THE HYPERCIRCLE INEQUALITY AND THE COLLOCATION METHOD OF SCHUMAKER

Antonio Elias Fabris
Instituto de Matemática e Estatística
Universidade de São Paulo
Caixa Postal 20570 - São Paulo - Brasil

1. Introduction

In this paper we prove a generalization of the hypercircle inequality found in [4] and apply it to the study of initial value systems of differential equations using collocation conditions. We arrive at the same method proposed and studied by Schumaker [7].

2. Generalized Hypercircle Inequality

Let H be an infinite dimensional Hilbert space.

2.1 Theorem: Given $L, L_1, \ldots, L_n : H \to \mathbb{R}^d$, continuous linear maps, let $a = (a_1, \ldots, a_n) \in \mathbb{R}^d \times \cdots \times \mathbb{R}^d$, $V_a = \{f \in H : L_i f = a_i, i = 1, 2, \ldots, n\}$, $V = V_0$ and $W = \{f \in V : Lf = 0\}$. (i) If f is in V_a and f_0 is its orthogonal projection on V^{\perp} then

$$f_0 \in V_a$$
 and $||Lf - Lf_0|| \le ||L||_V (||f||^2 - ||f_0||^2)^{1/2}$

(ii) Let W^{\perp} be the orthogonal complement of W in V and denote its dimension by m. If g_1, g_2, \ldots, g_m is any orthonormal basis of W^{\perp} then

$$\parallel L \parallel_{V} = \sup_{\parallel \lambda \parallel_{2} < 1} \parallel K \lambda \parallel_{\mathbb{R}^{d}}$$

where K is the $d \times m$ matrix defined by $K_{ij} = (Lg_j)^i$.

2.2 Remark: If L_i^j is the j^{th} component of L_i for $1 \le i \le n$, $1 \le j \le d$ and $\{L_i^j: 1 \le i \le n, 1 \le j \le d\}$ is linearly independent then $V_a \ne \emptyset$ and $\dim V^{\perp} = n \times d$.

3. Application to ODE Systems

Set $E = \{f \in C^{m-1}([0,1], \mathbb{R}^d) : f^{(m)} \text{ is piecewise continuous}\}$, where $m \geq 2$, and let $L_0, L_1, \ldots, L_n : E \to \mathbb{R}^d$ be the continuous linear maps defined by $L_0 f = f(0)$ and $L_i f = f'(t_i) - A(t_i) f(t_i), 1 \leq i \leq n$, where A is a $d \times d$ matrix whose entries are continuous functions on [0,1] and $0 = t_0 < t_1 < \cdots < t_n = 1$.

Moreover, define a positive symmetric bilinear form on $E \times E$ as

$$(f \mid g)_E = \sum_{i=0}^{n} (L_i \mid L_g) + \int_0^1 (f^{(m)}(t) \mid g^{(m)}(t)) dt,$$

where (|) is the usual scalar product on \mathbb{R}^d .

- **3.1 Proposition:** There exists $\epsilon = \epsilon(A) > 0$ such that if $\max_{1 \le i \le n} |t_i t_{i-1}| < \epsilon$, then $(f | f)_E = 0$ implies f = 0.
- 3.2 Remarks: (i) In the following we will assume that the points t_0, t_1, \ldots, t_n satisfy the hypothesis of Proposition 3.1. Then, $(|\cdot|)_E$ is a scalar product on E. (ii) We will denote by $H = \hat{E}$, the completion of E relative to the above scalar product.
- 3.3 Proposition: (i) The linear maps $L_i: E \to \mathbb{R}^d$, $0 \le i \le n$, are continuous. (ii) The components L_i^j , $0 \le i \le n$, $1 \le j \le d$, form a linearly independent set.

