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Abstract. In this work, a computational program is developed to perform stability analysis of thin-

walled proíiles employing the positional formulation of the Finite Element Method (FEM). The profiles

are discretized in shell finite elements, which, unlike the traditional formulation, have position and un-

constrained vector as nodal parameters. Besides, the formulation considers a parameter corresponding to

the rate of thickness variation, which makes the kinematics of the element more general than Reissner-
Mindlin. Due to the use of unconstrained vector instead of rotation, it was necessary to use a strategy

to perform the coupling between non-coplanar elements. This coupling was accomplished by means

of a one-dimensional element connecting the end of the non-coincident vectors of a node. A nonlinear

geometric formulation of FEM is adopted, using the total Lagrangian description of the equilibrium. The

material is assumed to be elastic linear, represented by the Saint-Venant-Kirchhoff constitutive law. To

incorporate the stability analysis, a technique based on the decomposition of the stiffness matrix in the

elastic and geometric parts is used. This technique consists of determining eigenvalues and eigenvectors,

which corresponds, respectively, to buckling loads and instability modes of the resulting generalized ei-

genvalue problem. A graphical interface for the program is developed, making it easier to use. For this,

an algorithm for triangular and quadrilateral finite element mesh generation was also developed, as well

as a post-processing viewer, avoiding possible dependencies with externai programs. Finally, numerical

examples are presented to validate the developed code and demonstrate the program functionalities.

Keywords; Buckling analysis, Thin-walled profiles, Positional FEM, Computational tool.
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Computaíional toolfor buckling analysis via Positional Finite Element Method

1 Introdução

O fenômeno de instabilidade estrutural é caracterizado por uma mudança abrupta da configuração

de um corpo para uma pequena variação do esforço atuante, ou vice-versa. A ocorrência deste fenômeno

está diretamente associada à esbeltez da peça ou do sistema estrutural analisado e à intensidade de tensões

compressivas atuantes.

Como principal exemplo de estrutura suscetível ao fenômeno de instabilidade, destacam-se os perfis

metálicos, usualmente empregados em construções civis. Esses perfis são em geral compostos por par

tes foliculares planas unidas por meio de solda, denominados perfis soldados, ou compostos de chapas

dobradas, resultando nos perfis formados à frio.

A descrição matemática do problema da estabilidade estrutural foi inicialmente realizada por Euler

[1], 0 qual determinou analiticamente a expressão da força crítica de compressão em pilares esbeltos.

A partir de então diversos pesquisadores se dedicaram a este estudo, como Bryan [2], Lyapunov [3],

Southwell [4], dentre outros.

Um avanço importante na teoria foi realizado por Koiter [5], que descreveu o comportamento de
estruturas de cascas cilíndricas e esféricas considerando a existência de imperfeições. O referido autor

observou que a presença de imperfeições alterava significativamente o valor da carga crítica, explicando

assim os resultados inesperados obtidos nos experimentos realizados na época para este tipo de estrutura.

Além disso, o trabalho contemplava a análise do equilíbrio pós-crítico, que originou na chamada Teoria
Assintótica de Koiter.

Com 0 desenvolvimento dos métodos numéricos, análises mais gerais e de caráter aproximado pu

deram ser realizadas. Destaca-se aqui primeiramente o Método dos Elementos Finitos (MEE), que per

mitiu um grande avanço na análise de estruturas, incluindo a possibilidade de resolução de problemas

cuja solução analítica era de difícil ou impossível obtenção. Entre esses problemas, cita-se a análise

não-linear geométrica, na qual a análise de estabilidade se insere.

Além da formulação geral do MEE para análises de estabilidade, outras formulações simplificadas

também foram desenvolvidas. Em destaque estão a Teoria Generalizada de Vigas (GBT), desenvolvida

originalmente por Schardt [6], e o Método das Faixas Finitas (FSM), utilizado para análises de insta

bilidade inicialmente por Schafer [7]. Entre os principais trabalhos que utilizam a GBT, pode-se citar

Dinis et al. [8], Bebiano et al. [9], Gonçalves et al. [10], Basaglia et al. [11, 12], dentre outros. Quanto à

utilização do FSM, pode-se citar os trabalhos de Ádány e Schafer [13, 14], Naderian e Ronagh [15], Ren-

dall et al. [16], Shojaee et al. [17], dentre outros.

