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Abstract

Several large applications bave been parallelized
om Nectar, a network-based multicomputer recently
developed by Carnegie Mellon. These applications
were previously either 0o large or too complex to be
easily implemented on distributed memory parallel
systems. Parallelizing these applications was made
possible by the cooperative use of many existing
general-purpose computers over high-speed
metworks, and by an implementation methodology
based on a clean separation between application-
specific and system-specific code, We illustrate
these points using our experience with parallelizing
three real-world applications. The success in these
applications clearly points out a mew direction in
parallel processing.

1. Introduction

Paraliclizing large applications is a key concem for
rescarchers in paralle]l processing. These applications
typically involve large bodies of code, have substantial
computation and memory requirements, and are of
practical importance. If paralicl architectures are to
become widely uscd, posting such applications 10
paralle] systems ought to be a routine activity.

There sre numerous individual efforts in porting
large applications onto various parallel sysicms, In
most cases, the application is either developed
specifically for the parallcl machine, or it is almost
compleicly rewriticn 1o exploit the fcatures of a specific
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parallel architecture. In both cases, the efforts require
that the persons responsible for the posting arc
intimately familiar with the applications. Since large
applications tend o involve substantial application-
specific knowledge, this implics that ofien only
application scientists themselves can do the porting.
This definitely is not the best way of using their time,
and as a result, many large applications have never been
implemented on parallel machines.

What we need are parallel architectures and
progranming tools to provide direct and general
support for parallelizing large applications. These tools
should be at a higher Jevel than send and reccive
primitives, or synchronization or shared data primitives.
The objective is to be able to port large applications
onto parallel machines without having to re-crealc the
application code that caplures the application
knowledge.

Various resecarch efforts have attempted to provide
help in this area. Parallclizing compilers have some
success in avoiding the rewrite of application code, but
they deal mainly with inner-most loops rather than
entirc applications. Some projects have started to
address parallel processing for large applications, but
the solutions are cither very ad hoc [8), or the
application area is restricted. The work on LINDA
[6,11], for example, has provided tools capable of
using existing application code, but their usage is
restricied to applications satisfying a special
compulation model. Some programming environments
such as /ELLPACK{13] support high-level
descriptions for specifying applications in centain
specialized arcas, and allow new applications 1o use
software and algorithms that were developed carlier for
similar applications. Other work has concentrated on
specific application areas such as vision {12, 16] or
compulations using triangular meshes [17].



The Nectar system [1] developed by Camegie Mellon
is inlended to provide gencral support for paraliclizing
large applications. The system is a multicomputer built
around a high-specd neiwork., The use of exisling
general-purpose computers as its nodes and the high-
bandwidth and low-latcncy network makes the system
inherently suited for large applications. The system has
allowed us to parllelize applications that were
previously cither too complex or too communication-
intensive to be suited for parallel processing.

This paper describes the Nectar implementation of
three applications: (1) COSMOS [4], a switch-level
cireuit simulator developed by Randy Bryant and his
associates at Carnegie Mellon; (2) NOODLES [7), a
solid modeling package developed by Professor Fritz
Prinz' group in the NSF Engineering Design Research
Center at Camegie Mellon; and (3) a simulation of air
pollution in the Los Angcles area, with Professor Greg
McRae of the Chemical Engineering department.
These three applications differ both in the application
domain and in the programming model. Being able to
port all these applications onto Nectar is an indication
of the versatility of our approach. In fact, using similar
methodologies several other large applications, not
reported in this paper, have been successfully ported to
Nectar by rescarchers at Camegie Mellon, These
include a panallel solid modeller from University of
Leeds (called Mistral-3), distributed algosithms of
finding exact solutions of travelling salesman problems,
and a chemical flowsheeting simulation.

The stralegy used to parallelize these applications
to maintain the scrial code as much as possible, and 10
isolate communication and synchronization in a few
routines. This approach simplifics the porting effort.
We are in progress of developing librarics that provide

the communication and synchronization support for

several programming models. For applications that can
use such a package, the porting effort will be limited to
partitioning the scquential code and data at a high level,
which a user can do quile easily. This methodology is
illustrated using the three application examples.

