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Abstract

A mixed integer linear programing model for the two-dimensional non-guillotine cutting problem with usable
leftovers was recently introduced by Andrade et al. The problem consists in cutting a set of ordered items
using a set of objects of minimum cost and, within the set of solutions of minimum cost, maximizing
the value of the usable leftovers. Since the concept of usable leftovers assumes they can potentially be
used to attend new arriving orders, the problem is extended to the multiperiod framework in this work. In
this way, the decision at each instant does not minimize in a myopic way the cost of the objects required
to attend the orders of the current instant; but it aims to minimize the overall cost of the objects up to
the considered time horizon. Some variants of the proposed model are analyzed and numerical results
are presented.

Keywords: non-guillotine cutting and packing; usable leftovers; MIP models; multiperiod scenario

1. Introduction

Cutting stock problems appear in a wide range of industrial processes where a variety of large
pieces of material, such as paper, glass, steel, wood, or fabric, need to be cut in order to produce
smaller pieces of ordered sizes and quantities. Aiming to reduce operating costs, several aspects of
the cutting process may be taken into account, and returning leftovers to stock so they can be used
in future orders is one of them (see, for example, Koch et al. (2009) and Chen et al. (2019), where
the usage of leftovers in the wood-processing and plastic-film industries are considered).

In this work, we are concerned with the two-dimensional non-guillotine cutting problem of
cutting an heterogeneous set of small rectangular pieces (items) from a set of large rectangular
pieces (objects). The problem is said to be two-dimensional because it involves the widths and
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heights of items and objects, while it is said to be non-guillotine because cuts are not restricted to
be guillotine cuts. A multiperiod scenario is considered in which, at each instant p (0 ≤ p ≤ P − 1),
there are ordered items and available purchasable objects, and items ordered at instant p must
be produced within the period [p, p + 1]. An item ordered at instant p may be produced from a
purchased object available at that instant or from a leftover of a previously used object. Thus, we
consider that, at each instant, an heterogeneous set of objects is available.

In Andrade et al. (2014), the single-period scenario of the problem described in the paragraph
above was tackled. In the single-period scenario, the goal is to minimize the cost of the objects
required to produce all ordered items, and, within the set of solutions with minimum cost, to
maximize the value of objects’ usable leftovers. (The formal definition of usable leftover adopted
in this work will be given in the next section.) The consideration of usable leftovers assumes
their utilization to produce forthcoming orders of items; thus, extending the problem considered
in Andrade et al. (2014) to the multiperiod scenario appears as a natural option. In the multiperiod
scenario, given a time horizon represented by P instants 0, . . . , P − 1, the goal is to minimize the
overall cost of the objects required to produce all items ordered at instants 0, . . . , P − 1, and,
within the set of solutions with minimum cost, to maximize the value of usable leftovers available
at instant P (i.e., at the end of the considered time horizon). It is very clear that this formulation of
the problem is expected to produce better quality solutions than the myopic alternative of solving a
single-period problem at each instant. Note that, following Andrade et al. (2014), in the present work
there is a clear hierarchy between the two considered objectives—cost must be minimized in the first
place and, among solutions of minimum cost, a solution with maximum value of usable leftovers is
seeked. This goals’ hierarchy fits the tackled problem in the bilevel optimization framework (Dempe,
2002), in opposition to the multiobjective approach (Miettinen, 1998).

Several works were written regarding one-dimensional cutting problems with leftovers (see the
pionners’ works of Roodman (1986) and Scheithauer (1991), the recent survey by Cherri et al.
(2014) and the references therein, and the works of Poldi and Arenales (2010), Cherri et al. (2013),
and Tomat and Gradis ̆ar (2017)). In Poldi and Arenales (2010), the authors introduce a mixed
integer linear programing model, a column generation approach to solve its linear relaxation, and
a heuristic rolling horizon approach for rounding off fractional solutions. In Tomat and Gradis ̆ar
(2017), a multiperiod problem that combines the minimization of the trim-loss and the amount of
usable leftovers in stock is considered, and a heuristic method is proposed and tested. In Cherri
et al. (2013), to avoid leftovers remaining in stock for a long period of time, it is considered that the
leftovers have a priority-in-use compared to standard objects in stock. A heuristic approach is also
proposed and tested.

On the other hand, only a few works address two- and three-dimensional cutting problems with
leftovers. In Andrade et al. (2014), a mixed integer linear programing model for the two-dimensional
non-guillotine cutting stock problem with usable leftovers was introduced. In the considered single-
period problem, the goal is to minimize the cost of the objects required to produce a given set
of ordered items and, within the set of minimum cost, maximize the value of the usable leftovers.
In Andrade et al. (2016), the non-exact two-stage guillotine cutting stock version of the same
problem was analyzed. In Viegas et al. (2016), a heuristic cutting decision process for daily tailored
orders of a real-life steel retailer is proposed. The considered problem is a three-dimensional cutting
and packing problem in which usable leftovers of preceding periods may be used to produce items
of the current period. A three-staged two-dimensional cutting stock problem with usable leftover
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is studied in Chen et al. (2015), where a heuristic beam search approach is developed. Exact and
nonexact two- and three-stage two-dimensional cutting stock problems are also considered in Silva
et al. (2010). Mixed integer linear programing models, which can be seen as extensions of the model
proposed in Dyckhoff (1981) for the one-dimensional cutting stock, are proposed. Introduced
models are based on the enumeration of all possible ways of producing an item from an object.
Since the production of an item from an object produces the item and also two residual objects that
can be used to generate other items, this work also considers leftovers. Upper bounds on the number
of variables and constraints of the proposed models are given. In Silva et al. (2014), the problem
introduced in Silva et al. (2010) is extended to the multiperiod framework and integrated with the
lot-sizing problem. In this context, the goal is to minimize a total cost that includes raw material,
waste, and storage costs. Mixed integer linear programing models and two heuristic approaches
based on the industrial practice are proposed. A multiperiod three-dimensional packing problem
is addressed in Alonso et al. (2019), in which the problem of putting products on pallets and
then loading the pallets into trucks is considered. Mixed integer linear programing models that
include maximum weight constraints as well as stability constraints are presented and tested on real
instances related to the everyday distribution activity of a company.

The rest of this paper is organized as follows. Section 2 describes and motivates the multiperiod
two-dimensional non-guillotine cutting stock problem with leftovers. Section 3 introduces its mixed
integer linear programing formulation. In particular, Section 3.6 introduces a model that minimizes
the overall cost of the used objects, whereas Section 3.7 introduces the model that, within the set
of solutions with minimum cost, maximizes the value of the leftovers available at the end of the
considered time horizon. Section 4 presents illustrative numerical experiments. Conclusions and
lines for future research are given in Section 5.

2. The multiperiod two-dimensional non-guillotine cutting stock problem with leftovers

Following Andrade et al. (2014), in this work we consider that object’s leftovers are obtained by
performing a couple of guillotine precuts on the object that separate the leftovers from the “cutting
area” of the object (region from where the items will be cut). As depicted in Fig. 1, there are two
possible ways of performing those two cuts: (i) the vertical cut before the horizontal cut or (ii) the
horizontal cut before the vertical cut. Given a catalogue of items, we say a leftover is usable if it can
fit any item from the catalogue. In this case, the leftover’s value is given by its area times the cost
per unit of area of the object. Otherwise, the leftover is disposable and has no value at all. This is
why the added values of the two leftovers in Fig. 1a may differ from the added values of the two
leftovers in Fig. 1b. It is worth noting that this definition of leftovers implies that any part of the
cutting area of the object that is not used to produce an item is considered waste. (See Andrade
et al. (2014, 2016) for other definitions of leftovers in two-dimensional problems.)

