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We define a new four-parameter model called the odd log-logistic generalized inverse Gaussian distribution which extends the
generalized inverse Gaussian and inverse Gaussian distributions. We obtain some structural properties of the new distribution.
We construct an extended regression model based on this distribution with two systematic structures, which can provide more
realistic fits to real data than other special regression models. We adopt the method of maximum likelihood to estimate the model
parameters. In addition, various simulations are performed for different parameter settings and sample sizes to check the accuracy
of the maximum likelihood estimators.We provide a diagnostics analysis based on case-deletion and quantile residuals. Finally, the
potentiality of the new regression model to predict price of urban property is illustrated by means of real data.

1. Introduction

The inverse Gaussian (IG) distribution is widely used in
several research areas, such as life-time analysis, reliability,
meteorology and hydrology, engineering, and medicine.
Some extensions of the IG distribution have appeared in
the literature. For example, the generalized inverse Gaussian
(GIG) distribution with positive support is introduced by
Good [1] in a study of population frequencies. Several papers
have investigated the structural properties of the GIG distri-
bution. Sichel [2] used this distribution to construct mixtures
of Poisson distributions. Statistical properties and distri-
butional behavior of the GIG distribution were discussed
by Jørgensen [3] and Atkinson [4]. Dagpunar [5] provided
algorithms for simulating this distribution. Nguyen et al. [6]
showed that it has positive skewness. More recently, Madan
et al. [7] proved that the Black-Scholes formula in finance
can be expressed in terms of the GIG distribution function.
Koudou [8] presented a survey about its characterizations
and Lemonte and Cordeiro [9] obtained some mathematical

properties of the exponentiated generalized inverse Gaussian
(EGIG) distribution.

In this paper, we study a new four-parameter model
named the odd log-logistic generalized inverse Gaussian (OLL-
GIG) distribution which contains as special cases the GIG
and IG distributions, among others. Its major advantage is
the flexibility in accommodating several forms of the density
function, for instance, bimodal and unimodal shapes. It is
also suitable for testing goodness-of-fit of some submodels.

Our main objective is to study a new regression model
with two systematic structures based on the OLLGIG distri-
bution. We obtain somemathematical properties and discuss
maximum likelihood estimation of the parameters. For these
models, we presented some ways to perform global influence
(case-deletion) and, additionally, we developed residual anal-
ysis based on the quantile residual. For different parameter
settings and sample sizes, various simulation studies were
performed and the empirical distribution of quantile residual
was displayed and compared with the standard normal distri-
bution. These studies suggest that the empirical distribution
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of the quantile residual for the OLLGIG regression model
with two regression structures a high agreement with the
standard normal distribution.

This paper is organized as follows. In Section 2, we
define the OLLGIG distribution. In Section 3, we obtain
some of its structural properties. We define the OLLGIG
regression model in Section 4 and evaluate the performance
of the maximum likelihood estimators (MLEs) of the model
parameters by means of a simulation study. In Section 5,
we adopt the case-deletion diagnostic measure and define
quantile residuals for the fitted model. Further, we perform
various simulations for these residuals. In Section 6, we
provide two applications to real data to illustrate the flexibility
of the OLLGIG regression model. Finally, some concluding
remarks are offered in Section 7.

2. The OLLGIG Distribution

The GIG distribution [3] has been applied in several areas
of statistical research. The cumulative distribution function
(cdf) and probability density function (pdf) of the GIG
distribution are given by (for 𝑦 > 0)

𝐺𝜇,𝜎,] (𝑦)
= ∫𝑦
0
( 𝑏𝜇)] 𝑡]−12𝐾] (𝜎−2) exp [− 12𝜎2 (𝑏𝑡𝜇 + 𝜇𝑏𝑡)]𝑑𝑡 (1)

and

𝑔𝜇,𝜎,] (𝑦) = 𝐶𝑦]−1 exp [− 12𝜎2 (𝑏𝑦𝜇 + 𝜇𝑏𝑦)] , (2)

where 𝜇 > 0 is the location parameter, 𝜎 > 0 is
the scale parameter, ] ∈ R is the shape parameter,𝐾](𝑡) = (1/2) ∫∞

0
𝑦]−1 exp[−(1/2)𝑡(𝑢 + 𝑢−1)]𝑑𝑢 is the

modified Bessel function of the third kind and index ], 𝑏 =𝐾]+1(𝜎−2)/𝐾](𝜎−2), and 𝐶 = 𝐶(𝜇, 𝜎, ]) = (𝑏/𝜇)]/2𝐾](𝜎−2).
We denote by𝑊 ∼ GIG(𝜇, 𝜎, ]) a random variable having

density function (2). The mean and variance of𝑊 are

𝐸 (𝑊) = 𝜇,
𝑉 (𝑊) = 𝜇2 [2𝜎2𝑏 (] + 1) + 1𝑏2 − 1] , (3)

respectively.
The moment generating function (mgf) of𝑊 reduces to

𝑀(𝑡) = (1 − 2𝜇𝜎2𝑡𝑏 )−]/2𝐾] (𝜎−2)−1

⋅ 𝐾] [ 1𝜎2 (1 − 2𝜇𝜎2𝑡𝑏 )1/2] .
(4)

We use the reparameterized GIG distribution according to
GAMLSS in software R. For example, we have 𝐺𝐼𝐺(𝜇, 𝜎𝜇1/2,−0.5) = 𝐼𝐺(𝜇, 𝜎). Other properties of the GIG distribution
are investigated by Jørgensen [3].

The statistical literature is filled with hundreds of con-
tinuous univariate distributions. Recently, several methods
of introducing one or more parameters to generate new
distributions have been proposed. Based on the odd log-
logistic generator (OLL-G) [10], we define the OLLGIG cdf,
say 𝐹(𝑦) = 𝐹(𝑦; 𝜇, 𝜎, ], 𝜏), by integrating the log-logistic
density function as follows:

𝐹 (𝑦) = ∫𝐺𝜇,𝜎,](𝑦)/𝐺𝜇,𝜎,](𝑦)
0

𝜏𝑥𝜏−1
(1 + 𝑥𝜏)2 𝑑𝑥

= 𝐺𝜇,𝜎,] (𝑦)𝜏
𝐺𝜇,𝜎,] (𝑦)𝜏 + 𝐺𝜇,𝜎,] (𝑦)𝜏 ,

(5)

where𝐺𝜇,𝜎,](𝑦) = 1−𝐺𝜇,𝜎,](𝑦), 𝜇 > 0 is a position parameter,𝜎 > 0 is a scale parameter, and ] ∈ R and 𝜏 > 0 are shape
parameters. Clearly, 𝐺𝜇,𝜎,](𝑦) is a special case of (5) when 𝜏 =1.

