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Abstract: Several factors contribute to the increase in irrigation demand: population growth, demand
for higher value-added products, and the impacts of climate change, among others. High-quality
water is essential for irrigation, so knowledge of water quality is critical. Additionally, water use
in agriculture has been increasing in the last decades. Lack of water quality can cause drip clog, a
lack of application uniformity, cross-contamination, and direct and indirect impacts on plants and
soil. Currently, there is a need for more automated methods for evaluating and monitoring water
quality for irrigation purposes, considering different aspects, from impacts on soil to impacts on
irrigation systems. This work proposes a data-driven method to address this gap and implemented
it in a case study in the PCJ river basin in Brazil. The methodology contains nine components and
considers the main steps of the data lifecycle and the traditional machine learning workflow, allowing
for automated knowledge extraction and providing important information for improving decision
making. The case study illustrates the use of the methodology, highlighting its main advantages
and challenges. Clustering different scenarios in three hydrological years (high, average, and lower
streamflows) and considering different inputs (soil-related metrics, irrigation system-related metrics,
and all metrics) helped generate new insights into the area that would not be easily obtained using
traditional methods.

Keywords: clustering; case study; data-driven methodology; unsupervised learning; water
monitoring; water quality

1. Introduction

Exponential population growth has led to an increasing demand for food, which has
resulted in a need to improve farm productivity. However, the availability of arable land
and quality water has been reduced due to several factors, such as climate change, erosion,
water pollution by different sources, and land cover changes [1,2].
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Research about the mechanisms influencing surface water quality is paramount, espe-
cially considering the extensive amount of data amassed in specific studies. Pollution from
natural origins, intensive agricultural activities, and rapid urban expansion substantially
stress water resources [3].

Agriculture is the leading water consumer in the world, accounting for 87% of global
water consumption and 60% of all freshwater capture [4]. In Brazil, approximately 60% of
the freshwater collected is used for agriculture [5]. However, the water quality can vary
considerably in the different regions and seasons. Low-quality irrigation water can impact
plant growth, soil quality, and clog irrigation systems. This is a significant problem for
localized irrigation.

Therefore, monitoring irrigation water quality is critical for sustainably and adequately
managing irrigated agriculture. The global shortage of fresh water is a serious issue that will
worsen with increasing demand and the effects of climate change. Precision Agriculture
and Smart Irrigation could be essential solutions for addressing these issues [6].

It is fundamental to monitor water quality, especially to measure its impacts on
agriculture, ecosystems, and water resources [7–9]. Several indices can be used to provide
a clear overview of the state and comprehensively evaluate surface water quality [3].
However, there are many questions about which parameters are available, the quality and
frequency of obtaining these parameters, and the gaps in the available data. Answering
these questions is essential to help improve policy-making decisions.

Additionally, the better monitoring of water quality can help farmers and governments
allocate resources and technologies in agricultural areas, increasing the resilience of water
resources to anthropogenic impacts. Nevertheless, the traditional method of evaluating
water purity for both drinking and irrigation purposes is characterized by its high cost,
time-intensive nature and substantial demand for personnel resources [3]. In this context,
automated methods for evaluating and monitoring water quality for irrigation are essential
for dealing with large volumes of data. Additionally, it is essential to conduct these
evaluations considering different aspects, including soil impacts on irrigation systems.

Machine learning (ML) algorithms can help build such automated models by captur-
ing linear and nonlinear relationships between hydrological systems and using parameters
in heterogeneous areas subject to different land management systems and varying an-
thropogenic impacts. Traditionally, ML is divided into three main areas: supervised,
unsupervised, and reinforcement learning.

According to James et al. [10], unsupervised learning is a set of techniques for exploring
data and identifying relationships between parameters and the data structure. It is used when
the specific labels of the data points are unknown ((limiting the opportunities for supervised
learning), typically with complex, real-world problems. Usually, unsupervised learning is
divided into two main sets of techniques: clustering and dimensionality reduction.

Clustering methods are widely used to explore data structures in such contexts. One
of the main objectives of using these methods is identifying groups of parameters (also
called features) or data points according to predefined criteria. Typically, a criterion is the
distance between the data points in an n-dimensional space [11]. Clustering is also widely
used for outlier detection.

There is an important gap in the literature concerning automatic methods for eval-
uating water quality for irrigation purposes, considering indices or metrics that belong
to different dimensions (such as soil-related and irrigation system-related). As described
in this section, artificial intelligence (AI) techniques, especially unsupervised learning,
can provide important tools to improve knowledge extraction and decision making for
evaluating water quality for irrigation. This could reduce mistakes that cause considerable
problems in localized irrigation, such as drip clogging.

Recent developments in data-driven models present the opportunity to learn from
historical data without any predefined relationship among the parameters [12]. Despite
the recent developments of data-driven methods in the literature, significant challenges
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remain, including increased uncertainty caused by the impact of hydrological extremes,
such as droughts and floods, on water quality.

The central research gap addressed in this work is the need for more automated methods
for evaluating and monitoring water quality for irrigation purposes, considering different
aspects, from impacts on the soil to impacts on irrigation systems, that can be used in other
regions and with other variables or quality indices as inputs. Additionally, the results of the
proposed framework should provide vital information to improve decision making.

Therefore, this work has two main objectives: (i) propose a data-driven method to
analyze and predict water quality for irrigation purposes; and (ii) conduct an in-depth case
study considering the proposed method for cities with a high water demand for irrigation
use. The case study encompasses two quality indicators for soil-related purposes (electrical
conductivity and pH) and four for irrigation system-related purposes (total iron, hardness,
biochemical oxygen demand, and thermotolerant coliforms). It is essential to observe that
the code developed could be adapted to analyze water quality for other purposes, such
as human consumption, and used with other parameters, quality indices, regions, and
river basins.

To address these objectives, this work aimed to answer two research questions (RQs):

• RQ1: What components should be considered to develop a data-driven water quality
analysis and monitoring methodology for irrigation-related purposes?

• RQ2: How did the water quality vary in the studied areas for the three hydrological
years considered (flood, drought, and average year), considering indices related to
soil and irrigation systems?

The main contributions of this study are (i) propose and implement a data-driven
methodology to analyze and monitor water quality for irrigation purposes; (ii) apply an
unsupervised learning technique on real data from a complex problem with economic,
environmental, and social impacts; and (iii) have two domain experts conduct an in-depth
evaluation of the results.

This rest of this paper is organized into the following sections: Section 2 describes the
theoretical foundations, encompassing relevant descriptions of water quality metrics for
irrigation and the use of AI for water quality evaluation; Section 3 describes the data-driven
methodology proposed; Section 4 details the study case and the main results of applying
the proposed method to its data; Section 5 encompasses a discussion of the main impacts
of the results for the case study and of the use of the methodology in general; and Section 6
concludes the paper, presenting recommendations for future works.

