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ABSTRACT  
 
Assessing the wind turbulence effects on the dynamics of Floating 
Offshore Wind Turbines (FOWTs) is necessary to ensure the reliability 
and robustness of their mooring systems. This assessment can be 
conducted through time-domain simulations and/or model scale tests. 
Nonetheless, the former are computationally intensive, while the latter 
are costly and require specialized facilities and equipment. Therefore, it 
is important to understand and have an early estimation of the impacts 
wind turbulence might have on the FOWT mooring dynamics. The 
present work aims to contribute to this understanding by investigating 
the issue in the scenario of a FOWT designed to operate in deep waters, 
using for this both model scale tests and numerical simulations. The 
experimental campaign was conducted in the LabOceano wave basin, 
using a 1:45 scale model of a semisubmersible floater, supporting a 15 
MW Reference Wind Turbine (RWT), with a mooring system 
experimental configuration consisting of four lines. The model was 
tested in several design load conditions representative of Brazilian deep-
water fields. The hybrid model tests emulated real-time aerodynamic 
loads using a set of controlled fans mounted on top of the model’s tower. 
The experimental data was used to validate the numerical setup in 
OpenFAST. The validated OpenFAST setup was then adopted to 
simulate selected set of environmental conditions, with and without wind 
turbulence, enabling the quantification of its effects on the mooring 
tensions. Results indicate that wind turbulence predominantly affected 
mooring loads, with limited impact on the design tensions. 
 
KEY WORDS: Semisubmersible FOWT; mooring dynamics; 
turbulence, MPM, design tensions, time-domain simulations, 
experimental tests, OpenFAST.  
 
INTRODUCTION 
 
Floating Offshore Wind Turbines (FOWTs) have become one of the 
most promising technologies for harnessing wind energy in the coming 
decades. The interest in this technology arises from the availability and 
reliability of offshore wind resources, the potential to increase turbine 
size and rated power without substantial additional investments in floater 

systems and mooring lines, and the availability of suitable deployment 
spaces. This trend is supported by recent demonstration projects installed 
in various locations (e.g. EQUINOR, 2022; EQUINOR, 2023; and 
Provence Grand Large, 2024) and collaborative efforts by several 
research groups to advance the technology, in particular the Offshore 
Code Comparison, see, for example, (IEA Wind TCP, 2022). 
 
The development of these platforms, particularly in the early stages of a 
project, relies on reduced-order models, commonly in the frequency 
domain, to enable expedite assessments of FOWT dynamics (e.g., Hall, 
2024; Mas-Soler et. al, 2024; and Hall et. al., 2022). These models are 
often employed in optimization frameworks that aid the selection of the 
floater and mooring lines during the early stages of a project, see, for 
example, (Karimi et. al., 2017 and Mas-Soler et. al., 2022). However, the 
design process for FOWTs requires extensive assessment to characterize 
dynamic responses resulting from hydrodynamic and aerodynamic 
loadings. This includes time-domain simulations and experimental 
testing of various Design Load Conditions (DLCs), as outlined in 
Classification Societies’ guidelines (e.g., DNV GL AS, 2016). These 
DLCs define turbulence models based on turbine class for different 
environmental conditions and operational scenarios, suggesting a key 
role of the wind model in the design of the FOWT and its stationkeeping 
system.  
 
Regarding the effects of wind and wind turbine operational conditions 
on mooring system dynamics, Lauria et. al. (2024) analyzed mooring line 
behavior using data from a SPAR type FOWT developed in Phase IV of 
the OC3-Hywind project. The analysis was conducted through numerical 
time-domain simulations, which were validated using experimental data 
from a 1:40 model scale testing campaign. The results highlight the 
influence of the operating wind turbine on damping contributions related 
to wave-induced motions and mooring line tensions, particularly in terms 
of increasing the operating tension range. 
 
Similarly, Piscopo and Scamardella (2023) investigated the impact of 
turbulence models on mooring system selection for semisubmersible and 
SPAR type FOWTs, considering Ultimate (ULS), Accidental (ALS), and 
Fatigue (FLS) Limit State Design conditions. The study used numerical 
simulations for water depths ranging from 200 to 400 meters, based on 
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the DeepCWind platform equipped with the 5 MW NREL wind turbine. 
The findings indicated that turbulence models influence the mooring 
system design, particularly in meeting the FLS strength check criteria. 
The authors noted that underestimating turbulence may lead to 
overestimating the fatigue life of the mooring system, potentially 
affecting predicted maintenance costs and the operational reliability of 
the wind turbine. 
 