Diante disso, define-se como objetivo deste trabalho a elaboração de um programa computacio

nal para realizar análises lineares de estabilidade empregando a formulação posicionai do MEE com

utilização de elementos de casca. A formulação deste elemento finito foi desenvolvida por Coda e Pac-

cola [18, 19] e apresentou bons resultados para as análises pretendidas. Aqui, portanto, busca-se realizar

sua aplicação para análises de estabilidade, avançando assim nos estudos relacionados à aplicação do
MEE.

2 Formulação numérica

Neste trabalho foram realizadas análises de estabilidade para elemento finito de casca com descrição

baseada em posições e vetores generalizados, ao invés dos tradicionais deslocamentos e giros. Essa

formulação foi desenvolvida inicialmente por Coda e Paccola [18], mas apresentou problemas de trava-

mento volumétrico em decorrência da adoção de uma lei constitutiva completa e cinemática de Reissner-

Mindlin. Posteriormente, Coda e Paccola [19] acrescentaram um parâmetro nodal que introduz uma taxa

de variação linear da espessura, flexibilizando a cinemática do elemento finito e reduzindo drasticamente

os efeitos de travamento.

Por se tratar de uma formulação não-linear geométrica com descrição lagrangiana total, se faz ne

cessário o mapeamento das configurações inicial e atual do elemento finito de casca, conforme Fig. 1.

As funções de mapeamento das configurações inicial e atual são definidas, respectivamente, como:
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(1)

(2)

nas quais corresponde à coordenada inicial i do nó í, Yu corresponde à coordenada atual i do nó l, Vu

corresponde à componente i do vetor normal inicial associado ao nó i, G^i corresponde à componente i

do vetor generalizado atual associado ao nó l, é o valor da taxa variação linear da espessura associada

ao nó m e ijl)^ é a função de forma atrelada ao nó l.

a

Figura 1. Mapeamento das configurações inicial e atual a partir de um espaço de referência adimensional

Dessa forma, pode-se determinar a função mudança de configuração por meio da composição das
funções de mapeamento anteriormente definidas;

7 = ?o(f) -1
(3)

Adota-se para o comportamento do material a lei constitutiva de Saint-Venant-Kirchhoff, cuja ex

pressão de energia específica é fornecida como:

:C;E
A

(4)-Ue =

na qual E é o tensor de deformações de Green-Lagrange e £ é o tensor constitutivo de expressão idêntica
à utilizada na lei de Hooke.

Para a definição da condição de equilíbrio utiliza-se aqui a abordagem energética. A energia

mecânica total, considerando-se problemas estáticos, fica definida pelo funcional 11

U a energia interna de deformação e P a energia potencial das forças externas. Neste trabalho considera-

se apenas forças externas conservativas. Do princípio de estacionariedade da energia mecânica, tem-se

que a condição de equilíbrio é dada por:

U -f P, sendo

/ au ap\-
ó'n = hu + <5P = — + — <5y = 0

\dY ÕY
(5)
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Compiãational Tool for buckling analysis via Positional Finite Element Method

em que y é um vetor que reúne os parâmetros nodais de posição, vetor generalizado e taxa de variação

de espessura.

Considerando a arbitrariedade de 5Y, a expressão entre parênteses da Eq. (5) deve ser nula e re

presenta um sistema não-linear de dimensão igual ao número de graus de liberdade correspondente à

discretização adotada.

A derivada de U presente na Eq. (5) corresponde à força interna e a derivada de P corresponde à

força externa atuante, sendo fornecidos como:

due ÕEau dUe í S:^dVo
Jvo ÕY

'pint ^dVo = (6)
dY Jvo dY JVo

5P
^ext (7)

dY

em que S = £ : E é o segundo tensor de tensões de Piola-Kirchhof f.

