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Abstract. In this work; a computational program is developed to perform stability analysis of thin-
walled profiles employing the positional formulation of the Finite Element Method (FEM). The profiles
are discretized in shell finite elements, which, unlike the traditional formulation, have position and un-
constrained vector as nodal parameters. Besides, the formulation considers a parameter corresponding to
the rate of thickness variation, which makes the kinematics of the element more general than Reissner-
Mindlin. Due to the use of unconstrained vector instead of rotation, it was necessary to use a strategy
to perform the coupling between non-coplanar elements. This coupling was accomplished by means
of a one-dimensional element connecting the end of the non-coincident vectors of a node. A nonlinear
geometric formulation of FEM is adopted, using the total Lagrangian description of the equilibrium. The
material is assumed to be elastic linear, represented by the Saint-Venant-Kirchhoff constitutive law. To
incorporate the stability analysis, a technique based on the decomposition of the stiffness matrix in the
elastic and geometric parts is used. This technique consists of determining eigenvalues and eigenvectors,
which corresponds, respectively, to buckling loads and instability modes of the resulting generalized ei-
genvalue problem. A graphical interface for the program is developed, making it easier to use. For this,
an algorithm for triangular and quadrilateral finite element mesh generation was also developed, as well
as a post-processing viewer, avoiding possible dependencies with external programs. Finally, numerical
examples are presented to validate the developed code and demonstrate the program functionalities.
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Computational tool for buckling analysis via Positional Finite Element Method

1 Introducio

O fendmeno de instabilidade estrutural ¢ caracterizado por uma mudanca abrupta da configuragfo
de um corpo para uma pequena variagfo do esfor¢o atnante, ou vice-versa. A ocorréncia deste fendmeno
estd diretamente associada a esbeltez da peca ou do sistema estrutural analisado e a intensidade de tensdes
compressivas atuantes.

Como principal exemplo de estrutura suscetivel ao fendmeno de instabilidade, destacam-se os perfis
metédlicos, usualmente empregados em construgdes civis. Esses perfis sdo em geral compostos por par-
tes foliculares planas unidas por meio de solda, denominados perfis soldados, ou compostos de chapas
dobradas, resultando nos perfis formados 2 frio.

A descri¢do matemdtica do problema da estabilidade estrutural foi inicialmente realizada por Euler
[1], o qual determinou analiticamente a expressfo da forga critica de compressdo em pilares esbeltos.
A partir de entdo diversos pesquisadores se dedicaram a este estudo, como Bryan [2], Lyapunov [3],
Southwell [4], dentre outros.

Um avango importante na teoria foi realizado por Koiter [5], que descreveu o comportamento de
estruturas de cascas cilindricas e esféricas considerando a existéncia de imperfei¢des. O referido autor
observou que a presenca de imperfeicdes alterava significativamente o valor da carga critica, explicando
assim os resultados inesperados obtidos nos experimentos realizados na época para este tipo de estrutura.
Além disso, o trabalho contemplava a andlise do equilibrio pds-critico, que originou na chamada Teoria
Assintética de Koiter.

Com o desenvolvimento dos métodos numéricos, andlises mais gerais e de cardter aproximado pu-
deram ser realizadas. Destaca-se aqui primeiramente o Método dos Elementos Finitos (MEF), que per-
mitiu um grande avango na andlise de estruturas, incluindo a possibilidade de resoluc@o de problemas
cuja solugiio analitica era de dificil ou impossivel obtengdo. Entre esses problemas, cita-se a andlise
nfo-linear geométrica, na qual a anélise de estabilidade se insere.

Além da formulagio geral do MEF para andlises de estabilidade, outras formulagdes simplificadas
também foram desenvolvidas. Em destaque estio a Teoria Generalizada de Vigas (GBT), desenvolvida
originalmente por Schardt [6], e o Método das Faixas Finitas (FSM), utilizado para andlises de insta-
bilidade inicialmente por Schafer [7]. Entre os principais trabalhos que utilizam a GBT, pode-se citar
Dinis et al. [8], Bebiano et al. [9], Gongalves et al. [10], Basaglia et al. [11, 12], dentre outros. Quanto a
utilizacfio do FSM, pode-se citar os trabalhos de Adz’my e Schafer [13, 14], Naderian e Ronagh [15], Ren-
dall et al. [16], Shojaee et al. [17], dentre outros.

