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Abstract 
Sewral large ■pplicatloas laave been parallelized 

oa Nectar, 1 aetwork-llased multicomputer recentl7 
developed by Caraqle Melloa. These applic:atlona 
wen previously eitlaer too lar1e or too complex to be 
easil1 lmpleenated oa distributed memory parallel 
IJIUIIIL ParaUelizia1 these applications ,.-as made 
pos,siblc b7 tlle cooperallve ue of many existing 
aeneral-purpose computers over high-speed 
aetwol'ks, and by aa implementation methodolo&J 
llued Oil• deu separatioll betweea 1pplicatlon­
specil"ac aad l)'Stem-spedfic code. We illustrate 
tMM poinll 1111111 our experiellce WWI parallelizing 
tlll'ee real-world applicatlou. Tbe IIICCeSI ID tbae 
1pplica1iou clearly poilltl aut • MW direction la 
parallel processin1, 

I. Introduction 
ParalldiziDi large applications is I key conccm £or 

IQQl'Chas ia pa,allcl ~-- These applications 
lypically involve lara,c bodies ol code. have substantial 
CIOlllpullbOII and memory ~uirements, and ate ol 
praclical imponancc. If parallel architcctwu are to 
become widely used, porting such 1pplicaai0111 10 

paalld lystanl OU&hl to be I routine activity. 

1bcre are IIIU1lerOUS individual dToru in ponin& 
Jar&c applicaliOQI OIIIO various parallel l)'SICmS. lA 
IIIIOSl caea, lbe applicalion ii dlha' developed 
apccifically for Ibo parallel machine. or it is abncm 
complclcly rewriual 10 caploia lhc £calW'CI ol I specific 

nilr.-da-.uppanedia,-abytlla Der-Adv-=ed 
a..adl Pn,jecu ,.,_., (DOD) .-ilared by 
~NCMO _.. Cailrm MDAffl.-90-C-OCW. ad la 

=-,~.~ of Naral lt.-la -i... c-.:c 

parallel an:hileetUre. In both cases, the efforts ~uiro 
lhal the pe,sona responsible for lhc porting are 
inlimately familiar wilb lhe applications. Since large 
1pplicati0111 lend IO involve subslantial application­
specific knowledge, this implies that oflen only 
application scientists lhcmselves can do lhc porting. 
This dcfulilely ia not I.he best way of using &heir time, 

and as a result, many large applicalions have never been 
implemented OD parallel machines. 

Whal we need are para1lc1 architccturcs and 
programmin& tools to provide di.reel and general 
supporl for parallc1wng large applications. 1be.sc wols 
should be II I higher level than send and receive 
primitives. or ll)'llChroniz.alion or shared dalll primil.ivc:s. 
1be objective ii to be able to port large applicalions 
onto parallel machinr.a without having to rc-acatc lhc 
application code dial ClpWl'CS the application 
knowledge. 

Various research dTons have attempted to provide 
help in lhia area. Parallelizing cornpilus have some 
success in avoiding lhe rewrite or application code. but 
lhey deal mainly with inner-most loops ralha than 
entire applications. Some projects have sWICd to 
addiess parallel processing for large applications, but 
lhe solulions are cilhcr very ad hoc [8], or lhe 
applicalion area is n:slrictcd. The work on LINDA 
[6, 11 ], £or example, has provided iools capable of 

using existing application code, but their usage is 
JeSlrictcd to applications lllisfying • spccia1 
compulalion model. Some programming cnvironmenis 
such as //EU.PACK (13) suppon high-level 
descriptions £or specif yin& applications in certain 
specialized areas, and allow new applic:alioos to use 
IOflware and algorilbms lhal were developed earlier for 
similar applications. Othet wort has CODCelllnllCd Oil 

apccific application 1tta1 such u YisioD [12. 16) or 
computadolll Illini triangular IIIClbea (17). 



The Neaar system [1} developed by Carnegie Mellon 
Is inlelldcd IO provide general SUJlPO(l for parallelizing 
large applications. The system is a multicomputt.r built 
around a high-speed nctwrt. The use of uisting 
general-pmpose compulCB as its nodes and lhe high­
bandwidth and low-lateney networlt makes the system 
inherently suited for large applications. The system has 
allowed us to paralleli:.c applications lhal were 
previously either lOo comp!~ or too communication• 
intensive ID be suited for parallel processing. 

This paper descnl!es the Nectar implementation of 
three applications: (1) COSMOS [4], a swirch-levcl 
circuit simulalOI' developed by Randy Bryant and his 
msociates at Carnegie Mellon; (2) NOODLES [7}, a 
solid modeling package developed by Professor Fritz 
Prinz' group In the NSF Engineering Design Research 
Center It Carnegie Mellon; and (3) a simulation or air 
pollution in the Los Angeles area, with Professor Oreg 
McRae of lhe Chemical Engineering department. 
These three applications differ both in the application 
domain and in the programming model. Being able IO 
port all these applications on10 Nectar is an indication 
of the versatility of our approach. In fact, using similar 
melhodologies several other large applications., not 
reported in this paper, have been successfully ported IO 
Nectar by resean:hm at Canegie Melkln. These 
include a parallel solid modeUer rrom Univasity of 
Leeds (called Mistral-3), distributed algorithms of 
finding exact solutions of lrllVClling salesmai problems. 

- and a chemical flowsheeting simulation. 