These studies highlight the importance of accounting for turbulence 
effects in time-domain simulations and the evaluation of mooring line 
behavior under various loading conditions. However, it is unclear what 
is the impact of the turbulence in terms of the design tensions, which can 
be computed using quasi-static models and used as a criterium for 
selecting mooring arrangements during the first stages of a FOWT 
design. In this context, the present paper aims to investigate the effect of 
turbulence on mooring line design tensions through both experimental 
data and numerical simulations. The analysis is based on a 
semisubmersible FOWT, as described in Simos et al. (2023), designed to 
support the IEA-15MW RWT (Gaertner et al., 2020), with its features 
summarized in Table 1, and deployed at a water depth of 2000m. More 
specifically, this study addresses the impact of turbulence on the design 
tensions, with numerical simulations conducted in OpenFAST and 
validated against experimental data from a 1:45 scale model testing 
campaign. Mooring line dynamics from the time-domain simulations are 
presented and compared to simulations of identical DLCs under steady 
wind conditions. So far, the scope of the investigation has been limited 
to a selected set of DLCs with the wind turbine operating, defined 
according to DNV’s guidelines (DNV GL AS, 2016).  
 
Table 1. IEA-15MW RWT main features. 
Parameter Value Units Parameter Value Units 
Cut-in wind 
speed 

3 [m/s] Rotor 
diameter 

240 [m] 

Cut-out wind 
speed 

25 [m/s] Hub diameter 3 [m] 

Rated wind 
speed 

10.59 [m/s] Hub height 150 [m] 

Rated Power 15 [MW] RNA mass 1045 [t] 
Rotor 
Speeds 

5-7.56 [rpm] Tower mass 1263 [t] 

Blades # 3 [-] -- -- -- 
 
MODEL SET-UP 
 
The experimental campaign was conducted at the Ocean Laboratory at 
COPPE/UFRJ, which has dimensions of 40m in length, 30m in width, 
and a maximum depth of 15m. The tests were performed using a 1:45 
scale model of a semisubmersible FOWT platform, with its main features 
resulting from the parametric optimization procedure described in (Mas-
Soler et. al., 2022). The hull concept, optimized to support the IEA-
15MW RWT in an installation site located in the Brazilian pre-salt region 
at 2000m water depth, is illustrated in Figure 1, with its main 
characteristics summarized in Table 2. Additionally, Figure 2 presents 
the RAOs for Surge, Heave, and Pitch motions across six different 
headings, providing insight into the platform's dynamic response for 
different wave directions. 
 
The tests employed a Software-in-the-Loop (SiL) system developed by 
USP to emulate the servo-aerodynamic loads. Details of the SiL 
architecture used during the experimental campaign are provided in 
(Carmo et. al., 2024) and (C. de Mello et. al., 2024). The maximum thrust 
generated by the SiL system was used to define the 1:45 scale of the 
model. 
 

 

 
Figure 1. Schematic view of the semisubmersible FOWT concept 
 
Table 2. Main properties of the FOWT 
Parameter Full Scale Model Scale 
Mass [ton] 15510.0 165.1 [kg] 
Central col. diameter [m] 10.0 0.22 
Outer col. diameter [m] 15.0 0.33 
Port and Starboard pontoon length [m] 45.0 1.00 
Bow pontoon length [m] 41.0 0.91 
Draft [m] 16.00 0.36 
 

 

 
 

Figure 2. RAOs for Surge, Heave and pitch motions across six different 
headings. 