In Section 2 we give an overview of the Nectar
system. Our methodology for parallelizing these
applications for Nectar-like systems is described in
Scction 3. Sections 4 0 6 describe the three
applications and show how our methodology is used in
pocting them cnto Nectar. Summary and concluding
remarks are given in Section 7.

2. Nectar System Overview

The Nectar system developed by Camegie Mellon is
a multicomputer formed by linking together a number
of existing machines by a high-speed network. Hosts
are attached using powerful network coprocessors
(CABs) that accelerale communication protocols.
Therefore for Nectar a node is a CAB-host pair. The
Nectar network (Nectar-Net) consists of 100 megabits
per second fiber-optic links and 16x16 crossbar
switches (HUBs). The network supports circuit
switching, packet switching, multi-hop routing, and
multicast communication.  Figure 2-1 gives an
overview of the Nectar system,
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Figure 2-1: Nectar system at Carnegie Mellon

Currenty the Nectar system has 26 hosts, mostly
Sun 4 workstations. The network contains a 26 km
Nectar connccticn t0 a Westinghouse facility, which
hosts the CRAY Y-MP of the Piushurgh
Supercomputing Center.  The systems  software
includes a CAB run-time system that suppons
multiprogramming using light-weight threads [10] and
manages message buffers using a2 mailbox mechanism.

Besides  high-bandwidth communication (100
megabits/second per link), Nectar featuses low-latency
communication, The existing Nectar has the following
mcasurcd performance: the latency 1o establish a
conncction through a single HUB is under ome
microsecond; excluding the transmission dclays of the
optical fibers, the latency for a message sent reliably
between processes oa two CABs is under 100
microscconds; and the conesponding latency for
processes residing i1 host nodes is onder 200



microseconds. This high-bandwidth and low-latency
network can sustain the communication bandwidth
required by nodes operating at high speeds and allow
concurrent processing of small-grain computations at
multiple nodes [15].

In the area of protocol software, the CAB currently
supports several transport protocols with different
reliability/overhcad trade-offs [9]. In particular, we
have implemented a number of Nectar-specific
protocols, plus a CAB-resident version of the Internet
standard protocol TCP/IP.

The Nectar system is used on a daily basis by both
applications programmers and computer science
rescarchers. To further develop the Nectar technology,
Camegic Melion is working with Network Sysiems
Corporation 10 develop a gigabit Nectar system capable
of sustaining 1 gigabit per second or higher speed end-
to-end communication,

3. A Methodology for Parallelizing Large

Applications

Implementing large applications on Nectar-like
architeciures involves considerations along many
dimensions. These include partitioning the application
10 exploit parallelism, mapping and distributing global
data, ensuring data consistency, enforcing required
synchronization, performing load balancing, and
possibly providing fault tolcrance for applications with
long execution times. Here we describe an
implementation methodology that can simplify this
task. This methodology has been successfully used in
the Nectar implementation of the threc applications
described in the subsequent sections.

The basic principle is the scparation of application
code and system code. The application code has all the
application-specific knowledge, but does not include
any code relaled to parallel processing. The system
operations required for the parallelization on a specific
architecuure.

Whea penaliclizing an application starting with a
serial implementation, the first step is to partition the
application in units of work, called tasks; this collection
of tasks makes up the application code. The code for

each task is a sequential program o be execuled on a
singie mode. If the code for a task already exists, it can

be rcused in the parallel implementation. The next step
is to idenlify the synchronization and communication
requirements between the tasks. Their implementation
makes up the system code.

The sysiem code is a scparate module with a clean
interface 0 the application code. This makes it possible
to rcuse the system code when panallclizing other
applications. For the three applications described in
this paper, the system code was developed specifically
for the application, but we arc in the process of
packaging the system code in the form of a library that
can be linked in by other applications. The system code
implements a specific communication style for the
parallel computation in hand. For a given application,
the programmer sclects the appropriate module for the
system code, based on the application needs.