The stralegy used to parallelize these applications i.1 
to maintain lhc serial code as much as possible, and IO 
isola1e communication and synchroniz.ation in a f~ 
routines. This approach simplifies lhe porting eITOd. 
We are in progress_ of developing libraies l"3t provide 
the communication and synchroni7Jllion support ror · 
several programming models. For applications that can 
UllC such a package, the porting effort will be limited 10 
partitiming lhe sequential code and data 81 a high level, 
which a user can do quile rasily. This methodology la 
illustrated using the lhrce application examples. 

In Section 2 we give an overview of the Nectar 
system. Our melhodology rm- parallelizing these 
applications fm- Nectar-like sysrems is described in 
Section 3. Sections 4 10 6 de,cnbe die lhtCle 
applications and show bow our melhodology is .-a in 
porting !hem mao Nocca. Summay aad concluctn1 
mnarb are am:n in Section 7. 

2. Nectar System Oveniew 
The Noc&ar system developed by Carnegie Menon is 

a multicomputer formed by linking 10gedier a ni.snber 
of aistlng machines by I ltigh-spetd network. HOSlS 
arc attached using powerful network coprocessors 
(CABs) lhat accelerate communication protocols. 
Therefore for Nectar a node is a CAB-host pair. The 
Nectar networft (Nectar-Net) consists of 100 megabits 
per second fiber-optic links and 16xl 6 crossbar 
switches (HUBs). The netwoJk supports cimlia 
switching, packet switching, mu1ti-hop routing, 111d 
multicast communication. Figure 2-1 ai1a • 
overview of the Nectar system. 

Figure 2-1: Nectar system at Carnegie Mellon 

Currently the Nectar system ha$ 26 hosts, mostly 
Sun 4 wortstations. The networt con1ains a 26 km 
Nectar conncctie11 10 a Westinghouse facility, ,.,hich 
hosts the CRAY Y-MP of lhe Piusburi;h 
Supercomputing Cerna-. The systems i:ortv.·are 
includes a CAB nm-lime systcm lhat surpons 
multiprogramming using light-weight threads (IOI and 
manages message buffers using a mailboll. m,xh:lnism. 

Besides high-bandwidth commum::auon (IOC 
, megabits/second per link), N«tar featu~.s low-btency 

/ communication. 111¢ existing Nec1ar has the folluwing 
I measured performance: the latency IO establish a 

connection through a single HUB is under o.ie 
microsecond; excluding the transmission delays oi the 
optical libers, the lalency f.-ir a message 'Still reliably 
between processes oa two CABs is undct 100 
miaoseconds; 111d 6c canesponding lalency Cor 
processel residin1 i-.1 bolt nodea is ir.der 200 



micn>seconds. 1bis higb-blndwidlh and low-lalency 
IIClwort can sus&ain lbc communlcation bandwidth 
n:quircd by nodes operalinJ ll hip speeds and allow 
COIICllmll poccssing of small-grain compulations ll 
mul&iplc nodes I I SJ. 

Ill lhe 1ml or pnxoc:ol sonware. lbe CAB cunently 
mpports ICYCllll lnlDSpOrt prolOCOla wilh different 
rdiability/ovclbcad ~ (9]. Ill panicular, -
bave implcmealcd • number of Necw-specific 
pou,cola. plus a CAB-aaident ¥Cnion of the lnlCmel 
llaDdard p-oCoCo1 TCP/IP. 

The Neciar system is used on a daily basis by botb 
applications programmers and computer science 
rcscarcbas. To flll1hcr deldop lhe Neclar technology, 
Carnegie Mclloo is MXking wilh Network S)'SICIIII 

Carporauoa to dc~lop a glgabit Neclllr l)'SlelJl capable 

of IUSlaining 1 gipbit per ICCOlld or higher speed end­
ll>Cnd aJl1llllURicali 

3. A MethodoloCJ for Parallellzln1 Larp 
Applicalions 
Implementing large applic:ations on Nectar-like 

arcb.ilec:IUres in¥0lves considerations along many 
dimcnsioDs. Thac include: parli1iooing the applical.ioo 
to exploit parallelism, mapping and disllibuting global 
dala, ensuring dala consistency, enforcing n:quired 
l)'lldu'onizati, pc,forming load balancing, and 
possibly providing fault 1'llaance for applications wilh 
long Cllecution times. Herc we describe ID 

implemenlatioo methodology lhal can simpl.ily Ibis 
mt. 1bis IIIClhodolol)' bas been succasfully used in 
lhe Nectar implemcotalioa or the lluee applicalioas 
described in the sublcquent ICC&ions. 

The basic principle is the acparalion of applkalio11 
ctJde and s,sum wde. The application code has all the 
application-specific knowledge, but does not include 
any code ldaled ID paralld poccssina. The system 
code provides c:ommuaicalioa and aynchroni7.&Lioa 
opm&ioDs aequired for lhe pa,alleliwioo oo a specific 
lldlila:an. 

Whea ,-aDclizini ID application llarting wilh a 
aerial implementalioD, lhe first step is ID partition lhe 
applicalioD ia units or wort. called ta.ru: dais co11ectioo 
of laSb mata up die ■R)licalioo c:odc. The code for 
eadl 1111k ii a aequealial JIIOllllll to be CICICIIICd 1111 a 
liDp 81:de. Udlo code for a 1111k alRady exists. it cu 

be reused in lbe parallel implementation. The next su:p 
· Is IO idcnl.ify the aynchronbalion and communication 

n:quiremenlS between lbe l8sks. Their implemenlalioa 
makes up lbe system code. 

