
DBPARTAMENTO DE CIENCIA DA COMPUTACA()

Relatorio Tecnico

RT-MAC-9108 '

Parallelizing a New Class of Large

Applications Ovar High Speed Networks

Marco D. gubitoso

Junbo 1991

Parallelizing a New Class of Large
Applications 9yer High Speed Networks1

H.T.Kung, Peter Steenkiste and Manpreet Khaira
School of Computer Science
Carnegie Mellon Uni ·ersity

Marco Dimas Gubitoso2

Instituto de Matematica e Estatistica
Universidade de Sao Paulo

1 Apareceu noe 'Proceedings_ d the Third ACM SIG PLAN S;-.n,o.:i:ai! c-n P:ir.­
ciplea k Practice of Parallel Programming - PPOPP', \\'illiamsbwg, Virginia,
April 1991, pp. 167 tr.

2Conta com o apoio do Program• BID/USP (1ubprograma de Recunol Bu­
man01 - projeto 30.01) e da FAPESP (Proceuo 88/3095-9)

Parallelizing a New Class of Large Applications
over High-speed Networks

ILT. K:n1, Pe&er Steenklste, Marco Gubitoso, Maapreet Kba1ra

School ol Computer Science
Carnqle Melloll Uaiversit7

. Pittsbur1h, Peaasylvanla 15213

Abstract
Sewral large ■pplicatloas laave been parallelized

oa Nectar, 1 aetwork-llased multicomputer recentl7
developed by Caraqle Melloa. These applic:atlona
wen previously eitlaer too lar1e or too complex to be
easil1 lmpleenated oa distributed memory parallel
IJIUIIIL ParaUelizia1 these applications ,.-as made
pos,siblc b7 tlle cooperallve ue of many existing
aeneral-purpose computers over high-speed
aetwol'ks, and by aa implementation methodolo&J
llued Oil• deu separatioll betweea 1pplicatlon­
specil"ac aad l)'Stem-spedfic code. We illustrate
tMM poinll 1111111 our experiellce WWI parallelizing
tlll'ee real-world applicatlou. Tbe IIICCeSI ID tbae
1pplica1iou clearly poilltl aut • MW direction la
parallel processin1,

I. Introduction
ParalldiziDi large applications is I key conccm £or

IQQl'Chas ia pa,allcl ~-- These applications
lypically involve lara,c bodies ol code. have substantial
CIOlllpullbOII and memory ~uirements, and ate ol
praclical imponancc. If parallel architcctwu are to
become widely used, porting such 1pplicaai0111 10

paalld lystanl OU&hl to be I routine activity.

1bcre are IIIU1lerOUS individual dToru in ponin&
Jar&c applicaliOQI OIIIO various parallel l)'SICmS. lA
IIIIOSl caea, lbe applicalion ii dlha' developed
apccifically for Ibo parallel machine. or it is abncm
complclcly rewriual 10 caploia lhc £calW'CI ol I specific

nilr.-da-.uppanedia,-abytlla Der-Adv-=ed
a..adl Pn,jecu ,.,_., (DOD) .-ilared by
~NCMO _.. Cailrm MDAffl.-90-C-OCW. ad la

=-,~.~ of Naral lt.-la -i... c-.:c

parallel an:hileetUre. In both cases, the efforts ~uiro
lhal the pe,sona responsible for lhc porting are
inlimately familiar wilb lhe applications. Since large
1pplicati0111 lend IO involve subslantial application­
specific knowledge, this implies that oflen only
application scientists lhcmselves can do lhc porting.
This dcfulilely ia not I.he best way of using &heir time,

and as a result, many large applicalions have never been
implemented OD parallel machines.

Whal we need are para1lc1 architccturcs and
programmin& tools to provide di.reel and general
supporl for parallc1wng large applications. 1be.sc wols
should be II I higher level than send and receive
primitives. or ll)'llChroniz.alion or shared dalll primil.ivc:s.
1be objective ii to be able to port large applicalions
onto parallel machinr.a without having to rc-acatc lhc
application code dial ClpWl'CS the application
knowledge.

Various research dTons have attempted to provide
help in lhia area. Parallelizing cornpilus have some
success in avoiding lhe rewrite or application code. but
lhey deal mainly with inner-most loops ralha than
entire applications. Some projects have sWICd to
addiess parallel processing for large applications, but
lhe solulions are cilhcr very ad hoc [8], or lhe
applicalion area is n:slrictcd. The work on LINDA
[6, 11], £or example, has provided iools capable of

using existing application code, but their usage is
JeSlrictcd to applications lllisfying • spccia1
compulalion model. Some programming cnvironmenis
such as //EU.PACK (13) suppon high-level
descriptions £or specif yin& applications in certain
specialized areas, and allow new applic:alioos to use
IOflware and algorilbms lhal were developed earlier for
similar applications. Othet wort has CODCelllnllCd Oil

apccific application 1tta1 such u YisioD [12. 16) or
computadolll Illini triangular IIIClbea (17).

The Neaar system [1} developed by Carnegie Mellon
Is inlelldcd IO provide general SUJlPO(l for parallelizing
large applications. The system is a multicomputt.r built
around a high-speed nctwrt. The use of uisting
general-pmpose compulCB as its nodes and lhe high­
bandwidth and low-lateney networlt makes the system
inherently suited for large applications. The system has
allowed us to paralleli:.c applications lhal were
previously either lOo comp!~ or too communication•
intensive ID be suited for parallel processing.

This paper descnl!es the Nectar implementation of
three applications: (1) COSMOS [4], a swirch-levcl
circuit simulalOI' developed by Randy Bryant and his
msociates at Carnegie Mellon; (2) NOODLES [7}, a
solid modeling package developed by Professor Fritz
Prinz' group In the NSF Engineering Design Research
Center It Carnegie Mellon; and (3) a simulation or air
pollution in the Los Angeles area, with Professor Oreg
McRae of lhe Chemical Engineering department.
These three applications differ both in the application
domain and in the programming model. Being able IO
port all these applications on10 Nectar is an indication
of the versatility of our approach. In fact, using similar
melhodologies several other large applications., not
reported in this paper, have been successfully ported IO
Nectar by resean:hm at Canegie Melkln. These
include a parallel solid modeUer rrom Univasity of
Leeds (called Mistral-3), distributed algorithms of
finding exact solutions of lrllVClling salesmai problems.

- and a chemical flowsheeting simulation.

The stralegy used to parallelize these applications i.1
to maintain lhc serial code as much as possible, and IO
isola1e communication and synchroniz.ation in a f~
routines. This approach simplifies lhe porting eITOd.
We are in progress_ of developing libraies l"3t provide
the communication and synchroni7Jllion support ror ·
several programming models. For applications that can
UllC such a package, the porting effort will be limited 10
partitiming lhe sequential code and data 81 a high level,
which a user can do quile rasily. This methodology la
illustrated using the lhrce application examples.

In Section 2 we give an overview of the Nectar
system. Our melhodology rm- parallelizing these
applications fm- Nectar-like sysrems is described in
Section 3. Sections 4 10 6 de,cnbe die lhtCle
applications and show bow our melhodology is .-a in
porting !hem mao Nocca. Summay aad concluctn1
mnarb are am:n in Section 7.

2. Nectar System Oveniew
The Noc&ar system developed by Carnegie Menon is

a multicomputer formed by linking 10gedier a ni.snber
of aistlng machines by I ltigh-spetd network. HOSlS
arc attached using powerful network coprocessors
(CABs) lhat accelerate communication protocols.
Therefore for Nectar a node is a CAB-host pair. The
Nectar networft (Nectar-Net) consists of 100 megabits
per second fiber-optic links and 16xl 6 crossbar
switches (HUBs). The netwoJk supports cimlia
switching, packet switching, mu1ti-hop routing, 111d
multicast communication. Figure 2-1 ai1a •
overview of the Nectar system.

Figure 2-1: Nectar system at Carnegie Mellon

Currently the Nectar system ha$ 26 hosts, mostly
Sun 4 wortstations. The networt con1ains a 26 km
Nectar conncctie11 10 a Westinghouse facility, ,.,hich
hosts the CRAY Y-MP of lhe Piusburi;h
Supercomputing Cerna-. The systems i:ortv.·are
includes a CAB nm-lime systcm lhat surpons
multiprogramming using light-weight threads (IOI and
manages message buffers using a mailboll. m,xh:lnism.