Diante disso, define-se como objetivo deste trabalho a elaboragdo de um programa computacio-
nal para realizar andlises lineares de estabilidade empregando a formulagfio posicional do MEF com
utilizagio de elementos de casca. A formulagfio deste elemento finito foi desenvolvida por Coda e Pac-
cola [18, 19] e apresentou bons resultados para as analises pretendidas. Aqui, portanto, busca-se realizar

sua aplicagio para andlises de estabilidade, avancando assim nos estudos relacionados a aplicacéo do
MEFE

2 Formulagio numérica

Neste trabalho foram realizadas andlises de estabilidade para elemento finito de casca com descrigio
baseada em posigdes e vetores generalizados, ao invés dos tradicionais deslocamentos e giros. Essa
formulagio foi desenvolvida inicialmente por Coda e Paccola [18], mas apresentou problemas de trava-
mento volumétrico em decorréncia da adogo de uma lei constitutiva completa e cinemdtica de Reissner-
Mindlin. Posteriormente, Coda e Paccola [19] acrescentaram um pardmetro nodal que introduz uma taxa
de variacdo linear da espessura, flexibilizando a cinematica do elemento finito e reduzindo drasticamente
os efeitos de travamento.

Por se tratar de uma formulagio ndo-linear geométrica com descri¢fo lagrangiana total, se faz ne-
cessdrio 0 mapeamento das configuragdes inicial e atual do elemento finito de casca, conforme Fig. 1.
As funcdes de mapeamento das configurac¢des inicial e atual sdo definidas, respectivamente, como:
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nas quais Xy; corresponde a coordenada inicial 4 do n6 ¢, Yy; corresponde & coordenada atual 4 do né £, Vy;
corresponde a componente ¢ do vetor normal inicial associado ao né ¢, Gy; corresponde a componente %
do vetor generalizado atual associado aoné £, I'y, € o valor da taxa variagfo linear da espessura associada
ao né m e ¢, € a funciio de forma atrelada ao nd 4.
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Figura 1. Mapeamento das configura¢des inicial e atual a partir de um espago de referéncia adimensional

Dessa forma, pode-se determinar a fungdo mudanga de configuragdo por meio da composigéo das
fungBes de mapeamento anteriormente definidas:

—_— —>

F=flo (O 3)

Adota-se para o comportamento do material a lei constitutiva de Saint-Venant-Kirchhoff, cuja ex-
pressdo de energia especifica é fornecida como:

uezé]E:C:]E 4)

na qual E é o tensor de deformagdes de Green-Lagrange e € é o tensor constitutivo de expresséo idéntica
a utilizada na lei de Hooke.

Para a defini¢io da condigio de equilibrio utiliza-se aqui a abordagem energética. A energia
mecénica total, considerando-se problemas estaticos, fica definida pelo funcional IT = U + P, sendo
U a energia interna de deformagdo e P a energia potencial das for¢as externas. Neste trabalho considera-
se apenas forgas externas conservativas. Do principio de estacionariedade da energia mecénica, tem-se
que a condi¢do de equilibrio € dada por:

5H=6U+5P=<£+£)5?:0 (3)
8y ' 8y
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em que Y é um vetor que redne os pardmetros nodais de posicéo, vetor generalizado e taxa de variago
de espessura.

Considerando a arbitrariedade de ()Y a expressdo entre parénteses da Eq. (5) deve ser nula e re-
presenta um sistema nio-linear de dimensfo igual ao nimero de graus de liberdade correspondente a
discretizacfo adotada.

A derivada de U presente na Eq. (5) corresponde a forca interna e a derivada de P corresponde 2
for¢a externa atuante, sendo fornecidos como:

gint _ OU _ &if o = Oue a_gd A =/ 8_Edvo (6)
oy vy oy Jv, OE 5y v @ 0Y
Fea}t — _56% (7)

em que S = € : E é o segundo tensor de tensdes de Piola-Kirchhoff.