 
Due to the insufficient water depth of the wave basin to accommodate 

610

Downloaded from http://onepetro.org/ISOPEIOPEC/proceedings-pdf/ISOPE25/ISOPE25/ISOPE-I-25-088/5006078/isope-i-25-088.pdf/1 by Universidade De Sao Paulo user on 27 January 2026



the original 2000 m mooring system, the mooring lines were truncated 
to fit within the basin's constraints while preserving the static 
characteristics of the full-scale design, see (Simos et. al., 2023). The 
truncated mooring system (model-scale) consists of four lines: two of 
them attached to the designated bow column of the platform, and one to 
each of the starboard and port columns. The lines feature an anchor-to-
depth radius of 1.37. Each line consists of a load cell (attached to the 
fairlead to measure the line tension), a chain segment, a wire segment, a 
spring, and another chain segment anchored to the wave basin floor. The 
use of springs in the equivalent scale-mooring system allows the mooring 
lines to be shortened while still simulating the restoring forces and elastic 
behavior of the full-scale system, enabling the emulation of the plane 
stiffness of the mooring system even with equivalent shorter lines. An 
schematic representation of the mooring system is provided in Figure 3 
and its main details are summarized in Table 3. 
 

 
Figure 3. Experimental mooring configuration. 
 
Table 3. Main properties of the mooring system 

 Full Scale Model Scale (1:45) 
Anchor Depth 495m 11m 
Anchor Radius from 
center 677,25 15,05m 

Fairlead depth 16m 0,36m 
Bottom segment 
material Steel Chain Steel Chain 

Length 33,75m 0,750m 
Linear Mass Density 139,73kg/m 0,069kg/m 
Spring -- -- 
Length 57,83m 1,285m 
Linear Mass Density 1093,5kg/m 0,540kgg/m 
Intermediate segment 
material Wire Wire 

Length 525,09 11,691m 
Linear Mass Density 20,25kg/m 0,010kg/m 
Top segment material Steel Chain Steel Chain 
Length 22,50m 0,500m 
Linear Mass Density 139,73kg/m 0,069kg/m 

 
Experimental Matrix 
 
The test matrix comprises a subset of three DLCs selected from over 30 
DLCs included in the experimental campaign, which were chosen based 

on the guidelines provided in (DNV GL AS, 2016). These DLCs were 
tested for two distinct headings relative to the wave direction. The 
selected subset corresponds to waves incident at an angle of 95deg 
relative to the pontoon designated as the platform's bow (see Figure 3). 
 
The characteristics of the selected DLCs are provided in Table 4. These 
include two environmental conditions characterized by significant wave 
height (Hs) and peak period (Tp) associated with two different wind 
speeds: one below rated wind speed (Test#1) and one above it (Test#2), 
thus different control regions are tested. 
 
The below rated wind speed (10.59m/s) turbine’s control strategy 
assumes the blade pitch angle constant and close to zero with turbine 
velocity controlled to optimize energy by the torque control. Above rated 
wind speed the controller assumes saturated toque at the rated value and 
controls the blade pitch angle to maintain the rated turbine speed. 
According the ROSCO open controller strategy that the SiL was based, 
at the rated wind speed a peak shaving was applied to smooth the thrust 
peak of the rotor reaction at the tower. This strategy is designed to reduce 
the load at the tower, platform and mooring lines. 
 
Table 4. Details of the selected DLCs 

Test Type HS [s] TP [s] Windspeed [m/s] Type 

1 JONSWAP 2.01 8.54 8.59 NTM 
2 JONSWAP 2.16 12.66 12.59 NTM 

3 JONSWAP 10.93 16.00 19.50 NTM 
 
Additionally, the selected subset includes an extreme wave condition 
with 50y return period. The mean wind velocity of this DLC was chosen 
to ensure that it operates continuously throughout the test, as required in 
(DNV GL AS, 2016).  
 
All the turbulent wind time series in the experiential matrix were 
generated using TurbSim (Jonkman and Kilcher, 2012), a tool that 
provides a high-fidelity numerical representation of a full-field turbulent 
wind flow. The wind time series generated followed the Normal 
Turbulence Model (NTM) with a turbulence intensity corresponding to 
Class B (see (Carmo et. al., 2024) for a detailed assessment of the 
turbulent wind records generated using TurbSim). The TurbSim-
generated output file was used as an input for both the experimental tests 
and numerical simulations, ensuring consistency of the wind conditions. 
For the sake of illustration, the spectra of the wind turbulence series for 
the three tests are presented in Figure 4. 
 

