random walk vs. MS-FL-AR(1)
 MSPE ratio CW test MSPE ratio DM test  
 
GBP/USD

1 1.652 0.018 1.286 0.871  
 3 1.609 −0.352 1.790 1.480  
 6 0.950 2.070** 0.900 −0.285  
 12 0.406 2.753*** 0.368 −1.579  
 
CAD/USD

1 2.010 1.001 1.653 1.512  
 3 2.386 −0.262 1.737 1.510  
 6 1.991 0.316 1.490 1.538  
 12 0.840 2.909*** 0.763 −0.819  
 
JPY/USD

1 1.297 0.156 0.069 −1.113  
 3 1.042 1.212 0.266 −2.008** 
 6 1.605 1.062 0.354 −1.571  
 12 6.408 0.079 0.308 −1.676*  

Fig. 3. Out-of-sample cumulative wealth from initial $1.000 of an equal-weight portfolio across GBP/USD, CAD/USD, and JPY/USD.

Adding risk and capital flow variables shifts GBP the most, with M3 moving to a 12-month lag in both regimes, short-rate lags 
dropping to 0 in Regime 1, and risk loading mainly in Regime 2 with BAA–AAA at lag 1 and TIC at lag 3. CAD changes are modest, 
with IP 1 to 0 and short rates 0 to 1 in Regime 1 and TIC at lag 3 in both, while JPY is largely stable except short rates in Regime 
2 fall to 0 and BAA–AAA enters both regimes.

BIC worsens for all three pairs relative to the baseline, so the expanded models are not preferred in-sample (Table S4, S5 and 
S6). The full estimates are in Table  5 in Appendix  C and lag choices appear in figure S5 in SM.

Adding risk and flow proxies preserves the core message and mostly reallocates effects across regimes. For GBP, the long rate 
stays negative in both states, M3 turns negative once risk is controlled, and the credit spread loads in calm states. For CAD, the 
long rate remains positive in calm and negative in turbulence, the short rate and output become clearly state-dependent, and M3 
shifts toward calm. For JPY, the safe-haven pattern sharpens: the credit spread is positive in calm, TIC is negative in both states, 
production and the short rate stay negative, and M3 stays strongly positive. These proxies refine timing and leave signs and forecasts 
unchanged.

3.2. Portfolio allocation

Forecast gains matter if they convert into risk-adjusted returns. We therefore map the one-step forecasts directly into positions 
via a simple rule and an equal weight portfolio detailed in Appendix  B. Out-of-sample windows begin in January 2019 for all pairs 
and the equal weight portfolio delivers an annualized excess Sharpe ratio of about 1.0042. The Lo-adjusted Sharpe ratio is about 
0.7821 and the Probabilistic Sharpe Ratio equals 0.974. A Newey–West test with three lags for the mean excess return yields a t 
statistic of 1.57 and a p value of 0.12. Fig.  3 shows the gross cumulative wealth.

Allowing for monthly trading frictions of 20 bps proportional to average turnover 𝜏, the annualized Sharpe declines from 1.0042 
to 𝑆 ∈ [0.85, 0.94] for 𝜏 ∈ [0.4, 1.0].
net

6 
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4. Conclusion

We test whether the timing of fundamentals is regime dependent with a two-state Markov switching regression with autoregres-
sive errors and regime specific lags chosen by BIC. Timing differs across regimes and across currencies. Forecast gains are stronger 
at medium and long horizons, while short horizons are mixed. Timing matters, yet it does not fully resolve the disconnect.

The evidence comes from three liquid USD pairs with monthly data and a short out-of-sample window from 2019 to 2023. 
Forecasts rely on revised fundamentals and may condition on information that was not available in real time. Our portfolio analysis 
excludes costs and slippage, which compress realized P&L, so the reported results are an upper bound.

These results suggest that asset managers weight signals by regime and horizon, with most value at 6–12 months, and that risk 
teams allow effective lags to vary across states in stress tests and monitor liquidity and capital-flow conditions that can delay price 
discovery.

