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Abstract: The new paradigms of parametric modelling have
been proving promising on the advance of systems for anal-
ysis and design of taut (or tensile) structures. With this
premise, the presented work consist on the development
with a form-finding tool for Computer Aided Design(CAE)
and Computer Aided Engineering (CAE) integration using
VPL (Visual Programming Language), in the context of para-
metricmodelling. Themethods used in the implementation
are the Force Density Method (FDM) and the Natural Force
Density Method (NFDM), taking advantage of the linear
solution approach provided, suitable for fast form-finding
computational procedures.
The program is implemented as a Grasshopper plug-in and
it is named BATS (Basic Analysis of Taut Structures), which
enables parametric definition of boundary conditions for
the form-finding. The program structure and benchmarks
with other available Grasshopper plug-ins for taut struc-
tures form-finding are presented, showing considerably
superior performance using BATS.
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1 Introduction
Taut structures are defined by their characteristic state, in
which the structural members work only in tension. They
are usually flexible systems and are subjected to large dis-
placements upon changes of the intensity and distribution
of the loads.

Since Frei Otto’s pioneering works in the late 1950s [1],
they became an important research field for many archi-
tects and engineers. They provide lightweight structures,
composed mainly of cables and membranes, which have
no bending stiffness, and thus neither compression stiff-
ness. Generally, it is not possible to define the shape of a
taut structure a priori, but an appropriate shape is sought,
compatible to an initial stress field imposed to the system.
Once a viable configuration is found, the structural behav-
ior under external loads can be determined considering
geometrically non-linear analysis.

The Force Density Method (FDM) [2] provides the most
convenient alternative for shape-finding, approximating
a continuous surface by a network of linear elements. By
its turn, the Natural Force Density Method (NFDM) [3] is
an extension of the FDM that preserves the linearity of the
original method, and overcomes some of its limitations
to cope with irregular meshes which may arise from non
mapped tessellations of surface geometries.

The imposition of natural force densities and the impo-
sition of 2nd Piola-Kirchoff stresses on a reference configu-
ration are equivalent [4], a property previously described
for the original force densities by [5]. [4] also recognized
that if the solution of the NFDM is recursively used as new
reference configurations, the process might converge in few
iterations to a configuration in which the resultant Cauchy
stresses equal to the imposed 2nd Piola–Kirchhoff stresses.
That means that for an isotropic homogeneous stress state,
the final converged viable configuration will be a minimal
surface. That approach is computationally more efficient
for finding minimal shapes than other methods, such as
pseudo-dynamic systems and geometrical optimizations.
This makes NFDM well suited for structural design soft-
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wares, specially when the use of a parametric workflow
is featured, as the user can quickly search for shapes, for
instance changing the initial stress and then observing the
final shape in real-time.A comparison between different
methods on Ix-Cube 4.0 software, which has the NFDM im-
plemented, was performed by [6] showing faster and more
accurate results provided by NFDM. Although it is not stud-
ied in detail in this paper, the FDM and NFDM can also
be applied for the form-finding of compression and mixed
tension and compression structures (see [7]).

The new paradigms of parametric modelling have been
showing promising on the advance of systems for analysis
and design of tensile structures. The possibility to integrate
Computer Aided Design (CAD) and Computer Aided Engi-
neering (CAE) systems inside a parametric workflow allows
better rationalization of the design process and automation
of tedious tasks by linking CAD/CAE data for conception,
analysis and detailing of structures. Finite Element Analy-
sis (FEA) packages inside the visual programming language
(VPL) Grasshopper have been showing outstanding results
for structural design, as can be seen at [8], [9] and [10].

In this work, BATS (Basic Analysis of Taut Structures)
is presented. BATS is a Grasshopper add-on which applies
procedures for form-finding of taut structures and funicu-
lar shells inside parametric environment, and it was firstly
prototyped for studies regarding the use of NFDM for funic-
ular shell form-finding by [7]. The main code of BATS was
updated from a pure C# code to a multi-language code with
C# code for pre and post-processing using Grasshopper and
Rhino API, which calls the solution from C++ functions,
optimized for computational speed. This computational ap-
proach overcomes some issues presented on the previous
code, as numerical inefficiency, mainly due to the use of
the Open Source C# Library Math.NET, and non-optimized
assembly of the FEA model from raw CAD geometry. The
new code permits updates between many viable shapes in
terms of milliseconds with an acceptable mesh refinement.