 
Figure 4. Wind spectra for the turbulent time series for Tests#1, #2 and 
#3. 
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NUMERICAL MODELLING 
 
The numerical simulations were conducted using OpenFAST v3.5.2, an 
open-software that enables time-domain simulation of the coupled 
dynamics of FOWTs under aerodynamic and hydrodynamic loadings. 
OpenFAST computes wave forces using a combination of 
radiation/diffraction loads, modeled through Cummins’s approach, see 
(Cummins, 1962), in the HydroDyn module, with frequency-dependent 
coefficients pre-calculated in the frequency domain using WAMIT 
v7.0.6, and quadratic drag forces derived from Morison’s equation 
(Morison et. al., 1950). The mooring system dynamics were simulated 
using the coupled MoorDyn v2.0.0 module, which employs a lumped-
mass model to represent the behavior of mooring lines. 
 
The OpenFAST model setup was configured based on the measured 
characteristics of the experimental model (refer to Table 2 and Table 3) 
extrapolated to full scale, ensuring the representativeness of the 
simulations. In this context, the AeroDyn module, which calculates 
aerodynamic loads using the dynamic Blade-Element/Momentum 
(DBEM) approach combined with an unsteady airfoil aerodynamic (UA) 
model, was configured to exclude tower loads and shadow effects, 
aligning with the current SiL implementation, see (Carmo et. al., 2024). 
 
The structural dynamics were computed using the ElastoDyn module. In 
this setup, the degrees of freedom associated with the tower modes (fore-
aft and side-side) and the blade modes (flapwise and edgewise) were 
disabled, as these dynamics are not represented by the experimental scale 
model. 
 
Numerical Simulations 
 
As outlined in the Introduction, the first step of this work aimed at 
validating the numerical simulations using the experimental data. This 
validation was performed by comparing the outputs of the time-domain 
simulations with the experimental measurements through statistical 
analysis for the DLCs listed in Table 4. To ensure accurate comparisons, 
the wave elevation time series recorded during the wave calibration 
phase - conducted prior to placing the model in the wave basin - were 
used as input for the numerical simulations, along with the wind 
turbulent series generated using TurbSim (see subsection Experimental 
Matrix). 
 
The validated numerical model was subsequently utilized to generate 10 
realizations of each DLC listed in Table 4, employing different random 
seeds under turbulent wind conditions. Additionally, the same 
OpenFAST model was applied to simulate 10 realizations of the same 
DLCs, assuming steady wind conditions defined by an exponential 
profile with a shear exponent of 0.14. In total, 60 cases were simulated 
(30 with turbulent wind and 30 with steady wind), providing the data 
used to evaluate the impact of turbulence on mooring line loads, as 
discussed in the following section. 
 
Each simulation spanned 4 hours in full scale, with the initial 2000s 
excluded to eliminate transient platform responses, leaving 
approximately 3.5h of time series for analysis. This ensures that the time 
series are sufficiently long to capture the statistical variability of mooring 
line tensions. 
 
The simulations were carried out in batch mode using a MATLAB script 
developed in-house, allowing multiple simulations to run 
simultaneously. Each simulation was assigned to a core of a standard six-
core computer, with an average runtime of 1.5h. This setup allowed all 
simulations to be completed in approximately 16h. 
 

 
RESULTS 
 
The experimental tests considered in this study for the validation phase 
of the numerical model focused only on wind turbine operational 
conditions. The experimental time series span approximately 2.5 hours. 
However, the initial 2000s were excluded to eliminate the transient 
responses of the platform model, this adjustment reduced the usable 
duration of the time series for analysis to 8000s. The agreement between 
the numerical model results and the experimental data is evaluated and 
discussed in the following subsection. 
 
Validation of the Numerical Model Set Up 
 
First, the dynamic responses of the platform as tested in the wave basin 
are assessed by means of decay data of the six degrees of freedom and 
their comparison with the numerical estimations. For the sake of 
illustration, Figure 5 presents the surge motion records from the decay 
test with an initial amplitude of 20m, showing experimental data without 
the umbilical (dashed red line) and numerical results (blue line). The 
comparison shows good agreement between the experimental and 
numerical data. 
 

 
Figure 5. Experimental and numerical decay test records. 
 