Para a resolução do sistema não-linear utiliza-se o método de Newton-Raphson, que consiste na

linearização do erro no equilíbrio em torno de uma determinada solução tentativa. Surge então a neces

sidade da determinação da segunda derivada da energia de deformação, denominada matriz Hessiana:

d^Ef dE ^ dE f

Jvo dY dY Jvo
S : ^dVo (8)H =

dY^dY dY ® dY

O sistema linear a ser resolvido no processo iterativo é dado por:

H-Ay = -i? (9)

em que R — P”'”* — é vetor desbalanceamento mecânico e Ay é a correção a ser aplicada em Y,

inicialmente tomado igual à posição inicial (y = X). O processo iterativo é repetido até que se atinja
um valor de tolerância sobre Ay e/ou i?,. Mais detalhes sobre esta formulação podem ser encontrados

em Coda e Paccola [19].

2.1 Acoplamento entre elementos não-coplanares

Devido à adoção de vetores generalizados ao invés de giros como parâmetros nodais, mais de um

versor normal pode ser definido nos nós situados no encontro entre elementos não coplanares, a depender

do elemento finito analisado. Surge então a necessidade de se definir estratégias para contornar este

problema.

A estratégia aqui utilizada é a apresentada por Soares et al. [20], resumida a seguir. Quando o ângulo
entre os versores normais não coincidentes de um mesmo nó for menor que um valor limite 6, é admitida

a utilização do versor bissetriz como único versor pertencente àquele nó. Caso contrário, os versores

não coincidentes são mantidos e acoplados por meio de um elemento de penalização conectando suas
extremidades.

Utilizou-se 15° para o valor limite 9. Para valores acima deste limite, foi adotado um elemento de

barra simples com rigidez elevada para realizar o acoplamento. Para evitar problemas de mal condicio

namento na matriz resultante, Soares et al. [20] propuseram uma estratégia para determinar uma rigidez

para o elemento de barra simples que levasse em consideração a geometida e o material presentes na

região do acoplamento. Isso foi realizado por meio de uma equivalência entre as energias de deformação

do elemento de barra simples e do sólido que preenche o espaço de conexão, conforme apresentado na

Fig. 2.
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Figura 2. Equivalência entre energias de deformação de (a) sólido que preenche o espaço de conexão e

(b) elemento de barra simples

A energia de deformação para o elemento de barra simples é determinada a partir da Lei de Hooke
unidimensional como:

l-Ee‘^A£o — tan^ r] cos r]bar
(10)

em que E é o módulo de elasticidade longitudinal da barra, A é a área da seção transversal e e é a

deformação linear longitudinal da barra.
Para o sólido adota-se a Lei de Hooke Generalizada e considera-se, por simplicidade, apenas o efeito

de distorção na determinação da energia de deformação, que resulta em:

sol

u! (11)

na qual G éo módulo de elasticidade transversal do sólido & é a distância entre dois nós consecutivos ao

longo do comprimento de conexão.

Igualando-se Eq. (10) e Eq. (11), determina-se o produto de rigidez EA a ser adotado para o ele

mento de barra simples:

a a

EA = 2GbhÍ tan^ (12)sec0
2 2

Conforme mostrado por Soares et al. [20], a utilização da rigidez fornecida na Eq. (12) conduz a

resultados próximos aos obtidos para uma conexão rígida, com a vantagem de não introduzir um mal

condicionamento ao sistema. Mais detalhes sobre a estratégia empregada podem ser encontrados em

Soares et al. [20] e Soares [21].

3 Análise linear de estabilidade (buckling)

Uma condição suficiente para uma estrutura ser considerada estável é descrita pelo teorema de

Lagrange-Dirichlet, que afirma, segundo Bazant e Cedolin [22], que um sistema onde atuem apenas
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forças conservativas e dissipativas é estável se a energia potencial possuir um mínimo local. Isso ocorre

quando a segunda variação da energia é positiva, ou seja:

ÔUôn
• h • ô'y > o= 1-5.YI 5Y^ = (13)

2! 'dYidYj ÕYidYj

Da Eq. (13), conclui-se que a positividade da matriz Hessiana garante a estabilidade do sistema.