Benchmarks considering computational speed is pre-
sented considering saddle and catenoid minimal surface
form-finding. BATS is compared to SATS (System for Analy-
sis of Taut Structures, the first implementation of NFDM in
MATLAB) [11], and Kangaroo solver [12], which is a multi-
physics simulation Grasshopper add-on that uses pseudo-
dynamic methods for many shape finding procedures, in-
cluding minimal surfaces, with good computational perfor-
mance.

2 Force Density Method
One of the first alternatives for form-finding was the defini-
tion of force densities, proposed by Linkwitz [2] and Sheck
[13], in the context of cable nets.

The FDM is based on the equilibrium of each node in
a cable net. With reference of the forces at the system in
Figure 1, the resultant of internal forces acting on node i is

P⃗i =
n∑︁
j=1

P⃗ij =
n∑︁
j=1

Nij v⃗ij (1)

Where Nij is the interaction force among the nodes i and
j, while v⃗ij = l⃗ij/

⃦⃦⃦
l⃗ij
⃦⃦⃦
is the unit vector oriented from i to j.

Applying equilibrium conditions gives equation 2

F⃗i +
n∑︁
j=1

Nij
x⃗j − x⃗i⃦⃦
x⃗j − x⃗i

⃦⃦ = 0⃗ i = 1, 2, ..., n (2)

Relating nodes with nodal displacements results in a non-
linear equation system. However, defining at each element
a force density nij (equation 3), a linear system with 3n
equations is obtained (4), and with boundary conditions
imposed, the system can be easily solved.

nij =
Nij⃦⃦

x⃗j − x⃗i
⃦⃦ (3)

n∑︁
j=1

nij(x⃗j − x⃗i) = F⃗i i = 1, 2, ..., n (4)

Still, it is convenient for large meshes to adopt a matrix
notation instead of the presented one. The Cartesian coor-
dinates of the system, as the external and internal forces,
can be expressed by 3 global vectorsX,F andP, respectively

Figure 1: A system of central forces [3]
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defined by equations 5

X =

⎡⎢⎢⎢⎢⎣
x1
x2
...
xn

⎤⎥⎥⎥⎥⎦
3nx1

;F =

⎡⎢⎢⎢⎢⎣
F1
F2
...
Fn

⎤⎥⎥⎥⎥⎦
3nx1

;P =

⎡⎢⎢⎢⎢⎣
P1
P2
...
Pn

⎤⎥⎥⎥⎥⎦
3nx1

(5)

Where xi =
[︀
x⃗i
]︀
3x1, Pi =

[︁
P⃗i
]︁
3x1

Fi =
[︁
F⃗i
]︁
3x1

are local coor-
dinate and force vectors of each node. It is also convenient
to substitute the sum inside the definition of P from the n
nodes to b elements connecting those nodes. The vector of
nodal coordinates and the vector of internal forces of the
the element, as show in Figure 2, are related by equation 6.

xe = Aex ; Pe = AeTpe (6)

Where xe =
[︁
xeT1 xeT2

]︁T
and pe =

[︁
peT1 peT2

]︁T
=

Ne
[︁
-veT veT

]︁T
, with ve =

[︀
v⃗ij

]︀
3x1 as the director cosine

of the element inside the global Cartesian coordinate sys-
tem. Ae is defined as the Boolean incidence matrix of the
element.

Figure 2: Linear element with local and global indexes [3]

Once these definitions are given, the equation 4 can be
rewritten as equation 7, where Kd =

∑︀e
b=1 A

eTkedAe is the
force density stiffness matrix of the system, with ked defined
in equation 8 is the element local stiffness matrix, with ne

as the element force density and I3 as an order 3 identity
matrix.