The syllem code is a separate module wilh a clean 
inledacc 10 lhe application code. This makes it possible 
to reuse the system code when parallelizing other 
applicaliona. For the thn:c applicalions described ID · 
this papu, lhe system code was developed specificalJy 
for lbe applicalion, but we are in lhe process or 
packaging lbe system code in the form of a library that 
can be linked in by other applications. The system code 
implemenlS a specific communicalion style for the 
parallel computation in hand. For a given application, 
the programmer selects the appropriate module ror the 
system code, based on the application needs. 

This strategy for parallelizing applications based on 
strictly separating application and sysicm code has 
several advantages. Fust, it naturally supports reuse of 
existing application code. For large applications, for 
which exlenSive applicalion-specific knowledge is 
embedded in existina code, this is the only practical 
approach. The cost or rewriting and maintaining 
different vasiona of the applicalion for differcnt 
systems can be prohibitive, no maucr what the payoff in 
performance due IO parallel processing might be. Even 
if the applicalion is implemented originally on a parallel 
system, for mainlellancC reasons one would want ID 
keep most of the code sySlem independenL Second, 

&his aJ)IXOICb is not limiled ID a single communication 
model, as is shown below by the example applications. 
Different modules for sys&em code can be provided 10 

support a range of syncluoni7.ation and communicalion 
Styles. AJ mentioned earlier, the Neciar project is in the 
processing of building up a library of these modules. 

rmally, we note that by implementing the same 
system modules on different archiiecwres, porting 
applic:ationa across lhcsc an:hiiecturc:a will be easier. 
The implementalions of lbe sysaem modules on lbe 
different an:hitccturel can be optimized for the 
an:hiLcclure. For example, a system module that 
provides support for load balancing can use different 
task granularities in different implementatioas to deal 
with differences in the computation speed ID 

communication latency naio. We opect lhal dais 
approacb ID ponability will be lllOle dfcclive lhaa 
lrying IO provide compatibility al a low lewd IUdl aa 
IClld a.ad ieccive primilivea. 



An altcmativc to our task-based a!l)rOllth, lhc 
automatic: extraction of parallelism as is done 
suc:a:ssfully for FORTRAN DO-loops, is no( prac:tic:al 
for entire applications. It is unlikely that c:ompilc,s can 
clwacieriu thc way the program updarcs complex data 
structures or the complex control Dow of a substantial 
application. The task-based approach is an intermediate 
solution between aulOlllatic paralleli7.ation and 
rewriting the entire application. The programmer 
specifies the parallelism explicitly based on his or her 
underslanding of the application. Since most of lhc 
application, if not all, is executed in sequential llrctches 
of code, most of lhc application details can be ignored 
in the parallelir.ation process. 

The EXPRESS environment (14] developed at 
Caltech and Parasoft Corporation is based on a similar 
methodology. The main difference is that we tty to 
provide communication support at a higher level lhan 
that povidcd by the EXPRESS libraries which are at 
the level of SEND and RECEIVE primitives and glollal 
synchronization primitives. 

4. COSMOS: A Logic Simulation Application 
Logic simulation is both a time-<:ORSUming and a 

mcmory-inlenSivc process. For this reason. many large 
circuits cannot be simulated in their entirety m single 
a>mputen. A multicompulcr such as Nectar can solve 
the problem by linking iogether many existing system1 
IO increase both the computational power and the 
memory. 

We describe a parallel implementation of a logic 
simulator on Nectar. The simulator is COSMOS (4), a 
high-pcrlonnance logic simulator developed at 
Omcgie Mellon over the past several years. COSMOS 
Is the successor of MOSSIM [SJ, a widely used 
simulator in industry at prescnL The key feature of 
COSMOS is that it compiles the circuit into exec111able 
code, inslead of interpreting a representation of the 
circuit at run time. COSMOS first pan.ii.ions the circuit 
into a number of channel-connected subcircuits and 
derives a boolean represenlation of the behavior of each 
subcircuiL It translates this representation into C 
language evaluation procedures and dcclaralions ol data 
IUUCturcs describing the connections between tho 
111bcircui1S. nis circuit code is then compiled and 
1inbd wid& a COSMOS lr:ane1 111d mer lnlaface 11D 
pne,1te die limulatcr prosran. COSMOS runs abollt 
m order rl mqnih!de furer Ihm MOSSJM: tbe COil ia 

• relatively slow and memory-intensive 00IIIJilation 
phase. 

Circuits are simulated a cloc:1: pitas~ • a time, and • 
the beginning of each phase, exlCmal signals such u 
clocks can change. The simulation or a phase c'JOSists 
of a number of simulation :stq,:s. During eac'i step, 
subcircuits whose input signals ha~ changed si11CC the 
previous step are evaluated; for the first step or each 
phase, external signals delennine which subcircuits are 
evaluated. The simulation of a phase is finished when 
all signals IR stable, ., the number of stq,s in a ptia 
depends both on the circuit and on the input sigN'Js. 

The goal of the COSMOS implementation on Nectar, 
called Nectar-COSMOS, is to simulate lage single­
chip or mulli<hip circuit$ which can have as many u 
one million ll'lllsistors. An initial version or Necw­
COSMOS in May 1990 could alttady handle circuits 
with hlllldreds or thousands transistors. More recently, 
we have used Nectar-COSMOS lo simulate tht lalest 
design of the 650,000-uansiSUI' iWarp chip [2, 31, 
jointly developed by Carnegie Mellon and Intel. For 
the previous fabrication runs, the full-chip simubtion of 
iWarp was infeasible on any single compuicn available 
to Intel. Using Nectar-COSMOS, a full-chip simulation 
of the iWarp chip is possible. 