Um sistema deixa de ser estável quando, para algum 5Y, tem-se < 0. Contudo, para que o sistema

alcance uma situação de instabilidade, um ponto crítico, no qual 5^11 = 0 para algum 5Y, deve ser
ultrapassado. Isso equivale a dizer que pelo menos um autovalor da matriz Hessiana deve ser nulo,

tomando o equilíbrio crítico necessariamente caracterizado por:

det (H) = 0 (14)

A matriz Hessiana, apresentada na expressão Eq. (8), possui duas parcelas. Em um regime de

pequenos deslocamentos, observa-se que a primeira parcela se aproxima da matriz de rigidez linear e a

segunda parcela é diretamente proporcional ao nível de tensão atuante. Essas parcelas são denominadas

de rigidez elástica e geométrica, respectivamente, e são fornecidas como:

f
Vo Vôy Y=X

ÔE
E

dVo (15)H : £:

ôy y=y.

G
dVo (16)H S :

õY C» dY y=xy•IVo V

Na análise linear de estabilidade, a configuração inicial do sistema é tomada como referência. Con

siderando um regime de pequenos deslocamentos, o problema iterativo apresentado na seção anterior

se reduz à resolução de um sistema linear. De fato, tem-se que na configuração inicial a tensão é nula,

anulando-se, portanto, a matriz de irgidez geométrica e a força interna A matriz de rigidez

elástica H-® e a força externa não dependem de Y. Portanto, o processo iterativo apresentado na

seção 2 se resume à resolução do seguinte sistema linear:

• u = (17)

em que u é o vetor de deslocamentos nodais.

Considerando que S é o tensor de tensões na situação de equilíbrio crítico, tem-se que S = AS,

sendo S o tensor de tensões obtido a partir do vetor de deslocamentos u fornecido pela Eq. (17) e A o

fator de carga que leva ao equilíbrio crítico. O fator A é então determinado a partir da Eq. (14) como:

det (H^ + AH^) = 0 (18)

que remete ao seguinte problema generalizado de autovalor:

(H^ + AH°) -v^O (19)

sendo A agora interpretado como sendo os autovalores e 77 os autovetores (modos de instabilidade).
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Para a resolução numérica deste problema de autovalor, foram utilizadas rotinas da biblioteca

ARPACK [23], dada a sua eficiência para operação com matrizes esparsas. As rotinas são baseadas

numa versão melhorada do algoritmo de Lanczos [24], denominada Implicil Restarted Lanczos Method

(IRLM), que possui eficiência conhecida para diversos tipos de problemas, incluindo o de estabilidade
estrutural.

4 Programa computacional

Nesta seção é apresentado o programa desenvolvido, destacando-se suas principais funcionalidades.

Para a implementação da interface gráfica, foi utilizada a linguagem Object Pascal em ambiente de

desenvolvimento Delphi.

Inicialmente apresenta-se a etapa de pré-processamento, que compreende a inserção das informações

de entrada e geração de malha. Em seguida comenta-se sobre a etapa de processamento, que compreende

a implementação computacional de todo o processo de cálculo descrito nas seções anteriores. Por fim,

apresenta-se a etapa de pós-processamento, que resulta na exibição dos resultados obtidos. Para facilitar

0 entendimento, essas etapas são apresentadas com a utilização de um exemplo modelo.

A janela principal do programa desenvolvido está apresentada na Fig. 3. Na figura, observa-se uma

área de representação gráfica de geometria, discretização e condições de contorno aplicadas e uma barra

de ferramentas, com a qual é possível a execução de todas as funcionalidades disponíveis no programa.

Figura 3. Janela principal do programa

4.1 Inserção de geometria, material e discretização

Ao clicar no botão “Geometria”, abre-se a janela apresentada na Fig. 4. Nela é possível inserir

as informações sobre a geometria da seção transversal, sobre a discretização e sobre o material a ser

utilizado em cada parte componente do perfil.