Henceforth, we write 𝜂(𝑦) = 𝐺𝜇,𝜎,](𝑦) to simplify the
notation. The OLLGIG density function can be expressed as

𝑓 (𝑦) = 𝑓 (𝑦; 𝜇, 𝜎, ], 𝜏)
= ( 𝑏𝜇)] 𝜏𝑦]−1

2𝐾] (𝜎−2) exp [− 12𝜎2 (𝑏𝑦𝜇 + 𝜇𝑏𝑦)]
× {𝜂 (𝑦) [1 − 𝜂 (𝑦)]}𝜏−1 {𝜂 (𝑦)𝜏 + [1 − 𝜂 (𝑦)]𝜏}−2 .

(6)

The main motivations for the OLLGIG distribution are
to make its skewness and kurtosis more flexible (compared
to the GIG model) and also allow bi-modality. We have 𝜏 =
log[𝐹(𝑦)/𝐹(𝑦)]/ log[𝜂(𝑦)/𝜂(𝑦)], where 𝐹(𝑦) = 1 − 𝐹(𝑦) and𝜂(𝑦) = 1−𝜂(𝑦).Thus, the parameter 𝜏 represents the quotient
of the log odds ratio for the new and baseline distributions.
Note that the pdf and cdf of the OLLGIG distribution depend
on integrals, which are calculated numerically in the same
way as those of the Birnbaum-Saunders distribution.

Hereafter, we assume that the random variable 𝑌 follows
the OLLGIG cdf (5) with parameters (𝜇, 𝜎, ], 𝜏)𝑇, say 𝑌 ∼
OLLGIG(𝜇, 𝜎, ], 𝜏). The OLLGIG distribution contains as
special cases the GIG distribution when 𝜏 = 1 and the IG
distribution when 𝜏 = 1 and ] = −0.5.

Some plots of the OLLGIG density for selected parameter
values are displayed in Figure 1. It is evident that the proposed
distribution ismuchmore flexible, especially in relation to bi-
modality (for 0 < 𝜏 < 1), than the GIG and IG distributions.

Equation (5) has tractable properties especially for simu-
lations, since its quantile function (qf) takes the simple form

𝑦 = 𝑄𝐺𝐼𝐺( 𝑢1/𝜏
𝑢1/𝜏 + [1 − 𝑢]1/𝜏) , (7)

where 𝑄𝐺𝐼𝐺(𝑢) = 𝐺−1𝜇,𝜎,](𝑢) is the qf of the GIG distribution.
This scheme is useful because of the existence of fast gener-
ators for GIG random variables in some statistical packages.
For example, we can fit the generalized additive models for
the location, scale, and shape (GAMLSS) in R.

We use the GAMLSS package to simulate data from this
nonlinear equation. The plots comparing the exact OLLGIG
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Figure 1: Plots of the OLLGIG density for some parameter values.
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Figure 2: Histograms and plots of the OLLGIG density.

densities and the histograms from two simulated data sets
with 100, 000 replications for selected parameter values are
displayed in Figure 2. These plots (and several others not
shown here) indicate that the simulated values are consistent
with the OLLGIG distribution.

3. Properties of the OLLGIG Model

3.1. Linear Representation. By defining the sets 𝐼𝑖 = {(𝑘, 𝑗); 𝑘−𝑗 = 𝑖} for 𝑖 = 0, 1, . . ., and following the results of Lemonte and
Cordeiro [9, Section 3], we can expand 𝜂(𝑦) = 𝐺𝜇,𝜎,](𝑦) as

𝜂 (𝑦) = 1 − 𝜌 − 𝑦]
∞∑
𝑖=0

𝑑𝑖𝑦𝑖, (8)

where 𝜌 = 𝜌(𝜇, 𝜎, ]) = 𝐶(𝑏/2𝜇𝜎2)−] ∑∞𝑗=0 Γ(]−𝑗)[−(4𝜎2)−1]𝑗/𝑗!, 𝑑𝑖 = ∑(𝑘,𝑗)∈𝐼𝑖 𝑎𝑗,𝑘, and
𝑎𝑗,𝑘 = 𝑎𝑗,𝑘 (𝜇, 𝜎, ]) = (−1)𝑘+𝑗+1 𝐶(𝑘 − 𝑗 + ]) 𝑗!𝑘!

𝑏𝑘−𝑗𝜇𝑗−𝑘
2𝑘+𝑗𝜎2(𝑘+𝑗) . (9)

To calculate 𝜌, the index 𝑗 can stop after a large number of
summands.

Further, we can rewrite 𝜂(𝑦) after some algebra as

𝜂 (𝑦) = 1 − 𝜌 − 𝑐0 − ∞∑
𝑖=1

𝑐𝑖𝑦𝑖, (10)

where 𝑐𝑖 = ∑𝑖𝑘=0 𝑓𝑘𝑑𝑖−𝑘 (for 𝑖 = 0, 1, . . .) and (])𝑟 =
](] − 1) ⋅ ⋅ ⋅ (] − 𝑟 + 1) is the descending factorial and 𝑓𝑗 =∑∞𝑟=𝑗(−1)𝑟−j ( 𝑟𝑗 ) (])𝑟/𝑟!.