Besides high-bandwidth commum::auon (IOC
, megabits/second per link), N«tar featu~.s low-btency

/ communication. 111¢ existing Nec1ar has the folluwing
I measured performance: the latency IO establish a

connection through a single HUB is under o.ie
microsecond; excluding the transmission delays oi the
optical libers, the lalency f.-ir a message 'Still reliably
between processes oa two CABs is undct 100
miaoseconds; 111d 6c canesponding lalency Cor
processel residin1 i-.1 bolt nodea is ir.der 200

micn>seconds. 1bis higb-blndwidlh and low-lalency
IIClwort can sus&ain lbc communlcation bandwidth
n:quircd by nodes operalinJ ll hip speeds and allow
COIICllmll poccssing of small-grain compulations ll
mul&iplc nodes I I SJ.

Ill lhe 1ml or pnxoc:ol sonware. lbe CAB cunently
mpports ICYCllll lnlDSpOrt prolOCOla wilh different
rdiability/ovclbcad ~ (9]. Ill panicular, -
bave implcmealcd • number of Necw-specific
pou,cola. plus a CAB-aaident ¥Cnion of the lnlCmel
llaDdard p-oCoCo1 TCP/IP.

The Neciar system is used on a daily basis by botb
applications programmers and computer science
rcscarcbas. To flll1hcr deldop lhe Neclar technology,
Carnegie Mclloo is MXking wilh Network S)'SICIIII

Carporauoa to dc~lop a glgabit Neclllr l)'SlelJl capable

of IUSlaining 1 gipbit per ICCOlld or higher speed end­
ll>Cnd aJl1llllURicali

3. A MethodoloCJ for Parallellzln1 Larp
Applicalions
Implementing large applic:ations on Nectar-like

arcb.ilec:IUres in¥0lves considerations along many
dimcnsioDs. Thac include: parli1iooing the applical.ioo
to exploit parallelism, mapping and disllibuting global
dala, ensuring dala consistency, enforcing n:quired
l)'lldu'onizati, pc,forming load balancing, and
possibly providing fault 1'llaance for applications wilh
long Cllecution times. Herc we describe ID

implemenlatioo methodology lhal can simpl.ily Ibis
mt. 1bis IIIClhodolol)' bas been succasfully used in
lhe Nectar implemcotalioa or the lluee applicalioas
described in the sublcquent ICC&ions.

The basic principle is the acparalion of applkalio11
ctJde and s,sum wde. The application code has all the
application-specific knowledge, but does not include
any code ldaled ID paralld poccssina. The system
code provides c:ommuaicalioa and aynchroni7.&Lioa
opm&ioDs aequired for lhe pa,alleliwioo oo a specific
lldlila:an.

Whea ,-aDclizini ID application llarting wilh a
aerial implementalioD, lhe first step is ID partition lhe
applicalioD ia units or wort. called ta.ru: dais co11ectioo
of laSb mata up die ■R)licalioo c:odc. The code for
eadl 1111k ii a aequealial JIIOllllll to be CICICIIICd 1111 a
liDp 81:de. Udlo code for a 1111k alRady exists. it cu

be reused in lbe parallel implementation. The next su:p
· Is IO idcnl.ify the aynchronbalion and communication

n:quiremenlS between lbe l8sks. Their implemenlalioa
makes up lbe system code.

The syllem code is a separate module wilh a clean
inledacc 10 lhe application code. This makes it possible
to reuse the system code when parallelizing other
applicaliona. For the thn:c applicalions described ID ·
this papu, lhe system code was developed specificalJy
for lbe applicalion, but we are in lhe process or
packaging lbe system code in the form of a library that
can be linked in by other applications. The system code
implemenlS a specific communicalion style for the
parallel computation in hand. For a given application,
the programmer selects the appropriate module ror the
system code, based on the application needs.

This strategy for parallelizing applications based on
strictly separating application and sysicm code has
several advantages. Fust, it naturally supports reuse of
existing application code. For large applications, for
which exlenSive applicalion-specific knowledge is
embedded in existina code, this is the only practical
approach. The cost or rewriting and maintaining
different vasiona of the applicalion for differcnt
systems can be prohibitive, no maucr what the payoff in
performance due IO parallel processing might be. Even
if the applicalion is implemented originally on a parallel
system, for mainlellancC reasons one would want ID
keep most of the code sySlem independenL Second,

&his aJ)IXOICb is not limiled ID a single communication
model, as is shown below by the example applications.
Different modules for sys&em code can be provided 10

support a range of syncluoni7.ation and communicalion
Styles. AJ mentioned earlier, the Neciar project is in the
processing of building up a library of these modules.

rmally, we note that by implementing the same
system modules on different archiiecwres, porting
applic:ationa across lhcsc an:hiiecturc:a will be easier.
The implementalions of lbe sysaem modules on lbe
different an:hitccturel can be optimized for the
an:hiLcclure. For example, a system module that
provides support for load balancing can use different
task granularities in different implementatioas to deal
with differences in the computation speed ID

communication latency naio. We opect lhal dais
approacb ID ponability will be lllOle dfcclive lhaa
lrying IO provide compatibility al a low lewd IUdl aa
IClld a.ad ieccive primilivea.

An altcmativc to our task-based a!l)rOllth, lhc
automatic: extraction of parallelism as is done
suc:a:ssfully for FORTRAN DO-loops, is no(prac:tic:al
for entire applications. It is unlikely that c:ompilc,s can
clwacieriu thc way the program updarcs complex data
structures or the complex control Dow of a substantial
application. The task-based approach is an intermediate
solution between aulOlllatic paralleli7.ation and
rewriting the entire application. The programmer
specifies the parallelism explicitly based on his or her
underslanding of the application. Since most of lhc
application, if not all, is executed in sequential llrctches
of code, most of lhc application details can be ignored
in the parallelir.ation process.

The EXPRESS environment (14] developed at
Caltech and Parasoft Corporation is based on a similar
methodology. The main difference is that we tty to
provide communication support at a higher level lhan
that povidcd by the EXPRESS libraries which are at
the level of SEND and RECEIVE primitives and glollal
synchronization primitives.

4. COSMOS: A Logic Simulation Application
Logic simulation is both a time-<:ORSUming and a

mcmory-inlenSivc process. For this reason. many large
circuits cannot be simulated in their entirety m single
a>mputen. A multicompulcr such as Nectar can solve
the problem by linking iogether many existing system1
IO increase both the computational power and the
memory.

We describe a parallel implementation of a logic
simulator on Nectar. The simulator is COSMOS (4), a
high-pcrlonnance logic simulator developed at
Omcgie Mellon over the past several years. COSMOS
Is the successor of MOSSIM [SJ, a widely used
simulator in industry at prescnL The key feature of
COSMOS is that it compiles the circuit into exec111able
code, inslead of interpreting a representation of the
circuit at run time. COSMOS first pan.ii.ions the circuit
into a number of channel-connected subcircuits and
derives a boolean represenlation of the behavior of each
subcircuiL It translates this representation into C
language evaluation procedures and dcclaralions ol data
IUUCturcs describing the connections between tho
111bcircui1S. nis circuit code is then compiled and
1inbd wid& a COSMOS lr:ane1 111d mer lnlaface 11D
pne,1te die limulatcr prosran. COSMOS runs abollt
m order rl mqnih!de furer Ihm MOSSJM: tbe COil ia

• relatively slow and memory-intensive 00IIIJilation
phase.

Circuits are simulated a cloc:1: pitas~ • a time, and •
the beginning of each phase, exlCmal signals such u
clocks can change. The simulation or a phase c'JOSists
of a number of simulation :stq,:s. During eac'i step,
subcircuits whose input signals ha~ changed si11CC the
previous step are evaluated; for the first step or each
phase, external signals delennine which subcircuits are
evaluated. The simulation of a phase is finished when
all signals IR stable, ., the number of stq,s in a ptia
depends both on the circuit and on the input sigN'Js.