Para a resolucfio do sistema nfo-linear utiliza-se o método de Newton-Raphson, que consiste na
linearizaco do erro no equilibrio em torno de uma determinada soluco tentativa. Surge entéo a neces-
sidade da determinagdo da segunda derivada da energia de deformagfo, denominada matriz Hessiana:

0?U oE  OE ' O’
Y ® 0Y Vo Y oY Vo Y ® Y
O sistema linear a ser resolvido no processo iterativo € dado por:
H-AY =-R )

em que R = Fint _ Feat ¢ yetor desbalanceamento mecénico e AY éa corre¢do a ser aplicada em v,
inicialmente tomado igual a p051gao inicial (Y X ). O processo iterativo € repetido até que se atinja
um valor de tolerancia sobre AY e/ou F. Mais detalhes sobre esta formulagdo podem ser encontrados
em Coda e Paccola [19].

2.1 Acoplamento entre elementos ndo-coplanares

Devido & adogio de vetores generalizados ao invés de giros como pardmetros nodais, mais de um
versor normal pode ser definido nos nés situados no encontro entre elementos néo coplanares, a depender
do elemento finito analisado. Surge entfio a necessidade de se definir estratégias para contornar este
problema.

A estratégia aqui utilizada é a apresentada por Soares et al. [20], resumida a seguir. Quando o dngulo
entre os versores normais ndo coincidentes de um mesmo né for menor que um valor limite g, & admitida
a utilizacfio do versor bissetriz como dnico versor pertencente aquele né. Caso contrdrio, os versores
nZo coincidentes sdo mantidos e acoplados por meio de um elemento de penalizagdo conectando suas
extremidades.

Utilizou-se 15° para o valor limite . Para valores acima deste limite, foi adotado um elemento de
barra simples com rigidez elevada para realizar o acoplamento. Para evitar problemas de mal condicio-
namento na matriz resultante, Soares et al. [20] propuseram uma estratégia para determinar uma rigidez -
para o clemento de barra simples que levasse em consideragdo a geometria e o material presentes na
regifio do acoplamento. Isso foi realizado por meio de uma equivaléncia entre as energias de deformacio
do elemento de barra simples e do sélido que preenche o espaco de conexdo, conforme apresentado na
Fig. 2.
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() (b)

Figura 2. Equivaléncia entre energias de deformacgfo de (a) sélido que preenche o espago de conexdo e
(b) elemento de barra simples

A energia de deformac@o para o elemento de barra simples é determinada a partir da Lei de Hooke
unidimensional como:

1

1
yler — EESQAEO = ZEA’)/2 tan® 7 cosn (10)

em que £ € o médulo de elasticidade longitudinal da barra, A € a drea da secéo transversal e € € a
deformacdo linear longitudinal da barra.

Para o sélido adota-se a Lei de Hooke Generalizada e considera-se, por simplicidade, apenas o efeito
de distor¢éio na determinac8o da energia de deformacfo, que resulta em:

1 «Q
sol 212

na qual G é o médulo de elasticidade transversal do sélido b € a distincia entre dois nés consecutivos ao
longo do comprimento de conexio.

Igualando-se Eq. (10) e Eq. (11), determina-se o produto de rigidez A a ser adotado para o ele-
mento de barra simples:

EA= 2Gbh3 [’nan2 (%) sec (%)} (12)

Conforme mostrado por Soares et al. [20], a utiliza¢io da rigidez fornecida na Eq. (12) conduz a
resultados préximos aos obtidos para uma conex@o rigida, com a vantagem de n#o introduzir um mal
condicionamento ao sistema. Mais detalhes sobre a estratégia empregada podem ser encontrados em
Soares et al. [20] e Soares [21].

3 Analise linear de estabilidade (buckling)

Uma condic¢do suficiente para uma estrutura ser considerada estdvel & descrita pelo teorema de
Lagrange-Dirichlet, que afirma, segundo BaZant e Cedolin {22], que um sistema onde atuem apenas
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forgas conservativas e dissipativas € estdvel se a energia potencial possuir um minimo local. Isso ocorre
quando a segunda variagdo da energia é positiva, ou seja:

) 3 U
oQH— 5Y Wgya 15 838}/5 25YT H-5Y >0 (13)

Da Eq. (13), conclui-se que a positividade da matriz Hessiana garante a estabilidade do sistema.
Um sistema deixa de ser estdvel quando, para algum 5Y tem-se 6211 < 0. Contudo, para que o sistema
alcance uma situacfio de instabilidade, um ponto critico, no qual 62I1 = 0 para algum 6Y deve ser
ultrapassado. Isso equivale a dizer que pelo menos um autovalor da matriz Hessiana deve ser nulo,
tornando o equilibrio critico necessariamente caracterizado por:

det (H) =0 (14)