The mechanism of state-dependent lags is likely to extend within the G10, although dominant channels remain currency specific. 
Next steps include expanding to EUR USD and AUD USD and to major emerging pairs, bringing in fundamentals linked to risk and 
cross-border flows. Our results motivate a broader claim: timing is a state variable. If regimes proxy intermediation frictions or 
uncertainty, economically relevant lags should switch across asset classes, including equities, commodities, and sovereign bonds, 
especially at medium horizons. The methodology can be applied to these markets.
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Appendix A

We estimate a two-regime MS-AR(1) by EM conditional on BIC-selected lag vectors (𝓵1,𝓵2) from the common grid for both 
regimes. The model is

𝛥𝑒𝑡 = 𝜇𝑠𝑡 (𝑡) + 𝜙𝑠𝑡 𝑟
(𝑠𝑡−1)
𝑡−1 + 𝜀𝑡, 𝜀𝑡 ∼  (0, 𝜎2𝑠𝑡 ),

with 𝜇𝑗 (𝑡) = 𝛼𝑗 + 𝜷⊤𝑗𝐗
(𝑗)
𝑡 ,

𝐗(𝑗)
𝑡 =

[

𝛥𝑦𝑡−𝓁(𝑦)𝑗
, 𝛥𝑖𝑠,𝑡−𝓁(𝑖𝑠)𝑗

, 𝛥𝑖𝑙,𝑡−𝓁(𝑖𝑙)𝑗
, 𝛥𝑚𝑡−𝓁(𝑚)𝑗

]⊤, 𝑟(𝑖)𝑡−1 = 𝛥𝑒𝑡−1 − 𝜇𝑖(𝑡 − 1).

the complete data log-likelihood is

𝓁𝑐 (𝛩) =
𝑇
∑

𝑡=𝑡0

2
∑

𝑖=1

2
∑

𝑗=1
𝑧𝑡−1,𝑡(𝑖, 𝑗)

⎡

⎢

⎢

⎣

log 𝑝𝑖𝑗 −
1
2 log 𝜎

2
𝑗 −

(

𝛥𝑒𝑡 − 𝜇𝑗 (𝑡) − 𝜙𝑗 𝑟
(𝑖)
𝑡−1

)2

2𝜎2𝑗

⎤

⎥

⎥

⎦

,

where 𝑧(𝑖,𝑗)𝑡−1,𝑡 = 1 if 𝑠𝑡−1 = 𝑖 and 𝑠𝑡 = 𝑗, and 0 otherwise and 𝑡0 = 𝐿max + 1. E–step. Set 𝑃 = {𝑝𝑖𝑗}2𝑖,𝑗=1 and 𝑡0 = 𝐿max + 1. For all 
(𝑖, 𝑗) ∈ {1, 2}2, define

𝑓𝑡(𝑗 ∣ 𝑖) = 
(

𝛥𝑒𝑡; 𝜇𝑗 (𝑡) + 𝜙𝑗𝑟
(𝑖)
𝑡−1, 𝜎

2
𝑗
)

.

Forward filter, for 𝑡 = 𝑡0,… , 𝑇  and 𝑗 ∈ {1, 2}:

𝑓𝑡(𝑗) =
2
∑

𝑖=1
𝜉𝑡−1(𝑖) 𝑝𝑖𝑗 𝑓𝑡(𝑗 ∣ 𝑖), 𝜉𝑡(𝑗) =

𝑓𝑡(𝑗)
∑2

𝑏=1 𝑓𝑡(𝑏)
.

Kim smoothing yields
𝜉𝑡∣𝑇 (𝑗) = Pr(𝑠𝑡 = 𝑗 ∣ 𝑇 ), 𝛹̂𝑡(𝑖, 𝑗) = Pr(𝑠𝑡−1 = 𝑖, 𝑠𝑡 = 𝑗 ∣ 𝑇 ),

computed via standard forward–backward recursions.
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M–step. Set

𝐰(𝑖,𝑗)
𝑡 =

[

𝐗(𝑗)
𝑡

𝑟(𝑖)𝑡−1

]

∈ R6, 𝜽𝑗 =
[

𝜷𝑗
𝜙𝑗

]

∈ R6.

At EM iteration 𝑘, use weights 𝜔(𝑖,𝑗,𝑘)
𝑡 = 𝛹̂𝑡(𝑖, 𝑗)

/

𝜎̂2 (𝑘)𝑗  and form

𝐆(𝑘)
𝑗 =

𝑇
∑

𝑡=𝑡0

2
∑

𝑖=1
𝜔(𝑖,𝑗,𝑘)
𝑡 𝐰(𝑖,𝑗)

𝑡 𝐰(𝑖,𝑗)⊤
𝑡 , 𝐠(𝑘)𝑗 =

𝑇
∑

𝑡=𝑡0

2
∑

𝑖=1
𝜔(𝑖,𝑗,𝑘)
𝑡 𝐰(𝑖,𝑗)

𝑡 𝛥𝑒𝑡.