We obtain an expansion for 𝐹(𝑦) in (5). First, we use a
power series for 𝜂(𝑦)𝜏 (𝜏 real)

𝜂 (𝑦)𝜏 = ∞∑
𝑘=0

𝑝𝑘𝜂 (𝑦)𝑘 , (11)

where

𝑝𝑘 = 𝑝𝑘 (𝜏) = ∞∑
𝑗=𝑘

(−1)𝑘+𝑗 (𝛼
𝑗)(𝑗

𝑘) . (12)
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For any real 𝜏, we consider the generalized binomial expan-
sion

[1 − 𝜂 (𝑦)]𝜏 = ∞∑
𝑘=0

(−1)𝑘 (𝛼
𝑘) 𝜂 (𝑦)𝑘 . (13)

Inserting (11) and (13) in (5) gives

𝐹 (𝑦) = ∑∞𝑘=0 𝑝𝑘𝜂 (𝑦)𝑘
∑∞𝑘=0 𝑞𝑘𝜂 (𝑦)𝑘 , (14)

where 𝑞𝑘 = 𝑞𝑘(𝜏) = 𝑝𝑘(𝜏) + (−1)𝑘 ( 𝜏𝑘 ) (for 𝑘 ≥ 0). The ratio of
the two power series in the last equation can be reduced to

𝐹 (𝑦) = ∞∑
𝑘=0

𝑤𝑘𝜂 (𝑦)𝑘 , (15)

where the coefficients 𝑤𝑘’s (for 𝑘 ≥ 0) are determined from
the recurrence equation

𝑤𝑘 = 𝑤𝑘 (𝜏) = 𝑞−10 (𝑝𝑘 − 𝑘∑
𝑟=1

𝑞𝑟𝑤𝑘−𝑟) . (16)

By differentiating (15), the pdf 𝑓(𝑦) reduces to
𝑓 (𝑦) = ∞∑

𝑘=0

𝑤𝑘+1ℎ𝑘+1 (𝑦) , (17)

where ℎ𝑘+1(𝑦) = (𝑘 + 1)𝜂(𝑦)𝑘𝑔𝜇,𝜎,](𝑦) is the exponentiated
generalized inverse Gaussian (EGIG) density function with
power parameter 𝑘 + 1 (for 𝑘 ≥ 0).

We can derive a linear representation for 𝑓(𝑦) in terms
of GIG densities based on the previous results and following
the expansions of Lemonte and Cordeiro [9] that lead to their
(24). First, we can express ℎ𝑘+1(𝑦) as

ℎ𝑘+1 (𝑦) = 𝑘∑
𝑗=0

𝑚(𝑘)𝑗 𝜋𝑗 (𝑦) . (18)

Here, 𝜋𝑗(𝑦) represents the GIG(𝜇, 𝜎, ] + 𝑗) density function
and the coefficients are given by 𝑚(𝑘)𝑗 = (𝑘 + 1)V𝑗,𝑘𝐶(𝜇, 𝜎, ])/
𝐶(𝜇, 𝜎, ]+ 𝑗), where V𝑗,𝑘 = ∑𝑘𝑖=0(−1)𝑖 ( 𝑘𝑖 )∑𝑖𝑟=0 ( 𝑖𝑟 ) 𝜌𝑖−𝑟𝑡𝑗,𝑟 and
the quantities 𝑡𝑗,𝑟 are determined from the recurrence relation
𝑡𝑗,𝑟 = 𝑗−1∑𝑗𝑚=1[(𝑟 + 1)𝑚 − 𝑗]𝑐𝑚𝑡𝑗−𝑚,𝑟 (for 𝑗 ≥ 1) and 𝑡0,𝑟 = 1
with 𝑐𝑚’s given in (10).

By combining (17) and (18) and changing ∑∞𝑘=0∑𝑘𝑗=0 by∑∞𝑗=0∑∞𝑘=𝑗 , we obtain
𝑓 (𝑦) = ∞∑

𝑗=0

𝑠𝑗𝜋𝑗 (𝑦) , (19)

where 𝑠𝑗 = ∑∞𝑘=𝑗𝑤𝑘+1𝑚(𝑘)𝑗 .
Equation (19) reveals that the OLLGIG density function

is an infinite linear combination of GIG densities.

3.2. TwoProperties. Equation (19) becomes useful in deriving
several mathematical properties of the proposed distribution
using well-known properties of the GIG distribution. We
provide only two examples. The 𝑟th moment about zero of
the GIG(𝜇, 𝜎, ]) random variable defined by (2) is

𝐸 (𝑊𝑟) = (𝜇𝑏)
𝑟 𝐾]+𝑟 (𝜎−2)𝐾] (𝜎−2) . (20)

Then, the ordinary moments of the OLLGIG random
variable 𝑌 follow from (19) as

𝐸 (𝑌𝑟) = 𝜇𝑟
𝐾] (𝜎−2)

∞∑
𝑗=0

𝑠𝑗𝐾]+𝑗+𝑟 (𝜎−2)𝑏𝑟𝑗 , (21)

where 𝑏𝑗 = 𝐾]+𝑗+1(𝜎−2)/𝐾](𝜎−2).
By combining (19) and (4), the generating function of 𝑌

takes the form

𝑀𝑌 (𝑡) = 1𝐾] (𝜎−2)
∞∑
𝑗=0

𝑠𝑗 (1 − 2𝜇𝜎2𝑡𝑏𝑗 )−]/2

⋅ 𝐾]+𝑗 [ 1𝜎2 (1 − 2𝜇𝜎2𝑡𝑏𝑗 )1/2] .
(22)

4. The OLLGIG Regression Model

In many practical applications, the lifetimes are affected by
explanatory variables such as sex, smoking, diet, blood pres-
sure, cholesterol level and several others. So, it is important
to explore the relationship between the response variable
and the explanatory variables. Regression models can be
proposed in different forms in statistical analysis. In this
section, we define the OLLGIG regression model with two
systematic structures based on the new distribution. It is a
feasible alternative to the GIG and IG regression models for
data analysis.