A matriz Hessiana, apresentada na expressdo Eq. (8), possui duas parcelas. Em um regime de
pequenos deslocamentos, observa-se que a primeira parcela se aproxima da matriz de rigidez linear e a
segunda parcela é diretamente proporcional ao nivel de tens@io atuante. Essas parcelas sdo denominadas
de rigidez eldstica e geométrica, respectivamente, e sdo fornecidas como:

HE:/ (QE ¢ ag >dV0 (15)
Vo \OY |P=% Y \v=x
2
HG=/<S:—_59L_, >dV0 (16)
vy oY & Y |y-%

Na anélise linear de estabilidade, a configura¢fo inicial do sistema € tomada como referéncia. Con-
siderando um regime de pequenos deslocamentos, o problema iterativo apresentado na se¢fo anterior
se reduz & resolug@o de um sistema linear. De fato, tem-se que na configuragdo inicial a tensdo € nula,
anulando-se, portanto, a matriz de rigidez geométrica H HE e a forca interna Fint A matriz de rigidez
elastica HE e a forga externa Feet niio dependem de Y. Portanto, 0 processo iterativo apresentado na
secdo 2 se resume 2 resolucfo do seguinte sistema linear:

HE . 3 = Fest (17)

em que U é o vetor de deslocamentos nodais.

Considerando que S é o tensor de tensdes na situagio de equilibrio critico, tem-se que S = )8,
sendo S o tensor de tensdes obtido a partir do vetor de deslocamentos % fornecido pela Eq. (17) e X o
fator de carga que leva ao equilibrio critico. O fator A € entdo determinado a partir da Eq. (14) como:

det (H” + XHY) =0 (18)

que remete ao seguinte problema generalizado de autovalor:

HF + ) H®) .7 =0 (19)

sendo \ agora interpretado como sendo os autovalores e U os autovetores (modos de instabilidade).
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Para a resolucio numérica deste problema de autovalor, foram utilizadas rotinas da biblioteca
ARPACK [23], dada a sua eficiéncia para operagdo com matrizes esparsas. As rotinas sdo baseadas
numa versio methorada do algoritmo de Lanczos [24], denominada Implicit Restarted Lanczos Method
(IRLM), que possui eficiéncia conhecida para diversos tipos de problemas, incluindo o de estabilidade
estrutural.

4 Programa computacional

Nesta se¢do é apresentado o programa desenvolvido, destacando-se suas principais funcionalidades.
Para a implementacfio da interface grafica, foi utilizada a linguagem Object Pascal em ambiente de
desenvolvimento Delphi.

Inicialmente apresenta-se a etapa de pre—processamento que compreende a inserc¢do das informagdes
de entrada e geracdo de malha. Em seguida comenta-se sobre a etapa de processamento, que compreende
a implementagdo computacional de todo o processo de cdlculo descrito nas se¢des anteriores. Por fim,
apresenta-se a etapa de pds-processamento, que resulta na exibi¢fio dos resultados obtidos. Para facilitar
o entendimento, essas etapas sfo apresentadas com a utilizagdo de um exemplo modelo.

A janela principal do programa desenvolvido estd apresentada na Fig. 3. Na figura, observa-se uma
drea de representagio grafica de geometria, discretizagdo e condi¢des de contorno aplicadas e uma barra
de ferramentas, com a qual & possivel a execugio de todas as funcionalidades disponiveis no programa.

€3 sPrograma Acadinsti. - a X
S X — : REU co N R : :
D 1 Lk ) P fot Al N . . ; . - i L B o ]
i 4 Mouse || Selegio de Nés ;| Selec3o de Linhas CGeomelria | Desenhar Seggo || Gerar mathg i ConligBies de Contorno ¢! Pardmetros 1)
Hova Abrir .-, Saber . L = . o : < oS > ;
! . N B i . - g Nés 1] Cargas Distribuidas i
Analisar : Ve ‘1sol . iso ¥ Iso3 Iso4 ¥4 E{:le!g:os I =
N e i . &4 Forgas Concentrada
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Figura 3. Janela principal do programa

4.1 Inser¢do de geometria, material e discretizacdo

Ao clicar no boto “Geometria”, abre-se a janela apresentada na Fig. 4. Nela é possivel inserir
as informagdes sobre a geometria da se¢fo transversal, sobre a discretizagdo e sobre o material a ser
utilizado em cada parte componente do perfil.