Assume that there are given (i) a set of m available objects O j with width Wj , height Hj , and
cost c j per unit of area ( j = 1, . . . , m), (ii) a set of n ordered items Ii with width wi and height hi

(i = 1, . . . , n), and (iii) a catalogue composed of d items Īi with width w̄i and height h̄i (i = 1, . . . , d).
Items from the catalogue are used only to determine whether a leftover is usable or not. Consider
the problem of cutting all the ordered items from a set of objects of minimum cost. Moreover,
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Fig. 1. Graphs (a) and (b) represent the two possible ways of generating leftovers performing a vertical and a horizontal
guillotine precut. Leftovers are usable if they can fit any item from a given catalogue of items.

assume that when items are cut from an object, two leftovers can be generated (as described above)
and that, among all solutions of minimum cost, we want a solution that maximizes the value of
the leftovers. This was one of the problems modeled as a mixed integer linear programing problem
in Andrade et al. (2014). Clearly, the idea of considering a leftover usable if it can fit an item from
the catalogue assumes that (a) new orders will arrive, (b) new ordered items might be items from the
catalogue, and (c) using the leftovers to cut some of the new ordered items might reduce the cost of
purchasing new objects. This suggests the existence of an underlying multiperiod framework.

Consider now P instants of time and assume that, at each instant p (p = 0, . . . , P − 1), there are
given (i) a set of mp available objects Op j with width Wp j , height Hp j , and cost cp j per unit of area
( j = 1, . . . , mp) and (ii) a set of np ordered items Ipi with width wpi and height hpi (i = 1, . . . , np). A
catalogue composed of d items Īi with width w̄i and height h̄i (i = 1, . . . , d) is also given. At each
instant p (p = 0, . . . , P − 1), we must decide the way of cutting all the np ordered items. This means
that the cut of ordered items cannot be anticipated or delayed. Items may be cut from available
objects or from usable leftovers from previous periods. The objective is to minimize the overall cost
of the objects required to execute the orders of all instants. Among all solutions of minimum cost,
we want a solution that maximizes the value of the leftovers at instant P (the end of the considered
time horizon). A leftover is considered valuable if it can fit an item from the catalogue; otherwise, it
is disposable and it has no value. We assume this problem is part of a larger scenario within which an
agent takes the decision of which orders must be placed at each instant considering the demand and
existing constraints related to profit, penalties, stock, labor hours, cash flow, etcetera. This means
that the presented problem focuses on the determination of the (non-guillotine) cut patterns that
minimize the usage of raw material taking advantage of usable leftovers.

Figure 2 illustrates a small instance of the considered problem. Since, all ordered items must be
cut, if the objects available at some instant are not enough to produce all items ordered at that
instant, the instance may be infeasible. (The possibility of using leftovers from previous periods
exists.) To complete the instance, it must be said that the cost per unit of area of all the objects
is one and that the catalogue is composed of the four ordered items. Note that the existence of
the catalogue gives some flexibility to the definition of usable leftovers. If, for example, one desires
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Fig. 2. Illustration a small instance of the considered problem with P = 3 periods. The number of available objects at
each instant is given by m0 = m1 = 2 and m2 = 1 and the number of ordered items at each instant is given by n0 = n2 = 1
and n1 = 2. The cost per unit of area of all the objects is one (i.e., c01 = c02 = c11 = c12 = c21 = 1) and the catalogue with
d = 4 items is composed of the four ordered items (i.e., w̄1 = h̄1 = 3, w̄2 = 4, h̄2 = 5, w̄3 = 3, h̄3 = 1, w̄4 = 2, and h̄4 = 5).

leftovers to be usable whenever they have a minimum width ŵ and a minimum height ĥ, then the
catalogue may be given by a single item with width ŵ and height ĥ. In this way, leftovers that can fit
this item are considered usable and the others are not.

Figure 3 illustrates three different feasible solutions to the instance in Fig. 2. Figure 3a represents a
solution that can be found by a myopic approach that proceeds as follows. At each instant, available
objects are the objects that can be bought and also the usable leftovers from previous periods (with
no cost). The solution to each instant can be found by solving the model introduced in Andrade
et al. (2014) that consists in minimizing the cost of the objects required to cut the ordered items
and, among solutions with minimum cost, chooses one with maximum value of the usable leftovers.
The solution in Fig. 3a uses objects O01, O11, and O21 whose total cost is 24 + 28 + 25 = 77 and, at
instant p = 3, has three remaining usable leftovers whose total value is given by 12 + 8 + 15 = 35.
Solutions in Figs. 3b and c use objects O02 and O11 only, whose total cost is 25 + 28 = 53, implying
that the solution in Fig. 3a is not optimal. Note that the smaller total cost of both solutions was
obtained by buying a more expensive object at instant p = 0. Moreover, the solution in Fig. 3b
has usable leftovers at instant p = 3 whose total value is 6 + 4 = 10, while Fig. 3c has usable
leftovers at instant p = 3 whose total value is 3 + 8 = 11, being in fact the optimal solution we are
looking for.

3. Mixed integer linear programing formulation

In this section, a mixed integer linear programing formulation for the multiperiod two-dimensional
non-guillotine cutting problem with usable leftovers, described in the previous section, is given. The
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Fig. 3. Illustration of solutions that, at each period, may cut ordered items from usable leftovers from previous periods.
(a) Greedy solution obtained by a myopic method that, at each instant, minimizes the cost of the objects required to cut

the ordered items of that instant, assuming that usable leftovers from previous periods are free. (b) Solution that
minimizes the overall cost of the required objects. (c) Solution with minimum cost of the required objects and, in

addition, maximum value of the usable leftovers at instant p = 3.
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formulation is an extension of the single-period model considered in Andrade et al. (2014) and the
novelty relies on the existence, on a given period, of objects that are usable leftovers of previous
periods. The dimensions of that objects are not constants but depend on the cutting patterns of the
previous periods.

3.1. Instance data

Let P be the number of instants to be considered. Assume that, for each p = 0, . . . , P − 1, there
are given (a) mp ≥ 0 and a set of mp available objects Op j with width Wp j , height Hp j , and
cost cp j per unit of area ( j = 1, . . . , mp) and (b) np ≥ 0 and a set of np ordered items Ipi with
width wpi and height hpi (i = 1, . . . , np). A catalogue composed of d items Īi with width w̄i and
height h̄i (i = 1, . . . , d) is also given. As explained in the previous section, each object available
at instant p generates two leftovers (that may be usable or not) at instant p + 1, those two left-
overs generate two leftovers each at instant p + 2, and so on. This means that after �p instants
there will be 2�p leftovers associated with each object of instant p. This fact would make in-
tractable (to be solved to global optimality) instances with even moderate values of P. Therefore,
from the theoretical point of view, it makes sense to add to the problem an integer parame-
ter ξ ∈ [0, P] that says for how many periods leftovers of an object may be available. If ξ = 0,
then the problem considers no leftovers at all. If ξ = P, then all leftovers will be available up
to instant P. Parameter ξ is considered to be the same for all objects of all instants with the
only purpose of simplifying the presentation. In practice, each object of each instant might have
its own “duration” parameter ξ that would represent the perishability of the raw material it is
made of.