For conciseness, the comparison of the other motions is presented in 
Table 5 through the measured and estimated natural periods. This table 
includes the target values for each motion natural period, the 
experimental measurements for the mooring model-scale platform 
without the umbilical (TExp. w/o umb.), and with the umbilical (TExp. w/umb). 
During the experimental campaign, the umbilical cable was used to 
supply power to the set of fans and to accommodate a cluster of sensor 
cables (i.e. load cells and wave probes). It was suspended from the 
laboratory ceiling by a set of two springs and connected to the platform 
in the same direction as the designated bow of the hull, as illustrated in 
Figure 6. It is important to note that the spring-umbilical cable 
arrangement cannot be modeled in the numerical simulation tools due to 
the adopted air-hanged configuration. Further improvements to the 
configuration of the umbilical power cable required for the hybrid 
model-scale tests have been left as a future work. 
 
The numerical results show a reasonable agreement between the target 
values and the experimental data without the umbilical cable. However, 
the natural periods measured with the umbilical cable connected exhibit 
significant discrepancies from the target values, particularly for the surge 
and sway motions of the platform, with differences of up to 13%. 
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Table 5. Comparison of estimated and measured surge and sway natural 
periods. 

Motion TTarget [s] TFST [s] TExp. w/o umb. [s] TExp. w/umb. [s] 
Surge 198.5 198.7 199.2 173.5 
Sway 194.3 193.8 190.4 188.6 
Heave 17.1 17 17.2 17.7 
Roll  27.3 27.2 27.7 27.4 
Pitch 27.2 27.1 27.3 27.5 
Yaw 55.9 54.6 53.8 53.5 

 
Regarding the tensions of the mooring lines, Figure 7 illustrates the 
numerical and experimental time series for Test #1. The data is provided 
for each mooring line (see Figure 3 for the line nomenclature) with 
experimental records shown in red and numerical results in blue. The 
comparison indicates that the numerical data generally fairly agrees with 
the experimental measurements.  
 
However, a better fit is observed for the port and starboard lines 
compared to the bow lines. As previously noted in the analysis of the 
natural periods, this discrepancy between the numerical and 
experimental data for the bow lines is likely to be related to the effects 
of the umbilical cable, connected to the platform in the same direction as 
the bow lines (see Figure 6). The umbilical configuration used during the 
experimental campaign may have induced larger surge motions in the 
platform that were not captured by the numerical model. This is because 
the model relies in hydrodynamic forces (see Figure 2) to compute 
platform responses and does not explicitly account for the umbilical and 
its dynamics effects. As a result, deviations are observed in the amplitude 
and frequency of the surge motion, as well as in the dynamic behavior of 
the bow mooring lines. 

 

 
Figure 6.  Set-up configuration of the scale model showing the 
umbilical layout. 
 
The selection of Test #1 for illustrating the time series is arbitrary, but it 

stands as a representative example of the observed behavior between the 
numerical and experimental mooring line tension time records across the 
three tests. A quantitative assessment of the agreement between the 
numerical and experimental results is presented in Table 6. This table 
provides key statistical parameters, including the maximum values and 
the variance (s2) of the time series, and the R2 score. The R2 score has 
been included as a measure of the agreement between the numerical and 
experimental time series. The use of this score is possible because both 
wave and wind time series, as previously noted, were identical for the 
numerical and experimental simulations. 
 

 
Figure 7. Mooring line time numerical and experimental time series for 
Test#1. 
 
The results for Test#1, which correspond to an under-rated mean wind 
speed, demonstrate good agreement between the maximum tension 
values from the numerical and experimental time series for all four lines, 
with differences of less than 1%. In terms of variance, Lines 3 and 4 show 
good agreement between numerical and experimental results, while 
Lines 1 and 2 show poorer agreement. This discrepancy is hypothesized 
to be attributed to the influence of the umbilical during the model scale 
experimental campaign. A similar trend is observed in the R2 scores, 
which indicate better agreement between numerical and experimental 
data for Lines 3 and 4 compared to Lines 1 and 2. 
 
For the DLC with wind speeds above the rated wind, a similar tendency 
can be observed. The maximum tension values show good agreement for 
all four lines, with differences remaining below 1%. Regarding the 
variance and R2 scores, both parameters show a trend consistent with 
Test#1, with better alignment between the numerical and experimental 
data for Lines 3 and 4. However, for this DLC, the variance and R2 scores 
suggest a generally poorer agreement compared to Test#1. 
 