As seguintes propriedades do material, aqui assumido com comportamento eldstico-linear isétropo,
devem ser inseridas: médulo de elasticidade (F) e o coeficiente de Poisson (v). Com relagfo 2 geometria
da se¢do transversal, devem ser inseridos os chamados nds naturais, que sfo os pontos utilizados para
definir a forma da se¢@o. Esses pontos séo referenciados no plano YZ, sendo X o eixo longitudinal da
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peca analisada. A conectividade entre os nds naturais geram as denominadas placas ou paredes, que sdo
as partes componentes do perfil. A essas placas atribui-se material, espessura e ndmero de divisdes em
elementos finitos ao longo da seco transversal.

Para ilustrar as entidades que compdem a se¢fo transversal, apresenta-se na Fig. 5 a secdo utilizada
no exemplo modelo. Na figura, os nds naturais representam os vértices e os nds intermedidrios delimitam
os elementos finitos, definindo a discretizac¢do de cada placa/parede.

»>>Gecmetria<<<

Materiais - - .- . Nés Naturais. R - Placas { Paredes

Li\fixdo‘r;é; mi i Ex::!:m_J

Material Poisson

Parede N6 1 M62Z  N.Div. Mat Esp.

1

1 1 "2 2 1 L3

2 ‘2 3 5 1 1.3

3 0.0 0.0 3 3 4 2 i L3

Matha

Comprimento do elemento estrutural: 150*61 N 1

Ndmero de divisSes no comprimento: ::@ * Fedhar
Tipo da Elemento: {T10 vl C ‘,

Figura 4. Janela para inser¢do dos dados referentes & geometria e ao material

Y
4 (1)
) ¥ N§ natural
{ 25 o N6 intermedidrio
> — Placa/Parede
3] NONRE

75

Figura 5. Partes componentes da secfo transversal do exemplo modelo

Por fim, atribui-se o comprimento da pega estrutural, o niimero de elementos ao longo desse compri-
mento ¢ o tipo de elemento finito utilizado na discretizacfo. Foram estabelecidos alguns tipos elementos
finitos para a discretizagfio. Sdo eles: T3, T6, T10, Q4, Q9 e Q16. A letra inicial representa o tipo de
elemento, se triangular (T) ou quadrilateral (Q), e o nimero em seguida indica a quantidade de nés que o
elemento possui. Contudo, recomenda-se 2 utilizagdo de elementos de alta ordem, como o T10 e o Q16,
para evitar problemas de travamento em decorréncia da adogéo de lei constitutiva completa.

4.2 Inserc¢io das condicdes de contorno

A aplicagio das condicdes de contorno pode ser realizada para nés individuais ou para uma linha de
nds, sendo a selegdo dessas regides realizada a partir dos botdes “Selecdo de Nos” e “Selegio de Linhas”
presentes na interface principal apresentada na Fig. 3.

As condigdes de contorno possiveis de serem inseridas no programa sio restri¢des nodais em deslo-
camentos, forgas concentradas e forcas distribuidas ao longo de uma linha. A aplicagfo € realizada apds
clicar no botéo “Condic¢des de Contorno”, que abre a janela apresentada na Fig. 6.
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A representacfio gréfica das condigdes de contorno aplicadas seguem a seguinte convengio de cores
segundo a direcdo de aplicacfo: vermelho para eixo X, verde para eixo Y e azul para eixo Z. A excecido
¢ para as forcas distribuidas, que sio representadas por meio de um cilindro na cor ciano, sendo o valor

e a diregfo de aplicag@o possiveis de serem verificadas na barra de status a partir do posicionamento do
cursor sobre a condi¢io aplicada.

»>>Condi¢ées de Conterno< <<
Deslocamentos =« -

Diregio Xz =

. OLME
S »
Diregdo ¥: - ~
[@TY
@0 o
DiregBo 23~

O Liwre

Figura 6. Janela para inser¢io das condi¢des de contorno
4.3 Determinacio e visualizacio dos resultados

Os ultimos pardmetros a serem fornecidos ao programa sfo o valor da toleréncia para a rotina da
biblioteca ARPACK e o nimero de modos de instabilidade a serem determinados. Esses valores sdo
inseridos na janela da Fig. 7, que € aberta ao clicar no botfo “Parimetros”.