Regression analysis involves specifications of the distri-
bution of 𝑌 given a vector x = (𝑥1, . . . , 𝑥𝑝)𝑇 of covariates.
We relate the parameters 𝜇 and 𝜎 to the covariates by the
logarithm link functions

𝜇𝑖 = exp (x𝑇𝑖 𝛽1) ,
𝜎𝑖 = exp (x𝑇𝑖 𝛽2) ,

𝑖 = 1, . . . , 𝑛,
(23)

respectively, where 𝛽1 = (𝛽11, . . . , 𝛽1𝑝)𝑇 and 𝛽2 = (𝛽21,. . . , 𝛽2𝑝)𝑇 denote the vectors of regression coefficients and
x𝑇𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑝). The most important of the parametric
regression models defines the covariates in x which model
both 𝜇 and 𝜎.

Consider a sample (𝑦1, x1), . . . , (𝑦𝑛, x𝑛) of 𝑛 independent
observations. Conventional likelihood estimation techniques
can be applied here. The total log-likelihood function for the
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vector of parameters 𝜃 = (𝛽𝑇1 ,𝛽𝑇2 , ], 𝜏)𝑇 from model (23) is
given by

𝑙 (𝜃) = 𝑛 log (𝜏) + ]
𝑛∑
𝑖=1

log( 𝑏𝜇𝑖) + (] − 1) 𝑛∑
𝑖=1

log (𝑦𝑖)

− 𝑛∑
𝑖=1

log[2𝐾] ( 1𝜎2𝑖 )]

− 12
𝑛∑
𝑖=1

1𝜎2𝑖 (
𝑏𝑦𝑖𝜇𝑖 +

𝜇𝑖𝑏𝑦𝑖)

+ (𝜏 − 1) 𝑛∑
𝑖=1

log {𝜂 (𝑦𝑖) [1 − 𝜂 (𝑦𝑖)]}

− 2 𝑛∑
𝑖=1

log {𝜂 (𝑦𝑖)𝜏 + [1 − 𝜂 (𝑦𝑖)]𝜏} ,

(24)

where 𝐾](⋅) and 𝜂(⋅) are defined in Section 2. The MLE 𝜃̂ of
𝜃 can be calculated by maximizing the log-likelihood (24)
numerically in the GAMLSS package of the R software. The
advantage of this package is that we can adopt many max-
imization methods, which will depend only on the current
fitted model. Initial values for 𝛽1 and 𝛽2 are taken from the
fit of the GIG regression model with 𝜏 = 1. We do not
have problems of maximizing this log-likelihood function.
This fact is shown in Section 4.1, where some simulations
of the proposed regression model are given under different
scenarios.

Under general regularity conditions, the asymptotic dis-
tribution of (𝜃̂ − 𝜃) is multivariate normal 𝑁2𝑝+2(0,𝐾(𝜃)−1),
where 𝐾(𝜃) is the expected information matrix. The asymp-
totic covariance matrix 𝐾(𝜃)−1 of 𝜃̂ can be approximated by
the inverse of the (2𝑝 + 2) × (2𝑝 + 2) observed information
matrix −L̈(𝜃). The elements of this matrix are calculated
numerically. The approximate multivariate normal distribu-
tion 𝑁2𝑝+2(0, −L̈(𝜃̂)−1) for 𝜃̂ can be used in the classical way
to construct approximate confidence for the parameters in 𝜃.

We can use the likelihood ratio (LR) statistic for com-
paring some special sub-models with the OLLGIG regression
model. We consider the partition 𝜃 = (𝜃𝑇1 , 𝜃𝑇2 )𝑇, where 𝜃1 is a
subset of parameters of interest and 𝜃2 is a subset of remaining
parameters. The LR statistic for testing the null hypothesis𝐻0 : 𝜃1 = 𝜃(0)1 versus the alternative hypothesis𝐻1 : 𝜃1 ̸= 𝜃(0)1
is given by𝑤 = 2{ℓ(𝜃̂)−ℓ(𝜃̃)}, where 𝜃̃ and 𝜃̂ are the estimates
under the null and alternative hypotheses, respectively. The
statistic 𝑤 is asymptotically (as 𝑛 󳨀→ ∞) distributed as 𝜒2𝑘 ,
where 𝑘 is the dimension of the subset of parameters 𝜃1 of
interest. For example, the test of 𝐻0 : 𝜏 = 1 versus 𝐻 : 𝜏 ̸= 1
is equivalent to compare the OLLGIG regression model with
the GIG regression model and the LR statistic reduces to𝑤 = 2{𝑙(𝛽̂1, 𝛽̂2, ]̂, 𝜏̂) − 𝑙(𝛽̃1, 𝛽̃2, ]̃, 1)}, where 𝛽̂1, 𝛽̂2, ]̂, and 𝜏̂
are the MLEs under H and 𝛽̃1, 𝛽̃2, and ]̃ are the estimates
under𝐻0.
4.1. Simulation Study. In this part of simulation, we approach
in two different ways. First, we perform a simulation to study

the behavior of the MLEs of the parameters of the OLLGIG
distribution without systematic structures. Second, we evalu-
ate the behavior of the parameter estimates considering two
systematic structures.

The OLLGIG Distribution. Some properties of the MLEs are
evaluated using a classical analysis by means of a simulation
study. We simulate the OLLGIG distribution as follows:

(i) Compute the inverse function 𝐹−1(⋅) from the cumu-
lative distribution (1).

(ii) Generate 𝑢 ∼ 𝑈(0, 1).
(iii) Apply 𝑢 in 𝐹−1(𝑢) = 𝑄(𝑢) from (7).

(iv) The values 𝑡 = 𝑄(𝑢) are generated from the OLLGIG
distribution, where𝑄(𝑢) is the inverse of (1).

We take 𝑛 = 20, 50, 150 and 350 for each replication
and then evaluate the estimates 𝜇̂, 𝜎̂, ]̂, and 𝜏̂. We repeat
this process 1, 000 times and then calculate the average
estimates (AEs), biases, and means squared errors (MSEs).
In the first scenario, we take 𝜏 = 0.3662, 𝜇 = 5.7915,𝜎 = 0.0658, and ] = 12.7216. We use the values fitted in
the adjustment to the iris data set in Section 6. The estimates
of the model parameters are computed using the GAMLSS
package of the R software. The results of the Monte Carlo
study under maximum likelihood are given in Table 1. They
indicate that the MLEs are accurate. Further, the MSEs of
the MLEs of the model parameters decay toward zero when𝑛 increases in agreement with first-order asymptotic the-
ory.