Test #3, which represents a wave condition with a 50-year return period, 
also shows good agreement between the maximum values of the 
numerical and experimental time series, with differences smaller than 
1%. Similar to Test #1 and Test #2, the variance and R2 score show better 
agreement for the port and starboard lines. In this case, one may observe 
that the maximum values for all four lines are smaller than those 
observed in Tests #1 and #2. This outcome is attributed to the wind 
velocity being close to the cut-out wind speed, where the wind turbine 
produces less thrust compared to wind speeds closer to the rated wind 
speed. Similarly, the variance is smaller when compared with Tests #1 
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and #2. 
 
These results confirm that the numerical model shows good agreement 
with the experimental data for both DLCs featuring under-rated and 
over-rated wind speeds, as well as with the increase of wave height. 
Nonetheless, some discrepancies are observed, likely related to the 
influence of the umbilical in the model scale. A detailed evaluation of 
the impact of the umbilical cable in the experimental results is left for 
future work. 
 
Table 6. Statistical parameters of the numerical and experimental 
mooring line dynamics 
 Lines Type Max. [kN] s2 [kN2] R2 

Test#1 

L#1 Experimental 1515.31 99.21 0.49 Numerical 1512.12 36.49 

L#2 Experimental 1647.89 13.90 -0.57 Numerical 1649.19 28.92 

L#3 Experimental 4133.29 5733.75 0.82 Numerical 4101.26 5196.49 

L#4 Experimental 2510.33 3054.95 0.71 Numerical 2525.60 3311.93 

Test#2 

L#1 Experimental 1530.71 152.62 0.49 Numerical 1521.04 134.65 

L#2 Experimental 1648.71 26.49 -0.29 Numerical 1643.96 13.54 

L#3 Experimental 4099.42 5486.15 0.65 Numerical 4106.40 6367.22 

L#4 Experimental 2544.85 2120.85 0.63 Numerical 2527.04 2810.66 

Test#3 

L#1 Experimental 1531.59 49.15 0.32 Numerical 1539.69 44.06 

L#2 Experimental 1630.60 14.68 -0.30 Numerical 1640.74 42.52 

L#3 Experimental 3829.82 2101.63 0.60 Numerical 3794.26 633.98 

L#4 Experimental 2697.59 1022.79 0.58 Numerical 2683.49 368.14 
 
 
Wind Turbulence and Mooring Line Tensions 
 
The results of the time-domain simulations in OpenFAST, conducted to 
evaluate the effects of wind turbulence on mooring line tensions, are 
summarized in Table 7. This table presents the maximum and minimum 
values from the 10 realizations of each test (see Table 4) for each 
mooring line, for both the wind turbulent conditions (TRB) and steady 
wind conditions (STD). These statistics have been complemented by the 
Most Probable Maximum (MPM), estimated following DNV’s 
guidelines, see (DNV AS, 2021), which define this parameter as: 
 
𝑀𝑃𝑀 = 𝜇 − 0.45 · 𝜎                                                                            (1) 
where 𝜇 and 𝜎 stand for the mean and variance of the peaks (i.e. the 
maximums values observed in each of the 10 realizations of each DLCs). 
 
The comparison of the MPM results indicates that the differences 
between turbulent and steady wind conditions are limited to 4.5% for 
Test#1 and 2.9% for Test#2. The maximum difference for Test#1 is 
observed in the starboard line, while for Test#2, it is observed in the port 
line. These differences correspond to 108kN and 70kN, respectively. For 
Test#3, where wave excitation (corresponding to a 50y return period sea 
state with a Hs of 10.93m and Tp equal to 16s) is expected to dominate 
platform motions, the maximum difference in MPM is observed in Line 
2, with a difference of 2.5%, equivalent to 58kN. 

 
A similar trend is observed when comparing the maximum values 
recorded during the 10 realizations of each DLC. Lines 3 and 4 exhibit 
the largest differences for tests with wind speeds near the rated wind 
velocity, with 4.6% (Line 4 in Test#1) and 3.1% (Line 4 in Test#2). 
These differences correspond to 111kN and 117kN, respectively. For 
Test#3, the largest differences are again observed in the bow lines, with 
Line 2 showing a difference slightly below 5%, or 127kN. 
 
Table 7. Mooring value statistics for turbulent and steady wind 
conditions obtained from numerical simulations. 