2. Theoretical Foundations
2.1. Irrigation Water Quality Metrics

It is important to emphasize that drip irrigation is just one of the several available
irrigation methods. It is a proven efficient method of saving water in agriculture. However,
emitter clogging is a significant problem in drip irrigation systems. This problem leads
to reduced application uniformity, loss of control over the applied depths, and failures in
applying chemicals diluted in irrigation water.

This sensitivity to clogging is mainly affected by the dripper’s characteristics and the
water’s quality, which are related to physical, chemical, and biological aspects [7,13,14].
Several authors have studied this problem, such as Abou-Shady et al. [15], Baeza and
Contreras [16], Coelho et al. [17], and Lv et al. [18].

The problem of the emitter clogging has become the main obstacle restricting the
application and promotion of drip irrigation technology, being entirely linked to the water
quality for irrigation. Drip irrigation has low flow rates and extremely small passages
(emitters) for water. These passages are easily clogged with organic and mineral particles
from the irrigation water, chemical precipitates, and biological growth that develop within
the system. For example, biofilm development is due to the mutual influence between
bacterial mucilage and organic or inorganic particles. This clogging adversely affects the
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performance of drip irrigation systems, resulting in less flow control and affecting the
system distribution efficiency [19,20].

The main physicochemical and bacteriological parameters that provide initial insights
into water characteristics, including temperature (T), pH (hydrogen potential), conductivity
(EC), suspended solids (SS), biochemical oxygen demand (BOD), chemical oxygen demand
(COD), chloride, carbonate and bicarbonate, sulfate, nitrogen compounds, total aerobic
mesophilic flora (TAMF), thermotolerant coliforms (TtC), total coliforms (TC), and fecal
streptococci (FS) [3]. Ofori et al. [21] stated that E. coli and thermotolerant coliforms in
water make it unsafe to irrigate vegetables and fruits.

Storlie (1995) [22] compiled the main causes of emitter clogging and the degree of
restriction to water use in irrigation (Table 1).

Table 1. Degree of clogging considering different materials.

Potential Problem Units
Degree of Restriction on Use

None Slight to Moderate Sever

Suspended solids mg.L−1 Less than 50 50 to 100 More than 100
pH mg.L−1 Less than 7 7 to 7.5 More than 7.5
Dissolved solids mg.L−1 Less than 500 500 to 2000 More than 2000
Manganese mg.L−1 Less than 0.1 0.1 to 1.5 More than 1.5
Iron mg.L−1 Less than 0.1 0.1 to 1.5 More than 1.5
Hardness as CaCO3 mg.L−1 Less than 150 150 to 300 More than 300
Bacterial population mL 10,000 10,000 to 50,000 More than 50,000

Source: [22].

The water quality index (WQI), created in 1970 by the National Sanitation Foundation
(NSF) in the United States, is a formulation that enables the estimation of the overall quality
of a water body based on significant parameters. The WQI evaluates raw water quality for
use in public supply after treatment.

The WQI is an example of a simplified approach to assessing overall water quality
by condensing abundant information into a single, typically dimensionless, value. The
sodium absorption ratio (SAR) is a parameter employed to assess salinization risk due to
the presence of NaCl salt resulting from irrigation [3].

The parameters used in the WQI are dissolved oxygen (DO), thermotolerant coliforms
(TCs), hydrogen potential (pH), biochemical oxygen demand (oxygen consumed in 5 days
at a temperature of 20 ºC, BOD5,20), water temperature (Tw), total nitrogen (N-total), total
phosphorus (P-total), turbidity (Tb), and total residue (Res-total). In many locations in
Brazil, data on various metrics are missing [23–25].

However, different parameters are used to evaluate and monitor irrigation water
quality due to the differences in its context. The parameters most commonly used for
irrigation water quality assessment worldwide are electrical conductivity (EC), iron con-
centration (Fe), pH, and total hardness [26–31], as well as the presence and concentration
of microorganisms able to cause emitter clogging.

EC can be defined as the numerical expression of the water’s ability to conduct
electrical current, which is related to and indicates the amount of dissolved salts in it. In
general, levels greater than 100 µS.cm−1 indicate impacted environments. High values
may indicate water’s corrosive characteristics. It is considered the most used parameter
for evaluating salinity levels and concentrations of soluble salts in water for irrigation
use [26,27].

Iron is one of the most abundant metals in Earth’s crust. It is found in natural fresh
waters at 0.5 to 50 mg.L−1 levels. In waters containing ferrous and manganous salts,
oxidation by iron bacteria (or by exposure to air) may cause rust-colored deposits on the
walls of tanks, pipes, and channels and the carry-over of deposits into the water [32].
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Iron is mainly present in groundwater due to its dissolution by carbon dioxide in the
water. In surface waters, iron levels increase in rainy seasons due to soil transport and the
occurrence of erosion processes [31]. In the State of São Paulo, a limit of 15 mg.L−1 was
established for the concentration of soluble iron in sewage effluents discharge collection
pipelines, followed by treatment [23].

pH is essential because it influences chemical balances occurring naturally or in unitary
water treatment processes. The indirect effect is also significant and can, under certain pH
conditions, contribute to the precipitation of chemical elements, exerting effects on nutrient
solubilities [27,28].

Lastly, hardness encompasses four components: calcium bicarbonate [Ca(HCO3)2],
magnesium bicarbonate [Ca(HCO3)2], calcium sulfate (CaSO4), and magnesium sulfate
(MgSO4) [28]. The risk of using clogging emitters in drip irrigation is reduced when the
result for this parameter is less than 150 mg.L−1 [29,30,33].

Finding data available for more parameters in continuous series with the proper
quantity and quality is challenging. Thus, it is typical to use only a few of them in
studies on water quality for irrigation, such as pH, EC, iron (Fe), and water hardness.
These parameters are more accessible to measure and directly affect the emitters clogging
and the formation of microorganisms related to the emitters clogging, especially iron
bacteria [27–29,31].

The World Health Organization [32] considers that for microbial water quality, verifi-
cation could be based on the analysis of fecal indicator microorganisms, with the organism
of choice being Escherichia coli or thermotolerant coliforms. In most cases, monitoring for
E. coli or thermotolerant coliforms provides a high degree of assurance because of their
large numbers in polluted waters.

2.2. Use of AI for Water Quality Evaluation

Rahu et al. [6] emphasized that monitoring water quality is a crucial task that guaran-
tees the safety and usability of water resources. They also considered that traditional water
quality monitoring techniques take a long time, are expensive, may not be accurate, and
often do not produce real-time data.

Nevertheless, it is well known that irrigation management depends on water and soil
parameters. As extracting information from all the needed data to evaluate irrigation water
quality is challenging, AI models and techniques could improve decision making and the
management of aspects related to soil and irrigation systems.

AI encompasses state-of-the-art models used in many areas, including irrigated agri-
culture. Recently, many papers worldwide have reported the use of ML and deep learning
algorithms in calculating or forecasting the quality of surface water and groundwater for
irrigation [7,34–39].