3.2. Additional computable constants

By definition, each object generates two leftovers, and leftovers generated in a period [p, p + 1]
remain available up to period [p + ξ, p + ξ + 1]; ξ = 0 meaning that leftovers are not being con-
sidered at all. This means that the number m̄p ≥ mp of available objects at a given period p,
composed of the mp purchasable objects plus the objects that are leftovers of previous periods, is
given by

m̄p =

⎧⎪⎨
⎪⎩

mp, p = 0,

mp + leftovers(p, ξ ), p = 1, . . . , P − 1,

leftovers(p, ξ ), p = P,

(1)

where

leftovers(p, ξ ) =
min{p,ξ}∑

�=1

2�mp−�.
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Note that, since, by definition, there are no purchasable objects at instant P, m̄P represents the
number of leftovers available at instant P only.

By definition, the cost (or value) per unit of area of a leftover is the cost per unit of area of
the object that originated the leftover. We aim to define c̄p j as the cost per unit of area of each
object Op j (p = 0, . . . , P, j = 1, . . . , m̄p). If we name Op+1, j1

and Op+1, j2
, with j1 = mp+1 + 2 j − 1

and j2 = mp+1 + 2 j, the leftovers generated by object Op j (p = 0, . . . , P − 1, j = 1, . . . , m̄p), then
we have

c̄p+1, j1
= c̄p+1, j2

= c̄p j = cp j for p = 0, . . . , P − 1, j = 1, . . . , mp.

The relevant costs that will be used later in this section are the costs c̄P j ( j = 1, . . . , m̄P) that
correspond to the value (per unit of area) of the leftovers available at instant P, that is, at the end of
the considered time horizon.

3.3. Assignment of items to objects

Let vpi j ∈ {0, 1} (p = 0, . . . , P − 1, i = 1, . . . , np, j = 1, . . . , m̄p) be such that vpi j = 1 if item Ipi must
be produced from object Op j and vpi j = 0, otherwise. The fact that each item must be produced
from exactly one object can be modeled with the constraints

m̄p∑
j=1

vpi j = 1, p = 0, . . . , P − 1, i = 1, . . . , np. (2)

Let up j ∈ {0, 1} (p = 0, . . . , P − 1, j = 1, . . . , m̄p) be such that up j = 1 if at least one item is
produced from the object Op j and up j = 0, otherwise. This can be modeled with the constraints

up j ≥ vpi j, p = 0, . . . , P − 1, j = 1, . . . , m̄p, i = 1, . . . , np, (3)

and

up j ≤
np∑

i=1

vpi j, p = 0, . . . , P − 1, j = 1, . . . , m̄p. (4)

3.4. Objects’ dimensions

Let W̄p j and H̄p j (p = 0, . . . , P, j = 1, . . . , m̄p) be the width and height of object Op j , respectively.
Clearly, for every p and j ≤ mp, we have that W̄p j = Wp j and H̄p j = Hp j . We now turn our attention
to the dimensions W̄p j and H̄p j for j ∈ {mp+1, . . . , m̄p}, that is, dimensions of objects Op j with p > 0
that are leftovers from previous periods. Assuming that the dimensions of all objects of a given
instant p are already known (and this is true for p = 0), we show how to determine the dimensions
of the objects of instant p + 1.

C© 2019 The Authors.
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Let p ∈ {0, . . . , P − 1} be an instant and let tp j and rp j ( j = 1, . . . , m̄p), satisfying

0 ≤ tp j ≤ H̄p j and 0 ≤ rp j ≤ W̄p j, j = 1, . . . , m̄p, (5)

be such that H̄p j − tp j and W̄p j − rp j are the height and the width, respectively, of the “cutting area”
of object Op j (see Fig. 1), and let ηp j ∈ {0, 1} be such that ηp j = 1 if the vertical precut is made in
first place (see Fig. 1a) and ηp j = 0 otherwise (see Fig. 1b).

With the help of these three variables (tp j , rp j , and ηp j), we are able to determine the dimensions
of the two leftovers generated by the usage or not of object Op j that correspond to two available
objects at instant p + 1. As it can be seen in Fig. 1, if the object is used and ηp j = 1, then the leftover
at the top of the object has width W̄p j − rp j and height tp j , while the leftover on the right-hand side
of the object has width rp j and height H̄p j . On the other hand, if the object is used and ηp j = 0,
then the leftover at the top of the object has width W̄p j and height tp j , while the leftover on the
right-hand side of the object has width rp j and height H̄p j − tp j . When the object is not used, we
must consider in separate the case in which the object is a purchasable object (1 ≤ j ≤ mp) and the
case in which the object is a leftover from a previous period (mp + 1 ≤ j ≤ m̄p).

In the case of an unused purchasable objectOp j , since an object that is not purchased generates no
leftovers, we must define the dimensions of its leftovers as null. Thus, we can model the dimensions
of the leftovers of a purchasable object as

0 ≤ H̄p+1, j1
≤ Ĥup j,

tp j − (1 − up j )Ĥ ≤ H̄p+1, j1
≤ tp j + (1 − up j )Ĥ,

0 ≤ W̄p+1, j1
≤ Ŵ up j,

W̄p j − rp j − (1 − ηp j )Ŵ − (1 − up j )Ŵ ≤ W̄p+1, j1
≤ W̄p j − rp j + (1 − ηp j )Ŵ + (1 − up j )Ŵ ,

W̄p j − ηp jŴ − (1 − up j )Ŵ ≤ W̄p+1, j1
≤ W̄p j + ηp jŴ + (1 − up j )Ŵ ,

0 ≤ W̄p+1, j2
≤ Ŵ up j,

rp j − (1 − up j )Ŵ ≤ W̄p+1, j2
≤ rp j + (1 − up j )Ŵ ,

0 ≤ H̄p+1, j2
≤ Ĥup j,

H̄p j − (1 − ηp j )Ĥ − (1 − up j )Ĥ ≤ H̄p+1, j2
≤ H̄p j + (1 − ηp j )Ĥ + (1 − up j )Ĥ,

H̄p j − tp j − ηp jĤ − (1 − up j )Ĥ ≤ H̄p+1, j2
≤ H̄p j − tp j + ηp jĤ + (1 − up j )Ĥ,

(6)

for j = 1, . . . , mp, where j1 = mp+1 + 2 j − 1, j2 = mp+1 + 2 j, and the constants Ŵ and Ĥ
are given by Ŵ = max{Wp j | p = 0, . . . , P − 1, j = 1, . . . , mp} and Ĥ = max{Hp j | p = 0, . . . , P −
1, j = 1, . . . , mp}.

In the case of an unused object Op j that is a leftover from a previous period, we must have an
object Op+1, j1

identical to Op j and an object Op+1, j2
with null dimensions, or the analogous situation

in which objects Op+1, j1
and Op+1, j2

change their places. If we arbitrarily consider the first case, we
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can model the dimensions of the leftovers of an object that is a leftover from a previous period as

H̄p j − Ĥup j ≤ H̄p+1, j1
≤ H̄p j + Ĥup j,

tp j − (1 − up j )Ĥ ≤ H̄p+1, j1
≤ tp j + (1 − up j )Ĥ,

W̄p j − Ŵ up j ≤ W̄p+1, j1
≤ W̄p j + Ŵ up j,

W̄p j − rp j − (1 − ηp j )Ŵ − (1 − up j )Ŵ ≤ W̄p+1, j1
≤ W̄p j − rp j + (1 − ηp j )Ŵ + (1 − up j )Ŵ ,