  L#1 L#2 L#3 L#4 
Test#1 

TR
B MPM [kN] 1536.84 1640.58 4162.51 2526.25 

Max. [kN] 1546.62 1646.21 4167.38 2533.17 
Min. [kN] 1535.02 1638.26 4159.20 2522.57 

ST
D

 MPM [kN] 1524.31 1634.29 4076.51 2417.92 
Max. [kN] 1530.48 1640.11 4082.21 2422.13 
Min. [kN] 1522.72 1633.22 4072.28 2417.73 

Test#2 

TR
B MPM [kN] 1570.04 1667.31 4231.47 2487.23 

Max. [kN] 1578.29 1690.61 4246.75 2500.30 
Min. [kN] 1566.26 1665.63 4228.45 2480.33 

ST
D

 MPM [kN] 1552.36 1666.44 4107.11 2417.07 
Max. [kN] 1563.38 1681.01 4129.00 2425.10 
Min. [kN] 1548.49 1655.64 4097.31 2413.83 

Test#3 
TR

B MPM [kN] 2263.15 2400.39 4841.96 3346.44 
Max. [kN] 2518.08 2745.20 5354.48 3611.63 
Min. [kN] 2140.62 2251.31 4564.18 3243.41 

ST
D

 MPM [kN] 2257.88 2342.07 4830.42 3341.13 
Max. [kN] 2425.37 2617.43 5275.81 3522.09 
Min. [kN] 2220.39 2334.82 4730.47 3324.72 

 
For the minimum values, the largest differences are found in Test#1 
(Line 4) and Test#3 (Line 1), with values of 4.3% and 3.6%, 
corresponding to 104kN and 83kN, respectively. 
 
Notably, Test#3 induced the largest maximum values and the largest 
differences between the minimum and maximum mooring line tensions, 
despite corresponding to the DLCs with the smallest mean turbulent 
thrust provided by the wind turbine.  
 
Regarding the wind turbine thrust, the mean values for the turbulent 
cases in Tests#1 and #2 are 2136.2kN and 2166.18kN, respectively, 
while for the steady wind cases, the values are 2149kN for Test#1 and 
2217.21kN for Test#2. For Test#3, the mean thrust values are 1348.31kN 
for the turbulent case and 1173.13kN for the steady case. The differences 
lead to larger offsets for Test#1 and #2, with mean values of 55.89m and 
56.58m, respectively, for the turbulent cases, and 56.67m and 57.49m for 
the steady cases. In contrast, for Test#3, the mean offset value was 
38.48m for the turbulent case and 34.32m for the steady case. It is 
important to note that the mean values for the turbulent cases, both in 
thrust and offset, may be slightly smaller than those recorded for the 
steady wind conditions for the same tests due to the larger variance of 
the time signals. 
 
Therefore, the results show that the tests with wind speeds closer to the 
rated wind exhibit a larger offset than Test#3, as expected. More 
specifically, the results suggest that line tensions in Tests#1 and #2 are 
likely more influenced by the platform's mean offset and, perhaps, the 
turbulent wind spectrum. By contrast, for extreme sea states, the mooring 
dynamics appear to be dominated by wave excitation. In this context, 
Figure 8~Figure 10 presents the mooring line tension spectra for all the 
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tests performed and the all the mooring lines, adding a more detailed 
assessment of the dynamic responses of the mooring lines. Each subplot 
of these figures contains six lines, representing the mean spectra of the 
ten realizations for each turbulent case (black line), the mean spectra of 
the ten realizations for the steady case (blue line), and the 5th and 95th 
percentile values for both the ten realizations of the turbulent (green 
dashed lines) and steady case (red dashed lines) for each test and mooring 
line. 
 

 
Figure 8. Mooring line tensions spectra for test#1 
 

 
Figure 9. Mooring line tensions spectra for test#2 
 
The spectra for Tests #1 and #2 (see Figure 8~Figure 9) indicate that the 
dynamics in all mooring lines show a response in the low-frequency 
range for the turbulent wind conditions (see Figure 4), while for the 
realizations of the same tests with steady wind, this response is not 
observed. Therefore, the mooring lines’ dynamic response for the Tests 
#1 and #2 for the turbulent wind conditions in the low-frequency range 
is likely associated with the wind spectra. Nonetheless, it is important to 
note that the dynamic effects imposed by the turbulent wind, even for 
these cases with mean wind speeds close to the rated wind, are limited, 
as shown previously in the statistical results presented in Table 7. For 
Test#2, in Line 2 (i.e., the second plot in the second row of the figure), it 
is also possible to observe the responses induced by wave excitation. 
 