KdX = F (7)

ked = n
e
[︃
I3 −I3
−I3 I3

]︃
(8)

3 Natural Force Density Method
The NFDMpreserves the linearity of the original FDMmean-
while issues related to irregular triangular meshes are over-

Figure 3: Natural Membrane Finite Element (a) unit vectors, (b)
internal forces [3]

come. The natural force density derives from the natural
forces defined at the natural membrane finite element, first
proposed by Argyris [14]. Pauletti [3] redefines the formula-
tion of previous developments into amore concise notation.

The nodes and sides at Figure 3 are numbered anti-
clockwise, where each node index is coincident with the
face index in front of it. Node coordinates are referenced
at both global and local Cartesian system, with the local
representation expressed by " ∧ ".

To define the internal vector forces, it is convenient to
define natural forces Ni , which are parallel to its faces. The
relationship between the internal force vector of the ele-
ment pe and the internal forces are defined in equation 9.
After some algebra (see [15]) it is possible to rewrite the nat-
ural loads vector N = [N1N2N3]T as in equation 10, where
V = At is the element volume, L = diag {l1, l2, l3} a diago-
nal "lenght matrix" and T is a transformation matrix, given
by equation 11.

p =

⎡⎢⎣p1p2
p3

⎤⎥⎦ =

⎡⎢⎣N2v2 − N3v3
N3v3 − N1v1
N1v1 − N2v2

⎤⎥⎦ (9)

N = VL−1T−T σ̂ (10)

T =

⎡⎢⎣cos2 𝛾 sin2 𝛾 − sin 𝛾 cos 𝛾
cos2 β sin2 β − sin β cos β
1 0 0

⎤⎥⎦ (11)

Comparing equations 9 with 6 suggest the definition
of natural force densities ni = Ni/li, and using the rela-
tion given at equation 10 gives us a vector of natural force
densities (equation 12).

n =
[︁
N1
l1

N2
l2

N3
l3

]︁T
= VL−2T−T σ̂ (12)

With the definition of n it is possible to assign the nat-
ural force density stiffness matrix knd as in equation 13, and
the solution of a systemwith n linear elements andm trian-
gular elements is given by equation 7withKd = K (equation
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14)

knd =

⎡⎢⎣(n2 + n3)I3 −n3I3 −n2I3
−n3I3 (n1 + n3)I3 −n1I3
−n2I3 −n1I3 (n1 + n2)I3

⎤⎥⎦ (13)

K = Kd + Knd =
n∑︁
b=1

AbTkbdA
b +

m∑︁
c=1

AcTkcndA
c (14)

Although this linear procedure produces a viable con-
figuration of a bending-free shapes, the imposition of natu-
ral force densities to achieve a uniform stress field is non-
viable. However, the NFDM process can be evaluated recur-
sively by assigning a constant stress field σ̂0 and repeatedly
determining K, using σ̂ = σ̂0 on Eq. 12, where the new ref-
erence configuration is updated every step. [4] shows that
this process converges the solution to a minimal surface,
as the Cauchy stress resultants for this converged solution
are equal to the uniform second Piola–Kirchhoff stress re-
sultants, which is an analogous solution to a mathematical
minimal surface by the soap bubble analogy. This process
finds minimal surface shapes in quite few linear steps, as
will be discussed further, and is an interesting approach
as requires low computational cost and produces a viable
configuration at every step, feature that have clear advan-
tages compared to non-linear methods that converges to
a minimal solution but usually through a series of non-
equilibrium configurations.

The NFDM can find also non-minimal shapes by im-
position of non-isotropic and non-uniform stress fields. A
obvious example is application of a single step of theNFDM,
which gives a viable shape, yet have a non-uniform stress
state. The imposition of non-isotropic solutions canbedone

Figure 4: Definition of an orthotropic initial stress field by using
director places [15].

Figure 5: Definition of a quadrangular element by coupling multiple
triangular elements [15].

by finding natural force densities by an initial orthotropic
stress field using director planes on the elements, as de-
tailed by [15]. [15] also proposed a method to extend the
NFDM to quadrangular elements, by coupling multiple tri-
angular elements on both directions to reduce biased stress
results.