This strategy for parallelizing applications based on
strictly scparating application and systcm code has
several advantages. First, it naturally supports reuse of
existing application code. For large applications, for
which extensive application-specific knowlcdge is
embedded in existing code, this is the only practical
approach. The cost of rewriting and maintaining
diffesent  versions of the application for differemt
systcms.can be prohibitive, no matter what the payoff in
performance due to parallel processing might be. Even
if the application is implemented originally on a parallel
sysiem, for maintenance reasons onc would want to
keep most of the code gystem independent. Second,
this approach is not limited to a single communication
model, as is shown below by the example applications.
Different modules for system code can be provided 1o
support a range of synchronization and communication
styles. As mentioned carlier, the Nectar project is in the
processing of building up a library of these modules.

Finally, we note that by implementing the same
system modules on different architectures, porting
applications across these architeclures will be easier.
The implementations of the sysiem modules on the
different architectures can be optimized for the
archilecture. For example, a system module that
provides support for load balancing can use different
task granularities in different implementations to deal
with differences in the computation speed o
communication latency ratio. We expect that this
approach 10 porability will be more eflective than
trying to provide compatibility at a low level such as
scnd and receive primilives.



An aliemative to our task-based approach, the
automatic extraction of parallelism as is done
successfully for FORTRAN DO-loops, is not practical
for entire applications. It is unlikely that compilers can
characicrize the way the program updates complex data
structures or the complex control flow of a substantial
application. The task-based approach is an intermediate
solution beiween automatic paralielization and
rewriting the entire application. The programmer
specifies the parallelism explicitly based on his or her
understanding of the application. Since most of the
application, if not all, is executed in sequential stretches
of code, most of the application details can be ignored
in the parallelization process.

The EXPRESS cnvironment [14] developed at
Caltech and Parasoft Corporation is based on & similar
methodology. The main difference is that we try to
provide communication support at a higher level than
that provided by the EXPRESS libraries which are at
the level of SEND and RECEIVE primitives and global
synchronization primitives,

4. COSMOS: A Logic Simulation Application

Logic simulation is both a time-consuming and a
memory-intensive process. For this reason, many large
circuits cannot be simulated in their entirety on single
compulers. A multicomputer such as Nectar can solve
the problem by linking together many existing systems
1o increase both the computational power and the
memory.

We describe a parallel implementation of a logic
simulator on Nectar. The simulator is COSMOS [4), a
high-performance logic simulator developed at
Carnegie Mellon over the past several years. COSMOS
is the successor of MOSSIM (5], a widcly used
simulator in industry at present. The key feature of
COSMOS is that it compiles the circuit into executable
code, instead of interpreting a rcpresentation of the
circuit at run time. COSMOS first partitions the circuit
into a numbcr of channel-connected subcircuits and
derives a boolean representation of the behavior of each
subcircuit. It translates this rcpresentation into C
language evaluation proccdures and declarations of data
structures  describing Lhe connections between  the
subcircuits. This circuit code is then compiled and
linked with a COSMOS kemel and user interface to
generate the simulator program. COSMOS runs sbout
an order of magnitude faster than MOSSIM; the cost is

a relatively slow and memory-iniensive compilation
phase,

Circuits are simulated a clock phase st a time, and at
the beginning of each phase, extemnal signals such as
clocks can change. The simulation of a phase consists
of a number of simulation steps. During each step,
subcircuits whose input signals have changed since the
previous step are evaluated; for the first stcp of each
phase, external signals determine which subcircuits are
evaluated. The simulation of a phase is finished when
all signals are stable, 30 the number of steps in a phase
depends both on the circuit and on the input signals.

The goal of the COSMOS implementation on Nectar,
called Nectar-COSMOS, is to simulate large single-
chip or multi-chip circuits which can have as many as
one million transistors. An initial version of Nectar-
COSMOS in May 1990 could already handle circuits
with hundreds of thousands transistors. More recently,
we have used Nectar-COSMOS 1o simulate the latest
design of the 650,000-transistor iWarp chip (2,3},
jointly developed by Camegie Mellon and Intel. For
the previous fabrication runs, the full-chip simulation of
iWarp was infeasible on any single computers available
to Intel. Using Nectar-COSMOS, a full-chip simnlation
of the iWarp chip is possible.

4.1. Mapping COSMOS onto Nectar

In the Nectar-COSMOS implementation, the
subcircuits are statically distributed over the Nectar
nodes; the subcircuils placed on the same Nectar node
form a unit. The commectivity information for the
subcircuits is used o determine what signals have 10 be
communicated between the nodes on every simulation
step. Each node runs a copy of the simulator, i e., the
COSMOS code corresponding t0 the subcircuits
assigned to the node. After each simulation strp, the
node sends the output signals o other nodes that need
them. A node can start on the next simulation step once
it has received the necessary input signals from the
other nodes.