Figure 11 shows the mooring line tension spectra for Tests #1 and #2, 
disregarding the frequency range where the wind spectra present its 
energy. This figure is provided for the sake of illustration of the tension 
spectra induced by wave excitation, where small differences can be seen 

between the mean spectra (turbulent and steady cases) as well as the 95th 
percentiles for both turbulent and steady cases, particularly for Lines 3 
and #4. 
 
Regarding Test#3 (see Figure 10), the mooring line dynamics are 
dominated by sea excitation, with spectra for both turbulent and steady 
cases showing good agreement. This confirms the trend identified in the 
statistical data from the simulations (see Table 7), where the results show 
that wind turbulence has a limited effect on the mooring line dynamics 
for Test#3. 
 

 
Figure 10. Mooring line tensions spectra for test#3 
 

 
Figure 11. Mooring line tensions spectra for each line (subplots in 
columns) and tests #1 and #2 (subplots in rows) 
 
The responses observed near 8 seconds, more evident for Lines 1 and 2 
in Tests #2 and #3 (Figure 11), seem to be related to the platform's pitch 
dynamic response. This is supported by the pitch RAO, which shows a 
local maximum close to 8 seconds, and by the analysis of the pitch 
motions, which also confirms a response in this frequency range. 
Furthermore, it is also important to note that the tower and blade 
structural dynamics responses were disabled, as described in the previous 
section titled "Numerical Simulations". A dedicated investigation into 
this response in the high-frequency range has been left for future work. 
 
CONCLUSIONS 
 
In this paper, an assessment of the effects of wind turbulence on the 
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mooring line tensions was conducted using a semisubmersible FOWT as 
a reference to withstand the IEA-15MW wind turbine described in 
(Simos et. al., 2023). Time series from experimental data with a 1:45 
model scale were adopted to validate the setup of the OpenFAST 
numerical model for selected environmental conditions. The tested 
environmental conditions include one wind speed above the rated wind 
and another wind speed below the rated wind, allowing the assessment 
of two different control regions of the wind turbine. Additionally, an 
extreme environmental condition was assessed. The comparison of the 
time series and the statistical parameters shows fair agreement between 
the numerical and experimental results, thus supporting the reliability of 
the numerical setup. The same numerical setup was used to simulate 10 
realizations of each of the selected environmental conditions with 
turbulent and steady winds. 
 
The assessment of the results indicates that for the MPM, the differences 
between the turbulent and steady wind conditions are limited. This 
suggests that, for an early assessment of a FOWT project, steady wind 
conditions could be adopted as a reliable characterization of the mooring 
line dynamics. A similar behavior was observed for the maximum and 
minimums of the numerical realizations carried out for each test. 
Therefore, it is possible to conclude that the turbulence effects on the 
design tensions are limited. 
 
Notwithstanding this, the results also showed that for environmental 
conditions with wind speeds close to the rated wind of the wind turbine 
(i.e., 10.59m/s), the mooring line dynamics are likely dominated by wind 
forces. On the other hand, environmental conditions associated with 
extreme wave conditions (usually correlated with higher wind speeds, 
which result in lower wind turbine thrust) appear to be dominated by the 
wave spectra. These effects on the dynamics of mooring line tensions 
indicate that considering wind turbulence is likely a critical factor for 
properly calculating the cumulative fatigue damage of the mooring lines. 
 
Future work envisaged for the research topic addressed in this work 
includes a comprehensive numerical assessment to evaluate the effects 
of turbulence across different wind speeds within the wind turbine's 
control regions. Additionally, it will investigate the influence of various 
wind turbulence models on the MPM and fatigue life, as well as assess 
the impact of second-order motions. Future studies will include assessing 
the impact of the scale on experimental measurements, analyzing the 
response dynamics of the platform and mooring tensions, and examining 
alternative umbilical configurations. Moreover, a dedicated analysis is 
planned to assess the accuracy of the numerical model based on the 
Morison coefficients adopted for the columns and pontoons in this study. 
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