TheOLLGIG Regression Model. We examine the performance
of the MLEs in the OLLGIG regression model by means of
some simulations with sample sizes 𝑛 = 100, 300 and 500.
We simulate 1, 000 samples from two scenarios (𝜏 = 0.5 and𝜏 = 1.5) by considering 𝜇𝑖 = 𝛽10 + 𝛽11𝑥𝑖 and 𝜎𝑖 = 𝛽20 + 𝛽21𝑥𝑖.
For both cases, we take ] = 0.53. The explanatory variable
is generated by 𝑥𝑖 ∼ 𝑈(0, 1) and the response variable is
generated by 𝑦𝑖 ∼ OLLGIG(𝜇𝑖, 𝜎𝑖, ], 𝜏). For each fitted model,
we compute the AEs, biases, and MSEs. Based on the results
given in Table 2, we note that the MSEs of the MLEs of 𝛽10,𝛽11, 𝛽20, 𝛽21, and 𝜏 decay toward zero when the sample size𝑛 increases, as usually expected under first-order asymptotic
theory. Further, the AEs of the parameters tend to be closer
to the true parameter values when 𝑛 increases. These facts
support that the asymptotic normal distribution provides an
adequate approximation to the finite sample distribution of
the estimates.

5. Checking Model: Diagnostic and
Residual Analysis

A first tool to perform sensitivity analysis, as stated before,
is by means of global influence starting from case-deletion
[11, 12]. Case-deletion is a common approach to study the
effect of dropping the ith observation from the data set. The
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Table 1: AEs, biases, and MSEs for the parameters of the OLLGIG distribution.

scenario 1 scenario 2𝑛 = 20 𝑛 = 50
Parameter AE Bias MSE Parameter AE Bias MSE
𝜇̂ 5.9023 0.1109 0.0895 𝜇̂ 5.8618 0.0704 0.0231𝜎̂ 0.7468 0.6810 2.6764 𝜎̂ 0.2119 0.1461 0.5443
]̂ 13.4759 0.7544 66.2484 ]̂ 12.6530 -0.0685 7.2487𝜏̂ 1.0945 0.7283 2.2952 𝜏̂ 0.7115 0.3452 0.4276

scenario 3 scenario 4𝑛 = 150 𝑛 = 350
Parameter AE Bias MSE Parameter AE Bias MSE
𝜇̂ 5.8354 0.0439 0.0039 𝜇̂ 5.8195 0.0281 0.0014𝜎̂ 0.0822 0.0165 0.0004 𝜎̂ 0.0757 0.0099 0.0001
]̂ 12.7241 0.0026 0.0097 ]̂ 12.7131 -0.0085 0.0080𝜏̂ 0.4822 0.1160 0.0242 𝜏̂ 0.4363 0.0700 0.0075

Table 2: AEs, biases, and MSEs for the OLLGIG regression model under scenarios 1 and 2.

scenario 1𝑛 = 100 𝑛 = 300 𝑛 = 500
Parameter AE Bias MSE AE Bias MSE AE Bias MSE
𝛽10 1.5044 0.0044 0.0028 1.5011 0.0011 0.0008 1.5014 0.0014 0.0005𝛽11 -0.6979 0.0021 0.0100 -0.6981 0.0019 0.0027 -0.6992 0.0008 0.0017𝛽20 -1.9426 0.0574 0.1223 -1.9606 0.0394 0.0401 -1.9637 0.0363 0.0280𝛽21 0.3636 0.0136 0.0508 0.3522 0.0022 0.0162 0.3516 0.0016 0.0093𝜏 0.5998 0.0998 0.0763 0.5448 0.0448 0.0228 0.5368 0.0368 0.0149

scenario 2𝑛 = 100 𝑛 = 300 𝑛 = 500
Parameter AE Bias MSE AE Bias MSE AE Bias MSE
𝛽10 1.4975 -0.0025 0.0005 1.4982 -0.0018 0.0002 1.4986 -0.0014 0.0001𝛽11 -0.7017 -0.0017 0.0018 -0.7024 -0.0024 0.0005 -0.7025 -0.0025 0.0003𝛽20 -2.2627 -0.2627 0.1839 -2.1766 -0.1766 0.0872 -2.1548 -0.1548 0.0659𝛽21 0.3502 0.0002 0.0717 0.3432 -0.0068 0.0247 0.3454 -0.0046 0.0148𝜏 1.2052 -0.2948 0.3226 1.2720 -0.2280 0.1720 1.2932 -0.2068 0.1389

case-deletion model with systematic structures (23) is given
by

𝜇𝑙 = exp (x𝑇𝑙 𝛽1) ,
𝜎𝑙 = exp (x𝑇𝑙 𝛽2) ,

𝑙 = 1, 2, . . . , 𝑛, 𝑙 ̸= 𝑖.
(25)

In the following, a quantity with subscript “(i)” means the
original quantity with the ith observation deleted. For model
(25), the log-likelihood function of 𝜃 is denoted by 𝑙(𝑖)(𝜃). Let
𝜃̂(𝑖) = (𝛽1𝑇(𝑖),𝛽2𝑇(𝑖), ]̂(𝑖), 𝜏̂(𝑖))𝑇 be the MLE of 𝜃 from 𝑙(𝑖)(𝜃). To
assess the influence of the ith observation on the MLEs 𝜃̂ =(𝛽1𝑇,𝛽2𝑇, ]̂, 𝜏̂)𝑇, we can compare the difference between 𝜃̂(𝑖)
and 𝜃̂. If deletion of an observation seriously influences the
estimates, more attention should be paid to that observation.
Hence, if 𝜃̂(𝑖) is far from 𝜃̂, then the 𝑖th observation can be
regarded as influential. A first measure of the global influence

is defined as the standardized norm of 𝜃̂(𝑖) − 𝜃̂ (generalized
Cook distance) given by

𝐺𝐷𝑖 (𝜃) = (𝜃̂(𝑖) − 𝜃̂)𝑇 [L̈ (𝜃)] (𝜃̂(𝑖) − 𝜃̂) . (26)