W̄p j − ηp jŴ − (1 − up j )Ŵ ≤ W̄p+1, j1
≤ W̄p j + ηp jŴ + (1 − up j )Ŵ ,

0 ≤ W̄p+1, j2
≤ Ŵ up j,

rp j − (1 − up j )Ŵ ≤ W̄p+1, j2
≤ rp j + (1 − up j )Ŵ ,

0 ≤ H̄p+1, j2
≤ Ĥup j,

H̄p j − (1 − ηp j )Ĥ − (1 − up j )Ĥ ≤ H̄p+1, j2
≤ H̄p j + (1 − ηp j )Ĥ + (1 − up j )Ĥ,

H̄p j − tp j − ηp jĤ − (1 − up j )Ĥ ≤ H̄p+1, j2
≤ H̄p j − tp j + ηp jĤ + (1 − up j )Ĥ,

(7)

for j = mp + 1, . . . , m̄p. Note that (6) and (7) differ only in the constraints that apply to W̄p+1, j1
and

H̄p+1, j1
when up j = 0. While (6) says that in this case we must have W̄p+1, j1

= H̄p+1, j1
= 0, (7) says

that it must hold W̄p+1, j1
= W̄p j and H̄p+1, j1

= H̄p j .
A technicality is missing and, therefore, there is some abuse of notation in the description of

constraints (6) and (7). In both constraints, it is assumed that every object generates two leftovers
(as it does in fact when ξ = P). Thus, it is written that constraint (6) applies to all j = 1, . . . , mp,
constraints (7) applies to all j = mp + 1, . . . , m̄p, and we define j1 = mp+1 + 2 j − 1 and j2 = mp+1 +
2 j. In practice, every object Op j has an associated “shelf life.” A purchasable object has shelf life
ξ , while an object that is a leftovers has a shelf life that is one less than the shelf life of the object
that generated the leftover. Then, only objects with a strictly positive shelf life generate leftovers,
and the leftovers must be numbered accordingly. For example, if, at a period p, Op, ja

,Op, jb
, . . .

(with ja ≤ jb ≤ · · ·) are the objects that generate leftovers (i.e., the objects with a strictly positive
shelf life), then the two leftovers of Op, ja

should be numbered mp+1 + 1 and mp+1 + 2, whereas
the two leftovers of Op, jb

should be numbered mp+1 + 3 and mp+1 + 4. In any case, note that the
number of leftovers at every period p, given by m̄p − mp, where m̄p is defined in (1), is fixed and it
depends only on the instance data and the additional computable constants described in Sections 3.1
and 3.2.

3.5. Avoiding overlapping and fitting items within objects’ “cutting area”

We now consider the positioning constraints that avoid overlapping of items produced from the
same object and the constraints that fit the items within the cutting area of the objects. For this,
let (xpi, ypi) be the Cartesian coordinates of the center of item Ipi (p = 0, . . . , P − 1, i = 1, . . . , np).
The fitting constraints given by

C© 2019 The Authors.
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0 ≤ xpi − 1
2

wpi and xpi + 1
2

wpi ≤ W̄p j − rp j + (1 − vpi j )Ŵ ,

0 ≤ ypi − 1
2

hpi and ypi + 1
2

hpi ≤ H̄p j − tp j + (1 − vpi j )Ĥ,

(8)

for p = 0, . . . , P − 1, i = 1, . . . , np, j = 1, . . . , m̄p, say that item Ipi must be placed within the
cutting area of the object Op j to which it was assigned. Note that we have assumed, without loss of
generality, that the bottom-left corner of all objects corresponds to the origin of the Cartesian plane.

Let Ipi and Ipi′ with i′ > i be two items that are being assigned to the same object Op j , that
is, vpi j = vpi′ j = 1. The non-overlapping constraints must say that |xpi − xpi′ | ≥ 1

2 (wpi + wpi′ ) or
|ypi − ypi′ | ≥ 1

2 (hpi + hpi′ ). Using that |a| ≥ b is the same that a ≥ b or −a ≥ b, these disjunction can
be written using their big-M formulation as

xpi − xpi′ ≥ 1
2
(wpi + wpi′ ) − Ŵ

[
(1 − vpi j ) + (1 − vpi′ j ) + πpii′ + τpii′

]
,

−xpi + xpi′ ≥ 1
2
(wpi + wpi′ ) − Ŵ

[
(1 − vpi j ) + (1 − vpi′ j ) + πpii′ + (1 − τpii′ )

]
,

ypi − ypi′ ≥ 1
2
(hpi + hpi′ ) − Ĥ

[
(1 − vpi j ) + (1 − vpi′ j ) + (1 − πpii′ ) + τpii′

]
,

−ypi + ypi′ ≥ 1
2
(hpi + hpi′ ) − Ĥ

[
(1 − vpi j ) + (1 − vpi′ j ) + (1 − πpii′ ) + (1 − τpii′ )

]
,

(9)

for p = 0, . . . , P − 1, j = 1, . . . , m̄p, i = 1, . . . , np, i′ = i + 1, . . . , np, where πpii′ and τpii′ ∈ {0, 1}
for p = 0, . . . , P − 1, i = 1, . . . , np, and i′ = i + 1, . . . , np are auxiliary variables. When two items
ordered at the same instant are identical (i.e., they have identical dimensions), additional constraints
(introduced in Andrade and Birgin, 2013, §3) may be added in order to avoid symmetric solutions
in which both items interchange their places (see also Andrade et al., 2014, p. 1651).

3.6. Minimizing the cost of the used objects

Up to this point, we have all the elements to build up the mixed integer linear programing formulation
of the problem of minimizing the overall cost of the objects required to satisfy the orders of all
instants making use of leftovers. Variables of the problem are vpi j ∈ {0, 1} (p = 0, . . . , P − 1, j =
1, . . . , m̄p, i = 1, . . . , np), up j ∈ {0, 1}, (p = 0, . . . , P − 1, j = 1, . . . , mp), ηp j ∈ {0, 1}, W̄p j , H̄p j , tp j ,
rp j ∈ R (p = 0, . . . , P − 1, j = 1, . . . , m̄p), and πpii′ , τpii′ ∈ {0, 1} (p = 0, . . . , P − 1, i = 1, . . . , np,
i′ = i + 1, . . . , np). Since the cost of the used objects is given by

P−1∑
p=0

mp∑
j=1

cp jWp jHp jup j, (10)
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the problem is given by minimizing (10) subject to the constraints (2), (3), and (4) that assign items
to objects; the constraints (5), (6), and (7) that determine the dimensions of the leftovers; and the
constraints (8) and (9) that avoid overlapping between the items and fit the items within the cutting
area of the objects, respectively.

3.7. Maximizing the value of usable leftovers at the end of the time horizon

If we consider the instance depicted in Fig. 2, solutions illustrated in Figs. 3b and 3c are both optimal
solutions to the model introduced in Section 3.6. This is because, although leftovers are being used
to reduce the cost of the required objects, the value of the usable leftovers available at instant P are
not being considered in the model to determine that, in fact, the solution in Fig. 3c is preferred.
Thus, we now need to model that, by definition, usable leftovers are the ones that can fit at least an
item from the catalogue, while the other ones are disposable, and that, also by definition, the value
of an usable leftover is given by its area times the cost per unit of area of the object that generated
the leftover. Then, the value of the usable leftovers available at instant P must be incorporated into
the model as a tie break to differentiate solutions with minimum cost of the used objects.

All objects available at instant P are, by definition, leftovers of previous periods, since there are
no purchasable objects at this (last) instant. Moreover, they are exactly m̄P objects and they have
width W̄P j and height H̄P j for j = 1, . . . , m̄P. Each object OP j that can fit an item from the catalogue
has value c̄P jW̄P jH̄P j , while the others have no value and are disposable. Assume we are able to
introduce variables γ j ( j = 1, . . . , m̄P) and additional constraints that impose that γ j = W̄P jH̄P j

if there exists an item Ii (i = 1, . . . , d) from the catalogue such that w̄i ≤ W̄P j and h̄i ≤ H̄P j , and
γ j = 0 otherwise. In this case, the value of the usable leftovers at instant P is given by

m̄P∑
j=1

c̄P jγ j .