>>>Pardmetros de Andlise<<<

+ Pardmetros de solugio
Toleranda ARPACK: {1.0e-10]

Niimero de modos: 10

Fechar

Figura 7. Janela para inser¢@o dos parmetros para a resolucfo do problema

Apds a insergdo de todas as informacgdes necessdrias para a execugio do programa, procede-se a
etapa de processamento, iniciada pelo botdo “Analisar”. A implementagio desta etapa foi realizada em
linguagem FORTRAN 90, contemplando toda a formulagfio descrita nas se¢des 2 e 3. Finalizada a
andlise, uma aba na lateral direita € aberta, permitindo a visualizacfo dos resultados, conforme Fig. 8.

Ao clicar no botdo “Autovalores”, presente na aba de resultados, abre-se a janela indicada na Fig. 9.

Nela, pode-se visualizar tanto os autovalores solicitados quanto o erro residual obtido pela seguinte
férmula:

. CILAMCE 2019
Proceedings of the XL Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC.

Natal/RN, Brazil, November 11-14, 2019



Computational tool for buckling analysis via Positional Finite Element Method

I(H? + AH) - |

K
b, \\\s.gn
RN

res = I A|
¥ :Programa Acadlnst:. - a X
T ] 4 o il
noB i |/secgode i | Sl de i ol ; s | conti smetos |
it 3 ouse [t Selecio de Nés | Selecdo de Linhas Geometria | Desenhar Secio || Gerarmalhs | Condigdes de Contorno ; Parmetros ;!
Movo |~ Abrir Salvar b . i 3 . i
[ i
o £ : . . : ¢
Analisar ‘ . Isol 1502 1m0 3 : Iso 4
Reget Vigw K i |

Resultados:
foer ]
Fator de escala: [‘—_SEUO.U

Visualizar:

Legenda:

0.0276
Ei 0.0242
" 0.0207
' 00173
0.01338
00,0104
0.0089
0.0035
0.0000

Acréscimo de funcionalidades e melhorias das jé existentes podem ser realizadas em trabalhos futu-
ros. Contudo, o programa atual ji proporciona uma ferramenta de grande utilidade no ambito académico.

Figura 8. Janela de exibi¢@o dos resultados

>>>Resultados< <<

Resultados:
No. Autovalores Erfo solugBo
1 ! : 1.0‘289035—05
20 1130.114578 2.322835E-06
» 3 1219.353492 4.884087E-07
;M T 1257.052124 2.068283E-07
”5 i ) 1314.698613 1.156721E-06
5 ‘ . 1326.690960 3.915095E-08
; o 1380.888400 2,237367E-07
‘5” ' 1389.020544 5.848653E-07
; o 1443,758633 1.021273E-06
16 ) 1+49,583327 L411420E-06

N

Figura 9. Janela de exibicfio dos autovalores determinados
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5 Exemplos numéricos

Nesta se¢@o sdo apresentados exemplos para validagéo do programa desenvolvido. Foi utilizado para
validag¢fo dos resultados o software comercial ANSYS®) [25], no qual adotou-se o elemento SHELL281,
elemento quadrilateral de 8 nés, sendo este o elemento de maior ordem disponivel para sele¢fo. No pro-
grama desenvolvido utilizou-se o elemento Q16, pois, devido a utilizagdo de lei constitutiva completa, um
elemento de alta ordem foi necessdrio para se evitar »6 fendmeno de travamento volumétrico. A utilizacdo
de um elemento quadrilateral foi escolhida devido a facilidade de gerac@io de malhas simétricas.

Os dados comuns aos exemplos apresentados a seguir sio: E = 21000 kN/cm?, v = 0.3, espessura
t = 0.6 ¢cm e carga compressiva ¢ = 1.0 kN/em.

5.1 PerfilU

O esquema estdtico adotado neste exemplo é o apresentado na Fig. 10, na qual o perfil possui
uma extremidade fixa e outra simplesmente apoiada (deslocamento axial e giros sfo permitidos). A
discretiza¢fo adotada consiste de 60 elementos ao longo do comprimento e 9 ao longo da sec¢do trans-
versal, totalizando 540 elementos finitos e 5068 nds. Adotou-se o mesmo nimero de elementos para a
discretizagfo no ANSYS®) [25].