4 CAD/CAE integration by
parametric workflow

The steps of design and analysis of taut structures presents
some computational challenges, specially in the commu-
nication between CAD (Computer Aided Design) and CAE
(Computer Aided Engineering) systems. CADgenerally have
resources for geometrical definition of complex shapes and
details, where CAE is used for computational physical anal-
ysis. [16] defines the main issues on CAD/CAE integration,
and address the main issues to loss of data, compatibility
during the process and lack of automation. Those issues are
due the different characteristics between the processes. A
CADmodel is mainly a computational representation of the
geometry, not necessarily having attributes and properties.
These features are crucial inside CAE environment, as it
needs data such as material properties, physical interfaces
and element types. Many CAE softwares offers CAD mod-
elling features inside its interfaces, but still very limited
compared to CAD specialized softwares. Also, some FEA
packages are only code implementation, which need a ex-
ternal pre and post processor to work properly as a design
tool.

On the other hand, specialized CAD software as
Rhinoceros3D [17] have been delivering scripting features
with API’s (Application Programming Interface) giving the
developer access to the CAD system geometrical objects
inside an object-oriented-programming environment. With
this features it is possible to develop CAE structural appli-
cations with full use of CAD capabilities, using geometrical
objects as parameters for structural classes.

In CAD scripting context, mainly two types of program-
ming are featured: Visual Programming Languages (VPL)
and Textual Programming Languages (TPL). A VPL consists
on visual block elements which contains algorithms and
can be manipulated in a logical sequence of inputs and
outputs. On other hand, TPL systems relies on a sequence
of linear characters which describes the commands the pro-
gram should execute [18]. VPL’s are advantageous as do not
require a broad knowledge on programming syntax, and
are easier to use for general CAD users. The possibility of
association of inputs and outputs in VPL’s are interesting
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Figure 6: Possibilities in CAD/CAE integration

for CAE, as association between geometrical and analysis
data can be made. However, VPL’s are strictly dependent
on TPL’s, as each block component on the VPL is produced
from a TPL code.

In terms of TPLs, applications that depends on numer-
ical methods requires, besides code with low algorithmic
complexity, a programming interface that offers nice mem-
ory allocation tools. Classical examples for high perfor-
mance languages for linear algebra procedures are FOR-
TRAN( with LAPACK and BIAS libraries) and C++ (with
Eigen numerical library). On other hand, CAD software
normally features APIs from more modern programming
languages as C# and Phyton, as they are more versatile
to work and delivers better features for object-oriented-
programming and dynamic types, which fits well for API
purposes as the developer can access and correlate all geo-
metric classes and itsmethods given from the CAD software.

Working with multiples languages and types of pro-
gramming can then lead towards a nice computer perfor-
mance with user-friendly interface, that can be established
in 3 levels: (1) User level, or the VPL itself; (2) Application
level, for communication between the user and the numer-
ical level; (3) Numerical processing level, which solves the
problem desired with optimized code.

Rhinoceros is a CAD software and provides it’s VPL
Grasshopper, which have components for manipulation
of many Rhino geometries and so forth enables a para-
metric workflow inside it’s environment. The user can de-
fine a logical sequence of events describing the project in

function of predefined parameters, and instantly retrieve
geometry and analysis feedback within changes on them.
Both Rhinoceros and Grasshopper have their own C# API’s
(Rhinocommon (RC) and GrasshopperSDK (GS)), Where GS
depends onRC, and allow custom components and parame-
ters development for many purposes. Many CAE extensions
were developed as Karamba3D [8], Kiwi3D [9] and Beaver
[19] for structural analysis, Ladybug [20] for Thermar/Solar
Analysis, and Butterfly [20] and Eddy3d [21] for CFD analy-
sis.

The use of a parametric workflow in FEA is then a
promising candidate for solving CAD/CAE intercommuni-
cation problems, as it can automate processes converting
geometric information and other relevant data for analy-
sis. The conversion of data is automated by assembling
series of algorithms, where any change in geometry returns
a suitable new structural model, avoiding rework in mesh
generation and other possible tedious tasks.