To detect the end of a phase, distributed termination
detcction is required, since the circuit is partitioncd, and
no Nectar node has access to all signals. At this point. 8
centralized algorithm is used: afier a small number of
steps, all nodes repoct (o the master, who deicrmines
whether the circuit is stable. Note that once the circuit
is stable, simulation steps are very fast since no circuits
are evaluated, 0 doing a few extra steps seems 0 be



acceptable. Nevertheless, better algorithms are being
studied.

Because all the nodes work on onc phase at a time,
the simulation time for a phase is determined by the
slowest node. Thercfore, when placing subcircuils over
Nectar nodes, it is important that all resulting units have
ncarly the same simulation time. Using scquential
measurement for subcircuits, and experience, it is
usually possible 10 achicve a reasonable balance.

In each unit, we distinguish two types of subcircuits
~boundary modules and interior modules. Interior
modules are only connecied to subcircuits within the
same unit, while boundary modules are connected 10
subcircuits in other units. Each Nectar node first
simulates the boundary modules, since the simulation of
these subcircuits will produce results neceded by other
nodes for the next simulation siep.  Afier this is done,
the host simulates the interior modules, while the CAB
sends out the resulis produced previously by the
simulaiion of the boundary modules. Thus Nectar-
COSMOS can take advaniage of the CAB to overlap
compuwiation with communication, thereby reducing the
total execution time.

4.2. Results and further work

To evaluaie the performance of Nectar-COSMOS,
we simulatied a 3030 maze routing chip implemented
using dynamic CMOS, and consisting of 170,000
transistor. Table 4-1 shows the results using dedicated
Sun 4/330 hosts. A cycle consists of 4 phases, each of
which requires about 8 sicps to reach stability. We
observe a close to lincar speedup up to 3 nodes. (The
work of using more than 3 nodes is in progress.) The
chip could not be be simulated on a single workstation
because we were not able to generate the simulator due
t0 memory limitations. Based on the simulation of a
single columna of the maze router, we estimate that if we
could generale the simulator on the worksiation, 8
single-node simulator would take approximately 1.32
seconds per cycle.

Number 1 2 3
of nodes
Time/cycle 1320 0.676 0474
{scconds) (estimate)
Speedup 1 195 278
Table 4-1: Neciar-COSMOS speedup
for 3030 mass rower

Table 4-2 gives some insight in the structure of the
maze router chip. The chip consists of a 30 by 30 array
of identical cells plus a circuit for clock distribution. In
Nectar-COSMOS, cach node gets a block of columns,
and one node also gets the extra burden of the clock
distribution circuit. This mapping results in a good
balance of modules across nodes. It also has the
advantage that most of the subcircuits are interior
modules as indicated in the table. Using this (act, the
Nectar-COSMOS implementation is able 10 overlap
most of ils the communication overhead with
simulation computation. Conscquently, a node spends
less than 10% of its total execution time solely on
communication. This explains the good speedup
observed. Note that this speedup is obtained in spite of
the fact that there is little activity in the maze router
chip. As shown in Table 4-2, the number of modules
evaluated during a cycle is only about 50% higher than

the number of modules in the circuil.
Number 1 2 3
of nodes
Boundary .- 45 40
modules
Interior - 19276 12884
modules
Module 60300 30200 20140
evaluations
percycle

Table 4-2: 30x30 maze router analysis

The results for the maze router chip show that it is
possible to speed up circuit simulation using a Nectar-
like system. Howecver, Nectar-COSMOS can be
communication intensive when a large of nodes are
uscd, thus limiling the speedup that can be achieved.
Further evaluation of COSMOS on Nectar is needed,
using more realistic circuits such as iWarp. These
circuits have more potential parallelism, since they are
larger and probably have mare activities, but they have
the drawback that they are not regular, thus making it
harder to distribute them evenly across the network
nodes,

Future work will concentrale on finding efficient
mappings of subcircuits (o nodes. Tradeoffs involve
balancing the load, maximizing the number of inierior
nodes, and minimizing communicalion. A
complication is due o0 the fact that COSMOS does not
simulate subcircuits whose inputs have mot changed



since the previous time step. This optimization makes
the exccution time, data dependent, and for some
circuits this might influcnce how the subcircuits should
be mapped onto the processors.