The literature highlights the difficulties in obtaining enough data and suggests using AI
to forecast the WQI. According to Nguyen et al. [38], AI models can process large amounts
of data and make predictions with high precision, handling nonlinear relationships between
water quality parameters, correcting missing and multidimensional data, and improving
predictions as new data become available.

Singh et al. [40] evaluated the seasonal groundwater suitability for irrigation purposes
using indexical approaches, statistical computing, graphical plotting, and ML algorithms.
They observed that, in the context of groundwater quality prediction, multiple linear
regression (MLR) and artificial neural network (ANN) models stood out, with the ANN
consistently outperforming MLR. Rahu et al. [6] noted that several research studies have
been conducted to investigate the use of ML algorithms in monitoring agricultural water
quality. They concluded that deep learning algorithms outperform conventional regression
models in terms of accuracy.

Several classifiers, including the support vector machine (SVM), random forest (RF),
logistic regression (LR), decision tree (DT), CATBoost, XGBoost, and multilayer perceptron
(MLP), were evaluated for classifying water quality data using the water quality index
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(WQI). The study demonstrated that CATBoost achieved the highest accuracy at 94.51%
compared to the other classifiers [41]. Predicting the WQI requires prior knowledge or
classes, and most of them are built using expert elicitation to define the weight of each
parameter in the index. Dritsas and Trigka [42] applied different classifiers in an unbalanced
dataset and corroborated that, after using the Synthetic Minority Oversampling Technique
(SMOTE), the classification algorithms had improved their performance.

3. Methodology Proposed

Different sources were considered to develop the proposed methodology, such as
the works by Storey et al. [43] and Nafsin and Li [44]. The first work presented interna-
tional studies on leading water utilities, research organizations, and technology providers
worldwide involved in developing and deploying online monitoring technology to detect
contaminants in water. The second work analyzed anomalous water quality events in the
Milwaukee River. They provided the essential requisites that the methodology should ful-
fill. We also considered the main stages of the data lifecycle [45,46] and ML workflows [45].
The proposed method contains nine components, which are illustrated in Figure 1.

Figure 1. Proposed method’s main components.

The nine components are as follows:

1. Data collection:This step involves collecting data for all relevant parameters and in-
dices from all stations in the basin that encompass the regions that will be studied. For
some decision-makers, the whole basin may be of interest, such as for policy making.
For specific farmers, particular regions of the basin may be more critical. Although
many factors could be considered, three essential ones are (i) the current presence of
pollution sources (such as industries and large-size cities); (ii) the river flow; and (iii)
the data series encompassing hydrological years with different characteristics (such
as years of floods and of droughts);

2. The selection of the most important years for analysis: This step is related to selecting
the hydrological years that will be analyzed and should encompass at least one flood
and one drought year. We also recommend analyzing one year with average flow
(which we refer to as ’average’ in this paper). Several criteria and methods are used to
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identify in the dataset if each year is a flood, average, or drought year. Nevertheless,
we recommend using a simple and easily explainable method based on streamflow,
such as the standardized streamflow index (SSFI). This method calculates the average
streamflow for the whole basin for each year. Then, a criterion for identifying if
the year had excess flow (indicative of a flood year) or a considerably lower flow
than average (indicative of a drought year) is applied. Lastly, the years can be
selected considering this classification. In the case of domain-expert selection (as
was performed in this work), we recommend showing the chart of the SSFI with the
triggers for flood and drought for the domain expert and then letting them select
the years to be analyzed. However, the whole process can easily be automated by
incorporating rules for defining flood and drought years. In the absence of previous
knowledge, the years chosen may have the lowest SSFI, the highest SSFI, and the year
with the SSFI closest to the average value;

3. Data preprocessing for each station: This aims to identify, eliminate, and address
potentially incorrect or missing data. In the case of addressing missing data, different
imputation methods can be used, or the sample can be discarded, depending on the
specific context (with more data available, it is possible to discard data points without
losing significant information). In the case of potentially incorrect data, identifying
and addressing it is more challenging. We recommend identifying the accepted inter-
vals for the parameter, considering both physical aspects (for example, pH between
0 and 14 or conductivity lower than the limit for freshwater). If data imputation is
needed, several methods should be evaluated based on the value distribution for
the specific parameter. The main options used are the median, average, or moving
average values. If the parameter distribution is close to a normal distribution, the
average is traditionally used. The median is more indicated if it differs considerably
from a normal distribution.

4. Relevant quality metric calculation: In this step, relevant quality metrics or indices
are chosen based on a literature review, legislation, or a domain expert recommen-
dation. Several different dimensions can be considered, but the essential ones we
recommend are (i) soil-related metrics, such as the sodium adsorption ratio (SAR), pH,
and conductivity, which may directly influence the soil and plants; and (ii) irrigation
system-related metrics, such as dissolved iron, hardness, biochemical oxygen demand,
and the concentration of some microorganisms, which may cause problems such as
drip clogging. As unsupervised learning models and techniques extract information
directly from the data provided without prior or external knowledge, it is crucial that
the dataset generated contains high-quality data. Although evaluating data quality is
outside this work’s scope, we refer the reader to the work by Gong et al. [47], which
encompasses an in-depth review of several datasets and data quality assessment
techniques and criteria.

5. Exploratory data analysis: After the quality metrics (also referred to as ’parameters’
in this paper) are selected, they must be analyzed. This encompasses (i) extracting
relevant statistical information (such as the mean, mode, median, standard deviation,
and variation coefficient); (ii) generating important charts to better understand the
data (such as boxplots and line charts); (iii) analyzing the value distributions for each
parameter; (iv) identifying outliers; and (v) developing maps to illustrate the average
values of each parameter for each season and hydrological year. This step is essential
to guiding decisions such as on (i) which scenarios should be generated and evaluated;
(ii) if additional data collection or processing is needed; and (iii) the potential outliers
impacting the final results. Although the automation of this analysis is outside the
scope of this work, it is important to emphasize that part of this evaluation can be
automated, as described by Milo and Somech [48].

6. Scenario generation: This step aims to define and create the scenarios that will
be evaluated. At least the following three aspects must be considered in different
scenarios: (i) the evaluation of indices into relevant categories (such as soil-related
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and irrigation system-related indices); (ii) the evaluation of all indices simultaneously;
and (iii) the evaluation of the wet and dry seasons of each selected year. Additional
scenarios can be generated using different unsupervised learning models and indices.
Additionally, if outliers were detected during the processing or exploratory data
analysis steps, it is essential to evaluate scenarios with and without outliers for
each parameter that presented outlier values. This is important because sometimes
the outliers are not incorrect values but extreme ones with a physical, chemical,
or biological explanation. This is the case of the high concentrations of iron and
biological-related parameters near populous cities. A traditional outlier detection
and removal method, such as the boxplot technique, would eliminate these high
values. However, they are essential to understanding water quality in the river basin
in those areas. Therefore, we recommend analyzing different scenarios, such as the
dataset without outliers, the dataset with all values (including outliers), and a dataset
composed only of the outliers.