Thus, structural analysis software within a parametric
environment enables a user-friendly yet powerful design
and analysis process. The environment allows the user to
implement routines for specific and interconnected tasks
based on the geometry and properties of the membrane. In
addition, The VPL routines pattern allows the user to per-
form the analysis and extract and reuse the results for other
routines such cutting patterns, connection details and veri-
fication of structural components by technical standards
[22].
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5 BATS implementation
In order to implement an efficient and robust form-finding
method inside parametric workflow environment, the
Grasshopper plugin BATS was developed. It was firstly pro-
totyped in [7], and was not concerned yet about computer
efficiency. However, it’s resulting code appointed for two
main issues regarding computational performance.

The first issue is related to the linear system solution
and other linear algebra processes required. Matrices can
be highly memory consuming, considering that given n
nodes, corresponding each one to 3 degrees of freedom,
the number of variables inside the matrix is on the order
of (3n)2. This means that the complexity solving linear sys-
tems are in exponential order. Also, modern languages as
C# and Pythonworks with automatic memorymanagement
and dynamic types, which can be undesired for numerical
purposes evolving matrices. In addition, it is well know
in numerical analysis area that languages like FORTRAN
and C++ provides tools formemorymanagement which can
optimize computational cost, and this naturally leads to
more efficient numerical libraries available. In C#, a wide-
usednumerical library is theOpen-Source libraryMath.NET.
Although quite user-friendly and versatile, it shows high
computational cost solving large linear system as also other
linear algebra procedures.

On other hand, the C++ open-source library Eigen have
proven highly efficient, leading to fast results even for large
systems. Benchmarks shows that Eigen performs almost
the same as Math Kernel Library (MKL), a commercial nu-

merical library well know by it’s good performance [23].
That makes use of these resources highly desirable inside
parametric workflow, as this can lead to practically real-
time visualization of form-finding results. The advantage
of C++ in Grasshopper development relies on great inter-
operability between C# and C++, where C++ functions in
numerical level can be called by C# code.

The second issue is due the assembly of a FEA model
based on geometrical information, where the program
should index all geometrical nodes and assign the con-
nectives between the elements. This is not a trivial task, as
requires searching algorithms for equal points in 3D space.
Linear search, which is the most obvious approach and
was used in prototyping, provides a O(n) complexity, and
can be highly consuming when dealing with thousands of
nodes. Other search algorithms can be performed in order
to improve the complexity of the algorithm. Binary search
and also R-Tree search can deal with the problem respec-
tively with O(log n) and O(logM n), whereM denotes to the
maximum entries in R-Tree nodes [24]. This task can be
done in application level, as do not have matrices or linear
algebra applications involved. Yet, it can still be a tedious
process, taking more computational time than the solver,
as evolves a search problem on a large list of 3D points.

The VPL components were developed in a C# applica-
tion that uses C++ unmanaged functions from the devel-
oped numerical solver. Figure 7 shows the general workflow
of the developed tool. First, raw Rhino/Grasshopper data is
converted into structural analysis data, which is then used
to assemble the structural model. All this data is structured
in object-oriented-programming in C#.

Figure 7:Workflow of the application and solver implementations
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Figure 8: BATS components and results

The next step is to solve the model, where the C# appli-
cation calls the solver function. In this step the structured
data is transformed in a series of arrays, as the C# and C++
interoperability is straightforward only for native C types.
In the C++ code, the data is then restructured in object-
oriented style, but it have different purposes than the C#
data. The C# application data aims at general structural
data, that any FEA user would be familiar with, and the C++
solver data focus on attributes and methods for assembly
of the external force vector and stiffness matrix. Although
firstly required for simplicity in data transfer between two
programming languages, the scheme of have independent
data structures for the application and the solver showed
to be of benefit, as each implementation can deal with their
own needs separately.