Another alternative is to assess the values of 𝐺𝐷𝑖(𝛽1),𝐺𝐷𝑖(𝛽2), and 𝐺𝐷𝑖(], 𝜏) since these values reveal the impact
of the ith observation on the estimates of 𝛽1, 𝛽2, and(], 𝜏), respectively. Another popularmeasure of the difference
between 𝜃̂(𝑖) and 𝜃̂ is the likelihood distance given by

𝐿𝐷𝑖 (𝜃) = 2 {𝑙 (𝜃̂) − 𝑙 (𝜃̂(𝑖))} . (27)

Once the model is chosen and fitted, the analysis of the
residuals is an efficient way to check the model adequacy.
The residuals also serve to identify the relevance of an
additional factor omitted from the model and verify if there
are indications of serious deviance from the distribution
considered for the random error. Further, since the residuals
are used to identify discrepancies between the fitted model
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Figure 3: Normal probability plots for 𝑞𝑟𝑖 in the OLLGIG regression model under scenario 1 (𝜏 = 0.5) (a) 𝑛 = 100. (b) 𝑛 = 300. (c) 𝑛 = 500.

and the data set, it is convenient to define residuals that
take into account the contribution of each observation to the
goodness-of-fit measure.

In summary, the residuals allow measuring the model
fit for each observation and enable studying whether the
differences between the observed and fitted values are due to
chance or to a systematic behavior that can be modeled. The
quantile residuals (qrs) [13] for theOLLGIG regressionmodel
with two systematic structures are defined by

𝑞𝑟𝑖 = Φ−1 { 𝜂 (𝑦𝑖)𝜏𝜂 (𝑦𝑖)𝜏 + [1 − 𝜂 (𝑦𝑖)]𝜏} , (28)

where 𝜂(⋅) is given in (1) and Φ(⋅)−1 is the inverse cumulative
standard normal distribution.

Atkinson [14] suggested the construction of an envelope
to have a better interpretation of the probability normal
plot of the residuals. The simulated confidence bands of the
envelope should contain the residuals. If the model is well-
fitted, the majority of points will be within these bands and
randomly distributed. The construction of the confidence
bands follows the steps:

(i) Fit the proposed model and calculate the residuals𝑞𝑟𝑖’s;
(ii) Simulate 𝑘 samples of the response variable using the

fitted model;
(iii) Fit the model to each sample and calculate the

residuals 𝑞𝑟𝑖𝑗 (𝑗 = 1, . . . , 𝑘 and 𝑖 = 1, . . . , 𝑛);
(iv) Arrange each group of 𝑛 residuals in rising order to

obtain 𝑞𝑟(𝑖)𝑗 for 𝑗 = 1, . . . , 𝑘 and 𝑖 = 1, . . . , 𝑛;
(v) For each 𝑖, calculate the mean, minimum and maxi-

mum 𝑞𝑟(𝑖)𝑗, namely,

𝑞𝑟(𝑖)𝑀 = 𝑘∑
𝑗=1

𝑞𝑟(𝑖)𝑗𝑘 ,
𝑞𝑟(𝑖)𝐼 = min {𝑞𝑟(𝑖)𝑗 : 1 ≤ 𝑗 ≤ 𝑘} ,

𝑞𝑟 (𝑖) 𝑆 = max {𝑞𝑟(𝑖)𝑗 : 1 ≤ 𝑗 ≤ 𝑘} ;
(29)

(vi) Include the means, minimum, and maximum
together with the values of 𝑞𝑟𝑖 against the expected
percentiles of the standard normal distribution.

The minimum and maximum values of 𝑞𝑟󸀠𝑖 𝑠 form the
envelope. If the model under study is correct, the observed
values should be inside the bands and distributed randomly.

Simulation Study. A simulation study is conducted to investi-
gate the behavior of the empirical distribution of the qrs for
the OLLGIG regression model. We generate 1, 000 samples
based on the algorithm presented in Section 4.1. We also
give the normal probability plots to assess the degree of
deviation from the normality assumption of the residuals.
Based on the plots in Figures 3 and 4 representing the first and
second scenarios, respectively, we conclude that the empirical
distribution of the qrs agrees with the standard normal
distribution in both scenarios. This empirical distribution
becomes closer to the standard normal distribution when 𝑛
increases in both scenarios.

6. Applications

In this section, we provide two applications to real data to
prove empirically the flexibility of the OLLGIG model. The
calculations are performed with the R software.

6.1. Application 1: Iris Data. In the first application, the
OLLGIG distribution is compared with the nested GIG and
IG distributions. The data set is iris, in which it provides
measurements in centimeters of the variables length and
width of the septal and length and width of the petal, respec-
tively, for 50 flowers of each of the 3 iris species (setosa,
versicolor, and virginica). In this application, the variable
septum length (Sepal.Length) is used. This data set has
been analyzed by several authors in multivariate analysis, for
example, Anderson (1935) and Fisher [15]. We show that the
distribution for these data presents bimodality.

Table 3 provides a descriptive summary for these data
and indicates positively distorted distributions with varying
degrees of variability, skewness, and kurtosis.

A brief descriptive analysis of the data in Table 3 reveals
that the average score of the variable septum length is 5.843
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Figure 4: Normal probability plots for 𝑞𝑟𝑖 in the OLLGIG regression model for scenario 2 (𝜏 = 1.5) (a) 𝑛 = 100. (b) 𝑛 = 300. (c) 𝑛 = 500.
Table 3: Descriptive statistics for iris flower data.

Mean Median SD Skewness Kurtosis Min. Max.
5.843 5.800 0.828 0.3086 -0.6058 4.300 7.900

Table 4: MLEs and SEs (in parentheses) of the model parameters for the iris data.

Model 𝜏 𝜇 𝜎 ]
OLLGIG 0.3662 5.7915 0.0658 12.7216

(0.0685) (0.0091) (0.0079) (0.0130)
GIG 1 5.8433 0.1413 0.1000

(-) (0.0674) (0.0082) (72.9562)
IG 1 5.8433 0.0585 -0.5

(-) (0.0674) (0.0034) (-)

Table 5: Goodness-of-fit measures for the iris data.