The goal of the COSMOS implementation on Nectar,
called Nectar-COSMOS, is to simulate lage single­
chip or mulli<hip circuit$ which can have as many u
one million ll'lllsistors. An initial version or Necw­
COSMOS in May 1990 could alttady handle circuits
with hlllldreds or thousands transistors. More recently,
we have used Nectar-COSMOS lo simulate tht lalest
design of the 650,000-uansiSUI' iWarp chip [2, 31,
jointly developed by Carnegie Mellon and Intel. For
the previous fabrication runs, the full-chip simubtion of
iWarp was infeasible on any single compuicn available
to Intel. Using Nectar-COSMOS, a full-chip simulation
of the iWarp chip is possible.

4.1. Mappin1 COSMOS onto Nmar
In the Nectar-COSMOS implementation, the

subc:ircuits are Slatically distributed ~ the Nc:wr
nodes; the subcircuits placed on the same Necla" node
form a unit. The connectivity information r-:,r the
subcircuits is lsed lO delennine ,.-hat signals hav,: 10 be
comm1D1icated between the nodes on every simulation
step. Each node runs a copy of' the simulator, i e., the
COSMOS code a,,responding to the subc ircuits
assigned ID the node. Aflcr each simulation str.p, the
node sends the OUlpul signals ID other nodes WI need
them. A node can start on the next simulation step once
it has received the necessary inpu1 signals from the
other nodes.

I
To detect the end of a phase, distnl>uted tcrm•nalion

dc:tcction is m1uircd, since the circuit is partition<"~ and
no Nectar node h:ls access IO all signals. At this roint. a
centralized alpidun Is IIICd: after a small n11111ta' ol
steps, all nodes report ID the master, who dc:lcrinincs
whether the dn:uit is llatllc. NOie thal cn:e the cirtui&
is ltalJ&e. limulatioll llcpl anl WIJ las& siacc no emails
11'11 e¥llaafed, ., doins • few a1nl mp - ., be

aca:plablc. Nevcnhclcss, beuer algoridlms are being
Sludied.

Because all the nodes work on one phase at a time.
&be simulation time for a phase is delennined by lhc
slowest node. Then:lore. when placing subcircuits over
Neclar nodes, it is important lhal all resulting units have
acarly die same simulalion lime. Using sequential
measuremenl for subcimlils, and upcrience. it is
usually possible IO achieYC a rca,onable balance.

In each unit, we distinguish two l)'J)CS or subcin:ui11
-"°""""1 rwxluJu and lltUrior """"'1e1. lnltrior
IIIOdulcs am only connec1Cd 10 subcircuits wilhin Ille
ame unit, while boundary modules arc connccled to
lllbcircuits in other unilS. Each Nectar node first
simulales lhe boundary modules, since the simulation or
lbeK subcircuils will produce results needed by othct
DOdcs for the ncx1 simulation saep. Alier this is done,
the host silnulalCI the inlerior module,, while lhc CAB
aends out the results produced previously by the
simulauoa rl the boundary modules. Thus Neclal'•
COSMOS can lake advaruage or the CAB to overlap
compulalioa widl communicalion, thc:n:by reducing the
IOlal excculioa time.

U. Resulll alld further wurk
To cvalualc the performance or Necw-COSMOS,

- simulaled a 30x30 maze routing chip irnplcmcnled
using dynamic CMOS, and consisting of 170,000
uansi.stor. Table 4-1 shows the results using dcdicaled
Sun 4/330 hosts. A cycle consists or 4 phases, each or
which requires about 8 51q,s to reach stability. We
obscnc a close to linear speedup up IO 3 nodes. (Tho
wort ol using more than 3 nodes is in progress.) Tho
chip could not be be simulated on a single workstation
bccauso we were not able to gencnto lhc simulalOI' duo
to memory limitatiOIIL Based OIi lhe simulation of a
lin&)e column oldie mazo routa, we estimalc lhal if_
could gCIIClale die simulalor OD the worksration, 8

singlc-oodc simulalor MlUld like approximalely 1.32
aeconds per cycle.

Numba I 2 3
olnodes

Tamc,qde 1.320 0.676 0.474
(SCCODds) (OSl.imalc)

Speedup l 1.95 2.78

TMII 4-1: Ncclar-COSMOS apecdup
far 30lc30-- ftlUler

Table 4-2 gives some insight in die structure or the

maze router chip. Tho chip consists of a 30 by 30 array
or identical cells plus a circuit for clock dislribution. In
Nectar-COSMOS, each node gets a block of columns,
and one node also gels the extra burden or the clock
distribution circuiL This mapping results in a good
balance or modules across nodes. It also has the
advantage that most of lhe subcircuits are inrerior
modules as indicaled in the table. Using this fact, the
Nectar-COSMOS implemenlalion is able lo overlap
most of its the communication overhead wilh
simulation computation. Consequently, a node spends
less than IO'li of its IOla1 execution lime solely on
communication. This explains the good speedup
observed. Note tbal this speedup is obtained in spire of
the fact tbal there is liule activity in the maze rower
chip. As shown in Table 4-2, lhc number of modules
evalualed during a cycle is only about 50'li higher lhan
the number ol modulea in the circuit.

Number l 2 3
ofnodc,

Boundary - 45 40
modules

Interior - 19276 12884
modules

Module (i()300 30200 20140
evaluations
per cycle

Table 4-2: 30x30 maze router analysis

Tho results for lhc maze router chip show lhal ii is
possible ro speed up circuit simulation osing a Nectar­
like system. However, Nectar-COSMOS can be
communication intensive when a large of nodes are
used, Illus limiling lhc speedup lhat can be achieved.
Further evaluation of COSMOS on Nectar is needed,
osing more n:al.istic circuits such as iWarp. These
circuits have more potential parallelism, since they are
larger and probably have more activities, but lhey have
the drawback tbal they arc 1101 regular, thus making ii
hanler to distribu&e them evenly across lhe network
nodea.

Future work will concenlrllle on finding efficient
mappings of subcircuits ro nodes, Tradcoffs involve
balancing lhe load, muimizing the number of inlcrior
nodes, and minimizing communication. A
c:omplicadm la due ID the facl that COSMOS doel not
limulatD aubcircultl wboae inpUla have not cban&od

since thc previous lime step. This oplimir.ation makes
the execution time, dala dcpcndcnt, 111d ror some
circuits this might influcnc:e how the subcin:uits should
be mapped onto the processors.

Even though COSMOS is a significant real
application (about 50,000 lines of code in the COSMOS
compiler chain and kernel), the poning of COSMOS 10
Nectar was relatively easy. The reasons arc that the
sequential COSMOS had already partitioned the main
data structure (the circuit), and that the sequential
implementation alrQdy existed on the same
workstations that Conn the Ncdar nodes. As a result, a
mapping when: each node runs a copy of the original
program (a simulala), and operares on pan or the input
data (cm:uit) is natural and required very few changes
IO lhe original program. The only change is that the
simulator now gets inplll signals, and returns ouq,ut
signals in a slightly different formal

The main effort in Nectar-COSMOS was in
Implementing the system code that is specific to the
parallel implementation. Its function is to communicate
thc signals between the nodes; as much of thc work is
done on the CAB to overlap the communication
overhead with the processing on the CAB. It also
supports communication between the masrcr and thc
simulaton for initialization and lcrmination detection.
1lie system code is implemental as a ,q,araic module.

As mentioned earlier, an impmtant feature in Nectar­
COSMOS is that we an: able to hide thc
communication latency by simulating the subcircuits in
thc right order (i.e., simulate external cm:uit modulcs
before internal ones). We hqJe that some or diese
ca:hniques will extend to other parallel simulalillrS.

5. NOODLES: A Geometric Modeling
Application
NOODLES is a geometric modeling system

(7] developed by the NSF-sponsored Engincer;ng
Design Research Center (EDRC) at Carnegie Mellon.
NOODLES models objects oC diffc:rcnt dimensions u a
collection of basic components such as vertices, edges,
and faces. As a result, NOODLES can represent both
real objects, and non-manifold objects, that exist only in
abstract models and cannol be actually built. such as a
lingle edge or zero thickness. Non-manifold objec:ls
simplify some higher-level opentions al models, such
as lC.1ling wheth« lT#O objecll toucb In a point (lbeir

intenection is a vertex). Applications of NOODLES
include iniegrated systems for eomputtt design,
knowledge-driven manufact1nbi1ity m11lysis, and rapid
tool manufacturing. We clescnlle a Necur
implemenlation of NOODLES, called
Nectar-NOODLES, developed joinlly by the EDRC 111d
School of Computer Science• Carnegie Mellon.