Update regression and AR parameters:

𝜽̂(𝑘+1)𝑗 =
(

𝐆(𝑘)
𝑗
)−1𝐠(𝑘)𝑗 .

Update variances and transition probabilities:

𝜎̂2 (𝑘+1)𝑗 =

𝑇
∑

𝑡=𝑡0

2
∑

𝑖=1
𝛹𝑡(𝑖, 𝑗)

[

𝛥𝑒𝑡 − 𝐰(𝑖,𝑗)⊤
𝑡 𝜽(𝑘+1)𝑗

]2

𝑇
∑

𝑡=𝑡0

2
∑

𝑖=1
𝛹𝑡(𝑖, 𝑗)

, 𝑝̂(𝑘+1)𝑖𝑗 =

𝑇
∑

𝑡=𝑡0

𝛹̂𝑡(𝑖, 𝑗)

𝑇
∑

𝑡=𝑡0

2
∑

𝑏=1
𝛹̂𝑡(𝑖, 𝑏)

.

We stop when the absolute change in log-likelihood falls below 10−4 or upon reaching 500 iterations, whichever comes first.

Model selection strategy

We jointly select the regime-specific lag vectors (𝓵1,𝓵2) by minimizing the BIC over a common grid used for both regimes:

𝓁(𝑦)
𝑗 ∈ {0, 1, 3}, 𝓁(𝑖𝑠)

𝑗 ∈ {0, 1}, 𝓁(𝑖𝑙)
𝑗 ∈ {0, 3, 6}, 𝓁(𝑚)

𝑗 ∈ {0, 6, 12}, 𝑗 ∈ {1, 2}.

This yields 542 candidates for (𝓵1,𝓵2). For forecasts, the lag vectors of both regimes are fixed at the in-sample BIC winners for each 
currency.

Appendix B

For currency 𝑐, the directional weight at 𝑡+1 is the sign of the forecast:

𝜋(𝑐)
𝑡+1 = sgn

(

𝛥𝑒
(𝑐)
𝑡+1∣𝑡

)

∈ {−1,+1}.

With equal weights across the available set 𝑡, the portfolio excess return is

𝑟𝑝,𝑒𝑡+1 =
1

|𝑡|
∑

𝑐∈𝑡

𝑤(𝑐)
𝑡+1 𝛥𝑒

(𝑐)
𝑡+1 − 𝑟𝑓𝑡+1.

Positions are set at the end of month 𝑡 and applied to the return of month 𝑡+1. The portfolio remains fully invested with no leverage. 
We assign equal weights across the pairs available each month with shorting allowed and we rebalance every month.

Excess returns are computed by subtracting the risk-free rate measured by the three month Treasury bill from FRED with code 
TB3MS.

Appendix C

See Table  5.

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.frl.2025.108941.

Data availability

Data will be made available on request.
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Table 5
Estimated Coefficients for the Switching Lag MS with augmented Risk sentiment and Capital Flow.
 GBP/USD CAD/USD JPY/USD  
 State 1
 Constant −0.0133 −0.0307 0.1774***  
 Industrial production 0.0638* −0.1979*** −0.5701*** 
 Short-term rate 0.0006 −0.0367*** −0.0943*** 
 M3 −0.1656* 0.3592*** 3.6800***  
 Long-term rate −0.1234*** 0.1769*** 0.1057*** 
 Baa–Aaa 0.0548*** −0.0095** 0.1404*** 
 TIC −0.0001 −0.0003 −0.0018*** 
 𝜙1 0.9074*** 0.9744*** −0.6177*** 
 𝜎1 0.0200 0.0141 0.0141  
 State 2
 Constant 0.0524 0.0054 0.0450*  
 Industrial production −0.1093 0.1597* −0.1059**  
 Short-term rate −0.0015 −0.0001 0.0007  
 M3 −0.8066*** −0.1930 0.8604**  
 Long-term rate −0.0607** −0.1565*** 0.0009  
 Baa–Aaa 0.0777 0.0899*** −0.0156  
 TIC −0.0003 −0.0001 −0.0002*  
 𝜙2 0.9292*** 0.9505*** 0.9578*** 
 𝜎2 0.0387 0.0200 0.0316  
 Expected duration of the regimes in months
 𝑝11 0.9790 0.9894 0.9671  
 𝑝22 0.9598 0.9893 0.9895  
 Duration state 1 47.6190 94.3396 30.3670  
 Duration state 2 24.8501 93.4579 95.2381  
Switching lag Markov-switching with risk proxies BAA–AAA and TIC. Significance: *** 1%, ** 5%, * 10%.
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