4.1. Mappin1 COSMOS onto Nmar 
In the Nectar-COSMOS implementation, the 

subc:ircuits are Slatically distributed ~ the Nc:wr 
nodes; the subcircuits placed on the same Necla" node 
form a unit. The connectivity information r-:,r the 
subcircuits is lsed lO delennine ,.-hat signals hav,: 10 be 
comm1D1icated between the nodes on every simulation 
step. Each node runs a copy of' the simulator, i e., the 
COSMOS code a,,responding to the subc ircuits 
assigned ID the node. Aflcr each simulation str.p, the 
node sends the OUlpul signals ID other nodes WI need 
them. A node can start on the next simulation step once 
it has received the necessary inpu1 signals from the 
other nodes. 

I 
To detect the end of a phase, distnl>uted tcrm•nalion 

dc:tcction is m1uircd, since the circuit is partition<"~ and 
no Nectar node h:ls access IO all signals. At this roint. a 
centralized alpidun Is IIICd: after a small n11111ta' ol 
steps, all nodes report ID the master, who dc:lcrinincs 
whether the dn:uit is llatllc. NOie thal cn:e the cirtui& 
is ltalJ&e. limulatioll llcpl anl WIJ las& siacc no emails 
11'11 e¥llaafed, ., doins • few a1nl mp - ., be 



aca:plablc. Nevcnhclcss, beuer algoridlms are being 
Sludied. 

Because all the nodes work on one phase at a time. 
&be simulation time for a phase is delennined by lhc 
slowest node. Then:lore. when placing subcircuits over 
Neclar nodes, it is important lhal all resulting units have 
acarly die same simulalion lime. Using sequential 
measuremenl for subcimlils, and upcrience. it is 
usually possible IO achieYC a rca,onable balance. 

In each unit, we distinguish two l)'J)CS or subcin:ui11 
-"°""""1 rwxluJu and lltUrior """"'1e1. lnltrior 
IIIOdulcs am only connec1Cd 10 subcircuits wilhin Ille 
ame unit, while boundary modules arc connccled to 
lllbcircuits in other unilS. Each Nectar node first 
simulales lhe boundary modules, since the simulation or 
lbeK subcircuils will produce results needed by othct 
DOdcs for the ncx1 simulation saep. Alier this is done, 
the host silnulalCI the inlerior module,, while lhc CAB 
aends out the results produced previously by the 
simulauoa rl the boundary modules. Thus Neclal'• 
COSMOS can lake advaruage or the CAB to overlap 
compulalioa widl communicalion, thc:n:by reducing the 
IOlal excculioa time. 

U. Resulll alld further wurk 
To cvalualc the performance or Necw-COSMOS, 

- simulaled a 30x30 maze routing chip irnplcmcnled 
using dynamic CMOS, and consisting of 170,000 
uansi.stor. Table 4-1 shows the results using dcdicaled 
Sun 4/330 hosts. A cycle consists or 4 phases, each or 
which requires about 8 51q,s to reach stability. We 
obscnc a close to linear speedup up IO 3 nodes. (Tho 
wort ol using more than 3 nodes is in progress.) Tho 
chip could not be be simulated on a single workstation 
bccauso we were not able to gencnto lhc simulalOI' duo 
to memory limitatiOIIL Based OIi lhe simulation of a 
lin&)e column oldie mazo routa, we estimalc lhal if_ 
could gCIIClale die simulalor OD the worksration, 8 

singlc-oodc simulalor MlUld like approximalely 1.32 
aeconds per cycle. 

Numba I 2 3 
olnodes 

Tamc,qde 1.320 0.676 0.474 
(SCCODds) (OSl.imalc) 

Speedup l 1.95 2.78 

TMII 4-1: Ncclar-COSMOS apecdup 
far 30lc30-- ftlUler 

Table 4-2 gives some insight in die structure or the 

maze router chip. Tho chip consists of a 30 by 30 array 
or identical cells plus a circuit for clock dislribution. In 
Nectar-COSMOS, each node gets a block of columns, 
and one node also gels the extra burden or the clock 
distribution circuiL This mapping results in a good 
balance or modules across nodes. It also has the 
advantage that most of lhe subcircuits are inrerior 
modules as indicaled in the table. Using this fact, the 
Nectar-COSMOS implemenlalion is able lo overlap 
most of its the communication overhead wilh 
simulation computation. Consequently, a node spends 
less than IO'li of its IOla1 execution lime solely on 
communication. This explains the good speedup 
observed. Note tbal this speedup is obtained in spire of 
the fact tbal there is liule activity in the maze rower 
chip. As shown in Table 4-2, lhc number of modules 
evalualed during a cycle is only about 50'li higher lhan 
the number ol modulea in the circuit. 

Number l 2 3 
ofnodc, 

Boundary - 45 40 
modules 

Interior - 19276 12884 
modules 

Module (i()300 30200 20140 
evaluations 
per cycle 

Table 4-2: 30x30 maze router analysis 

Tho results for lhc maze router chip show lhal ii is 
possible ro speed up circuit simulation osing a Nectar­
like system. However, Nectar-COSMOS can be 
communication intensive when a large of nodes are 
used, Illus limiling lhc speedup lhat can be achieved. 
Further evaluation of COSMOS on Nectar is needed, 
osing more n:al.istic circuits such as iWarp. These 
circuits have more potential parallelism, since they are 
larger and probably have more activities, but lhey have 
the drawback tbal they arc 1101 regular, thus making ii 
hanler to distribu&e them evenly across lhe network 
nodea. 