The basic operation in NOODLES is thc ,-~
operation. Using this operation, complic:alal objecu
can be built by inlerSClC:ting a pair of simpler ones. The
IIIU'ge operation does a pairwise geomettic leSl on
components in both input objects, and it brea'a up
components ir they intersea. 11tesc ICSIS arc ~
in s11Jges, depending on the type or the comparison test.
For example, in the first Slage all vertices rL one model
are compared with those of the other. In the sub5o:lucnt
stages, vertices are compared with edges, llJld so on.

Geomelric leSlS may yield updates to the databa.,e of
thc models. These changes will influmcc the tests 10 be
done in subsequent stages, so the computation in each
stage depends on the results of earlier tests. For
example, if two edges intersect. &hey wiU be rerlated
with four non-inicnec:ting edges. which wiU be ~ in
laicr tests. Thus, the number of teStS are dala-­
dcpcndcnt, and thc cost of the tests depends m the
models.

5.1. Tbt paraDtlization of'NOODL~
Updates in eaclt stage arc intrinsically sequcnti11 I, bia

the geometrical tests that produce these updates can be
pcr(ormcd in parnllcl. When mtrging two models. c:ich
with II components, the tolal number or operations
needed for updates is 0(11) or 0(11log11). while th1t for
geometric tests is O (112). Thus, for large model$ with
large 11. lhe speedup resulting from parallc'izing
geometric lcslS can be subs1antial. The goal of N•~­
NOODLES is ID allow in1c:ractive use of NOODLES,
even for large designs.

Because thc execution time of 1he various ICSI.~ and
updates in NOODLES is very much data depcndert, the

; distribution of work across Nectar nodes is clone
/ dynamically at runtime. Nectar-NOODLES IMCS 1
; central load balancing strategy: a mastct node ke\:1)5 a

central task queue. and slave nodes execute laslt., lh3t
they receive rrom thc master. Each task consist,. oC •
series or basic aeocnctric:a1 rats, where each basic test
coosis1I of comparing one component of one model
•ilh a c:Jaa of compooen11 in thc otha model., for

cumplc. u edge ol one model with all vertices of lhe
ocbcrmodcl.

1bo maSlcl node bu two functions. FIISl, il manages
&be uansilion bctwcca &be Slagcs, including the updates
IO &be dalahasc. This (unaion is NOODLES specific
111d runs DD lhc wortSlalioa hmL Seaind, the maslet
DOdc IIIIDl&CS lhe dynamic load balancing during each
mce. 1bis funclioa involving inacmode
conunuaicMioa is IIOl spcc:iric IO NOODLES, 111d ii
implemenlcd an Ibo CAB of die masaer node. Tho
adVlllllp of placins lhc 115k qucuo manager oa Ibo
CAB ii Iba& it c:an rcspoad 10 requesu faSler. it can
llandle about 10000 aeques11 per second. The
worblllioa of die IIIUIClr aodo operalel u • slave

durina each stage.

Ncciar-NOODLES canDOl rely on a Slraighlforwanl
s-woriin& oC lhe input dala space. as wa., done in
Ncaar-COSMOS. In ordet to accommodalc noo­
manil'old modc1s. NOODLES mes an inlricate data
llrUclurc wilh a large number oC poinlCIS. Distributin1
lbia dala SUUCtun: over &be Neas nodes would require
a IDCal tewrile of NOODLES. Nectar-NOODLES
avoids this by pving each Neciar nodo • copy ol lho
ac,omecric modcla being merged.

'Ille copica of lhe modeb on Ibo nodes are lccpl
caisiaent by updatin1 all die models II lhe same time
111d ia thc IIIIIC order. To make lhis possible, updala
ID 1bc models arc IIOl done "on thc fly" as in lhe
ICQueatial NOODLES, bul all updalcs arc delayed 11111il
thc end of thc siage. When a gcomdric 1CSt indicate,

dial an update is needed, lhe slave sends an updale
request ID thc IIIUICI'. The DlllSICr collccq the updaces,
and al thc end of each saagc, il sends thc list of updates
for dial saagc to all die slaves. which use the:
Womwioa to upda&c &heir copies oC lhe gcomcUic
models. To allow nodes ID ,end updates 10 each other,
global IIIIIICS WCR added IO each entry in lhc
NOODLES database. Tbc NOODLES wdc was not
changed: i& still opc,alCI on i&s original cla&a 11n1eun
min& local poilllel1 (whicb can be different on all lho
aodel). The ll'allSlalion bctweca local poinun and

&lobu --. is done Illini a &able lookup al Ibo
ia&aface betwcca NOODLES and the: l)'SICm code.

It is inlaatiAJ IO IIOIC dial an implcmcnlatioa of
NOODLES on a sbamkaaDory pmllel processor
would pobably bavc die same IIIIICIIR u Ncciar­
NOODI ES lla:aao al Ibo mmplexity ol Ibo dl&a

Sll'UCUU'CS, it would not be ~Sible IO upda1c the
dalabasc while other nodes are doing geometric ICSIS.
Tbc shared-memory implcmcnlation would have IO
baleb updaLcS between the ICSting stages in exactly lhe
same way as Nectar-NOODLES docs. The main
benefit of a ~ mcmcxy implernenw.ion would be
dial die updates c:ould be done by a single node, which
is slightly simpler than lmadcasting an updalc request
10 all die slavca.

Tbc structure of Nectar-NOODLES lends ilSCU well
IO a robust implcmcnlalion. If a slave node goes down
during a r.sslon, no information Is lost. The l1Wll2' can
simply reissue the task that slave was working on to one
of the iemainins slaves, and lhc session can continue
willlout inlCmlption. lbis 5hould make it pouible to

use a luge number of nodes reliably, allhough the:
nwtcr would of course remain a single point of failure.
In the currerx implcmenlatioa, we have not ya
implemented lhi1 robust scilemc, although die master

docs ignore nodes that do not respond durin1
initializalioo.

5.2.Results
Table 5-1 sboWI die speedup for N~iar-NOODLES

merging 1WO models, each consistina or two sphc,es.

Each oC lhc models has abou1 3500 componcncs. Tbc
bosls are dcdicau:d Sun 4(330 wakslalions. Tho

speedup is relative IO a single-node Ncclar-NOODLES.
11le difTcrenc columns show thc results for various last
siz.c:s, s&aning widl I lest per wk IO 30 lcsls pee task.

11le size ol a ICsl ranges from 3 milliseconds in die
caly aages to • high as SO-ISO milliseconds in die
laiu 51agcs (6 milliseconds average). We observe a
similar speedups for all wk sizes. Even wilh one lest

pee packcl, we do not obscnrc any degradation of
pc:donnance. 11le Nectar Del and die load balancer are
fast enough to support tasks as &mall as a few
milliseconds. AJ thc &ask size increases, thc speedup
drops slighlly, and lhis effect becomes stronge, as die
number ol nodes increases. 11le reason is lhat die load
balancin1 bccomea less dTectivc in the laier stage,,
which have a smaller number of larger tasks.

The single node version of Nectar-Noodlc.1 is almost
30'JI, slower lhan die sequential Noodles, because some
of lhc gcomelric ICslS may be pccf'onncd more than
· once in the: parallel implernenation. This duplicalion
happens because updalca IO thc dalahasc are delayed

until lhe cod of each llago and as a result possible
raSundut q,entiml 8111 110C clcleUid in limo. 1biJ

Number I s 10 IS 30
of nodes

2 1.94 1.93 1.92 UK) 1.89

3 2.83 2.81 2.81 2.79 2.75

4 3.61 3.62 3.60 3.54 3.47

5 4.40 4.38 4.33 4.29 4.17

6 5.15 5.10 5.04 4.94 4.75

7 5.84 5.78 5.71 5.54 5.35

8 6.40 6.38 6.27 6.(11 5.76

Table 5-1: Necw-NOODLES speedup for different
la5k si7.cs (cxpesscd in tcSU per laSk)

illUSllaleS a diffu:ulty ill parallelizing code lhal 11SC1

complex data structures. A parallcl implementation oC
NOODLES on I shared memory machines would have
the same problem.