As seguintes propriedades do material, aqui assumido com comportamento elástico-linear isótropo,

devem ser inseridas: módulo de elasticidade {E) e o coeficiente de Poisson (y). Com relação à geometria

da seção transversal, devem ser inseridos os chamados nós naturais, que são os pontos utilizados para

definir a forma da seção. Esses pontos são referenciados no plano YZ, sendo X o eixo longitudinal da

aLAMCE2019
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peça analisada. A conectividade entre os nós naturais geram as denominadas placas ou paredes, que são

as partes componentes do perfil. A essas placas atribui-se material, espessura e número de divisões em

elementos finitos ao longo da seção transversal.

Para ilustrar as entidades que compõem a seção transversal, apresenta-se na Fig. 5 a seção utilizada

no exemplo modelo. Na figura, os nós naturais representam os vértices e os nós intermediários delimitam

os elementos finitos, definindo a discretização de cada placa/parede.

>>>6ecrnetria<<<

. Nós NaturaisMats/iais Placas/Paredes
5

AdidMiaf j [ - Exdüir'Adidonãr Exduir i Adidonãr | Exduir

Material E Poisson NósNat f Z I Parede Nó 1 Nó 2 N. Div. Mat , Esp.

j 1 |2m0e+3 I 0.3 1 2S.0 75.0 1 21 2 1 1.3

2 0.0 75.0 I 2 2 3 5 1 1.3

3 0.0 0.0 3 3 4 2 i L3
i

4 ■ 2S.0 0.0

f

j

Malha

Comprinento do demento estrutural: liOO.Oj
• Fediar

Número de divisões no a-mprimento: 70

fç» de Elemento: TlÕ

Figura 4. Janela para inserção dos dados referentes à geometria e ao material

Ay

(1)(4)
■ Nó natural

25 o Nó intermediário

\f
> Placa/Parede

(3)^ ^(2) ^
75

Figura 5. Partes componentes da seção transversal do exemplo modelo

Por fim, atribui-se o comprimento da peça estrutural, o número de elementos ao longo desse compri

mento e o tipo de elemento finito utilizado na discretização. Foram estabelecidos alguns tipos elementos

finitos para a discretização. São eles: T3, T6, TIO, Q4, Q9 e Q16. A letra inicial representa o tipo de

elemento, se triangular (T) ou quadrilateral (Q), e o número em seguida indica a quantidade de nós que o

elemento possui. Contudo, recomenda-se a utilização de elementos de alta ordem, como o TIO e o Q16,

para evitar problemas de travamento em decorrência da adoção de lei constitutiva completa.

4.2 Inserção das condições de contorno

A aplicação das condições de contorno pode ser realizada para nós individuais ou para uma linha de

nós, sendo a seleção dessas regiões realizada a partir dos botões “Seleção de Nós” e “Seleção de Linhas”

presentes na interface principal apresentada na Fig. 3.

As condições de contorno possíveis de serem inseridas no programa são restrições nodais em deslo

camentos, forças concentradas e forças distribuídas ao longo de uma linha. A aplicação é realizada após

clicar no botão “Condições de Contorno”, que abre a janela apresentada na Fig. 6.
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A representação gráfica das condições de contorno aplicadas seguem a seguinte convenção de cores

segundo a direção de aplicação: vermelho para eixo X, verde para eixo Y e azul para eixo Z. A exceção

é para as forças distribuídas, que são representadas por meio de um cilindro na cor ciano, sendo o valor

e a direção de aplicação possíveis de serem verificadas na baiTa de status a partir do posicionamento do

cursor sobre a condição aplicada.

> >>Condições de Contcrno< < <

Deslocamentos

Direção X: ^

■ O Livre • '

®Rxq ' [

Direto Y:

O Lwre '

@Rxo [ 0.0 j

Dreção 2; ■

®Rxo I 'oiõ] ;

^CcarnaSde^ • '

Forças Concentradas-

Fx: o.ol

Fvr [ 1

FB o.ol

r

t , AcicarnaSds^o

Forças DistnbLntías

-l|qx:

qy: [ o.o!