Since leftovers come from objects, the value of all leftovers is strictly smaller than the cost of the
objects they come from. Thus,

m̄P∑
j=1

c̄P jγ j ≤
m̄P∑
j=1

c̄P jW̄P jH̄P j <

P−1∑
p=0

mp∑
j=1

cp jWp jHp jup j ≤
P−1∑
p=0

mp∑
j=1

cp jWp jHp j .

If we assume that cp j , Wp j , and Hp j (p = 0, . . . , P − 1, j = 1, . . . , mp) are integer numbers, then
minimizing

P−1∑
p=0

mp∑
j=1

cp jWp jHp jup j −

⎛
⎜⎜⎜⎜⎜⎜⎝

1
P−1∑
p=0

mp∑
j=1

cp jWp jHp j

⎞
⎟⎟⎟⎟⎟⎟⎠

m̄P∑
j=1

c̄P jγ j,

C© 2019 The Authors.
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or, equivalently,

⎛
⎝P−1∑

p=0

mp∑
j=1

cp jWp jHp j

⎞
⎠

⎛
⎝P−1∑

p=0

mp∑
j=1

cp jWp jHp jup j

⎞
⎠ −

m̄P∑
j=1

c̄P jγ j, (11)

has the effect of minimizing the overall cost of the used objects and, within the set of solutions with
minimum cost, maximizing the value of the usable leftovers available at instants P.

3.7.1. Modeling the area of the usable leftovers
It remains to describe the constraints that produce the desired effect on the variables γ j ( j =
1, . . . , m̄P), that is,

γ j =
{

W̄P jH̄P j, if there exists i ∈ {1, . . . , d} such that w̄i ≤ W̄P j and h̄i ≤ H̄P j,

0, otherwise.

If, in addition to the integrality of cp j , Wp j , and Hp j (p = 0, . . . , P − 1, j = 1, . . . , mp), we also
assume that all ordered items have integer dimensions, that is, that wpi and hpi (p = 0, . . . , P − 1,
j = 1, . . . , mp) are all integers, then we have that there are optimal solutions for which W̄P j and H̄P j
( j = 1, . . . , m̄P) are all integer as well (see, e.g., Birgin et al., 2010, 2012). Therefore, we can express
W̄P j as

W̄P j =
L∑

�=1

2�−1θ j�, (12)

where L = �log2(Ŵ )� + 1 and θ j� ∈ {0, 1} ( j = 1, . . . , m̄P, � = 1, . . . , L), that is, θ jLθ j,L−1 · · · θ j1

being the binary representation of W̄P j and L being an upper bound on the number of required bits.
With this, we have that, for j = 1, . . . , m̄P,

W̄P jH̄P j =
L∑

�=1

2�−1H̄P jθ j�,

thus representing the product of two integers by the sum of products of an integer and a binary
variable (see, e.g., Harjunkoski et al., 1997; Yanasse and Morabito, 2006). The value of each of these
products coincides with the value of the integer if the binary variable is one and zero otherwise.
Introducing (continuous) variables ω j� ( j = 1, . . . , m̄P, � = 1, . . . , L), this products can be modeled
as

0 ≤ ω j� ≤ H̄P j and H̄P j − (1 − θ j�)Ĥ ≤ ω j� ≤ θ j�Ĥ for j = 1, . . . , m̄P, � = 1, . . . , L. (13)
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Up to now, we have that, with the variables θ j� ∈ {0, 1} and ω j� ( j = 1, . . . , m̄P, � = 1, . . . , L) and
the constraints (13), each product W̄P jH̄P j ( j = 1, . . . , m̄P) is given by

L∑
�=1

2�−1ω j�.

Now consider variables ζ ji ∈ {0, 1} ( j = 1, . . . m̄P, i = 1, . . . , d). The idea is that ζ ji = 0 if item Ii

from the catalogue does not fit within object OP j , that is, if w̄i > W̄P j or h̄i > H̄P j . We model this
with the constraints

w̄i ≤ W̄P j + Ŵ (1 − ζ ji) and h̄i ≤ H̄P j + Ĥ (1 − ζ ji) for j = 1, . . . , m̄P, i = 1, . . . , d . (14)

Now, constraints

0 ≤ γ j ≤
L∑

�=1

2�−1ω j� and γ j ≤
(

d∑
i=1

ζ ji

)
Ŵ Ĥ for j = 1, . . . , m̄P (15)

say that the value of γ j may vary between zero and the area of object OP j , and that γ j = 0, if no item
from the catalogue fits within object OP j . Since each γ j appears with a negative coefficient in the
objective function being minimized, in any solution we will have γ j equal to its maximum possible
value as desired.

3.7.2. The full model
Summing up, we now have all the ingredients to build up the complete mixed integer linear pro-
graming formulation of the problem of minimizing the overall cost of the objects required to satisfy
the demand of instants from 0 to P − 1 making use of leftovers, and, among all solutions with
minimum cost, maximizing the value of the usable leftovers at instant P.

Variables of the problem are vpi j ∈ {0, 1} (p = 0, . . . , P − 1, j = 1, . . . , m̄p, i = 1, . . . , np), up j ∈
{0, 1} (p = 0, . . . , P, j = 1, . . . , mp), ηp j ∈ {0, 1}, tp j , rp j ∈ R (p = 0, . . . , P − 1, j = 1, . . . , m̄p),
W̄p j , H̄p j (p = 0, . . . , P, j = 1, . . . , m̄p), πpii′ , τpii′ ∈ {0, 1} (p = 0, . . . , P − 1, i = 1, . . . , np, i′ =
i + 1, . . . , np), γ j , θ j� ∈ {0, 1}, ω j� ( j = 1, . . . , m̄P, � = 1, . . . , L), and ζ ji ∈ {0, 1} ( j = 1, . . . , m̄P,
i = 1, . . . , d).

The problem is given by minimize (11) subject to the constraints (2), (3), and (4) that assign
items to objects; the constraints (5), (6), and (7) that determine the dimensions of the leftovers; the
constraints (8) and (9) that avoid overlapping between the items and fit the items within the cutting
area of the objects, respectively; and the constraints (13), (14), and (15) that model the value of
the usable leftovers at instant P. (Note that, due to (12), or (12) for j = 1, . . . , m̄P is added to the
model or variables W̄P j ( j = 1, . . . , m̄P) are eliminated as variables and all their occurrences are
replaced by the right-hand side of (12). In the numerical experiments included in the next section,
we arbitrarily opted by including (12) for j = 1, . . . , m̄P as constraints of the model.)
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4. Illustrative numerical examples

In this section, we present numerical experiments with the proposed model. The goal of the numerical
experiments is to analyze the influence of considering leftovers in the overall cost of the purchased
objects, so each considered instance will be solved varying ξ ∈ {0, 1, . . . , P}. Recall that ξ = 0 means
that leftovers are not considered at all, while ξ = P means that leftovers generated at any period are
available up to the end of the considered time horizon. Twenty-five small-sized instances with up to
four periods will be solved with an exact commercial solver. Table 1 describes the instances. In the
table, for each instance, P is the number of periods. For each instant p = 0, 1, . . . , P − 1, mp is the
number of purchasable objects and np is the number of ordered items. Notation a(b × c)[s] means
that there are a objects or items with width b and height c, and, in the case of objects, that the cost
per unit of area is s. When a is omitted, it means that there is a single copy of the described object
or item, and, when s is omitted, it means that the cost per unit of area is 1. In the last column, d
is the number of items in the catalogue. Items in the catalogue are the ones whose dimensions are
underlined in the table. Table 2 displays the number of binary and continuous variables and the
number of constraints of each one of 25 considered instances varying ξ ∈ {0, 1, . . . , P}. From the
table, it is easy to see how these figures grow as a function of ξ .