Even though COSMOS is a significant real
application (about 50,000 lines of code in the COSMOS
compiler chain and kermncl), the porting of COSMOS to
Nectar was relatively easy. The rcasons are that the
sequential COSMOS had already partitioned the main
data structure (the circuit), and that the sequential
implementation alrcady existed on the same
workstations that form the Nectar nodes. As a result, a
mapping where each node runs a copy of the original
program (a simulator), and operalcs on part of the input
data (circuit) is natural and required very few changes
to the original program. The only change is that the
simulator now gets input signals, and returns output
signals in a slightly different format.

The main effort in Neclar-COSMOS was in
implementing the system code that is specific to the
parallel implementation. Its function is to communicate
the signals between the nodes; as much of the work is
done on the CAB to overlap the communication
overhead with the processing on the CAB. It also
supports communication between the master and the
simulators for initialization and termination detection.
The system code is implemented as a separate module.

As mentioned earlier, an important feature in Nectar-
COSMOS is that we arc able to hide the
communication latency by simulating the subcircuits in
the right order (i.e., simulate extemal circuit modules
before internal ones). We hope that some of these
techniques will extend to other parallel simulators.

5. NOODLES: A Geometric Modeling

Application

NOODLES is a geometric modcling system
[71 developed by the NSF-sponsored Engincering
Design Research Center (EDRC) at Camegie Mcllon.,
NOODLES models objects of diffcrent dimensions as a
collection of basic companents such as vertices, edges,
and faces. As a result, NOODLES can represent both
real objects, and non-manifold objects, that exist only in
abstract models and cannot be actually built, such as a
single edge of zero thickness. Non-manifold objects
simplify some higher-level operations on models, such
as testing whether two objects touch in a point (their

intersection is a vertex). Applications of NOODLES
include integrated systems for computer design,
knowledge-driven manufacturability analysis, and rapid
tool manufacturing. We describe a  Nectar
implementation of NOODLES, called
Nectar-NOODLES, developed jointly by the EDRC and
School of Computer Science at Camegie Mellon.

The basic operation in NOODLES is the merge
operation. Using this operation, complicated objects
can be built by intersecting a pair of simpler ones. The
merge opcration docs a pairwise geometric iest on
components in both input objects, and it breaks up
components if they interscct. These tests are separated
in stages, depending on the type of the comparison test.
For example, in the first stage all vertices of one model
are comparcd with those of the other. In the subsequent
stages, vertices are compared with edges, and so on.

Geometric tests may yield updates o the database of
the models. These changes will influcnce the tests 0 be
donc in subsequent stages, so the computation in each
stagc depends on the results of earlicr tests. For
example, if two edges intersect, they will be replaced
with four non-intersecting edges, which will be used in
later tests. Thus, the number of tests are data-
dependent, and the cost of the ests depends on the
modcls.

5.1. The parallelization of NOODLES

Updates in each stage are intrinsically sequential, but
the geometrical tests that produce these updates can be
performed in parallel. When merging two models. each
with n components, the total number of operations
needed for updates is O(n) or O(nlog 1), while that for
geometric lests is O(n?). Thus, for large modcls with
large n, the spcedup resulling from  paralic’izing
geometric ests can be substantial. The goal of Nrctar-
NOODLES is to 2llow interactive use of NOODLES,
even for large designs.

Because the execution time of the various tests and
updates in NOODLES is very much data dependert, the
distribution of work across Nectar nodcs is dome

/ dynamically at runtime. Nectar-NOODLES uses a

central load balancing strategy: a master node kecps 8
central task queuve, and slave nodes execute tasks that
they receive from the master. Each task consists of a
series of basic geometrical tests, where each basic test
consists of comparing one component of one model
with a class of components in the other mode!, for



example, an edge of one model with all vertices of the
other model.