7. Unsupervised learning model implementation: In this step, an unsupervised learn-
ing model extracts valuable information from each scenario and helps generate in-
sights for data analysis and decision making. Different methods can be used, depend-
ing on the characteristics of the data and the amount of data available. In some cases,
a clustering model may be enough to extract information that improves decision
making. In other cases, dimensionality reduction techniques (such as principal com-
ponents analysis, PCA, or t-distributed stochastic neighbor embedding, t-SNE) can
improve the results generated. However, data must be standardized or normalized
before using such techniques and models, as parameters with intervals with different
orders of magnitude may impact the results considerably. In general, we recommend
clustering techniques to always be used in the proposed method, as one of the main
objectives is to obtain and evaluate clusters of data that may bring important informa-
tion related to water quality for irrigation purposes. However, in cases where there
are many variables, a dimensionality reduction method is indicated to improve the
exploratory data analysis and the results of the clustering model. Although there
is no clear rule for what can be considered many variables, we recommend using a
dimensionality reduction method if there are more than ten parameters, especially if
there is the possibility that some of these parameters are partially dependent upon
each other. For an in-depth evaluation of unsupervised learning methods and their
applications, we refer the reader to the work by Ghahramani [11].

8. Map generation: This step encompasses generating maps of the parameters used as
inputs for the clustering model (the indices calculated in step 4) and the clustering
results used in step 7. At least one map should be generated for the clustering results
for each scenario for each year or season, and one map should be generated for each
parameter for each year or season. Among the options for map types that can be
generated, we recommend creating one map for each parameter, separating the data
into quartiles (which improves the expert validation and decision making); displaying
the maps of the same parameter (or scenario) together (to make comparisons easier);
displaying all scenarios together for the clustering results (to make comparisons
easier); and evaluating the possibility of creating maps of differences (e.g., instead of
plotting the quantile for the wet and dry seasons of a particular year as separate maps,
creating a map of the quantile difference between both seasons).

9. Result analysis: The last step of the proposed method, which should be conducted by
a domain expert with the results of the previous steps, is crucial for better decision
making. In this step, the domain expert (or a group of domain experts) should
compare and evaluate each parameter for each season or year (using the results of
step 5), the results of the clustering of each scenario (using the results of step 7), and
the maps generated (using the results of step 8). A risk analysis and temporal, spatial,
and spatiotemporal analyses of each metric or group of metrics can also be conducted.
This step is the most difficult to automate, as it may vary from project to project in
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terms of the indices and parameters used as inputs, their distributions, the presence of
outliers, the scenarios generated, and what decisions the decision-makers will make
considering the results, among others.

Applying the proposed method makes it possible to address the main gaps identified in
Section 1 and generate vital information to improve decision making related to water quality
for irrigation purposes for different decision-makers and stakeholders. As was emphasized
in the description of each step of the method, most steps can be fully automated, but some
depend on domain expert analysis and validation. We believe this is not a negative aspect
but a characteristic of complex problems that may impact different decisions, sustainability
dimensions, and stakeholders.

It is crucial to observe that although the method is presented as a linear sequence of
steps, the feedback from each step can be used to change previous steps. For example, a
decision-maker in the last step may decide to generate a new scenario and incorporate or
remove parameters. In this case, the whole method is applied again.

Lastly, it is important to emphasize that the code developed for the case study de-
scribed in Section 4, which encompasses all the steps of the proposed method, as well
as the data used, are available from an open Github repository at the following link:
https://github.com/rfsilva1/data-driven-water-quality (accessed on 1 March 2024). It can
be easily adapted to uses with different variables, regions, and river basins.

4. Water Quality at the PCJ Basin

This section presents the description of the case study and its main results. It is
divided into the following sections: Section 4.1 describes the area and the case study itself;
Section 4.2 encompasses an exploratory data analysis of each parameter; and Section 4.3
contains the main results of implementing the clustering model for each scenario and
having domain experts validate the methodology.

4.1. Case Study Description

This study was conducted in the Piracicaba–Capivari–Jundiaí (PCJ) basin, one of the
most critical hydrographic regions in the São Paulo state, densely populated and highly
economically relevant in Brazil. Figure 2 illustrates the whole basin with its main sub-
basins. The area is named after the three main rivers that form the basin, encompassing
15,304 square kilometers. The basin’s annual rainfall and water flow averages are 1592 mm
and 172 m3. Few works in the water quality literature have explored this specific basin area
as a whole [49].

Figure 2. PCJ river basin. Source: PCJ, 2024.

https://github.com/rfsilva1/data-driven-water-quality
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The PCJ basin fully or partially covers the territories of 76 municipalities, 71 in the state
of São Paulo and 5 in the state of Minas Gerais, with an approximate length of 300 km in the
east–west direction and 100 km in the north–south direction. It has an area of approximately
15,377 km², 92.45% in the state of São Paulo and 7.55% in the state of Minas Gerais, where
the headwaters of the Jaguari, Camanducaia, and Atibaia rivers are located [50,51].

As for land cover, the PCJ basin has significant urban, industrial, and rural occupa-
tion playing essential roles in regional economic development. Around 7% of Brazil’s
Gross Domestic Product (GDP) is estimated to be produced in this area. Additionally, it
encompasses a population of over 5.8 million inhabitants, with 95.1% living in urban areas
(Water Resources Plan of the Hydrographic Basins of the Piracicaba, Capivari, and Jundiaí
Rivers, 2020).

The Water Resources Plan for the Hydrographic Basins of the Piracicaba, Capivari,
and Jundiaí Rivers [52] defined land use as follows: 25.30% encompasses pasture; 20.35%
is native forest; 19.01% is sugar cane; and 12.11%, urbanized areas. Other uses are less
significant in terms of the percentage of area occupied, such as other temporary and
permanent crops (e.g., grain and cereal plantations, roots, vegetables, flowers, and fruits).
The predominant soil types are red-yellow acrisols and red-yellow ferralsols.

Two hydrological periods were defined for this case study: (i) wet period, from
1 October of one year to 31 March of the following year; and (ii) dry period, from 1 April to
30 September of the same year. During the wet period, the release of flows to the PCJ Basins
is carried out following a statement from the Department of Water and Energy (DAEE) to
meet the 15-day moving average flows at the control points of the Cantareira System (SC),
respecting the minimum values defined per control post.

During the dry period, an average flow of 10 m3/s must be guaranteed, equivalent to
a volume of 158.1 hm3 to be released from the SC to the PCJ Basins [52].