The model was implemented in C/C++ using the ILOG Concert Technology and compiled
with g++ from gcc version 5.4.0 (GNU compiler collection) with the -O3 option enable. Numerical
experiments were conducted using a machine with Intel Xeon Processor X5650, 8 GB of RAM mem-
ory, and Ubuntu 16.04 operating system. Instances were solved using IBM ILOG CPLEX 12.8.0.
By default, a solution is reported as optimal by the solver when

absolute gap = best feasible solution − best lower bound ≤ εabs,

or

relative gap = | best feasible solution − best lower bound |
10−10 + | best feasible solution | ≤ εrel,

with εabs = 10−6 and εrel = 10−4, where “best feasible solution” means the smallest value of the
objective function related to a feasible solution generated by the method. The objective function (11)
has the particular property of assuming relatively large integer values at feasible points. Hence, a
stopping criterion based on a relative error less than or equal to εrel = 10−4 may have the undesired
effect of stopping the method prematurely. On the other hand, due to the integrality of the objective
function values, an absolute error strictly smaller than 1 is enough to prove the optimality of the
incumbent solution. Therefore, in the numerical experiments, we considered εabs = 1 − 10−6 and
εrel = 0. In addition, NodeFileInd and WorkMem parameters were set to 3 and 6,000, respectively,
so the branch and bound tree is partially transferred to disk if memory is exhausted. All other
parameters of the solver were used with their default values.

Tables 3–5 describe the solutions found for the 25 considered instances for varying values of
ξ ∈ {0, 1}, ξ ∈ {2, 3}, and ξ = 4, respectively. In the tables, “objective function optimal value” is the
value of the objective function (11) at the solution reported as optimal by the solver. “Objects costs”
and “leftovers value” correspond to the cost of the purchased objects and the value of the leftovers
at instant P, respectively, and they are extracted from the optimal value according to (11). A CPU
time limit of two hours was imposed to the solver. When this time limit is reached, as is the case
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Table 1
Description of the considered set of instances

Objects Items

#Inst. P p mp W × H np w × h d

1 3 0 3 21 × 17, 19 × 19, 24 × 13 2 10 × 11, 9 × 11 1
1 1 10 × 16 3 7 × 6, 7 × 5, 7 × 4
2 1 10 × 12 2 2(6 × 3)

2 4 0 2 14 × 8, 16 × 6 3 3 × 7, 6 × 8, 4 × 8 2
1 1 15 × 10 3 5 × 3, 2(2 × 5)
2 1 20 × 15 2 5 × 3, 3 × 2
3 1 15 × 10 2 2(2 × 3)

3 4 0 2 15 × 6, 15 × 5 3 2(1 × 6), 10 × 6 2
1 1 12 × 7 1 3 × 5
2 1 20 × 10 2 5 × 3, 3 × 2
3 1 20 × 8 6 2(2 × 3), 10 × 1, 2 × 2, 2(5 × 2)

4 4 0 2 13 × 8, 12 × 6 5 1 × 5, 2 × 5, 1 × 4, 1 × 3, 3 × 2 2
1 3 10 × 8, 12 × 10, 15 × 10 3 3 × 7, 2 × 3, 2 × 4
2 1 8 × 4 2 10 × 1, 1 × 3
3 0 3 3 × 1, 3 × 3, 4 × 4

5 4 0 2 10 × 4, 13 × 8 4 2(1 × 5), 2 × 5, 3 × 5 1
1 2 10 × 9, 12 × 9 2 5 × 3, 6 × 3
2 3 10 × 10, 2(12 × 9) 3 5 × 3, 6 × 2, 3 × 3
3 0 3 1 × 2, 5 × 4, 4 × 2

6 4 0 2 22 × 17, 14 × 30 5 3(2 × 11), 2(5 × 5) 4
1 2 17 × 29, 24 × 10 2 2(4 × 10)
2 2 18 × 19, 26 × 22 3 3(5 × 4)
3 3 24 × 12, 15 × 18, 17 × 13 8 4(3 × 3), 4 × 2, 2(7 × 1), 11 × 1

7 4 0 2 (10 × 12)[2], 12 × 10 3 5 × 4, 8 × 2, 2 × 2 1
1 1 17 × 15 1 3 × 7
2 1 17 × 15 1 8 × 4
3 1 17 × 15 1 4 × 9

8 4 0 2 10 × 12, (12 × 10)[2] 3 5 × 4, 8 × 2, 2 × 2 1
1 1 17 × 15 1 3 × 7
2 1 17 × 15 1 8 × 4
3 1 17 × 15 1 4 × 9

9 4 0 3 30 × 20, 2(10 × 10)[3] 6 3 × 7, 8 × 2, 10 × 1, 5 × 4, 2 × 9, 2 × 2 2
1 3 (30 × 20)[3], 2(10 × 10)[3] 6 5 × 3, 9 × 3, 6 × 1, 3 × 8, 4 × 1, 7 × 3
2 0 4 3 × 2, 7 × 2, 4 × 5, 4 × 1
3 0 4 8 × 4, 4 × 2, 3 × 7, 6 × 2

10 4 0 2 14 × 21, 19 × 19 7 2(11 × 3), 3(2 × 11), 2(5 × 5) 1
1 1 27 × 23 9 9 × 7, 4(9 × 6), 2(5 × 3), 2(5 × 4)
2 1 20 × 15 9 5(3 × 2), 4(3 × 1)
3 1 17 × 17 7 4(3 × 4), 3(2 × 1)

Continued
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Table 1
Continued

Objects Items

#Inst. P p mp W × H np w × h d

11 4 0 2 30 × 10, 23 × 16 1 6 × 6 2
1 1 28 × 12 3 2 × 5, 2(4 × 1)
2 2 22 × 11, 26 × 23 3 2(9 × 3), 6 × 6
3 1 17 × 29 3 2(4 × 3), 7 × 2

12 4 0 2 37 × 20, 22 × 24 2 2(11 × 6) 1
1 1 21 × 23 1 6 × 6
2 1 36 × 30 2 2(13 × 5)
3 2 13 × 18, 10 × 17 2 4 × 5, 4 × 2

13 4 0 2 25 × 34, 36 × 14 2 2(6 × 6) 2
1 2 23 × 18, 33 × 33 1 6 × 3
2 1 17 × 26 1 1 × 6
3 2 38 × 23, 30 × 36 1 4 × 10

14 4 0 1 40 × 33 4 2(3 × 12), 2(15 × 10) 1
1 1 26 × 36 4 2(3 × 4), 2(10 × 9)
2 1 13 × 19 4 2(5 × 3), 2(2 × 3)
3 1 32 × 19 2 2(8 × 6)

15 4 0 2 10 × 24, 26 × 38 2 2(11 × 13) 2
1 1 25 × 23 2 2(6 × 2)
2 1 36 × 36 4 2(3 × 4), 2(6 × 13)
3 1 39 × 25 4 2(2 × 4), 2(14 × 3)