The masicr node has two functions. First, it manages
the transition between the stages, including the updates
o the databasc. This function is NOODLES specific
and runs on the workstation host. Second, the master
node manages the dynamic load balancing during each
stage. This function involving intemode
communication is not specific to NOODLES, and is
implemented on the CAB of the master node. The
advantage of placing the task queue manager on the
CAB is that it can respond W requests faster: it can
handle abowt 10000 requests per second. The
workstation of the master node operales as a slave
during each stage.

Nectar-NOODLES cannot rely on a straightforward
panitioning of the input dala spacc, as was done in
Nectar-COSMOS. In order to accommodate non-
manifold models, NOODLES uses an intricate data
structure with a large number of pointers. Distributing
this data structure over the Nectar nodes would require
a wtal rewrite of NOODLES. Nectar-NOODLES
avoids this by giving each Nectar node a copy of the
geometric models being merged.

The copics of the models on the nodes are kept
consistent by updating all the models al the same time
and in the same order. To make this possible, updates
to the models are not done ‘‘on the fly" as in the
scquential NOODLES, bul all updatcs are delayed until
the end of the stage. When a gcometric test indicates
that an updale is needed, the slave sends an update
request 0 the master. The master collects the updates,
and at the end of cach stage, it scnds the list of updatcs
for that stage to all the slaves, which usc the
information 10 update their copics of the gcometric
models. To allow nodes to send updates to cach other,
global names were added to cach entry in the
NOODLES database. The NOODLES code was not
changed: it still operates on its original data structure
using local pointers (which can be different on all the
modes). The translation betweea local pointers and
gobal names is donc using & tablec lookup ai the
interface between NOODLES and the sysiem code.

It is intcresting 10 note that an implementation of
NOODLES on s sharcd-memory parallel processor
would probably have the same structure as Nectar-
NOODLES. Because of the complexity of the data

structures, it would not be possible to update the
database while other nodes are doing geometric tests.
The shared-memory implementation would have to
batch updatcs between the testing stages in exactly the
same¢ way as Nectar-NOODLES does. The main
benefit of a shared memory implementation would be
that the updates could be done by a single node, which
is slightly simpler than broadcasting an updale request
to all the slaves.

The structure of Nectar-NOODLES lends itself well
to a robust implementation. If a slave node goes down
during a session, no information is lost. The master can
simply reissue the task that slave was working on 10 one
of the remaining slaves, and the scssion can continue
without interruption. This should make it possible to
use a Lrge number of nodes reliably, although the
master would of course remain a single point of failure.
In the current implementation, we have not yet
implemented this robust scheme, although the master
docs ignore nodes that do not respond during
initialization,

5.2. Results

Table 5-1 shows the speedup for Neclar-NOODLES
merging two models, each consisting of two spheres.
Each of the modcls has about 3500 components. The
hosts are dedicated Sun 4/330 workstations. The
speedup is relative to a single-node Nectar-NOODLES.
The different columns show the results for various task
sizes, starting with 1 test per task to 30 tests per task.
The size of a tcst ranges from 3 milliseconds in the
carly stages 10 as high as 50-150 milliseconds in the
later stages (6 milliseconds average). We observe a
similar speedups for all task sizes. Even with one lest
per packct, we do not observe any degradation of
performance. The Nectar net and the load balancer are
fast enough to support tasks as small as a few
milliscconds. As the task size increases, the specdup
drops slightly, and this effect becomes stronger as the
number of nodes increases. The reason is that the load
balancing becomes less effective in the later stages,
which have a smaller number of larger tasks.

The single node version of Nectar-Noodles is almost
30% slower than the sequential Noodles, because some
of the geometric tests may be performed more than

‘once in the parallel implemenation. This duplication

happens because updates (o the database are delayed
until the end of each stage and as a result possible
redundani operations are not deleted in time, This



Number 1 5 10 15 30

of nodes
2 194 | 193 | 192 | 190 | 1.89
3 283 | 281 | 281 | 279 | 275
4 361 | 362 | 360 | 354 | 347
5 440 | 438 | 433 | 429 | 4.17
6 5.15 | 510 | 504 | 494 | 475
7 584 | 578 | 571 | 554 | 535
8 640 | 638 | 627 | 6.07 | 576

Table 5-1: Nectar-NOODLES speedup for different
task sizes (expressed in kests per task)
illustrates a difficulty in parallelizing code that uses
complex data structures. A parallel implementation of
NOODLES on a shared memory machines would have
the same problem.