The proposed methodology (Section 3) was fully implemented. The main aspects of
each step are described in the following paragraphs:

1. Data collection: Official data were collected from the Infoáguas Online System
(https://sistemainfoaguas.cetesb.sp.gov.br/), accessed on 2 February 2024. The data
download encompassed the interval from 2011 to 2017, considering all stations and
cities in the PCJ basin. Then, the stations located near the cities with the highest
demand for irrigation were selected (as not all regions in the basin have a high de-
mand for water for irrigation purposes). Figure 3 contains the map of the PCJ basin,
illustrating the location of the stations. Although not present in the dataset, Madeira
et al. [53] indicated that rivers are very high-risk quotients for pesticides and industrial
chemicals, and close to 45 contaminants are present in the PCJ basin, located in an
agricultural and industrial area.

2. The selection of the most important years for analysis: The SSFI was used to select
one hydrological year for each type: higher streamflow (2011–2012, which we called
‘flood’); average streamflow (2012–2013, which we called ‘average’); and lower stream-
flow (2014–2015, which we called ‘drought’). The domain experts then validated these
choices. Figure 4 illustrates the SSFI calculated for the whole dataset, emphasizing
the selected years.

3. Data preprocessing for each station: As the data were already available after an
initial preprocessing, no missing data were identified. First, we aggregated the data
monthly. Additionally, considering the accepted intervals for the most important
indices available on the dataset, no incorrect data were detected.

4. Relevant quality metrics calculation: After consulting the domain experts and evalu-
ating the data available for each quality metric, we decided to consider four relevant
metrics [23,26,30,33,54] divided into two groups: (i) soil-related metrics: pH and
electrical conductivity EC of water; and (ii) irrigation system-related metrics: total
iron Fe, hardness, biochemical oxygen demand (BOD), and the concentration of ther-
motolerant coliforms (TtC). Other important metrics were lacking for most of the
dataset or could not be calculated (such as the case for SAR).

https://sistemainfoaguas.cetesb.sp.gov.br/
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5. Exploratory data analysis: In this step, three analyses were conducted for all parame-
ters for each year and season: an (i) analysis of statistical information, considering the
mean, median, standard deviation, minimum, and maximum values; (ii) analysis of
distribution using a kernel density estimate (KDE) plot; and (iii) analysis of potential
outliers using a boxplot. Additionally, maps were generated for all parameters for
each year and season, separating the values into four quartiles.

6. Scenario generation: Three scenarios (S) were generated for each dataset (flood,
average, drought) related to different metrics used as inputs for the clustering of each
year. Table 2 contains the scenarios evaluated, considering their inputs and datasets.

7. Unsupervised learning model implementation: The k-means method is the most
used clustering technique, spanning over 50 years of applications [55,56]. Therefore,
it was used in the case study explored in this paper. According to Jain [55] and
Steinley [56], the k-means technique has three main steps: (i) creating points to use
as cluster centers in an n-dimensional space (the number of dimensions depends
on the number of features on the dataset); (ii) associating all points in the dataset
with the closest cluster centers (considering a specified distance metric); and (iii)
recalculating the cluster centers, considering the new associations. Steps (ii) and (iii)
are repeated until a stop criterion is met. This clustering method was implemented in
the three scenarios. The most important hyperparameter for defining for the k-means
method is the number of clusters or k. To define this hyperparameter for each scenario,
three traditional methods were used: the elbow method, the dendrogram, and the
silhouette score.

8. Map generation: Maps were generated for all the inputs for each season, as well as
for the results of the clustering implementation for each scenario.

9. Result analysis: Two domain experts from the hydrology and irrigation domains
evaluated the results generated in Steps 5, 7, and 8 while also evaluating the usefulness
of the proposed methodology in relation to traditional analyses.

Figure 3. Data collection stations analyzed in the case study. The blue lines represent the drainage
network and the red dots represent the stations
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Figure 4. Standardized Streamflow Index (SSFI) calculated for the whole dataset. The blue color
illustrates values of SSFI higher than 0, while the red color is related to values of SSFI lower than 0

Table 2. Case study scenarios.

Scenario Dataset Input Data

S11 Flood (2011–2012) Soil-related metrics
S12 Flood (2011–2012) Irrigation system-related metrics
S13 Flood (2011–2012) All metrics
S21 Average (2012–2013) Soil-related metrics
S22 Average (2012–2013) Irrigation system-related metrics
S23 Average (2012–2013) All metrics
S31 Drought (2014–2015) Soil-related metrics
S32 Drought (2014–2015) Irrigation system-related metrics
S33 Drought (2014–2015) All metrics

Legend: soil-related metrics EC, pH; irrigation system-related metrics: Fe, hardness, BOD, TtC.

The implementation was realized using R on RStudio and Python on a Google Col-
laboratory CPU (https://colab.research.google.com/). The R libraries used were dplyr
(https://dplyr.tidyverse.org/) [57] and lubridate (https://lubridate.tidyverse.org/) [58].
The Python libraries used were NumPy (https://numpy.org/) [59], Pandas (https://
pandas.pydata.org/) [60], Matplotlib (https://matplotlib.org/) [61], Seaborn (https://
seaborn.pydata.org/) [62], Scikit-Learn (https://scikit-learn.org/) [63], SciPy (https://
scipy.org/) [64], GeoPandas (https://geopandas.org/) [65], and Shapely (https://shapely.
readthedocs.io/). All URLs were accessed on 15 February 2024.

4.2. Exploratory Data Analysis

Table 3 shows the exploratory analysis of the different metrics considered in the case
study. It is important to observe that, except for pH, all metrics present high coefficient
of variation (CV) values. This amplitude occurred in all the years analyzed. The range
of EC and pH values increased from the flood year to the drought year, indicating the
importance of rainfall in the dilution of salts and the consequent reduction in the values of
these parameters.

For Fe and hardness, the trend was the opposite, with a reduction in CV from the
flood to the drought year. This indicates that the increases in rainfall and, consequently,
in surface runoff sediments increase the concentrations of Fe, Ca, and Mg in the ana-
lyzed points. Both EC and pH remained within the unrestricted limits for irrigation use

https://colab.research.google.com/
https://dplyr.tidyverse.org/
https://lubridate.tidyverse.org/
https://numpy.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://scikit-learn.org/
https://scipy.org/
https://scipy.org/
https://geopandas.org/
https://shapely.readthedocs.io/
https://shapely.readthedocs.io/
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(EC ≤ 700 µS/cm; 6 ≤ pH ≤ 8.5) [26], except for the maximum EC values during the
drought year and the maximum pH value in the average year.

Although the present study cannot confirm the sources of the elements found in the
water, these results suggest that further detailed analysis and monitoring are necessary to
identify their origins (such as surface runoff or the disposal of organic chemical residues).

Table 4 presents the exploratory analysis of the biological parameters considered in
the case study as indicators of clogging risks for irrigation systems. The CV values indicate
a high data variation along the river basins, probably due to the land use (urban, industrial,
agricultural), as well as the level of river streamflow. Laaraj et al. [3] observed a high
spatial variation in parameters in the quality of surface water in Morocco compared to the
standards established by the World Health Organization. Urban and industrial discharges
had more influence over the water quality in the upper part of the watershed. The water
quality improved downstream due to dilution by the streamflow of other tributaries.