Future work will concenlrllle on finding efficient 
mappings of subcircuits ro nodes, Tradcoffs involve 
balancing lhe load, muimizing the number of inlcrior 
nodes, and minimizing communication. A 
c:omplicadm la due ID the facl that COSMOS doel not 
limulatD aubcircultl wboae inpUla have not cban&od 



since thc previous lime step. This oplimir.ation makes 
the execution time, dala dcpcndcnt, 111d ror some 
circuits this might influcnc:e how the subcin:uits should 
be mapped onto the processors. 

Even though COSMOS is a significant real 
application (about 50,000 lines of code in the COSMOS 
compiler chain and kernel), the poning of COSMOS 10 
Nectar was relatively easy. The reasons arc that the 
sequential COSMOS had already partitioned the main 
data structure (the circuit), and that the sequential 
implementation alrQdy existed on the same 
workstations that Conn the Ncdar nodes. As a result, a 
mapping when: each node runs a copy of the original 
program (a simulala), and operares on pan or the input 
data (cm:uit) is natural and required very few changes 
IO lhe original program. The only change is that the 
simulator now gets inplll signals, and returns ouq,ut 
signals in a slightly different formal 

The main effort in Nectar-COSMOS was in 
Implementing the system code that is specific to the 
parallel implementation. Its function is to communicate 
thc signals between the nodes; as much of thc work is 
done on the CAB to overlap the communication 
overhead with the processing on the CAB. It also 
supports communication between the masrcr and thc 
simulaton for initialization and lcrmination detection. 
1lie system code is implemental as a ,q,araic module. 

As mentioned earlier, an impmtant feature in Nectar­
COSMOS is that we an: able to hide thc 
communication latency by simulating the subcircuits in 
thc right order (i.e., simulate external cm:uit modulcs 
before internal ones). We hqJe that some or diese 
ca:hniques will extend to other parallel simulalillrS. 

5. NOODLES: A Geometric Modeling 
Application 
NOODLES is a geometric modeling system 

(7] developed by the NSF-sponsored Engincer;ng 
Design Research Center (EDRC) at Carnegie Mellon. 
NOODLES models objects oC diffc:rcnt dimensions u a 
collection of basic components such as vertices, edges, 
and faces. As a result, NOODLES can represent both 
real objects, and non-manifold objects, that exist only in 
abstract models and cannol be actually built. such as a 
lingle edge or zero thickness. Non-manifold objec:ls 
simplify some higher-level opentions al models, such 
as lC.1ling wheth« lT#O objecll toucb In a point (lbeir 

intenection is a vertex). Applications of NOODLES 
include iniegrated systems for eomputtt design, 
knowledge-driven manufact1nbi1ity m11lysis, and rapid 
tool manufacturing. We clescnlle a Necur 
implemenlation of NOODLES, called 
Nectar-NOODLES, developed joinlly by the EDRC 111d 
School of Computer Science• Carnegie Mellon. 

The basic operation in NOODLES is thc ,-~ 
operation. Using this operation, complic:alal objecu 
can be built by inlerSClC:ting a pair of simpler ones. The 
IIIU'ge operation does a pairwise geomettic leSl on 
components in both input objects, and it brea'a up 
components ir they intersea. 11tesc ICSIS arc ~ 
in s11Jges, depending on the type or the comparison test. 
For example, in the first Slage all vertices rL one model 
are compared with those of the other. In the sub5o:lucnt 
stages, vertices are compared with edges, llJld so on. 

Geomelric leSlS may yield updates to the databa.,e of 
thc models. These changes will influmcc the tests 10 be 
done in subsequent stages, so the computation in each 
stage depends on the results of earlier tests. For 
example, if two edges intersect. &hey wiU be rerlated 
with four non-inicnec:ting edges. which wiU be ~ in 
laicr tests. Thus, the number of teStS are dala-­
dcpcndcnt, and thc cost of the tests depends m the 
models. 

5.1. Tbt paraDtlization of'NOODL~ 
Updates in eaclt stage arc intrinsically sequcnti11 I, bia 

the geometrical tests that produce these updates can be 
pcr(ormcd in parnllcl. When mtrging two models. c:ich 
with II components, the tolal number or operations 
needed for updates is 0(11) or 0(11log11). while th1t for 
geometric tests is O (112). Thus, for large model$ with 
large 11. lhe speedup resulting from parallc'izing 
geometric lcslS can be subs1antial. The goal of N•~­
NOODLES is ID allow in1c:ractive use of NOODLES, 
even for large designs. 

Because thc execution time of 1he various ICSI.~ and 
updates in NOODLES is very much data depcndert, the 

; distribution of work across Nectar nodes is clone 
/ dynamically at runtime. Nectar-NOODLES IMCS 1 
; central load balancing strategy: a mastct node ke\:1)5 a 

central task queue. and slave nodes execute laslt., lh3t 
they receive rrom thc master. Each task consist,. oC • 
series or basic aeocnctric:a1 rats, where each basic test 
coosis1I of comparing one component of one model 
•ilh a c:Jaa of compooen11 in thc otha model., for 



cumplc. u edge ol one model with all vertices of lhe 
ocbcrmodcl. 