O.Oiqz:

Apitar ria Seteção ^ •

Fechar

Figura 6. Janela para inserção das condições de contorno

4.3 Determinação e visualização dos resultados

Os últimos parâmetros a serem fornecidos ao programa são o valor da tolerância para a rotina da
biblioteca ARPACK e o número de modos de instabilidade a serem determinados. Esses valores são

inseridos na janela da Fig. 7, que é aberta ao clicar no botão “Parâmetros”.

>>>Parâmetro5 deAná!ise<<<

Parâmeíros de solução

rolerândõ ARPACK:

Fechar
1

Número de modos: 10

Figura 7. Janela para inserção dos parâmetros para a resolução do problema

Após a inserção de todas as informações necessárias para a execução do programa, procede-se a

etapa de processamento, iniciada pelo botão “Analisar”. A implementação desta etapa foi realizada em

linguagem FORTRAN 90, contemplando toda a formulação descrita nas seções 2 e 3. Finalizada a

análise, uma aba na lateral direita é aberta, permitindo a visualização dos resultados, conforme Fig. 8.

Ao clicar no botão “Autovalores”, presente na aba de resultados, abre-se a janela indicada na Fig. 9.

Nela, pode-se visualizar tanto os autovalores solicitados quanto o erro residual obtido pela seguinte
fórmula:
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(H^ + AH^) ■ u
(20)res —

Figura 8. Janela de exibição dos resultados

>>>RÊ5ultado5<<<

Resultados:

Autovalores • Erro soluçãoNo.

327,^5331 1.02B903E-051

' i 2 1130.114573 2.322S35E-06

1219.353492 4.834057E-D7

2.06S283H-O74 1257.052124

5 1314.696613 1. 15d721E-06

1326.690960 3.915099E-08

7 1380.886400 2.237367E'07

1^9,020544 5.848653E-07

1443.75SÕ33 1.02127^-069

10 1449.583327 L411420E-06

[

Fechar

Figura 9. Janela de exibição dos autovalores determinados

Acréscimo de funcionalidades e melhorias das já existentes podem ser realizadas em trabalhos futu

ros. Contudo, o programa atual já proporciona uma ferramenta de grande utilidade no âmbito acadêmico.
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5 Exemplos numéricos

Nesta seção são apresentados exemplos para validação do programa desenvolvido. Foi utilizado para

validação dos resultados o software comercial ANSYS@ [25], no qual adotou-se o elemento SHELL281,

elemento quadrilateral de 8 nós, sendo este o elemento de maior ordem disponível para seleção. No pro

grama desenvolvido utilizou-se o elemento Q16, pois, devido à utilização de lei constitutiva completa, um

elemento de alta ordem foi necessário para se evitar o fenômeno de travamento volumétrico. A utilização

de um elemento quadrilateral foi escolhida devido à facilidade de geração de malhas simétricas.

Os dados comuns aos exemplos apresentados a seguir são: E = 21000 hN/crr?, v = 0.3, espessura
í 0.6 cm e carga compressiva g = 1.0 kN/cm.

5.1 Perfil U

O esquema estático adotado neste exemplo é o apresentado na Fig. 10, na qual o perfil possui

uma extremidade fixa e outra simplesmente apoiada (deslocamento axial e giros são permitidos). A

discretização adotada consiste de 60 elementos ao longo do comprimento e 9 ao longo da seção trans
versal, totalizando 540 elementos finitos e 5068 nós. Adotou-se o mesmo número de elementos para a

discretização no ANSYS® [25].

aY

0Ux = Uy =UZ

-X

f-

^0

Uy = Uz = 0
Seção transversal
Y

7.5 cm

9
.Z

25 cm

Figura 10. Esquema estático adotado para o perfil U e dimensões de interesse

Os quatro primeiros autovalores obtidos por meio do programa desenvolvido e do software ANSYS®

[25] estão apresentados na Tabela 1, juntamente com o percentual de diferença relativa. A partir des

tes resultados, observa-se uma boa aderência dos valores obtidos com os valores de referência, com

diferença relativa máxima de 0.55%.