Latter, the C++ code outputs the results also in arrays,
and the C# application retrieves the results and prepare
them for visualization inside the Rhino/Grasshopper inter-
face. The details of each part of the developed tool, respec-
tively the VPL components, the C# application code and the
C++ numerical code, are discussed in detail the following
subsections.

5.1 VPL components

Figure 8 describes the component workflow for the form-
finding related to the workflow presented on Figure 7. A
series of components retrieves geometrical data of meshes,
lines and points and it’s respective supplementary data, for
force density linear elements, natural force densities mesh
elements, supports and loads.

Each component outputs custom parameters which
contain all data provided, and are used to assemble the
model, subsequently sending the model parameter to the
solver component, which updates the model object with
the shape found and its respective stress field. Results can
be retrieved by special components, wheremembrane view,
cable view and support reaction view are available.

With that workflow, the user can modify the form-
finding parameters (i.e. initial stress fields) as well as the
initial geometry and its constraints. That makes the process
of form-finding very versatile, as shape finding definition
can be defined by geometrical and structural design param-
eters inside a CAD environment and with real-time updates
within parameter changes.
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5.2 Application level

Figure 9 shows the class diagram of the application
code in C#, that is the core for the development of the
VPL components. It is responsible to intercommunicate
Rhino/Grasshopper with BATS numerical engine, and con-
tains a collection of classes with geometric variables de-
fined as Rhino geometrical objects in RhinoCommon, with
supplementary information relevant for the analysis.

Node class collects variables regarding it’s 3D geomet-
rical point in RhinoCommon and have it’s FEA index associ-
ated, which is determined on a further step inside Model
class. For post-processing and colour plot purposes, it also
have methods and fields for resultant nodal stress defini-
tion.

Support Class contains a Node class field, which
also have only geometrical information before the pre-
processing. More fields are needed for these objects, as
support plane, prescribed displacements and constrained
DOFs. Reactions field and methods are needed in order to
post-process the model after solution.

Figure 9: Class Diagram for application C# code

FD Class contain the geometrical line defined by
two non-indexed nodes (i.e. geometrically informed only)
which represents the element and other information de-
scribed in Section 2. Also, a material density field is avail-
able for funicular shell purposes.

NFD classes contains a single triangular or quadrangu-
lar element defined by it’s non-indexed nodes and other
relevant information described in Section 3. Similar to FD
class, it also contains fields regarding material density. For
simplicity andassemblyprocess, a auxiliaryNFDMesh class
is used, as this permits the definition of properties in a
whole mesh as also speeds up model assembly as connec-
tivity data of the mesh can be directly passed through the
model. Elements have also fields for post-processing results,
as the resultant stress fields.

Model class contains list field of all classes listed above,
and has the relevant methods for pre and post-processing.
It also contains the C++ calling method for the solve pro-
cess. The pre-process is done by calling NodeIndexmethod,
which retrieves all tridimensional geometrical information
and provides index assignment of the global model nodes
as also the reference global supports and element nodes
indexes. BuildtoC and SolveonC methods grabs all struc-
tured data and assign series of data arrays to be sent to the
C++ function, which will handle the numerical processing
and retrieves the NFDM results. At last, post-process on
each object type is made by PostProcessElements, PostPro-
cessNodes and PostProcessSupportsmethods.

Every application class have it’s corresponding parame-
ter wrapper inside Grasshopper, which makes possible con-
nection of objects data between components. That makes
possible the assembly structure proposed in the VPL com-
ponents, as the VPL do not recognize automatically custom
classes that are not on RhinoCommon or GrasshopperSDK.

5.3 Numerical level

Numerical level refers to series of C++ functions related
to a main function, which is called from application level.
The main function must call it’s variables considering in-
teroperability between both C# and C++ variable types. C#
provides compatibility of main C native data types when
calling C++ functions using DllImport resources [25]. Ar-
rays from the native types, that are needed due to size of
data, can be passed considering them as pointers in C++,
that will access directly the memory data called in C# code.