AJ in lhc case of COSMOS, NOODLES was mapped
onto Nectar by running a version oC the sequential
program on every node. Again, very few changes had
to be made to lhc existing code, thus simplifying the
porting of this relatively large application, which bas
about 12,cxx, lines or code. Almost all the code thaa is
specific IO the parallel implcmenialion is in a scpara1e
module. Because of lhc complexity of lhc dala
suuc1urcs, the dala could not be partitioned, but had to
be rcplicaled, lhus loosing one or lhc bcocJl&s of using a
multicomputer (IIIOR memory). The low
communication lalCney oa Nectar made dynamic load
balancing very cll'ectivc, even for relatively small cask
sizes.

5.3. Buildin11 a load balancln11 package
We arc cwrcmly in die i-occss or implementing the

load balancing code lhat was developed for Ncccar­
NOODLES as a separate package. AJ a ~iration
of the usefulness or using such an application•
indcpcndcnl. package, a ilCCOlld application, ray tracing,
bas been por1ed very quickly to Nectar using this
package. This application allows us IO evaluate the
load balancing packet with smaller packet sizes.

Table 5-2 shows lhc results. The application consists
of 1024 laSks, each raking about 400 microseconds; lhc
sequential pan of lhc code lakes liUlc lime (about a
millisecond). We notice thaa lhc speedup CIIMI flauens
• abou& 5 IIOdca wilh a speedup oC 4, 1bis shows lhc
liadcacioo1 of a ceall'al load balanciag scheme: the
1111111a DOdc C11D baDdle a aew requcSl about every 100

Number Time Speedup
of nodes (seconds)

I 0.427 1.00

2 0.208 2.05

3 0.142 3.01

4 0.120 3.55

s 0.105 4.07

6 0.100 4.2.5

7 0.098 4.34

Table 5-2: Speedup for ray tracing application
using Noodles load bala.rK:ing package

microseconds, so lhe minimal excculion lime is aboul
100 milliseconds for an applicalion with 1000 lasks.
Usins more nodes will require a coarser partitioning of
the problem and a larger problem.

6. Simulalion or Air Pollution In Los Angeles
Flow field problems, MiCh as wealhcr forecasting and

tracking or spills, arc computationally intensive and can
benefit from parallel poccssing. As a first step, we
have implemented a parallel program on Nectar 'Ylhich
tracks pollutant particles in lhe aunospherc of lhc Los
Angeles area. TIie inpul to lhc program arc lhe wind
velocities recorded at 67 weather scations around the
Los Angeles (LA) ■tea once every hour. The pn,gram
calculalcs lhc traces of pollutant particles that arc
released in some initial locations.

Computing lhc particle traces given lhc wind
conditions is • 1wo phase process. The first :phase
consisis or computing lhc wind velocity at c:ich point of
a IIOx30 grid on the geographic area concerned, for
every hour, givco lhc measuremenis from lhe wealhcr
lwions and precomputed weights. This problem
Involves interpolating from lhe measun:mcnts. as well
as solving lhe conservation of mass cquar.ioos acro,s the
arid. In the SCCOlld phase, each particle i<; tracked as it
moves about lhc arid; this requires an intcrpOlatioo in

' both space and time. TIie time sacp u!Cd in lhis phase is

/ 30 seconds.
6.1. Parallel impltmtntatiou onr Ntctar

When partitioning this program over Ncciar, we tried
IO mainlain lhc SUIICtwc and code of lhe original
sequential program as much as possible. In the first
phase, a &ask consists of calculating lhc wind velocities
al each poin& ia lhc arid for a gi- bour. The second

phase is parallelized by partitioning the puticlcs among
the processor. each proces.w ll'IICb !he motion or a set
or particles for !he duration or !he simulation. The two
phases are pipelined: while 101ne proccsos .-e lnlCing
particles at time T. other processors are caJculaling 1he
wind velocities for !he following few houn. In the
initial implementation, load balancing was done
statically. the hours and particles were divided among
lhc processors before computation begins.

,.z. Results and enluallon
Table 6-1 shows the results for parallelizing the

particle tracking on Nectar using I. 2, 3, 4. 6 and 8
nodes. Again. the hosts are dedicaled S111 4/330
workstations.

Number nme Speedup
of nodes (seconds)

I 125 1.0

2 65 1.9

3 44 2.9

4 34 3.7

6 23 5.4

8 19 6.6

Table 6-1: Speedup for LA potlulion simulation

The speedup shown in lhc table arc encouraging, but
otinc-e lhe distribution of wort is done statically,
performance degrades quickly if lhc load on lhc
(shared) nodes changes during lhc execution. To avoid
lhis degradation, we are cuncnlly implementing
dynamic load balancing for both phases. For lhc first
~. proccsson receive lhc next hour to be simulated
from a master. This gives good performance except
that slow nodes might make lhc latency between lhc
two phases too large; for this reason. lhc masler should
replace nodes that are too slow. For !he second phase. a
load balancing process monlton lhc progress of each of
the phase two processors. and moYCS partlclcs from
slow processors to fast processors. if lhc difference in
simulated lime on the slaves becomes IOO large. If lhc
network environment does not change. each slave will
trace its particles wilh minimal disruption by the load
balancer.

The ccxnmunicalion bandwidth of this application
increases linearly a more proceaoo ■n1 added ID the
IJS(enl, since emy processor in lhc accond phase must
br,e all die infonnatioa c:ampuled b)' the pocesscu la

thc rn phase. Because we use !he Nectar (hardware)
multicast facility between phases one and two, the •
communicalion overhead per simulated hour remains
constant for each node. Eventually. the constant
comnnmication oYahead will limit the nmnber or
nodes that can be used effeclively for a fixed problem
size.

The total number or bytes sent can be reduced by
using a new mapping in which the grid is partitioned
across the processors. For nm phase, each processor
calculates the wind velocities for its part or the grid, for
all houn, I.e., we partition in space instead of in time.
For the second phase. each processor traces the
particles in its area at any given lime, i.e., we divide the
area instead or the particles. This mapping significantly
reduces the commmicalion requirements, but ii has

several disadvantages. F'ust. it require more fine­
grained interactions between the processors working on
the same phase: for phase one, processors have ID
interact when solving the conservalion of mass
equations, while for the second phase. communication
is needed when particles mm the partitioning
boundaries.

Secoltd, this mapping is more complicated ID

implement. because the structure of lhe program is
changed more dramatically: we are parallelizing over
an innerloop, while lhc first mapping parallelw:d over
the outcrloop. Third. load balancing becomes much
more difficulL Not only is die workload in the second
phase no longer stalic. bul moving work between
processors u pan of a dynamic ·1oad balancing strategy
Is much more complex.

The LA simulation program is an example of a
medium si7.e static application (2500 lines of
FORTRAN). Our implementation shows that a very
simple mapping that preserves the program structure is
the most appropriate for a network cnvironmenc theie
ls a good match between lhc resulting coarse-grained
parallelism and an archirecture with a small number of
powerful nodes. Finer-grain parallelism should be
exploited in more lightly coupled multiprocessors. Le.,
inside a node of thc multicomputer. We plan to wort
on this type of hierarcbical decomposition using more
accm'Me limulalion pognms and using IWap am:,a
cannet1ecl by Nectar• the eomputing eqinea.

7. Summary and Concluding Remarks
A!I demonsttated by the Nectar implementation of lhe

dee applications dellrn'bed in the paper, it is now
• posst'blc to parallelize some applications which were

100 complex or IOO large for previous puallel
processing approaches. The two faclOrS lhat make this
possible are the emerging class or network-based
multicomputers such as Nectar and a systematic
approach to parallelizing large applications.

Because Nectar uses existing general-purpose
computerS as nodes, parallelized applications can make
immediate use of system 11>ftwan: and application code
lhat are already exist for these computel'S. Using
existing systems u nodes also has the advantage that
users can wort in • familiar environment, for example.
I UNIX workstation. A!I • result, in spite or the high
complexity of the applications described in the paper,
the implementation of them on Nectar has taken
relati"JCly little effort. ·

An important n:quirement for networt-bascd
mullicompuiers is good network pmormance. The
bandwidth and latency characteristics of Nectar, for
example, are similar to those or the current generation
custom-made multicomputers. Because of these
features, !here is I large class of applications for which
intemode communication is no longer boUlcneck, and
parallelization over a network becomes practir;al, as ia
demonstrated in the NOODLES and LA pollution
simulation applicalions. The programmer does not

need IO wony too much about communication
ovc:rflauls in doing load balancing. This is I l'C3Dl

why it has been relali"JCly easy to achie"JC good
speedups ror the parallelized applications.