Tabela 1. Autovalores A para perfil U comprimido

Modo ANSYS® [25] Presente Trabalho Dif.(%)

13.984

19.432

27.589

27.683

■ 1 13.957

19.514

27.740

27.829

0.19

2 0.42

3 0.55

4 0.53
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Os modos de instabilidade obtidos no programa desenvolvido e no ANSYS@ [25] estão apresen

tados nas Figuras 11 e 12, respectivamente. Os resultados foram idênticos para os dois programas,

indicando que, mesmo as formulações sendo'diferentes, os resultados devem ser próximos.

Figura 11. Modos de instabilidade de perfil U comprimido

Figura 12. Modos de instabilidade de perfil U comprimido obtidos com o software ANSYS@ [25]

5.2 Perfil I

Neste exemplo adotou-se o mesmo esquema estático do exemplo anterior, conforme observado na

Fig. 13. A discretização adotada consiste de 70 elementos ao longo do comprimento e 13 ao longo

da seção transversal, totalizando 910 elementos finitos e 8440 nós. Adotou-se o mesmo número de

elementos para a discretização no ANSYS® [25].

,y

Ux = Uy = Uz = 0

'X

Seção transversal

fOoY

uy-= uz = 0

20 cm

Q
10 cm

Figura 13. Esquema estático adotado para o perfil I e dimensões de interesse
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Os quatro primeiros autovalores obtidos por meió do programa desenvolvido e do software ANSYS(r)

[25] estão apresentados na Tabela 2, juntamente com o percentual de diferença relativa. Assim como no

exemplo anterior, observa-se uma boa aderência dos valores obtidos com os valores- de referência, com

diferenças relativas menores que 1%.

Tabela 2. Autovalores A para perfil I comprimido

'.Mod© ; , ANSYS® [25] Presente Trabalho ,Dif.(%)

11.722 .

24.576

33.463

47.388 :

11'.702

’ 24.796

33.325

47.463- ,

T : 0.17

2- 0.90"

3 0.41

4 0.16

Os modos de instabilidade obtidos no programa desenvolvido e no ANSYS® [25] estão apresenta
dos nas Figuras 14 e 15, respectivamente. Da mesma forma que no exemplo anterior, os resultados foram
idênticos para os dois-programas, indicando uma equivalência entre as formulações cqmparadas. '

Figura 14. Modos de instabilidade de perfil I comprimido

(1) (2) (3) (4)

Figura 15. Modos de instabilidade de perfil I comprimido obtidos com o software ANSYS® [25]

5.3 Perfil com paredes inclinadas

O esquema estático adotado neste exemplo é o apresentado na Fig., 16, em que ambas as ^extremi

dades estão simplesmente apoiadas. Um vínculo restringindo o deslocamento segundo a direção X foi

inserido no meio do vão para eliminar o deslocamento de corpo rígido. A discretizaçãd adotada consiste

de 4G elementos ao longo do comprimento, e 17 ao longo da seção transversal, totalizando 680 elementos

finitos e.6292 nós. Adotou-se o mesmo número de elementos pará a discretização no ANSYS® [25].
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aY

uy = uz = 0

q

Seção central

Seção transversal 'X

0UY = Uz
Y

ux = 0

1> ^0d
a = A cm

ò = 6 cm

c = 9 cm

d = 8 cm

e = 14 cm

e

d

Z

Figura 16. Esquema estático adotado para o perfil e dimensões de interesse

Os quatro primeiros autovalores obtidos por meio do programa desenvolvido e do software ANSYS®

[25] estão apresentados na Tabela 3, juntamente com o percentual de diferença relativa. Neste exemplo

observa-se diferenças mais significativas nos resultados. Os valores aqui obtidos foram significativa

mente menores que os valores de referência, indicando a manifestação da flexibilização introduzida à

cinemática do problema. Essa diferença pode ter ocorrido devido à geometria mais complexa adotada,

aliado à presença de mais regiões de conexão entre as paredes do perfil.