1bo maSlcl node bu two functions. FIISl, il manages 
&be uansilion bctwcca &be Slagcs, including the updates 
IO &be dalahasc. This (unaion is NOODLES specific 
111d runs DD lhc wortSlalioa hmL Seaind, the maslet 
DOdc IIIIDl&CS lhe dynamic load balancing during each 
mce. 1bis funclioa involving inacmode 
conunuaicMioa is IIOl spcc:iric IO NOODLES, 111d ii 
implemenlcd an Ibo CAB of die masaer node. Tho 
adVlllllp of placins lhc 115k qucuo manager oa Ibo 
CAB ii Iba& it c:an rcspoad 10 requesu faSler. it can 
llandle about 10000 aeques11 per second. The 
worblllioa of die IIIUIClr aodo operalel u • slave 

durina each stage. 

Ncciar-NOODLES canDOl rely on a Slraighlforwanl 
s-woriin& oC lhe input dala space. as wa., done in 
Ncaar-COSMOS. In ordet to accommodalc noo­
manil'old modc1s. NOODLES mes an inlricate data 
llrUclurc wilh a large number oC poinlCIS. Distributin1 
lbia dala SUUCtun: over &be Neas nodes would require 
a IDCal tewrile of NOODLES. Nectar-NOODLES 
avoids this by pving each Neciar nodo • copy ol lho 
ac,omecric modcla being merged. 

'Ille copica of lhe modeb on Ibo nodes are lccpl 
caisiaent by updatin1 all die models II lhe same time 
111d ia thc IIIIIC order. To make lhis possible, updala 
ID 1bc models arc IIOl done "on thc fly" as in lhe 
ICQueatial NOODLES, bul all updalcs arc delayed 11111il 
thc end of thc siage. When a gcomdric 1CSt indicate, 

dial an update is needed, lhe slave sends an updale 
request ID thc IIIUICI'. The DlllSICr collccq the updaces, 
and al thc end of each saagc, il sends thc list of updates 
for dial saagc to all die slaves. which use the: 
Womwioa to upda&c &heir copies oC lhe gcomcUic 
models. To allow nodes ID ,end updates 10 each other, 
global IIIIIICS WCR added IO each entry in lhc 
NOODLES database. Tbc NOODLES wdc was not 
changed: i& still opc,alCI on i&s original cla&a 11n1eun 
min& local poilllel1 (whicb can be different on all lho 
aodel). The ll'allSlalion bctweca local poinun and 

&lobu --. is done Illini a &able lookup al Ibo 
ia&aface betwcca NOODLES and the: l)'SICm code. 

It is inlaatiAJ IO IIOIC dial an implcmcnlatioa of 
NOODLES on a sbamkaaDory pmllel processor 
would pobably bavc die same IIIIICIIR u Ncciar­
NOODI ES lla:aao al Ibo mmplexity ol Ibo dl&a 

Sll'UCUU'CS, it would not be ~Sible IO upda1c the 
dalabasc while other nodes are doing geometric ICSIS. 
Tbc shared-memory implcmcnlation would have IO 
baleb updaLcS between the ICSting stages in exactly lhe 
same way as Nectar-NOODLES docs. The main 
benefit of a ~ mcmcxy implernenw.ion would be 
dial die updates c:ould be done by a single node, which 
is slightly simpler than lmadcasting an updalc request 
10 all die slavca. 

Tbc structure of Nectar-NOODLES lends ilSCU well 
IO a robust implcmcnlalion. If a slave node goes down 
during a r.sslon, no information Is lost. The l1Wll2' can 
simply reissue the task that slave was working on to one 
of the iemainins slaves, and lhc session can continue 
willlout inlCmlption. lbis 5hould make it pouible to 

use a luge number of nodes reliably, allhough the: 
nwtcr would of course remain a single point of failure. 
In the currerx implcmenlatioa, we have not ya 
implemented lhi1 robust scilemc, although die master 

docs ignore nodes that do not respond durin1 
initializalioo. 

5.2.Results 
Table 5-1 sboWI die speedup for N~iar-NOODLES 

merging 1WO models, each consistina or two sphc,es. 

Each oC lhc models has abou1 3500 componcncs. Tbc 
bosls are dcdicau:d Sun 4(330 wakslalions. Tho 

speedup is relative IO a single-node Ncclar-NOODLES. 
11le difTcrenc columns show thc results for various last 
siz.c:s, s&aning widl I lest per wk IO 30 lcsls pee task. 

11le size ol a ICsl ranges from 3 milliseconds in die 
caly aages to • high as SO-ISO milliseconds in die 
laiu 51agcs (6 milliseconds average). We observe a 
similar speedups for all wk sizes. Even wilh one lest 

pee packcl, we do not obscnrc any degradation of 
pc:donnance. 11le Nectar Del and die load balancer are 
fast enough to support tasks as &mall as a few 
milliseconds. AJ thc &ask size increases, thc speedup 
drops slighlly, and lhis effect becomes stronge, as die 
number ol nodes increases. 11le reason is lhat die load 
balancin1 bccomea less dTectivc in the laier stage,, 
which have a smaller number of larger tasks. 