16 4 0 3 20 × 38, 2(11 × 17) 4 2(2 × 4), 2(6 × 16) 3
1 1 33 × 21 2 2(8 × 9)
2 1 12 × 22 2 2(4 × 2)
3 1 30 × 14 2 2(5 × 1)

17 4 0 1 15 × 39 3 2(6 × 2), 5 × 9 2
1 1 19 × 13 4 2(7 × 2), 2(5 × 6)
2 1 20 × 40 2 2(3 × 4)
3 2 38 × 40, 22 × 26 3 2(4 × 13), 4 × 8

18 4 0 1 22 × 38 1 2 × 11 1
1 3 2(22 × 12), 33 × 17 4 2(14 × 5), 2(12 × 7)
2 2 12 × 13, 23 × 11 2 2(7 × 5)
3 2 10 × 23, 14 × 20 3 2(1 × 2), 4 × 10

19 4 0 2 14 × 14, 39 × 11 2 11 × 6, 8 × 5 2
1 1 15 × 23 3 2(6 × 10), 2 × 10
2 1 39 × 14 3 2(5 × 5), 7 × 2
3 1 36 × 11 2 3 × 1, 3 × 2

20 4 0 1 27 × 24 3 4 × 6, 2(10 × 2) 4
1 2 35 × 27, 27 × 11 1 14 × 5
2 2 23 × 30, 17 × 13 3 2(6 × 8), 5 × 5
3 1 24 × 34 2 2(3 × 7)

Continued
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Table 1
Continued

Objects Items

#Inst. P p mp W × H np w × h d

21 4 0 3 10 × 17, 26 × 15, 12 × 11 1 2 × 1 1
1 1 23 × 20 1 10 × 3
2 3 11 × 16, 22 × 15, 28 × 30 1 3 × 10
3 1 30 × 28 2 2(8 × 2)

22 4 0 2 16 × 24, 20 × 10 4 5 × 9, 8 × 6, 2(2 × 4) 1
1 1 11 × 13 1 2 × 5
2 3 22 × 17, 13 × 11, 29 × 29 1 3 × 7
3 2 30 × 23, 18 × 23 2 2(4 × 8)

23 4 0 3 16 × 12, 12 × 10, 19 × 25 6 2(4 × 5), 2(1 × 10), 2(4 × 3) 2
1 3 18 × 20, 25 × 13, 21 × 16 2 2(2 × 5)
2 2 12 × 24, 14 × 16 5 2(2 × 2), 5 × 9, 2(6 × 2)
3 1 14 × 27 4 3 × 6, 2(4 × 6), 1 × 4

24 4 0 1 21 × 21 5 4 × 2, 2(3 × 9), 2(8 × 3) 3
1 2 19 × 30, 23 × 12 3 2 × 6, 8 × 5, 5 × 4
2 2 21 × 28, 24 × 11 1 10 × 2
3 1 29 × 16 2 2(3 × 5)

25 4 0 3 22 × 28, 30 × 25, 19 × 22 2 2(6 × 5) 2
1 2 22 × 22, 12 × 22 4 2(4 × 8), 2(2 × 3)
2 1 22 × 11 4 3 × 3, 3 × 1, 2(8 × 1)
3 2 23 × 19, 12 × 23 4 4 × 9, 4 × 8, 2(7 × 9)

in some instances with ξ = 4, the “best lower bound,” the “best feasible solution,” and the “gap
in %” are reported instead of the unknown optimal value. Remaining columns “MIP iterations,”
“B&B nodes,” and “CPU time” (in seconds) are self-explanatory and state the effort required by the
solver to obtain the reported solution. Figure 4 shows the influence of considering leftovers in the
reduction of the cost of the objects that need to be purchased to satisfy the overall demand of items
along the considered time horizon. As expected, the use of leftovers significantly reduces the cost
of the purchased objects. It should be noted that for ξ = 3 and ξ = 4, the costs of the purchased
objects coincide in all the 25 instances. The difference in these two scenarios relies on the value of
the remaining leftovers. When ξ = 3, there are remaining leftovers in five instances only (namely,
instances 1, 2, 3, 5, and 22). When ξ = 4, there are remaining leftovers in all instances but instance 4.
It can be highlighted the case of instance 14 that has no remaining leftovers when ξ = 3 and it has
remaining leftovers with value 582 when ξ = 4.

As can be seen in Table 3, instances 4, 5, and 9 are infeasible when ξ = 0. This is because these
instances have instants with ordered items and no available objects, and ξ = 0 impair the use of
leftovers. The same happens with instance 9 for the case ξ = 1 since it has two consecutive periods
with ordered items and no available objects. Tables 3 and 4 show that for ξ ∈ {0, 1, 2, 3} the solver
was able to detect infeasibility or to find an optimal solution for all the 25 instances, within the
CPU time limit. For the case ξ = 4 (see Table 5), the CPU time limit was reached for instances 6,
9, 10, 14, 15, 18, 23, and 25. However, it should be noted that the final gap was larger than 1%

C© 2019 The Authors.
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Table 2
Number of binary variables (BV), continuous variables (CV), and constraints (CO) of 25 considered instances

ξ = 0 ξ = 1 ξ = 2 ξ = 3 ξ = 4

#Inst. BV CV CO BV CV CO BV CV CO BV CV CO BV CV CO

1 31 34 112 81 82 410 153 162 802 297 354 1498 297 354 1498
2 39 40 143 89 88 423 165 168 823 285 296 1439 509 552 2431
3 63 44 199 115 92 547 211 172 1227 403 300 2947 659 556 4003
4 61 50 258 121 98 588 237 206 1292 461 438 2508 653 662 3404
5 55 52 233 127 108 651 267 256 1507 427 432 2467 587 656 3299
6 146 72 688 276 168 1704 468 296 3448 772 488 6392 1060 744 7512
7 25 32 99 61 80 275 121 160 583 217 288 1071 409 544 1999
8 25 32 99 61 80 275 121 160 583 217 288 1071 409 544 1999
9 108 64 564 204 112 1392 360 208 2568 672 496 4488 1008 880 5976

10 277 84 783 373 132 2171 521 212 4231 713 340 6351 905 596 7279
11 44 44 156 108 100 546 224 212 1202 360 340 1994 584 596 2986
12 29 38 110 85 106 382 161 190 786 281 326 1410 505 614 2434
13 25 38 92 87 114 374 167 214 766 343 422 1566 599 710 2654
14 60 44 184 106 86 482 174 154 898 262 258 1338 374 402 1850
15 52 44 168 108 94 514 212 178 1238 372 314 2294 628 602 3382
16 48 44 204 106 102 494 206 202 1006 374 370 1846 806 802 3574
17 51 44 175 113 104 513 181 172 877 285 276 1421 413 420 1965
18 59 52 251 143 136 735 275 272 1491 483 520 2531 595 664 3043
19 38 40 132 92 90 440 180 174 940 308 310 1580 564 598 2668
20 39 42 142 101 100 466 233 220 1090 425 396 1882 585 540 2490
21 27 42 94 87 114 402 211 274 1034 355 434 1818 643 818 3210
22 46 48 176 112 128 510 224 272 1078 336 400 1678 528 656 2606
23 120 70 515 224 150 1301 436 310 2953 748 598 4873 1084 982 6361
24 55 46 182 109 102 460 217 214 972 377 374 1684 505 502 2212
25 80 60 300 180 140 996 328 252 2100 584 476 3772 920 860 5260

Fig. 4. Graphical representation of the influence of the usage of leftovers in the reduction of the cost of the purchased
objects required to satisfy the demand.
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Table 5
Description of the solutions found and the effort measurements corresponding to 25 considered instances with ξ = 4