As in the case of COSMOS, NOODLES was mapped
onto Nectar by running a version of the sequential

program on every node. Again, very few changes had -

to be made lo the existing code, thus simplifying the
porting of this relatively large application, which has
about 12,000 lincs of code. Almost all the code that is
specific to the paralle] implementation is in a separate
module. Because of the complexity of the dala
structures, the data could not be pantitioned, but had to
be replicaled, thus loosing one of the bencfits of using a
multicomputer (more  memory). The low
communication latency on Nectar made dynamic load
balancing very effective, even for relatively small task
sizes.
5.3. Building a load balancing package

We are currently in the process of implementing the
load balancing code that was developed for Nectar-
NOODLES as a scparate package. As a demonstration
of the uscfulncss of using such an application-
indepeadent package, a second application, ray tracing,
has been ported very quickly to Nectar using this
package. This application allows us to evaluate the
load balancing packet with smaller packet sizes.

Table 5-2 shows the results. The application consists
of 1024 tasks, each taking about 400 microseconds; the
sequential part of the code takes little time (about a
millisecond). We notice that the speedup curve flattens
at about 5 nodes with a speedup of 4, This shows the
limitations of a central load balancing scheme: the
master node can handle 8 new request about every 100

Number Time Speedup

of nodes (scconds)
1 0427 1.00
2 0.208 205
3 0.142 i
4 0.120 3.55
5 0.105 407
6 0.100 425
7 0.098 434

Table 5-2: Speedup for ray tracing application
using Noodles load balancing package

microseconds, so the minimal execution time is about
100 milliseconds for an application with 1000 tasks.
Using more nodes will require a coarser partitioning of
the problem and a larger problem.

6. Simulation of Air Pollution in Los Angeles

Flow ficld problems, such as weather forecasting and
tracking of spills, are computationally intensive and can
benefit from parallel processing. As a first step, we
have implemented a parallel program on Nectar which
tracks pollutant particles in the aimosphere of the Los
Angeles arca. The input to the program are the wind
velocities recorded at 67 weather stations around the
Los Angeles (LA) area once every hour. The program
calculatcs the traces of pollutant particles that are
released in some initial locations,

Computing the particle traces given the wind
conditions is a8 two phase process. The first phase
consists of computing the wind velocity at each point of
a 80x30 grid on the geographic area concerned, for
cvery hour, given the mcasurcments from the weather
stations and prccomputed weights.  This problem
involves intcrpolating from the mcaswrements, as well
as solving the conservation of mass equations across the
grid. In the sccond phase, each particlc is tracked as it
movcs about the grid; this requires an interpolation in
both space and time. The time step used in this phase is
30 seconds.

6.1, Parallel implementation over Nectar

When partitioning this program over Nectar, we tried
to maintain the structure and code of the original
sequential program as much as possible. In the first
phase, a task consists of calculating the wind velocities
at each point in the grid for a given hour. The sccond



phase is parallclized by partitioning the particles among
the processor: each processor tracks the motion of a set
of particles for the duration of the simulation. The two
phases are pipelined: while some processors are tracing
particles at time T, other processors are calculating the
wind velocities for the following few hours. In the
initial implcmentation, load balancing was done
statically: the hours and particles were divided among
the processors before computation begins.
6.2, Results and evaluation

Table 6-1 shows the results for parallelizing the
particle tracking on Nectar using 1, 2, 3, 4, 6 and 8
nodes. Again, the hosts are dedicated Sun 4/330
workstations.

Number Time Speedup
of nodes (seconds)

1 125 10

2 65 1.9

3 44 29

4 4 3.7

6 23 54

8 19 6.6

Table 6-1: Speedup for LA pollution simulation

The speedup shown in the table are encouraging, but
csince the distribution of work is done statically,
performance  degrades quickly if the load on the
(shared) nodes changes during the execution. To avoid
this degradation, we are cumently implementing
dynamic load balancing for both phases. For the first
phase, proccssors receive the next hour to be simulated
from a master. This gives good performance except
that slow nodcs might make the latency between the
two phases too large; for this rcason, the masier should
replace nodes that are too slow. For the second phase, a
foad balancing process moniloss the progress of each of
thc phase two processors, and moves particles from
slow processors to fast processors, if the difference in
simulated time on the slaves becomes w00 large. IF the
nctwork environment does not change, each slave will
trace its particles with minimal disruption by the load
balancer.