Our approach to parallelizing large applications
emphasizes the use or existing application code and the
development of general supports for large-grain
paralleli7.ation. Most or the application code should be
an:hiloc111re independent, and the sysicm code that
implements synchroni7.ation and communication may
be rcmed. Our goal is IO provide applications with
programming support 11 a higher level lhan sends.
receives, •d low-level synchronization primiliw:s.
This effort complemcnlS other existing efforts al
providing general IUpporll t'cJr p...itclizing kernels "'
computation for moro tightly coupled mullip,oceaan.
The c:ombincd capability wiD lignif"ICllltly illCffllO Ibo
applicability of parallel pmceaina. we.,..._

HoweYCf, much wort needs IO be done in SIIJIPOl1 ol
Ibis new opportunity. especially in the an:a vi I00I
building. We plan IO undertake mme ol this wort in
the near future. Resuks rcpor1Cd ID lhis paper should be
Yicwed as a pmgres.1 report al oir effats in the
important aiea of providing general S11J1P011 fer
parallelizing large applications.

Acknowledgements

A large number or people ll Carnegie Mellon
conlributf!d 10 the implementation or the Nect.­
prolOtype system. Prof-.- FrilZ Prinz of the
Mechanical Engineering Department, Professor Greg
McRae or the Chemical Engineering Department,. and
Professor Randy Bryant and Dr. Carl Seger or the
School of Computer Science dim:ted the three
applications deacribed in this paper. Tbe UnivmitJ of
Sao Paulo aponscnd Man:o Oubiloll>'a vlsi& ID
Carnegie MeDon University In 1989-90. Thia wort
would not have been possilllc without help from aD
these parties.

References

I. Emmanuel A. Amould, Francois 1. Bitz, Eric
C. Cooper, H. T. Kung. Robert D. Sansom and Pt,ter
A. Stccnldstc.. 'The Desii;n or N"<:tar. A Networlt
Backplane ror Hctcrogencous Mulliromputtrs.
Proceedings or the Third lnlem:llional Conference CJ11
An:hitoctural Support for Prognnnming Languages and
Operating Systems. ACM/IEEE, Boston, Apnl, 1989.
pp. 205-216.

2. Shclthar Borbr, Robert Cohn, George Cox, Sha
G leasoa. Thomas Gross, H. T. Kung, Monica Lam,
Brian Moore, Craig Peterson, John Pieper, Linda
Rankin, P. S. Tseng, Jim Suuon, John Urbanski. and
Jon Webb. iWarp: An lnrcgr.llcd Solution to High­
Speed Parallel Computing. Procecdinp of
Supcroomputing '88, IF.EE Computer Society and
ACM SIGARCH, Orlando, Aorida, November, 1988.
pp. 330-339.

/ 3. Shekhar Borbr, Robert Colm, George Cox, Thomas

/

Gross, H.T. Kung, Monica Lam, Margie Levine. Brian
Moore, Wire Moore, Craig Pclcrson, Jim Susman, Jim
Suuon. John Urbanski, and Joo Webb. Supponinc
Systolic and Memory Communicalian in iWarp.
Proceedings of Ille 17111 Annual International
Symposium on Computer Architeetme, ACMllEEE.
ScauJe. May, 1990, pp. »at. Also published u CMU
Tcclmil:al Report CMU-CS-90-197.

'- Randy E. Bryant. Derck Beatty, Karl Brace,
Kycongsoon Cho, and Thomas Sheffler. COSMOS: A
Compiled Simulaior for MOS Circuits. Proctedings rl
lbc Design AulOOlalioa Conference, ACM/IEEE, June.
1987,pp. 9-16.

5. Randy E. Bryan&. "Boolean Analysis of MOS
Circuils". IEEE Transaclions on Comp111u Aided
~sig" OW-6,4 (July 1987), 634-649.

'- Nichom Canicro and David Oclc:m&a.
Applicalioos Experience wilh Linda. ACM
Symposium OIi Paralld Programming: Experience with
Applicalions, Languages, and SyslemS, ACM, July,
1988,pp. 173-187.

7. Young Ol<ll. Vertu•basttl Bollllllary
Rtprtsoualiolt of Non-Manifold Geonutrlc Models.
Pla.D. Th., Carnegie Mellon Univenity, 1989.

I. E. Clancnti, J. H. Detrich, S. Chin, G. Corongiu.
D. Folsom, D. Logan, R. Caltabiano, A. Camevali,
J. Hclio, M. Russo, A. Gnudi 111d P. Palmidcsc:. Largo­
Scale Compuwions oa a Scalar, VcclOr and Parallel
"Supcrt:ompu&a". In S1ruc1ure and Dynamics of
Nuckic Acids, Proieilu, and MambrOIIS, Plenum Press,
1986. pp. 403-449. Ediled by E. Clementi and S. Chin.

t. Eric C. Cooper, Pela A. SICCllkislc, Robert
D. Sansom, and Brian D. Zill PrOlocol lmplcmenlalion
OIi die Nccw Communic:auon Proc:cssor. Proceedings
ol the SIGCOMM '90 Symposium on Communitaliom
AR:hilffl&Ucs and Protoc:ols, ACM, Philadelphia,
Scp1embcr, 1990. pp. 13.S.143. Also published as CMU
Tc:chnial Report CMU-CS-90-153.

10. Eric C. Cooper and Richard P. Draves. C Threads.
Tech. Rep«. CMU-CS-88-154, Compuacr Science
Dcpanmeni, Carnegie Mellon UniYCrSity, June, 1988.

I I, David Gclemtu. "Gcneraaive Communicalioa in
Linda". ACM Transactiolis o" Programming
Laltgw,gesandSys,e,ru 1, I (January 1985), 80-112.

12. Leonard G. C. Hamey, Jon A. Webb, and I-Chea
Wu. • An An:bitccturc lndepc:ndcnt Programmin1
Laniuap far Low-Lcvd Visioll". Co,np111u VlstOII,
Grapltics, aNI IIIIO~ Proussillg 48 (November 1989),
246-264.

U. E. N. Houstis, J.R. Rice, N.P. Chrisochoidcs, H.C.
ICalalharwis, P.N. Papachiou, M.K. Samartzis,
E. A. Vavalis, Ko Yang and S. Weerawarana.
/,'Ellpack: A Numerical Simulation Programming
Environment for Parallel Milnd Machines. Procecdinp
ollbc 1990 lnlcrnalional ConCcn:ncc oa
Supc:nlCllllpUlig.Junc, 1990.pp. 96-107. Also
publidaed u ACM SIGARCH Compulel' Archi&edunl
News, Volume 11, Number 3, Scplcmbcr 1990.

14. K. Ikudomc, G. C. Fox, A. Kolawa, and
J. W. Flower. An Automatic and Symbolic
Parallelization System for Distributed Memory Parallel
Computers. Proceedings of the Fifth Distributed
Memory Computing Conference, IEEE, April, 1990,
pp. 110S-lll4.

IS. Kung, H. T. Heterogeneous Multicomputers.
Carnegie Mellon Compu&cr Science: A 25-Y car
Commemorative, Reading, Massachuseus, 1990, pp. •

16. Jon A. Webb. Architec111re-Independcnt Global
Image Processing. 10th ln1ernationa1 Conference on
Pattern Recognition, IEEE, Allantic Cily, NJ, J1111C,
1990, pp. 623-628.

17. Roy D. Williams. DIME: A Programming
Environment for Unstructured Triangular Messhcs 011 a
Distributed-Memory Parallel Processor. Procttdinp o{
lhc 1bird Confcrcace oa Hype,cubcs, Concumn1
Computers, and Applications,~ Califomia,
Jmuary, 1988. pp. 1770, l 787. .