Table 3. Statistical indices for the datasets for each hydrological year.

Dataset
EC
(µS.cm−1)

pH
(U. pH)

Iron Total
(mg.L−1)

Hardness
(mg CaCO3.L−1)

Flood

Mean: 92.90
Std: 51.80
CV: 55.76%
Min: 41.00
Max: 285.00

Mean: 6.94
Std: 0.22
CV: 3.17%
Min: 6.30
Max: 7.60

Mean: 3.92
Std: 6.14
CV: 156.63%
Min: 0.30
Max: 38.00

Mean: 26.49
Std: 18.04
CV: 68.10%
Min: 3.48
Max: 97.00

Average

Mean: 109.55
Std: 83.63
CV: 76.34%
Min: 37.30
Max: 553.00

Mean: 6.94
Std: 0.37
CV: 5.33%
Min: 6.30
Max: 9.10

Mean: 2.71
Std: 3.12
CV: 115.13%
Min: 0.30
Max: 19.00

Mean: 24.13
Std: 10.87
CV: 45.05%
Min: 10.00
Max: 70.00

Drought

Mean: 147.43
Std: 141.21
CV: 95.78%
Min: 37.00
Max: 874.00

Mean: 7.03
Std: 0.39
CV: 5.55%
Min: 6.10
Max: 8.60

Mean: 1.18
Std: 0.83
CV: 70.34%
Min: 0.24
Max: 6.00

Mean: 26.06
Std: 15.46
CV: 59.32%
Min: 9.88
Max: 81.00

Legend: Std: standard deviation; CV: coefficient of variation; Min: minimum value; Max: maximum value.

Table 4. Statistical indices for the datasets for the biological parameters for each hydrological year.

Dataset
BOD
mg.L−1

TtC
CFU

Flood

Mean: 3.46
Std: 2.08
CV: 60.16
Min: 2.00
Max: 10.00

Mean: 14602.11
Std: 29,306.59
CV: 200.70
Min: 11.67
Max: 143,333.33

Average

Mean: 3.82
Std: 1.79
CV: 46.90
Min: 2.00
Max: 8.00

Mean: 10,796.72
Std: 28,243.45
CV: 261.59
Min: 16.67
Max: 200,000.00

Drought

Mean: 4.01
Std: 2.70
CV: 67.45
Min: 2.00
Max: 14.50

Mean: 12,552.80
Std: 31770.51
CV: 253.09
Min: 1.67
Max: 250,000.00

Legend: Std: standard deviation; CV: coefficient of variation; Min: minimum value; Max: maximum value.
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The analysis of the parameters in Table 5 indicates a wide range of values for most
parameters, except for pH, which shows less variation (max CV = 6.71%). When looking
at the data for the three years (flood, average, and drought) and their seasons (S1—wet;
S2—dry), it becomes clear that a reduction in flow results in a more significant variation
(with a higher CV) in the EC. The pH showed variations in both directions. Fe showed a
tendency to reduce its amplitude (with a lower CV%), both from the wettest (flood) to the
driest (drought) years and from the wet to the dry seasons, indicating that surface runoff is
the most influential factor in the concentration of this element in the water.

According to de ALMEIDA [66], if iron concentration in water exceeds 0.1 mg.L−1,
precipitation issues may arise, particularly in alkaline pH. The author highlights that con-
centrations equal to or greater than 0.4 mg.L−1 can worsen the problem of iron precipitation,
and the presence of iron bacteria increases the risk of clogging due to iron precipitation
in the water. Nakayama and Bucks [54] demonstrated that if the iron (Fe) concentration
in water exceeds 1.5 mg.L−1, it can severely restrict water usage in localized irrigation. In
the present case study, most measured Fe concentrations exceeded the limit, demanding
an iron removal treatment method with aeration cascade before irrigating. An alkaline
pH contributes to the formation of suspended solids, which easily recombine with other
blockages on the emitter, increasing the clogging severity [19].

There was a downward trend in water hardness from the flood to the other two years,
but the lowest values occurred in the average year. Different factors can influence this
parameter, such as the extreme decrease in the water flow during the drought year and
the possibility of unintentional spillage or the intentional, improper disposal of chemical
and organic waste in the flood year. Given the conditions under which the present study
was carried out, it is not possible to state the true causes, indicating the need for new and
detailed studies to verify such hypotheses.

Table 5. Statistical indices for the datasets for each season and hydrological year.

Dataset
EC
S1/S2
(µS.cm−1)

pH
S1/S2
(U. pH)

Iron Total
S1/S2
(mg.L−1)

Hardness
S1/S2
(mg CaCO3.L−1)

Flood

Mean: 90.59/95.17
Std: 45.61/57.61
CV: 50.35%/60.53%
Min: 42.50/41.00
Max: 270.00/285.00

Mean: 6.93/6.95
Std: 0.24/0.20
CV: 3.46%/2.88%
Min: 6.30/6.50
Max: 7.40/7.60

Mean: 5.46/2.41
Std: 7.86/3.22
CV: 143.96%/133.61%
Min: 0.90/0.30
Max: 38.00/16.00

Mean: 31.00/22.06
Std: 23.27/8.97
CV: 75.07%/40.66%
Min: 3.48/8.00
Max: 97.00/47.00

Average

Mean: 108.38/110.73
Std: 78.89/88.94
CV: 72.79%/80.32%
Min: 37.30/42.70
Max: 424.00/553.00

Mean: 6.88/7.00
Std: 0.20/0.47
CV: 2.91%/6.71%
Min: 6.30/6.50
Max: 7.30/9.10

Mean: 3.57/1.85
Std: 3.90/1.72
CV: 109.24%/92.97%
Min: 0.60/0.30
Max: 19.00/12.00

Mean: 23.96/24.29
Std: 10.81/11.05
CV: 45.12%/45.49%
Min: 10.00/12.00
Max: 61.00/70.00

Drought

Mean: 142.16/154.44
Std: 150.86/128.25
CV: 106.12%/83.04%
Min: 37.00/39.00
Max: 874.00/661.00

Mean: 7.04/7.01
Std: 0.43/0.35
CV: 6.11%/4.99%
Min: 6.20/6.10
Max: 8.32/8.60

Mean: 1.27/1.07
Std: 0.95/0.62
CV: 74.80%/57.94%
Min: 0.30/0.24
Max: 6.00/3.00

Mean: 24.87/27.66
Std: 16.21/14.39
CV: 65.18%/52.02%
Min: 9.88/10.30
Max: 81.00/73.00

Legend: Std: standard deviation; CV: coefficient of variation; Min: minimum value; Max: maximum value.