The communication bandwidth of this application
increases lincarly as more processors are added to the

sysiem, since every processor in the second phase must
have all the information computed by the processors in

the first phase. Because we use the Nectar (hardware)
multicast facility between phascs one and two, the
communication overhead per simulated hour remains
constant for each node. Eventually, the constant
communication overhead will Limit the number of
nodes that can be used cflectively for a fixed problem
size.

The total number of bytes sent can be reduced by
using a new mapping in which the grid is partitioned
across the processors. For first phase, each processor
calculates the wind velocities for its part of the grid, for
all hours, i.c., we partition in space instead of in time.
For the sccond phase, each processor traces the
particles in its area at any given time, i.c., we divide the
area instead of the particles. This mapping significantly
reduces the communication requirements, but it has
several disadvantages. First, it require more fine-
graincd interactions between the processors working on
the same phase: for phase one, processors have o
interact when solving the conservation of mass
equations, while for the second phase, communication
is needed when particles cross the partilioning
boundarics.

Second, this mapping is more complicated ®©
implcment, because the structure of the program is
changed more dramatically: we are parallelizing over
an innerloop, while the first mapping parallelized over
the outcrloop. Third, foad balancing becomes much
more difficult. Not only is the workload in the sccond
phase no longer static, but moving work between
processors as part of a dynamic load balancing strategy
is much more complex.

The LA simulation program is an example of a
medium size static application (2500 lines of
FORTRAN). Our implementation shows that a very
simple mapping that preserves the program structure is
the most appropriate for a network cnvironment: there
is a good match between the resulting coarse-grained
parallelism and an architecture with a small number of
powerful nodes. Finer-grain parallclism should be
exploited in more tightly coupled multiprocessors, i.c.,
inside & node of the multicomputer. We plan 1o work
on this type of hierarchical decomposition using more
accurate simulation programs and using iWarp amays
connected by Nectar as the computing engines.



7. Summary and Concluding Remarks

As demonstrated by the Nectar implementation of the
three applications described in the paper, it is now
possibic to parallelize some applications which were
too complex or too large for previous parallel
processing approaches, The two factors that make this
possible are the emerging class of network-based
multicomputers such as Nectar and a systematic
spproach to parallelizing large applications.

Because Nectar uses existing general-purpose
computers as nodes, parallelized applications can make
immediate use of system software and application code
that are alrcady exist for these computers. Using
existing systems as nodes also has the advantage that
users can work in a familiar environment, for example,
a UNIX workstation. As a result, in spite of the high
complexity of the applications described in the paper,
the implementation of them on Nectar has taken
relatively litle effort. '

An important requircment for network-based
multicomputers is good network performance. The
bandwidth and latency characteristics of Nectar, for
example, are similar to those of the current generation
custom-made multicomputcrs.  Because of these
features, there is a large class of applications for which
intcrnode communication is no longer bottleneck, and
paraliclization over a nctwork bocomes practical, as is
demonstrated in the NOODLES and LA pollution
simulation applications. The programmer does not
need 0 worry too much about communication
overheads in doing load balancing. This is a reason
why it has been relatively easy to achieve good
speedups for the paraliclized applications.

Our approach to paraliclizing large applications
emphasizes the use of existing application code and the
development of gencral supports for large-grain
paralielization. Most of the application code should be
architecture independent, and the system code that
implements synchronization and communication may
be reused. Qur goal is 0 provide applications with
programming support at a higher kevcl than sends,
receives, and low-level synchronization primitives.
This cffort complements other existing efforts of
providing general supports for parallclizing kemels of
computation for more tightly coupled multiprocessocs.
The combined capability will significantly increase the
spplicability of parallel processing, we believe,

However, much work needs 1o be done in support of
this new opportunity, especially in the arca of tool
building. We plan to undertake some of this work in
the near future, Results reporied in this paper should be
viewed as a progress report of our efforts in the
important area of providing general support for
paraliclizing large applications.
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