ValdemarW. Setzer

RELAT6RIOS TECNJCOS

DEPARTAMENTO DE Cl~CIA DA COMPUTA~
lnltiUo di MllerNlica • E•lllicl da USP

A NOTE ON A RECURSIVE TOP-DOWN ANALIZER OF N. WIRTH
RT-MAP-1102, Oezembro um

Valdemar W. Setzer, M.M. Sanches
A UNGUAGEM U'AL" PAIIA ENS/NO BAslCO DE COMPUT~
RT-MAP-7704, Dezembro 1977

SBvlo Urslc, Cyro Palarra
EXACT SOLUTION OF SYSTEMS OF UNEAR EQUATIONS WITH ITERACT1VE IIETHODS
RT-MAP-71102, Fevereiro 1978

Martin GrOtschel, Yoshiko Wakabayashi
HYPOHAM/LTONWI DIGRAPHS
RT-MAC-7803, Mw901978

Martin GrOtschel, Yoshiko Wakabayashi
HYPOTRACEABLE DIGRAPHS
RT-MAP-7804, Maio 1978

W. Hesse, Valdemar W. Setzer
THE LINE.JUSnFIER: NI EXAMPLE OF PROGRAM DEVELOPMENT BY TRANSFORMATIONS
RT-MAP-7805, Junho 1978

Valdemar W. Setzer
PROGRAM DEVELOPMENT BY TRANSFORMJ,:flONS APPLIED TO RELATIONAL DATA-BASE QUERIES
RT-MAP-7809, Novembro 1978

D.''!". Fernandes, C. Patarra
SISTEMAS UNEARES ESPARSOS, UM METODO EXATO DE SOLU0,40
RT-MAP-7811, Novembro 1978 / . .

Valdemar W. Setzer, G. Bressan 1
DESENVOLVIMENTO DE PROGRAMAS POR TRANSFORMA<;{)ES: UMA COMPARA~ ENTRE DOJS

MtTODOS
RT-MAP-7812, NOllllllbro 1978

ffl':UAC:M·\12

Martin GrOtschel, Yoshiko Wakabayashi
ON THE COMPLEXITY OF THE MONOTONE ASYMETRIC TRAVEWNG SALESMAN POL YTOPE.

I: HYPOHAMIL TONWI FACETS
RT-MAP-7814, Dezembro 1978

Martin GrOtschel, Yoshiko Wakabayashi
ON THE COMPLEXITY OF THE MONOTONE ASYMETRIC TRAVEWNG SALESMAN POI.YTOPE.

11: HYPOTRACEABLE FACETS
RT-MAP-7901, Fevereiro 1979

M.M. Sanches. Valdemar W. Setzer
A PORTABILIDADE DO COMPIIADOR PARA A UNGUAGEM LEAL.
RT-MAP-7902, Junho 1979

Martin GrOtschel, Carsten Thomassen, Yoshiko Wakabayashi
HYPOTRACEABLE DIGRAPHS
RT-MAP-7903. Julho 1979

Routo Terada
FAST ALGORITMS FOR NP-HARD PROBLEMS WHICH ARE OPTIMAL OR NEAR-OPnMAL WITH

PROBABILITY ONE
RT-MAP-oooJ, Setembro 1980

Valdemar W. Setzer, Ren6 lapyda
UMA Ml=TODOLOGIA DE PROJETO DE BANCOS DE DADOS PARA O SISTEMAAOASAS
RT-MAP-8004, Setembro 1980

~~'k:~OWSKl'S PROBLEM: (1 u A)"' • A*
RT-MAP-8005, Outubro 1980

luzla Kazuko Yoshida. Gabriel Richard Bltran
UM ALGORITMO PARA PROBLEMAS DE PROGRAMA(:AO COM VARIAVEIS ZERO-UM
RT-MAP-8101, Fevereiro 1981

Valdemar W. Setzer, Ren6 lapyda
DESIGN OF DATA MODELS FOR THE ADABAS SYSTEM USING THE ENTITY-RELATIONSHIP APPROACH
RT-MAP-8103, Abrll 1981

U.S.R. Murty
PROJECTIVE GEOMETRIES AND THEIR TRUNCAOONS
RT-MAP-8105, Maio 1981

Valdemar W. Setzer, Ren6 lapyda
PROJETO DE BANCOS DE DADOS, USANDO MODELOS CONCEITUAIS
RT-MAP-8106, Junho 1981
(Eate Relat6rlo T6cnlco complem1111110 RT-MAP-8103. Ambol llllllllum O RT-IIAP-I004 amplllndoOI ___ ,

Marla Angela Gurgel, Yoshiko Wakabayashi
EMBEDDING OF TREES
RT-MAP-8107, AgoalO 1991

I

Slang Wun Song
ON A HIGH-PERFORMANCE VLSI SOLUTION 10 ~T~ PROBLEMS
RT-&.IAP.a201, Janeilo 1982

Marla Angela Gurgel, Yoshiko Wakabayashi
A RESULT ON HAMIL TON-CONNECTED GRAPHS
RT-MAP-a202, Junho 1982

Arnaldo Mandel
TOPOLOGY OF ORIENTED MATRO/OS
RT-MAP.a205, Junho 1982

Ertch J. Neuhold
DATABASE MANAGEMENT SYSTEMS: A GENERAL INTRODUCTION
RT-MAP-a206, Novembro 1982

861aBollobAs
THE EVOLUTION OF RANDOM GRAPHS
RT-MAP-8207, Novembro 1982

Valdemar W. Setzer
UM GRAFO SINTATICO PARA A UNGUAGEM Pl.,IM-BO
RT-MAP-8208, Novembro 1982

Jayme Luiz Szwarcflter
A SUFFICIENT CONDmON FOR HAMIL TON CYCLES
RT-MAP-a209, Novembro 1982

Bela BolloMs, Istvan Simon
REPEATED RANDOM INSERTION INTO A PRIORITY QUEUE
RT-MAP-8302, Fevereiro 1983

ValdemarW. Setzer, P.C.D. Freitas, B.C.A. CUnha
UM BANCO DE OADOS DE MEDICAMENTOS
RT-MAP~ Julho 1983

Arnaldo Mandel
THE 1-SKELETON OF POLYTOPES, ORIENTED MATROIDS MD SOME OTHER LATTICES
RT-MAP-8305, Julho 1983

Arnaldo Mandel
Al.GUNS PROBLEMAS DE ENUMERA,;Ao EM GEOMETRIA
RT-MAP.a308, Agosto 1983

Slang Wun Song ·;
COMPLEXJDADE DEE/SE PROJETOS OPTIMAi$ DE DISPOS1T1VOS PARA ORDENA<;/,,0
RT-MAP-U>7, Agosto 1983

Valdemar W. Setzer
MANIFESTO CONTRA O USO DE COMPIJTADORES NO ENSJNO DE ffl GRAIJ
RT-MAN402. Atd 1984

lmreSlmon
A FACTORIZATION OF INFINITE WORDS
RT-MAP-8404, Setembro 1984, 7 pgs

lmreSlmon
THE SUBWORD STRUCTURE OF A FREE MONOID
RT-MAP-8405, Setemb«l 1984, 6 pgs

Jalro Z. Gonc;alves. Arnaldo Mandel
ARE THERE FREE GROUPS IN DMSION RINGS?
RT-MAP-8406, Setemb«l 1984, 25 pgs

Patio Feofloff, D.H. Yoooger
VERTEX-CONSTRAINED TRANSVERSALS IN A BIPARTITE GRAPH
RT-MAP-8407, NOV'lfflbro 1984, 18 pgs

Pallo Feollloff
DISJOINT TRANSVERSALS OF DIRECTED COBOUNDARIES
RT-MAP-8406, Novwmb!o 1984, 126 pgs

Paulo Feofllofl, D.H. Younger
DIRECTED CUT TRANSVERSAL PACKING FOR SOURCE-SINK CONNECTED GRAPHS
RT-MAP-6409, Novemb«l 1984, 16 pgs

Slang Wun Song
OISPOSIC(JES COMPACTAS DE ARK>RES NO PLANO
RT-MAP-8501, Malo 1985, 11 pgs

Paulo Feoffloff
TRANSVERSAIS DE CORTES ORIENTADOS EM GRAF0S 8/PARTIDOS
RT-MAP-8502, Julho 1985, 11 pgs