Y.

ux =uy =uz =0

Figura 10. Esquema estético adotado para o perfil U e dimensdes de interesse

Os quatro primeiros autovalores obtidos por meio do programa desenvolvido e do sofiware ANSYS®)
[25] estdo apresentados na Tabela 1, juntamente com o percentual de diferenca relativa. A partir des-
tes resultados, observa-se uma boa aderéncia dos valores obtidos com os valores de referéncia, com
diferenca relativa maxima de 0.55%. '

Tabela 1. Autovalores A para perfil U comprimido

Modo "ANSYS® [25] Presente Trabalho Dif.(%)

13.984 13.957 0.19
2 19.432 19.514 0.42
3 27.589 27.740 0.55 ‘
4 27.683 27.829 0.53
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Os modos de instabilidade obtidos no programa desenvolvido e no ANSYS®) [25] estdo apre‘sen—
tados nas Figuras 11 e 12, respectivamente. Os resultados foram idénticos para os dois programas,
indicando que, mesmo as formula¢des sendo diferentes, os resultados devem ser préximos.

(1) e e @

6y @ 3) 4)
Figura 12. Modos de instabilidade de perfil U comprimido obtidos com o software ANSYS®) [25]

5.2 Perfil1

Neste exemplo adotou-se 0 mesmo esquema estdtico do exemplo anterior, conforme observado na
Fig. 13. A discretizagio adotada consiste de 70 elementos ao longo do comprimento ¢ 13 ao longo
da se¢do transversal, totalizando 910 elementos finitos e 8440 nds. Adotou-se 0 mesmo nimero de
elementos para a discretizagdo no ANSYS®) [25].

ngura 13. Esquema estitico adotado para o perfil I e dimensdes de interesse
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Os quatro primeiros autovalores obtidos por tneio do programa desenvolv1do e do software ANSYS® :
[25] estdo apresentados na Tabela 2, juntamente com o-percentual de dlferenga relativa. Assim como no
exemplo anterior, observa-se uma-boa aderenc1a dos ~valores obtidos com os valores. de referéncia, com
diferengas relativas menores que 1% o :

Tabela 2. Autovalores ‘A-para perﬁl I compr1m1do

Modo ANSYS® [25} Presente Trabalho .Dif.(%)

1 11722 11:702 017

2 24576 - 24796 ©  0.90°
3. 33463 - . . 33.325 0.41
4

47388 . 47463 . 016

Os modos de instabilidade obtidos no programa desenvolvido e no AN SYS® [25] estao apresenta-
dos nas Figuras 14 e 15, respectlvamente Da mesma forma que no exemplo anterior, os resultados foram
idénticos para os dois programas, indicando uma equivaléncia entre as formulagGes comparadas. °

W e e @

O P RO @
Flgura 15. Modos de mstab1hdade de perfil I comprlmldo ObtldOS com o soﬁware ANSYS@ [25]

53 P_erﬁl c‘om‘paredes inc’linadas :

0] esquema estat1co adotado neste exemplo éo apresentado na F1g 16 em que ambas as_extremi-
dades estdo simplesmente apoxadas Um vinculo restrmgmdo o deslocarncnto scgundo a direciio X foi
inserido no meio do vdo-para eliminar o deslocamento de corpo I‘lgldO A discretizagio adotada consiste
de 40 elementds ao longo do comprimento e 17 ao longo'da secdo transversal, totalizando 680 elementos
ﬁmtos e. 6292 noés. Adotou -s€ 0 mesmo nimero deelemenitos paxa a d1scretlzagao no ANSYS@ [25].
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Secdo transversal

IY

&‘ '
|
=

L&
!

Figura 16. Esquema estatico adotado para o perfil e dimensdes de interesse

Os quatro primeiros autovalores obtidos por meio do programa desenvolvido e do software ANSYS®)
[25] estdo apresentados na Tabela 3, juntamente com o percentual de diferenca relativa. Neste exemplo
observa-se diferencas mais significativas nos resultados. Os valores aqui obtidos foram significativa-
mente menores que os valores de referéncia, indicando a manifesta¢io da flexibilizacfo introduzida 2
cinemdtica do problema. Essa diferenca pode ter ocorrido devido 2 geometria mais complexa adotada,
aliado a presenca de mais regides de conex@o entre as paredes do perfil.