Tabela 3. Autovalores A para perfil comprimido

Modo ANSYS® [25] Presente Trabalho Dif.(%)

1 44.329

46.972

50.766

55.304

41.285

45.765

46.136

52.902

6.87

2 2.57

3 9.12

4 4.34

Os modos de instabilidade obtidos no programa desenvolvido e no ANSYS® [25] estão apresen

tados nas Figuras 17 e 18, respectivamente. Os resultados foram idênticos para os dois programas,

indicando que apesar dos autovalores estarem com diferença relativa maior quando comparado com os

exemplos anteriores, eles representam o mesmo modo crítico.

(2) (3)(1) (4)

Figura 17. Modos de instabilidade do perfil comprimido
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Figura 18. Modos de instabilidade do perfil comprimido obtidos com o software ANSYS(r) [25]

Para verificar se a diferença entre os autovalores obtidos é devido somente à discretização adotada, a

análise foi repetida adotando-se malhas mais refinadas no software ANSYS® [25]. Os resultados estão

apresentados na Tabela 4.

Tabela 4. Autovalores para diferentes discretizações realizadas no ANSYS® [25]

Modo 680 elem. 2720 elem. 6120 elem.

1 . 44.329

2 46.972

3 50.766

4 55.304

44.21-9

46.952

50.647

55.177

44.195

46.948

50.620

55.155

Dos resultados apresentados na Tabela 4, observa-se que os valores variam pouco com o aumento da

discretização. Entre as duas discretizações mais refinadas, a maior diferença relativa entre os valores é de

apenas 0.05%, indicando convergência dos resultados. Pode-se concluir então que a diferença observada

nos valores iniciais não se dá devido à discretização, mas sim em decorrência da cinemática adotada.

6 Conclusões

Este trabalho teve como objetivo a elaboração de uma ferramenta computacional para a realização

de análise linear de estabilidade em perfis de parede fina. Análise esta que consiste na determinação de

cargas críticas e seus respectivos modos de instabilidade. Foi então utilizada uma formulação posicionai

do MEF para elementos de casca, que leva em consideração a não-linearidade geométrica com descrição

lagrangiana total, tornando possível a realização de análises de estabilidade.

Conforme os exemplos apresentados, conclui-se que a formulação utilizada é adequada para esse

tipo de análise, com resultados bem próximos aos de um programa comercial e gerando respostas mais

flexíveis em problemas com geometria complexa. Há ainda uma vantagem em razão do elemento finito

de casca utilizado que, por possuir vetores generalizados ao invés de giros como graus de liberdade, toma

0 desenvolvimento numérico mais simples, justamente por não necessitar de estratégias para resolver o

problema da não comutatividade de giros finitos.

Com relação à análise linear de estabilidade, deve-se ressaltar aqui que, na metodologia tradicio

nal, a mesma é descrita a partir de uma formulação geometricamente linear, sendo a não-linearidade

introduzida por meio do acréscimo da parcela de rigidez dependente da tensão, a qual é obtida de forma

simplificada a partir da consideração de pequenos deslocamentos. Além disso, a parcela de rigidez adici

onada é função linear dos deslocamentos, implicando também numa relação linear entre o carregamento

aplicado e os autovalores obtidos.

Em contrapartida, neste trabalho optou-se por partir de uma formulação não-linear geometrica

mente exata e simplificá-la para permitir a realização de análises lineares de estabilidade. Entretanto,
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foram mantidas as medidas de deformação e de tensão originais, sendo ambas as grandezas funções não-

lineares dos deslocamentos. Por conseguinte, os autovalores se relacionam de forma não-linear com o

carregamento aplicado, indicando um diferencial da formulação aqui desenvolvida.

Por fim, cita-se o desenvolvimento da interface gráfica, incluindo as rotinas para geração da malha

de elementos finitos e para pós-processamento dos resultados. Com a implementação dessas rotinas,

todas as funções do programa podem ser executadas de forma autônoma, sem trazer dependências com

outros programas.
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