Model AIC CAIC BIC HQIC 𝐴∗ 𝑊∗ 𝐾𝑆
OLLGIG 365.0638 365.3397 377.1064 369.9563 0.3474 0.0486 0.0578
GIG 369.8170 369.9814 378.8489 373.4864 0.7242 0.1164 0.0881
IG 367.8134 367.8951 373.8347 370.2597 0.7244 0.1165 0.0881

Table 6: LR tests for the iris data.

Models Hypotheses Statistic 𝑤 𝑝-value
OLLGIG vs GIG 𝐻0 : 𝜏 = 1 vs𝐻1 : 𝐻0 is false 6.7532 0.0094
OLLGIG vs IG 𝐻0 : 𝜏 = 1 and ] = −0.5 vs𝐻1 : 𝐻0 is false 6.7496 0.0342

and the median value is 5.800, thus indicating that the data
has a symmetric distribution.

In Table 4, we report the MLEs of the model parameters
and their standard errors (SEs) in parentheses. We give
in Table 5 the following goodness-of-fit measures: Akaike
Information Criterion (AIC), Consistent Akaike Information
Criterion (CAIC), Bayesian Information Criterion (BIC),
Hernnan-Quinn Information Criterion (HIQC), Cramér-
von Misses (𝑊∗), Anderson Darling (𝐴∗), and Kolmogarov-
Smirnov (𝐾𝑆) test statistic. The small values of these mea-
sures, the better the fit. The figures in Table 5 indicate that
the OLLGIG distribution has the lowest values of AIC,
CAIC, BIC, HQIC, 𝐴∗, 𝑊∗, and 𝐾𝑆 among those of the

fitted models and therefore it could be chosen as the best
model.

We consider LR statistics to compare nested models. The
OLLGIGdistribution includes some submodels asmentioned
above, thus allowing their evaluations relative to the others
and to a more general model. The values of the LR statistics
are listed in Table 6. It is evident from the figures in this table
that the OLLGIG distribution outperforms its submodels
according to the values of the LR statistics. So, it indicates that
the OLLGIG model provides a better fit to these data than
their sub-models.

More information is provided by a visual comparison of
the histogram of the data and the fitted density functions and
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Figure 5: (a) Estimated densities of the OLLGIG, GIG, and IG models for iris data. (b) Estimated cumulative functions of the OLLGIG, GIG,
and IG models and the empirical cdf for iris data.
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Figure 6: Estimated densities of the OLLGIG for iris data.

cumulative functions. The plots of the fitted OLLGIG, GIG,
and IG densities are displayed in Figure 5(a). The estimated
OLLGIG density provides the closest fit to the histogram of
the data. In order to assess if the model is appropriate, the
plots of the fitted OLLGIG, GIG, and IG cumulative distribu-
tions and the empirical cdf are displayed in Figure 5(b). They
indicate that the OLLGIG distribution provides a good fit to
these data.

In Figure 6, we note that the iris data has a bimodality
shape, where they cannot have the GIG and IG distributions
(see Figure 5(a)).

6.2. Application 2: Price of Urban Property Data. Here, we
provide a second application of the OLLGIG regression
model to evaluation the price of urban residential properties
for sale in the municipality of Paranaı́ba in the State of Mato
Grosso do Sul (MS) in Brazil. These data collected in 2017
refer to 𝑛 = 45 houses for sale in the municipality. In the
context of real estate appraisal, it is necessary to develop
statistical methodologies (characterized by the scientific
accuracy) of residential property prices. Besides this aspect,

we can perceive the rare use of such methodologies by the
real estate market. We construct a OLLGIG regression model
with two systematic components to describe the relationship
between real estate prices and other explanatory variables,
thus allowing an understanding of the behavior of the price
variable [16, 17]. The following explanatory variables are
considered:

(i) price of the property 𝑦𝑖; this variable was divided by10, 000;
(ii) area 𝑥𝑖1 of land in square meters;
(iii) number of parking spaces 𝑥𝑖2 in the residence (0=no

vacancy, 1=one vacancy, and 2=more than one vacan-
cy); in this case, two dummy variables, 𝑥𝑖21 and 𝑥𝑖22,
are created;

(iv) number of rooms with suites 𝑥𝑖3 in the residence
(0=no suites, 1=one suites, 2=more than one suites);
in this case two dummy variables, 𝑥𝑖31 and 𝑥𝑖32, are
created;

(v) if the residence has a swimming pool 𝑥𝑖4 (0=no,
1=yes);

(vi) if the residence is located in the center of the city 𝑥𝑖5
(0=no, 1=yes); 𝑖 = 1, . . . , 45.

In the descriptive analysis of the data from Table 7, the
mean score of the variable value is 24.98, which is not close
to the median value 17.00, thus indicating that the data has
an asymmetric distribution.

We define the OLLGIG regression model by two system-
atic structures for 𝜇 and 𝜎
𝜇𝑖 = exp (𝛽10 + 𝛽11𝑥𝑖1 + 𝛽121𝑥𝑖21 + 𝛽122𝑥𝑖22 + 𝛽131𝑥𝑖31

+ 𝛽132𝑥𝑖32 + 𝛽14𝑥𝑖4 + 𝛽15𝑥𝑖5) (30)
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Table 7: Descriptive analysis of the price of urban property data$.

Mean Median SD Skewness Kurtosis Min. Max.
24.98 17.00 23.9180 3.3330 14.0134 5.50 150.00

Table 8: MLEs, standard errors (SEs), and p-values for the OLLGIG regression model fitted for the price of urban property data.

Parameter Estimate SE p-Value
𝛽̂10 7.0690 0.4428 <0.001𝛽̂11 -0.0005 0.0002 0.0679𝛽̂121 0.8069 0.2689 0.0057𝛽̂122 0.8407 0.2677 0.0041𝛽̂131 -0.8976 0.1945 <0.001𝛽̂132 0.4326 0.1872 0.0287𝛽̂14 0.5794 0.6941 0.4111𝛽̂15 -0.5323 0.1008 <0.001𝛽̂20 2.614 0.5982 <0.001𝛽̂21 0.0013 9.961e-05 <0.001𝛽̂221 -0.2054 0.1316 0.1303𝛽̂222 -0.1741 0.1223 0.1660𝛽̂231 0.5139 0.0739 <0.001𝛽̂232 0.2585 0.1077 0.0235𝛽̂24 -2.135 0.4818 <0.001𝛽̂25 0.2575 0.0481 <0.001
]̂ -0.4942 0.1231 <0.001𝜏̂ 12.764 2.436

Table 9: Goodness-of-fit measures for the price of urban property data.