Tabela 3. Autovalores A para perfil comprimido

Modo ANSYS®) [25] Presente Trabalho Dif(%)

44.329 41.285 6.87
2 46.972 45.765 2.57
3 50.766 46.136 9.12
4 55.304 52.902 4.34

Os modos de instabilidade obtidos no programa desenvolvido e no ANSYS®) [25] estdo apresen-
tados nas Figuras 17 e 18, respectivamente. Os resultados foram idénticos para os dois programas,
indicando que apesar dos autovalores estarem com diferenca relativa maior quando comparado com 0s
exemplos anteriores, eles representam o mesmo modo critico.

(D ?) 3) 4
Figura 17. Modos de instabilidade do perfil comprimido
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M 2 3) 4
Figura 18. Modos de instabilidade do perfil comprimido obtidos com o software ANSYS®) [25]

Para verificar se a diferenca entre os autovalores obtidos é devido somente 2 discretizacio adotada, a
andlise foi repetida adotando-se malhas mais refinadas no software ANSYS®) [25]. Os resultados estdo
apresentados na Tabela 4.

Tabela 4. Autovalores para diferentes discretizagBes realizadas no ANSYS®) [25]

Modo 680elem. 2720elem. 6120 elem.

1. 44320 44.219 44.195
2 46.972  46.952  46.948
3 50766 50.647 50.620
4 55304 55177 55.155

Dos resultados apresentados na Tabela 4, observa-se que os valores variam pouco’com o aumento da
discretizacdo. Entre as duas discretizacdes mais refinadas, a maior diferenga relativa entre os valores é de
apenas 0.05%, indicando convergéncia dos resultados. Pode-se concluir entdo que a diferenga observada
nos valores iniciais ndo se dd devido'a discretizacdo, mas sim em decorréncia da cinemdtica adotada.

6 Conclusoes

Este trabalho teve como objetivo a elaboracdo de uma ferramenta computacional para a realizagio
de anglise linear de estabilidade em perfis de parede fina. Andlise esta que consiste na determinacéo de
cargas criticas e seus respectivos modos de instabilidade. Foi entfo utilizada uma formulacéo posicional
do MEF para elementos de casca, que leva em consideracgio a nfo-linearidade geométrica com descri¢do
lagrangiana total, tornando possivel a realiza¢do de andlises de estabilidade.

Conforme os exemplos apresentados, conclui-se que a formulacdo utilizada é adequada para esse
tipo de andlise, com resultados bem préximos aos de um programa comercial e gerando respostas mais
flexiveis em problemas com geometria complexa. H4 ainda uma vantagem em razdo do elemento finito
de casca utilizado que, por possuir vetores generalizados ao invés de giros como graus de liberdade, torna
o desenvolvimento numérico mais simples, justamente por nfo necessitar de estratégias para resolver o
problema da nfo comutatividade de giros finitos. :

Com relacfo a anélise linear de estabilidade, deve-se ressaltar aqui que, na metodologia tradicio-
nal, a mesma € descrita a partir de uma formulacio geometricamente linear, sendo a ndo-linearidade
introduzida por meio do acréscimo da parcela de rigidez dependente da tensfo, a qual é obtida de forma
simplificada a partir da consideracéio de pequenos deslocamentos. Além disso, a parcela de rigidez adici-
onada ¢ func@o linear dos deslocamentos, implicando também numa relagfo linear entre o carregamento
aplicado e os autovalores obtidos.

Em contrapartida, neste trabalho optou-se por partir de uma formulagéio ndo-linear geometrica-
mente exata e simplificd-la para permitir a realizagio de andlises lineares de estabilidade. Entretanto,
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foram mantidas as medidas de deformac#o e de tensfio originais, sendo ambas as grandezas fun¢des néo-
lineares dos deslocamentos. Por conseguinte, os autovalores se relacionam de forma nfo-linear com o
carregamento aplicado, indicando um diferencial da formulaggo aqui desenvolvida.

Por fim, cita-se o desenvolvimento da interface grafica, incluindo as rotinas para geracdo da malha
de elementos finitos e para pés-processamento dos resultados. Com a implementacio dessas rotinas,
todas as func¢des do programa podem ser executadas de forma autébnoma, sem trazer dependéncias com
outros programas.
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