Parameters BOD and TtC (Table 6) show high values but different patterns for CV. In
BOD, CV was higher in the drought year and lower in the average year, and the mean values
increased from the flood to the drought year. In TtC, CV was higher in the average year and
lower in the flood year, and the mean values were higher in the flood year and lower in the
average year. The mean values of BOD indicate that water availability directly influences
the dilution of organic materials in the rivers. Otherwise, the mean values of TtC are
inconclusive, as TtC was higher in the flood year and lower in the average year, suggesting
many possibilities that were not investigated in the present study. Such possibilities include
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streamflow contact with materials with high concentrations of microorganisms in the flood
year and the increased discharge of some substances during flood years.

Sreekala et al. [67] found a similar pattern in a study in Central Kerala, India. Ac-
cording to the authors, the seasonal changes in the total and thermotolerant coliform
concentrations could be due to rainfall, overland flow, nutrient load, and temperature
change. Boithias et al. [68] analyzed twelve flash-flood events sampled from 2011 to 2015
at the outlet of a tropical montane headwater catchment in Northern Lao, using E. coli as
a fecal indicator bacteria, aiming to quantify the contributions of both surface runoff and
sub-surface flow to the in-stream concentration of fecal coliforms during flood events. The
authors found that the highest concentrations of E. coli occur in flood events driven by
surface runoff, concluding that surface runoff and soil erosion are the primary drivers of
in-stream fecal coliform contamination.

Table 6. Statistical indices for the datasets for the biological parameters for each season and hydrolog-
ical year.

Dataset
BOD
S1/S2
mg.L−1

TtC
S1/S2
CFU

Flood

Mean: 3.72/3.19
Std: 3.70 /1.86
CV: 99.50/58.84
Min: 2.00/2.00
Max: 19.00/9.00

Mean: 14,107.87/15,086.04
Std: 22,781.35/34,775.29
CV: 161.48/230.51
Min: 86.67/11.67
Max: 110,000.00/143,333.33

Average

Mean: 4.17/3.48
Std: 2.59/2.24
CV: 62.10/64.40
Min: 2.00/2.00
Max: 11.00/11.00

Mean: 11014.76/10578.68
Std: 31,233.93/25,232.95
CV: 283.56/238.53
Min: 50.00/16.67
Max: 200,000.00/160,000.00

Drought

Mean: 4.33/3.39
Std: 5.95/2.07
CV: 137.32/61.05
Min: 2.00/2.00
Max: 50.00/10.00

Mean: 11,755.69/13,615.62
Std: 27,652.73/36,799.34
CV: 235.23/270.27
Min: 1.67/1.67
Max: 166,666.67/250,000.00

Legend: Std: standard deviation; CV: coefficient of variation; Min: minimum value; Max: maximum value.

Figure 5 illustrates the distribution of iron concentration and TtC in the data analyzed
during the flood, average, and drought years. One notes that the highest iron concentra-
tions (>35 mg.L−1−1) rarely occurred, and most data showed concentrations from 0 to
5 mg.L−1. Even so, iron concentrations above 0.3 mg.L−1 are enough to cause clogging
events in drip irrigation systems. Clogging problems can be aggravated by the presence
of microorganisms known as iron bacteria, which, in high concentrations of iron, form
mucilage on the walls of pipes and drippers. High iron concentrations in the water favor
the growth of bacteria and, hence, result in clogging problems in drip irrigation systems.

Most data found TtC concentrations to be equal to or less than 20 × 103 UFC 100 mL−1.
According to Storlie et al. (1995) [22], these levels define the degree of restriction on the use
for irrigation as “Slight to Severe” (Table 1). The problem seems higher in the flood year,
which presents the highest average population, even if the maximum population occurred
during the drought year (250 × 103 UFC 100 mL−1).

One important tool requested by the experts to improve the quality of the analysis of
each metric considering multiple seasons and years was a map representing the values of
the parameters for each station. However, as potential outliers exist in the data (as observed
in the previous analysis), we opted to develop maps for all parameters for each season and
year, aggregating the data into quantiles. This allowed us to reduce the impact of potential
outliers in the analysis and obtain a less challenging visualization of variations between
seasons for each parameter.
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Figure 5. KDE distributions of the iron total and TtC parameters for the different datasets.

Figure 6 provides an example of such an analysis for the total iron metric. One can
easily note that the changes in iron concentration between the seasons, but they are not
so clear between the years analyzed, especially in the drought year. Otherwise, one can
detect the changes in the flood year, denoting the influence of the water flow level on iron
concentration.

Figure 6 also emphasizes the slight variation between iron contents in 2014 (drought
year) because the rivers kept their flow low throughout the year. Therefore, the rainy season
differed very little from the dry period.
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This highlights the importance of performing additional analyses using more than
one parameter to understand the data. All the maps and parameter distribution charts
(including boxplot and KDE distribution) are available if requested.

Figure 6. Iron concentrations in the different seasons and years, grouped by quantiles. The quantile
of iron concentration is represented in red, and the drainage network is represented in light blue.
Legend: the bigger the circle size, the higher the concentration.

We obtained similar results in analyzing the thermotolerant coliforms metric (Figure 7).
It is easier to detect changes in TtC between seasons in the same year than between years.
Nevertheless, such detection between different years was easier with TtC (Figure 7) than
with iron (Figure 6).

Figure 7. Original TtC in the different seasons and years, grouped by quantiles. The quantile of TtC
is represented in dark blue, and the drainage network is represented in light blue. Legend: the bigger
the circle size, the higher the concentration.

4.3. Result Analysis and Domain Expert Validation

The result analysis and validation (the last step of the proposed method, described in
Section 3) were conducted by domain experts analyzing the maps generated (both of inputs
and clusters, as shown in Section 4.2), the distributions of inputs, and statistical index tables
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generated automatically by applying the framework. The clusters were generated using
one of the most widely used clustering models (k-means clustering), which considered
different techniques to determine the number of clusters in the data. k-means is a purely
data-driven method that does not depend on experts’ inputs. Then, experts evaluated
the results of the method and the exploratory data analysis conducted by applying our
proposed method (described in Section 3).

Answering RQ1, which is related to the identification of the most critical components
for developing a data-driven methodology to analyze water quality for irrigation consid-
ering the soil and irrigation system dimensions, we observed that nine components are
fundamental, considering the evaluation of domain experts: data collection; the selection
of the most important years for analysis; data processing; quality metric calculation; ex-
ploratory data analysis; scenario generation; unsupervised learning model implementation;
map generation; and result analysis.

These components allow for a more automated analysis, providing essential insights
for decision making. Additionally, several components can be further explored to generate
different scenarios, extract information using different artificial intelligence models and
techniques, and generate meaningful insights for improving decisions from different agents.
They also encompass the most critical stages of the data lifecycle, considering aspects from
data collection to decision making. Lastly, these components can be easily implemented in
the traditional ML workflow.

Research question 2, related to the variation in the water quality for the three hydrolog-
ical years considered, requires observing that a decrease in iron concentration is expected
during the dry season due to less soil transport. This effect can be observed for the average
and drought year maps in Figure 6. However, it cannot be observed for the flood year,
when a smaller flow variation is expected between the dry and wet seasons.