Model AIC BIC GD
OLLGIG 322.0612 354.5811 286.0612
GIG 348.8190 379.5323 314.8190
IG 333.3241 362.2307 301.3241

and

𝜎𝑖 = exp (𝛽20 + 𝛽21𝑥𝑖1 + 𝛽221𝑥𝑖21 + 𝛽222𝑥𝑖22 + 𝛽231𝑥𝑖31
+ 𝛽232𝑥𝑖32 + 𝛽24𝑥𝑖4 + 𝛽25𝑥𝑖5) , 𝑖 = 1, . . . , 45. (31)

We now consider the test of homogeneity of the scale
parameter for the price of urban property data. The LR
statistic (see Section 4) for testing the null hypothesis 𝐻0 :𝛽21 = 𝛽221 = 𝛽222 = 𝛽231 = 𝛽232 = 𝛽24 = 𝛽25 = 0
is 𝑤 = 31.98 (𝑝 value < 0.0001), which gives a favorable
indication toward to the dispersion not be constant.

In Table 8, we present the MLEs, SEs, and p-values. The
covariates 𝑥2, 𝑥3, and 𝑥5 are significant at the 5% level in the
regression structure for the location parameter 𝜇, whereas the
covariates 𝑥1, 𝑥3, 𝑥4, and 𝑥5 are significant (at the same level)
for the parameter 𝜎. The figures in this table reveal that the
covariate 𝑥1 is not significant with respect to the parameter𝜇, but it is significant with respect to the parameter 𝜎. This
is due to a strong dispersion in the response variable. The
covariate 𝑥2 is also significant for the number of parking
spaces in the structure of 𝜇. The covariate 𝑥3 is significant
in the location and scale structure; i.e., there is a significant

difference between the residences that do not have a suite,
have a suite, or more. The covariate 𝑥4 is not significant in
relation to the location, but it is significant in the structure of𝜎. There is a significant difference in the residence with or
without swimming pool for the dispersion parameter. This
fact can also be noted in Figure 7(a). The covariate 𝑥5 is
significant in relation to both parameters 𝜇 and 𝜎; i.e., there
is a significant difference between the residences being in the
center of the city and outside the center. This fact can also be
noted in Figure 7(b).

The AIC, BIC, and global deviance (GD) statistics are
listed in Table 9. We note that the OLLGIG regression model
presents the lowest AIC, BIC, and GD values among the
other fittedmodels. So, there are indications that theOLLGIG
model provides a better fit to these data.

We adopt again the LR statistics to compare the fitted
models in Table 10. We reject the null hypotheses in the two
tests in favor of the wider OLLGIG regression model. Rejec-
tion is significant at the 5% level and provides clear evidence
of the need of the shape parameter 𝜏 whenmodeling real data.

We use the R software to compute the 𝐿𝐷𝑖(𝜃) and𝐺𝐷𝑖(𝜃) measures in the diagnostic analysis presented in
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Table 10: LR tests for the price of urban property data.

Models Hypotheses Statistic 𝑤 𝑝-value
OLLGIG vs GIG 𝐻0 : 𝜏 = 1 vs𝐻1 : 𝐻0 is false 28.7579 <0.001
OLLGIG vs IG 𝐻0 : 𝜏 = 1 and ] = −0.5 vs𝐻1 : 𝐻0 is false 15.2629 <0.001
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Figure 7: Estimated cdf from the fittedOLLGIG regressionmodel and the empirical cdf for the price of urban property data. (a) For covariate𝑥4, and (b) for covariate 𝑥5.
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Figure 8: Index plot for 𝜃: (a) 𝐿𝐷𝑖(𝜃) (likelihood distance) and (b) 𝐺𝐷𝑖(𝜃) (generalized Cook’s distance).

Section 5. The results of such influence measures index plots
are displayed in Figure 8. These plots indicate that the cases♯7, ♯43, and ♯45 are possible influential observations.

In addition, Figure 9(a) provides plots of the qrs for
the fitted model, thus showing that all observations are in
the interval (−3, 3) and a random behavior of the residuals.

Hence, there is no evidence against the current suppositions
of the fitted model. In order to detect possible departures
from the distribution errors in model, as well as outliers,
we present the normal plot for the qrs with a generated
envelope in Figure 9(b). This plot reveals that the OLLGIG
regression model is very suitable for these data, since there
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Figure 9: (a) Index plot of the qrs and (b) normal probability plot with envelope for the qrs from the fitted OLLGIG regression model fitted
to urban property data.

are no observations falling outside the envelope. Also, no
observation appears as a possible outlier.

7. Concluding Remarks

We present a four-parameter distribution called the odd log-
logistic generalized Gaussian inverse (OLLGIG) distribution,
which includes as special cases the generalized Gaussian
inverse (GIG) and inverse Gaussian (IG).We provide some of
its mathematical properties. Further, we define the OLLGIG
regression model with two systematic structures based on
this new distribution, which is very suitable for modeling
censored and uncensored data. The proposed model serves
as an important extension to several existing regression
models and could be a valuable addition to the literature.
Some simulations are performed for different parameter
settings and sample sizes. The maximum likelihood method
is described for estimating the model parameters. Diagnostic
analysis is presented to assess global influences. We also
discuss the sensitivity of the maximum likelihood estimates
from the fitted model via quantile residuals. The utility of
the proposed OLLGIG regression model is demonstrated by
means of a real data set for price data of urban residential
properties in the municipality of Paranaı́ba in the State of
Mato Grosso do Sul, Brazil.
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[17] E. G. Araújo, J. C. Pereira, F. Ximenes, C. P. Spanhol, S. Garson,
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