3.4 Proposition:
$$V^{\perp} = \{s \in S(P_{2m}^d, M, D) : s^{(m)}(0) = s^{(m+1)}(0) = \dots = s^{(2m-2)}(0) = 0, s^{(m)}(1) = s^{(m+1)}(1) = \dots = s^{(2m-3)}(1) = 0, jump(s^{(2m-1)} - A^t s^{(2m-2)})(t_i) = 0, 1 \le i \le n-1, s^{(2m-1)}(1) - A^t s^{(2m-2)}(1) = 0\}$$

where $jump(s)(t_i) = s(t_i+) - s(t_i-), D = (t_1, ..., t_{n-1})$ and M = (2, ..., 2).

4. Schumaker's Collocation Method

In the previous section we laid the ground work for the application of Theorem 2.1 to the study of the problem

(4.1)
$$\begin{cases} y'(t) = A(t)y(t) + r(t), & 0 < t \le 1 \\ y(0) = 0 \end{cases}$$

where A is a $d \times d$ matrix whose entries are continuous functions and $r \in C([0,1], \mathbb{R}^d)$.

In that section, we chose a suitable Hilbert's space H which contains the solution y of Problem (4.1). With the scalar product adopted in H, the mappings L_i turned out to be continuous. Moreover, the components L_i^j are linearly independent.

Though we don't know the exact solution of Problem (4.1), we do know how to compute the value of L_i on y:

$$L_i y = y'(t) - A(t_i)y(t_i) = r(t_i) \quad \text{and} \quad L_0 y = y(0) = 0$$

Since the hypothesis of Theorem 2.1 were satisfied, we can use that theorem to obtain some information about the solution y from the following inequality

$$||Lf - Lf_0|| \le ||L||_V (||f||^2 - ||f_0||^2)^{1/2}$$

Remark, according to Theorem 2.1, f_0 can be described in two equivalent ways:

$$\begin{array}{ll} 1^{\underline{st}}) & f_0 \in V_a \quad and \quad f_0 \in V^{\perp} \\ 2^{\underline{nd}}) & f_0 \in V_a \quad and \quad \parallel f_0 \parallel_{H} = \inf_{f \in V_a} \parallel f \parallel_{H} \end{array}$$

^{*} In Schumaker [6], the notation $S(P_{2m}^d, M, D)$ stands for the space of polinomial splines of degree less than or equal to 2m-1, of class $C^{2m-3}([0,1], \mathbb{R}^d)$ with knots $0 < t_1 < t_2 < \cdots < t_{n-1} < 1$.

In section 3 we verify that V^{\perp} is a space of splines. The first formulation says that there exists a unique spline $s \in V^{\perp}$ which satisfies the collocation conditions $s \in V_a$, that is

$$s'(t_i) = A(t_i)s(t_i) + r(t_i), i = 1, 2, ..., n$$

 $s(0) = 0$

The second formulation says that the solution of the collocation problem is optimal in the sense that it minimizes the norm $\| \|_H$ among the elements of H satisfying the collocation conditions.

The collocation problem above, whose solution f_0 was shown to be unique, is the collocation problem proposed and studied by Schumaker in [7].

References

- [1] J. H. Ahlberg, E. Nilson, J. L. Walsh, The theory of splines and their applications, New York, Academic Press, 1967.
- [2] I. Q. Barros, Interpolação ótima, Trabalho apresentado no Seminário de Análise Numérica (IME-USP), São Paulo, 1982.
- [3] A. E. Fabris, Métodos de colocação e métodos do tipo RK, X Congresso Nacional de Matemática Aplicada e Computacional, SBMAC, 1987, pp. 264-268.
- [4] M. Golomb, H. F. Weinberger, Optimal approximation and error bounds, In: Langer, R.E. ed., On numerical approximation: proceedings, Madison, University of Wisconsin Press, 1959, pp. 117-190.
- [5] R. D. Russel, L. F. Shampine, A collocation method for boundary value problems, Numerische Mathematik, 19(1972), pp. 1-28.
- [6] L. L. Schumaker, Spline functions: basic theory, New York, John Willey, 1981.
- [7] L. L. Schumaker, Optimal spline solution of systems of ordinary differential equations, In: Escola Latino Americana de Matemática, Proceedings, Lectures Notes In Mathematics, Berlin, Springer, 1982, pp. 272-268.