The single node version of Nectar-Noodlc.1 is almost 
30'JI, slower lhan die sequential Noodles, because some 
of lhc gcomelric ICslS may be pccf'onncd more than 
· once in the: parallel implernenation. This duplicalion 
happens because updalca IO thc dalahasc are delayed 

until lhe cod of each llago and as a result possible 
raSundut q,entiml 8111 110C clcleUid in limo. 1biJ 



Number I s 10 IS 30 
of nodes 

2 1.94 1.93 1.92 UK) 1.89 

3 2.83 2.81 2.81 2.79 2.75 

4 3.61 3.62 3.60 3.54 3.47 

5 4.40 4.38 4.33 4.29 4.17 

6 5.15 5.10 5.04 4.94 4.75 

7 5.84 5.78 5.71 5.54 5.35 

8 6.40 6.38 6.27 6.(11 5.76 

Table 5-1: Necw-NOODLES speedup for different 
la5k si7.cs (cxpesscd in tcSU per laSk) 

illUSllaleS a diffu:ulty ill parallelizing code lhal 11SC1 

complex data structures. A parallcl implementation oC 
NOODLES on I shared memory machines would have 
the same problem. 

AJ in lhc case of COSMOS, NOODLES was mapped 
onto Nectar by running a version oC the sequential 
program on every node. Again, very few changes had 
to be made to lhc existing code, thus simplifying the 
porting of this relatively large application, which bas 
about 12,cxx, lines or code. Almost all the code thaa is 
specific IO the parallel implcmenialion is in a scpara1e 
module. Because of lhc complexity of lhc dala 
suuc1urcs, the dala could not be partitioned, but had to 
be rcplicaled, lhus loosing one or lhc bcocJl&s of using a 
multicomputer (IIIOR memory). The low 
communication lalCney oa Nectar made dynamic load 
balancing very cll'ectivc, even for relatively small cask 
sizes. 

5.3. Buildin11 a load balancln11 package 
We arc cwrcmly in die i-occss or implementing the 

load balancing code lhat was developed for Ncccar­
NOODLES as a separate package. AJ a ~iration 
of the usefulness or using such an application• 
indcpcndcnl. package, a ilCCOlld application, ray tracing, 
bas been por1ed very quickly to Nectar using this 
package. This application allows us IO evaluate the 
load balancing packet with smaller packet sizes. 

Table 5-2 shows lhc results. The application consists 
of 1024 laSks, each raking about 400 microseconds; lhc 
sequential pan of lhc code lakes liUlc lime (about a 
millisecond). We notice thaa lhc speedup CIIMI flauens 
• abou& 5 IIOdca wilh a speedup oC 4, 1bis shows lhc 
liadcacioo1 of a ceall'al load balanciag scheme: the 
1111111a DOdc C11D baDdle a aew requcSl about every 100 

Number Time Speedup 
of nodes (seconds) 

I 0.427 1.00 

2 0.208 2.05 

3 0.142 3.01 

4 0.120 3.55 

s 0.105 4.07 

6 0.100 4.2.5 

7 0.098 4.34 

Table 5-2: Speedup for ray tracing application 
using Noodles load bala.rK:ing package 

microseconds, so lhe minimal excculion lime is aboul 
100 milliseconds for an applicalion with 1000 lasks. 
Usins more nodes will require a coarser partitioning of 
the problem and a larger problem. 

6. Simulalion or Air Pollution In Los Angeles 
Flow field problems, MiCh as wealhcr forecasting and 

tracking or spills, arc computationally intensive and can 
benefit from parallel poccssing. As a first step, we 
have implemented a parallel program on Nectar 'Ylhich 
tracks pollutant particles in lhe aunospherc of lhc Los 
Angeles area. TIie inpul to lhc program arc lhe wind 
velocities recorded at 67 weather scations around the 
Los Angeles (LA) ■tea once every hour. The pn,gram 
calculalcs lhc traces of pollutant particles that arc 
released in some initial locations. 

Computing lhc particle traces given lhc wind 
conditions is • 1wo phase process. The first :phase 
consisis or computing lhc wind velocity at c:ich point of 
a IIOx30 grid on the geographic area concerned, for 
every hour, givco lhc measuremenis from lhe wealhcr 
lwions and precomputed weights. This problem 
Involves interpolating from lhe measun:mcnts. as well 
as solving lhe conservation of mass cquar.ioos acro,s the 
arid. In the SCCOlld phase, each particle i<; tracked as it 
moves about lhc arid; this requires an intcrpOlatioo in 

' both space and time. TIie time sacp u!Cd in lhis phase is 

/ 30 seconds. 
6.1. Parallel impltmtntatiou onr Ntctar 

When partitioning this program over Ncciar, we tried 
IO mainlain lhc SUIICtwc and code of lhe original 
sequential program as much as possible. In the first 
phase, a &ask consists of calculating lhc wind velocities 
al each poin& ia lhc arid for a gi- bour. The second 



phase is parallelized by partitioning the puticlcs among 
the processor. each proces.w ll'IICb !he motion or a set 
or particles for !he duration or !he simulation. The two 
phases are pipelined: while 101ne proccsos .-e lnlCing 
particles at time T. other processors are caJculaling 1he 
wind velocities for !he following few houn. In the 
initial implementation, load balancing was done 
statically. the hours and particles were divided among 
lhc processors before computation begins. 

,.z. Results and enluallon 
Table 6-1 shows the results for parallelizing the 

particle tracking on Nectar using I. 2, 3, 4. 6 and 8 
nodes. Again. the hosts are dedicaled S111 4/330 
workstations. 