The smaller flow variation in the flood year can also explain the lower number of
clusters in that year when compared to the average and dry years (Figure 8). This effect
could also be observed if the sizes of the sub-basins were evaluated. It can also be observed
that, as the study region has a sub-humid climate, the EC and pH parameters vary relatively
little and can be grouped into a smaller number of clusters in the flood year (Figure 8).

Figure 8. Clustering results for all datasets and scenarios.

5. Discussion

Based on the case study results, it is possible to observe that the clustering process
can result in interesting insights if it is necessary to select a smaller number of points to be
sampled at some point during a basin analysis. In this context, the proposed methodology
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can generate important maps and help to cluster the data considering different sub-basins,
seasons, and hydrological years.

The number of clusters found (between two and three in the different scenarios) was
considered by the domain experts as enough to describe the most important aspects of
water quality for irrigation purposes for the area analyzed in the case study. The method
separated the traditionally more polluted areas, such as the ones in the western and
southern regions of the basin, mainly due to discharges from densely populated areas (as
illustrated in Figure 7). An interesting aspect is that this was accomplished without prior
expert knowledge, only using the available data on the dataset.

It is important to emphasize that the focus of the proposed method in this case study
was on data-driven knowledge extraction for a better understanding of the problem and
providing important information for decision making and analysis, not to predict water
quality itself (although this could be a follow-up study, using supervised learning methods
such as artificial neural networks, support vector machines, and random forests, among
other methods).

Therefore, the proposed method is an alternative to traditional analyses, which usually
depend on experts’ inputs and objective definitions for specific river basins. The only
exception was the case of TtC, which is highly relevant in basins with a high concentration of
urban areas (and that proved itself a very relevant variable for clustering, as it had locations
with a considerably high number of colony-forming units, influencing the clustering process
significantly). We adopted a three-class classification before using the data as an input
for the clustering method. However, raw values were used for the other variables, so the
framework is not dependent on specific variables. Its main limitation is the need to use
tabular data, an important aspect of future research.

Additionally, it is important to observe that it can help to better study and evaluate
the potential impacts of climate change on the different sub-basins and regions. Climate
change can increase the threat to soil and irrigation systems. Global warming will likely
increase river water temperature, causing direct impacts on biogeochemical processes in
freshwater [69]. Compared to increasing streamflows, temperature was the primary driver
of the increased release of manganese from river beds [70].

Singh et al. [40] evaluated groundwater quality for use in irrigation based on electrical
conductivity (EC), residual sodium carbonate (RSC), the sodium adsorption ratio (SAR),
sodium concentration (Na%), and water quality index (WQI). They concluded that seasonal
dynamics influence groundwater quality for irrigation, demonstrating notable changes in
the concentrations of cations and anions. For surface waters, the variation must be more
significant. Anthropogenic disturbance and land use are most likely crucial in determining
spatial water quality patterns in rivers [9].

According to the report presented by the Water Resources Plan for the Piracicaba,
Capivari, and Jundiaí River Basins [52], in 2014, the levels of the Sistema Cantareira reached
historic lows. This supports the results observed in the case study in the present work.
From 2013 onward, there has been a considerably dry rainfall regime in the region, where
water input has been the lowest ever recorded in the system, which for the first time, had
an entire year with water inputs lower than outputs.

In April 2013, the water volume began to fall. On 7 July 2014, removal through the
pumping of the first portion of the dead volume was authorized. In November 2014,
authorization was given to remove a second quota of the dead volume. On 4 February 2015,
the system reached its historic low. The dead volume continued to be used until December
2015, when rains in the region restored volumes to values above the dead volume. In March
2016, available volumes continued to increase, reaching operational normality [52].

According to the report presented by the Water Resources Plan for the Piracicaba,
Capivari, and Jundiaí River Basins [52], impermeable areas reduce the infiltration and
natural recharge of aquifers. Urban surfaces become polluted by the deposits of airborne
contamination and solid wastes. This contamination is transported to rivers by rain,
contaminating the river, especially at the beginning of the rain periods. Due to the increases
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in runoff speed and unprotected surfaces, there are substantial increases in sediments in
urban rivers and the erosion of banks, mainly altering the iron content in the water.

From a practical aspect, the proposed method can provide important information to
improve decision making for any variable or quality index available and any area or river
basin, as long as the data used are in tabular format. As cited before, the need to provide
data in a tabular format is one of the main limitations of the proposed framework, as data
in grid format or tensors with more than two dimensions cannot be directly used with the
code available.

However, from a theoretical perspective, it is still possible to use clustering and
dimensionality reduction techniques that work with spatiotemporal data, which have this
characteristic. For an overview of this problem, potential solutions, and different models
and techniques that could be used, we refer the reader to the works by Ansari et al. [71]
and Shi and Pun-Cheng [72].

Another limitation of the present work is that only one area was evaluated in the study
case (even though this area encompasses several important rivers and may provide critical
information for different stakeholders and decision-makers). It would be interesting to
apply the method to basins with different characteristics (e.g., basin area, climate, indices
and parameters used, and decisions that will be made using the information provided by
the method, among others) in different countries. This would provide important feedback
to improve the method, which is an effort already being made

6. Conclusions and Future Works

Evaluating and monitoring water quality is essential for using irrigation efficiently,
improving productivity, and addressing sustainability concerns. However, there is a gap in
the literature for automated methods for implementing a pipeline for water quality evalua-
tion and monitoring that considers all stages of the data lifecycle and the traditional ML
workflow. Therefore, the main objectives of this work were to propose such a data-driven
method, consider different water quality indices, and conduct a case study implementing it
with real data.

This work had two main research questions. The first was identifying the main com-
ponents necessary to propose such a data-driven method. We identified and implemented
nine components, from data collection considering multiple sources to providing maps,
tables, and important charts to improve decision-making. The second question relates to
the case study results. We concluded that in the flood year, possibly due to less variation in
weather, the parameters that describe the salinization risk could be grouped into fewer clus-
ters. The proposed methodology can also enhance domain experts’ analysis and improve
decision making.

Additionally, the proposed methodology can be used with different parameters and
quality indices and does not depend directly on prior domain experts’ knowledge to provide
important information to improve decision making. It can also be applied to different areas
and river basins. Several options for automation and variations in its components were
explored throughout this work.

The following are recommendations for future works: exploring additional data
processing techniques, such as PCA and t-SNE; exploring additional unsupervised learning
models, such as the density-based spatial clustering of applications with noise (DBSCAN)
and self-organizing maps (SOMs); accounting for the flow measured at the time of collection
and the size of the sub-basins; evaluating additional water quality metrics, such as SAR,
aluminum, and manganese; developing a web app based on the code implemented for the
case study to allow for better and faster water quality monitoring; and evaluating the use
of spatiotemporal clustering models for improving decision making.
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