Christian ChoffM
FREE PARTIALLY COMMUTATIVE MONO/OS
RT-MAP-8504, Setemb«l 1985, 110 pgs

Valdemar W. Setzer
MANIFESTO AGAINST THE USE OF COMPUTERS IN ELEMENTNfY EDUCATION
RT-MAP-8505, Oulublo 1985, 40 pgs

Jl1lo Michael Stem
FATORA<;AO L-U E APUCAC(}ES
RT-MAP-8606, Agosto •i986, 105 pgs

Afonso GalvAo Ferreira
0 PROBLEMA DO DOBRAMENTO OPT1MAL DE PI.M
RT-MAP~. Agoato 1986, 73 pgs

lmreSlmon
THE NONDETERMINISTIC COMPLEXITY OF A FINITE AUTOMA70N
RT-MAP-8103, F....iro 1987, 20 POI

lnveSlmon
INFINITE WORDS AND A THEOREM OF HINDMAN
RT-MAP-870', Abril 1887, 8 pga

lnveSlmon
FACTORIZATION FORESTS OF FINITE HEIGHT
RT-MAP-8707, Agosto 1987, 36 pga

Routo Terada
UM c6DIGO CRIPTOGRAFICO PARA SEGURAN<;A EM TRANSMJSSl,o E SASE DE 0,400S

RT-MAP-8709, M~ 1887, 31 PQI

Martin GrOtschel, VoshDco Wakabayashi
FACETS OF THE CLJQUE PARTITIONING POLYrOPE
RT-MAC-8801, Janeiro 1988, 21 pgs

Martin Grotschel, Yoshiko Wakabayashi
A CUTTING Pl.ME ALGORITHM FOR A CLUSTERING PROBLEM
RT-MAC-8802, Fevereiro 1988, 52 pgs

Martin Grotschel, Yoshiko Wakabayashi
COMPOSITION OF FACETS OF THE CLJOUE PARTmONING POL YTOPE
RT-MAC-8803, M~ 19118. 14 pgs

lnveSlmon
SEQUENCE COMPARISON: SOME THEORY AND SOME PRACTICE
RT-MAC-8804, Abril 1988, 14 pgl

lmreSlmon
RECOGNIZABLE SETS WITH MIJLT/PUCl11ES IN THE TROPICAL SEMIRING
RT-MAC-6e05, Maio 1888, 14 pga

Valdemar w. Setzer, Ervlno Marussl
LDT: UM GERADOR UNIVERSAL DE APLJCA<;()ES PARA PROCESSAMENTO DE £W)()S

RT-MAC-8806. Junho 1988, 40 pga

Routo Terada
PROBABIUSTIC ANALYSIS OF OPTIMAL ALGORITHMS FOR THREE NP-HARD PROBLEMS
RT-MAC-8807, Agosto 1988, 16 pga

Valdemar W. Setzer
UM SISTEMA SIMPLES PARA DOCUMENTAr;k) SEAII-AUTOMATICA DE PROGRAMAS
RT~ Satembro 1986, 18pga

Valdemar W. Setzer, R. Hirata Jr. · /
HIPO-PC: UM "SOFTWARE" EDUCACIONAL P.4¥ INTRODl.x;ADAD COAIPUTADOR
RT-MAC-8809, NcMmbro 1988, 20 pga /

Arnaldo Mandel
0 EDITOR DE TEXTO OS/LON
RT-lolACGOt, Abrl 19119. fJ7 pga

l'l'I:¥:OC:M:YF

Valdemar W. Setzer, R. Hirata Jr.
DIA DA COMPUTAr;AO
RT-MAC-8902, Abril 1989, 11 pg1

Valdemar W. Setzer, N. A. lagulr
UM BANCO DE DADOS PARA CRfAOAC) E SELEt;AO ZEBufNA
RT-MAC-8903, M~ 1989, 18 pgs

lmreSlmon
PROPERTTES OF FACTORtZAnON FORESTS
RT-MAC-a904, Junho 1989, 8 pgs

Valdemar W. Setzer, Roberto C. Mayer
GRAFOS SINTAncos SIMPLES E UM GIIAFO PARA A LINGUAGEM C ANSI
RT-MAC-8905, Agosto 1989, 24 pgs

Routo Terada ,
UMA tDENTtFICAr;AO CRtPTOGRAFICA COMPACTA DO ff PO 'ZERO-KNOWLEDGE'
RT-MAC-8908, Slllembro 1989, 8 pgs

lmreSlmon
ON SEMIGROUPS OF MATRICES OVER THE TROPICAL SEMIRING
RT-MAC-8907, Setembro 1989, 19 pgs

Marco Dimas Gubltoso, Claudio Santos Plnhanez
MAQUINA KORM • SIMULADOR DE W.QUINAS PARALELAS
RT-MAC-8908, Novembro 1989, 28 pgs

Carlos Humes Jr.
SOME POMU COMMENTS ON LAGRANGtm DUALITY, OPnMAUTY CONDITIONS AND CONVEXITY
RT-MAC-8909, Novembro 1989, 15 pgs

Carlos Humes Jr.
METODO DE DESIGNAr;AO DE FLUXOS E CAPACIDADES: \IERSAo RNfTA
RT-MAC-8910, Oezembro 1989, 31 pgs

Carlos Humes Jr.
A PROJECTION-FEASIBLE DIRECTION METHOD FOR THE CONTINUOUS CAPACITY NID FLOW ,

ASSIGNMENT
RT-MAC-8911, Dezembro de 1989, 21 pgs

Carlos Humes Jr.
SOME RESULTS ON OUTER LINEARIZA TION IN THE PRESENCE OF CONCAVITY
RT-MAC-9001, Janeiro 1990, 16 pgs

Claudio Santos Plnhanez
PARALLELIZATTON OF ALPHA-BETA ALGORITHMS FOR GAME TREE SEARCH
RT-MAC-9002, JMeiro 1990, 17 pgs

0. MenzDcloglu, H.T. Kmg. S.W. Song
COMPREHENSIVE EVALUATION OF A 1WO-DIMENSIONAL CONFIGURABLE ARRAY
RT-MAC-9003, Janello 1980, 10 pgs

I

0. Menzlcloglu, H.T. Kung, S.W.Song
A HIGHLY CONFIGURABLE ARCHITECTURE FOR SYSTOUC ARRAYS OF POWERFUL PROCESSORS
RT-MAC-9004, Janeiro 1990, 18 pg1

Valdemar W. Setzer, Robello C. Mayer
SIMPLE SYNTAX GRAPHS, THEIR PARSE WITH AUlOMATIC ERROR RECOVERY ANDM ANSI C SIMPLE

SYNTAX GRAPH
RT•MAc-eoo5, Julho 1990, 41 pgt

Jorge Almeida
A CLASSIFICATION OF APERIODIC POWER MONOIDS
RT-MAC9101, Jll!elro 1991, 32 pga

Cartoa Humes Jr.
A NAIVE STABILIZATION TECHNIQUE: KUMAR· SEIDMAN REVISITED
RT-MAC-9102, Janeiro 1991, 9 pga

C811os Humes Jr., Sergio L Wassersteln. Pewo R. Zanjacomo
A COMPLEX/TY-ORIENTED ANALYSIS OF DYNAMIC PROGRAMMING IMPLEMENTATION: BJCRITERION

CASE
RT-MAC-9103, Abril 1991, 10 pgs

Jorge Almeida
ON DIRECT PRODUCT DECOMPOSITIONS OF FINITE J.TRMAL SEMIGROUPS
RT-MAC-9104, Abl'R 1991, 11 pga

Routo Terada. KenJI Koyama
NONLINEAR PARITY CIRCUITS AND THEIR CRYPTOGRAPHIC APPLICATIONS
RT-MAC-9105, Maio 1991, 19 pga

Jorge Almeida
A UNIFIED SYNTACTICAL APPROACH 10 THEOREMS OF PUTCHA. MARGOUS, MD STRAUB/NG ON FIN.

POWER SEMIGROUPS
RT-MAC9106, ,lunho 1991, 9 pga

Inn Simon
A SHORT PROOF OF THE FAC10RIZATION FOREST THEOREM
RT-MAC-e107, ,lunho 1981, I pg1