Number nme Speedup 
of nodes (seconds) 

I 125 1.0 

2 65 1.9 

3 44 2.9 

4 34 3.7 

6 23 5.4 

8 19 6.6 

Table 6-1: Speedup for LA potlulion simulation 

The speedup shown in lhc table arc encouraging, but 
otinc-e lhe distribution of wort is done statically, 
performance degrades quickly if lhc load on lhc 
(shared) nodes changes during lhc execution. To avoid 
lhis degradation, we are cuncnlly implementing 
dynamic load balancing for both phases. For lhc first 
~. proccsson receive lhc next hour to be simulated 
from a master. This gives good performance except 
that slow nodes might make lhc latency between lhc 
two phases too large; for this reason. lhc masler should 
replace nodes that are too slow. For !he second phase. a 
load balancing process monlton lhc progress of each of 
the phase two processors. and moYCS partlclcs from 
slow processors to fast processors. if lhc difference in 
simulated lime on the slaves becomes IOO large. If lhc 
network environment does not change. each slave will 
trace its particles wilh minimal disruption by the load 
balancer. 

The ccxnmunicalion bandwidth of this application 
increases linearly a more proceaoo ■n1 added ID the 
IJS(enl, since emy processor in lhc accond phase must 
br,e all die infonnatioa c:ampuled b)' the pocesscu la 

thc rn phase. Because we use !he Nectar (hardware) 
multicast facility between phases one and two, the • 
communicalion overhead per simulated hour remains 
constant for each node. Eventually. the constant 
comnnmication oYahead will limit the nmnber or 
nodes that can be used effeclively for a fixed problem 
size. 

The total number or bytes sent can be reduced by 
using a new mapping in which the grid is partitioned 
across the processors. For nm phase, each processor 
calculates the wind velocities for its part or the grid, for 
all houn, I.e., we partition in space instead of in time. 
For the second phase. each processor traces the 
particles in its area at any given lime, i.e., we divide the 
area instead or the particles. This mapping significantly 
reduces the commmicalion requirements, but ii has 

several disadvantages. F'ust. it require more fine­
grained interactions between the processors working on 
the same phase: for phase one, processors have ID 
interact when solving the conservalion of mass 
equations, while for the second phase. communication 
is needed when particles mm the partitioning 
boundaries. 

Secoltd, this mapping is more complicated ID 

implement. because the structure of lhe program is 
changed more dramatically: we are parallelizing over 
an innerloop, while lhc first mapping parallelw:d over 
the outcrloop. Third. load balancing becomes much 
more difficulL Not only is die workload in the second 
phase no longer stalic. bul moving work between 
processors u pan of a dynamic ·1oad balancing strategy 
Is much more complex. 

The LA simulation program is an example of a 
medium si7.e static application (2500 lines of 
FORTRAN). Our implementation shows that a very 
simple mapping that preserves the program structure is 
the most appropriate for a network cnvironmenc theie 
ls a good match between lhc resulting coarse-grained 
parallelism and an archirecture with a small number of 
powerful nodes. Finer-grain parallelism should be 
exploited in more lightly coupled multiprocessors. Le., 
inside a node of thc multicomputer. We plan to wort 
on this type of hierarcbical decomposition using more 
accm'Me limulalion pognms and using IWap am:,a 
cannet1ecl by Nectar• the eomputing eqinea. 



7. Summary and Concluding Remarks 
A!I demonsttated by the Nectar implementation of lhe 

dee applications dellrn'bed in the paper, it is now 
• posst'blc to parallelize some applications which were 

100 complex or IOO large for previous puallel 
processing approaches. The two faclOrS lhat make this 
possible are the emerging class or network-based 
multicomputers such as Nectar and a systematic 
approach to parallelizing large applications. 

Because Nectar uses existing general-purpose 
computerS as nodes, parallelized applications can make 
immediate use of system 11>ftwan: and application code 
lhat are already exist for these computel'S. Using 
existing systems u nodes also has the advantage that 
users can wort in • familiar environment, for example. 
I UNIX workstation. A!I • result, in spite or the high 
complexity of the applications described in the paper, 
the implementation of them on Nectar has taken 
relati"JCly little effort. · 

An important n:quirement for networt-bascd 
mullicompuiers is good network pmormance. The 
bandwidth and latency characteristics of Nectar, for 
example, are similar to those or the current generation 
custom-made multicomputers. Because of these 
features, !here is I large class of applications for which 
intemode communication is no longer boUlcneck, and 
parallelization over a network becomes practir;al, as ia 
demonstrated in the NOODLES and LA pollution 
simulation applicalions. The programmer does not 

need IO wony too much about communication 
ovc:rflauls in doing load balancing. This is I l'C3Dl 

why it has been relali"JCly easy to achie"JC good 
speedups ror the parallelized applications. 

Our approach to parallelizing large applications 
emphasizes the use or existing application code and the 
development of general supports for large-grain 
paralleli7.ation. Most or the application code should be 
an:hiloc111re independent, and the sysicm code that 
implements synchroni7.ation and communication may 
be rcmed. Our goal is IO provide applications with 
programming support 11 a higher level lhan sends. 
receives, •d low-level synchronization primiliw:s. 
This effort complemcnlS other existing efforts al 
providing general IUpporll t'cJr p...itclizing kernels "' 
computation for moro tightly coupled mullip,oceaan. 
The c:ombincd capability wiD lignif"ICllltly illCffllO Ibo 
applicability of parallel pmceaina. we.,..._ 

HoweYCf, much wort needs IO be done in SIIJIPOl1 ol 
Ibis new opportunity. especially in the an:a vi I00I 
building. We plan IO undertake mme ol this wort in 
the near future. Resuks rcpor1Cd ID lhis paper should be 
Yicwed as a pmgres.1 report al oir effats in the 
important aiea of providing general S11J1P011 fer 
parallelizing large applications. 
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