ξ = 4

Solutions description Effort measurements

#Inst.
Ceiling of best
lower bound

Best feasible
solution

Objects
cost

Leftovers
value Gap (%) MIP iterations B&B nodes CPU time

1 624,810 624,810 477 60 – 10,639 1147 0.84
2 211,619 211,619 262 77 – 2,160,643 201,861 18.03
3 176,480 176,480 290 130 – 841,436 237,602 17.58
4 58,032 58,032 104 0 – 850,790 23,572 15.78
5 127,592 127,592 194 60 – 229,858,101 31,994,580 2987.59
6 1,204,205 1,204,236 374 44 0.00257 159,153,968 14,968,217 >7200.00
7 404,810 404,810 360 190 – 19,283 1844 0.93
8 404,825 404,825 360 175 – 15,865 2084 1.08
9 2,158,783 2,159,724 600 276 0.04357 262,314,681 7,630,137 >7200.00

10 1,143,263 1,889,492 799 143 39.49363 233,353,289 2,425,193 >7200.00
11 700,984 700,984 300 116 – 17,734,163 2,369,734 204.76
12 1,707,878 1,707,878 528 202 – 175,060 27,057 4.11
13 2,647,144 2,647,144 504 368 – 56,098 7948 2.40
14 4,105,120 4,105,938 1320 582 0.01992 246,817,566 16,454,312 >7200.00
15 4,024,518 4,024,714 988 398 0.00487 316,265,168 23,099,236 >7200.00
16 1,907,986 1,907,986 760 374 – 180,021,974 39,120,509 4258.83
17 2,178,286 2,178,286 585 254 – 393,331,330 59,172,386 5388.47
18 2,376,937 2,377,194 836 390 0.01081 226,180,153 28,601,529 >7200.00
19 820,152 820,152 429 96 – 796,992 114,618 11.97
20 2,343,485 2,343,485 648 331 – 14,533,560 2,123,452 170.81
21 567,386 567,386 170 74 – 1479 235 0.87
22 1,093,712 1,093,712 343 115 – 10,229 1594 0.78
23 841,259 841,715 312 61 0.05418 486,159,219 15,462,361 >7200.00
24 1,147,735 1,147,735 441 188 – 30,166,459 3,731,902 316.14
25 1,457,411 1,457,506 418 60 0.00652 169,625,339 14,676,677 >7200.00

in only one instance. The median CPU times for ξ ∈ {0, 1, 2, 3, 4} are 0.01, 1.36, 4.69, 2.92, and
204.76, respectively.

Figures 5–7 show the graphical representation (cutting/packing patterns) of the solutions ob-
tained for (the arbitrarily chosen) instances 6, 7, and 8, varying ξ ∈ {0, 1, 2, 3, 4}. Figure 5a shows
that, when ξ = 0, that is, when leftovers are not considered, four objects that cost 1177 are needed
to cut the ordered items, and, of course, there are no leftovers at the end of time horizon. When
ξ = 1, leftovers can be used only in the period that follows the period in which they were generated.
Figure 5b shows that, in this case, only two objects that cost 716 are required. One is bought at
instant p = 0 and the other at instant p = 2. The first one is used to cut the items ordered at instant
p = 0 and it generates a leftover that is used to cut the items ordered at instant p = 1. The same
happens at instant p = 2, where an object is bought that is used to cut the items ordered at that
instant and generates two leftovers that are used to cut the items ordered at instant p = 3. Since no
object is bough at instant p = 3 and ξ = 1, there are no leftovers at the end of the time horizon.
The case ξ = 2 is depicted in Fig. 5c. In this case, the leftovers of the object bought at instant p = 0

C© 2019 The Authors.
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Fig. 5. Graphical representation of the solutions to instance 6 with ξ ∈ {0, 1, . . . , 4}.

C© 2019 The Authors.
International Transactions in Operational Research C© 2019 International Federation of Operational Research Societies



24 E. G. Birgin et al. / Intl. Trans. in Op. Res. 00 (2019) 1–27

are used to cut the items ordered at instants p = 1 and p = 2. A new object is bought at instant
p = 3 and two leftovers remain at the end of the time horizon. The two purchased objects cost 595.
When ξ = 3 (see Fig. 5d), a single object that costs 374 is bought at instant p = 0. This object and
its leftovers are enough to cut all ordered items (at instants p = 0, 1, 2, 3). Since ξ = 3 and the only
object is bought at instant p = 0, there are no leftovers remaining at the end of the time horizon.
When ξ = 4 (see Fig. 5e), the same object is bought at instant p = 0, but the cutting pattern is
chosen in order to maximize the value of the leftovers remaining at the end of the time horizon.

Figures 6 and 7 correspond to instances 7 and 8, respectively. These two instances are very similar,
the only difference being that they have the cost per unit of area of the two objects with dimensions
10 × 12 and 12 × 10 that are available at instant p = 0 interchanged. The figures show that, in the
case ξ = 4, the cutting pattern is such that the value of the remaining leftovers at the end of the
horizon is maximized. And this is achieved concentrating the leftovers in the object with a larger
cost per unit of area. Note that, in instance 7, the overall area of the remaining leftovers is 95, but
its value is 190 (see Table 5), while in instance 8 the overall leftovers’ area is 107 with a value of 175
(see Table 5).

As can be seen in Table 1, instance 1 has three periods, while all the other 24 considered instances
have four periods. It is very clear from the problem formulation that the number of binary variables in
the proposed model depends on the number of periods P and on the number of available objects m̄p
and ordered items np at each instant p = 0, . . . , P − 1. Moreover, since, as defined in (1), the number
of available objects m̄p at a given instant p corresponds to the number of purchasable objects mp
plus the number usable leftovers from previous periods, m̄p depends exponentially on p and on
parameter ξ that says for how many periods leftovers of previous periods may be available. This
dependency is illustrated in Table 2. Moreover, the results in Tables 3–5 illustrate that, as expected,
the solver’s effort increases as a function of ξ and that several instances with ξ = 4 cannot be solved
to optimality within the CPU time limit of two hours. It should also be stressed that, as already
mentioned, the goal of the numerical experiments was to analyze the influence of considering
leftovers in the overall cost of the purchased objects. Therefore, the set of instances was chosen in
such a way that the solver was able to find the optimal solution within an affordable time limit, while
it is not a surprise that the solver would not be able to find optimal solutions within a reasonable
amount of time for much larger instances.

5. Concluding remarks

Two-dimensional non-guillotine cutting stock problems with leftovers in which leftovers can be
generated by two guillotine precuts were considered in this work. In particular, the cutting problem
with leftovers introduced in Andrade et al. (2014) was embedded into a multiperiod framework. In
this way, objects and leftovers at each period can be better chosen in order to minimize the overall
cost of the objects that are required to execute a given set of sorted orders. Some alternative variants
of the problem were analyzed. An MIP formulation of the considered problem was introduced and
illustrative numerical experiments were presented. On the one hand, since, as expected, practical
instances could not be solved to optimality with an exact solver, developing heuristic methods
for the introduced problem would be a possible direction for future research. On the other hand,
considering uncertainty in the problem data would make the problem closer to practice. A more
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Fig. 6. Graphical representation of the solutions to instance 7 with ξ ∈ {0, 1, . . . , 4}.
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Fig. 7. Graphical representation of the solution to instance 8 with ξ = 4.

ambitious goal would be to integrate this multiperiod cutting problem with leftovers with a lot
sizing problem in order to simultaneously determine the demanded items that must be placed as
orders and their optimal cutting pattern.
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