Sparse matrices are used as they storage only non-null
values, considerably reducingmemory allocation. However,
sparse matrix build-up can be slow when applied changes
on global indexes, as its structure is not directly correlated
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to dense matrix indexes [26]. Hopefully, sparce matrix as-
sembly can be optimized by directly providing a set of in-
dices and corresponding values, which are called triplets,
defined by three values (i, j, value).

For matrix assembly, the global stiffness matrix K is
partitioned between free and constrained DOFs, resulting
on four sub-matrices K� , Kfc, Kcf , Kcc, as the solution pro-
cess requires only the unconstrained part, which can cause
economy in highly constrained systems, and reaction forces
can be directly obtained using the results with the other
submatrices. Therefore, a list of triplets is needed for each
submatrix, which is done by the Partitionmethod, which
stores each triplet list for further matrix assembly.

Figure 10 shows auxiliary classes for numerical model
assembly. Arrays data are rebuilt in a scheme of classes
DOFs → Nodes → Elements. This helps to organize
matrix assembly of the linear system in a object-oriented
scheme. Elements have information about force densities
and also of its nodes, which defines its type (linear, trian-
gular or quadrangular). Node objects contains geometrical
position, its nodal index and correponding DOFs. DOF ob-
ject then collects unpartitioned and partitioned indices.

Figure 10: Class Diagram for numerical C++ code

That approach turns matrix assembly simple yet effec-
tive, as it avoid further searching algorithms for constrained
DOFs during assembly, as they are directly considered be-
fore this step. The same partitioning process is done in the
force vector F in Ff and Fc. LLT factorizationwith Cholesky
Decomposition is used to solve linear systems, as K� pre-
serves the symmetry and positive definitive properties re-
quired. At last, outputs delivers the new geometry with the
resultant stress field and reactions.

Addressing these main issues retrieves good perfor-
mance even for large systems,as is shown in Section 6.1.

6 Examples and benchmarks
Examples and benchmarks are shown in order to evaluate
BATS reliability and computational performance. All tests
were made with a personal computer with the following
specifications: Intel i7 9750h processor (2.4Ghz), 16GB RAM.
BATS is compared for minimal surface form-finding with
two other solvers: Kangaroo [12] and SATS [11].

Kangaroo is amulti-physics solver with a wide-range of
physical simulations and features coupling between many
physical objectives. In terms ofmembrane and cable design,
it offer both minimal edge lengths and minimal surface so-
lutions, where the latter is obtained by an iterative mathe-
matical procedure imposing zero Gaussian’s curvature on
the mesh.

SATS is a MATLAB program which contains routines
for form-finding and analysis of taut-structures and was
the first program which NFDM was implemented. As BATS
is a further development of SATS with better user-interface,
only computer performance is analysed.

For all benchmarks it is assumed that the 200th itera-
tion of NFDM is an acceptable minimal surface. [6] and [15]
shows that for the shapes analysed the NFDM converges
to these solutions in few steps. Then the geometrical error
for each procedure can be evaluated and analysed at each
iteration by the following relation:

err =
⃦⃦⃦
Xi − XNFDM200

⃦⃦⃦
(15)

6.1 Minimal saddle surface with boundary
restriction

Figure 11 shows an initial mesh made from a simple NURBS
patch. The model is defined by a square mesh of NFDM ele-
ments with FD elements in the mesh boundary, supported
by the 4 corner edges. The addition of FD elements in the
boundary adds a restriction to the minimal shape finding
procedure which gives the best-fit solution for a minimal
shape considering the tension in the FD elements. For the
models assembled in Kangaroo, both considers an addi-
tional boundary restriction with linear spring elements at
the border. This restriction is important as the surface de-
generates if only the corner points are set fixed.More details
on this matter can be seen at [27].

Performance analysis wasmade in three differentmesh
densities: 10x10, 25x25 and 50x50 grid. On all tests, the
shape found for the saddle surface matches for the NFDM
and minimal surface procedure with boundary restrictions
on Kangaroo. However, the minimal edges procedure on
Kangaroo presented a deviation from the exact solution.
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Figure 11: Initial mesh for form-finding

This is explained by the fact that the minimal edges pro-
cedure considers linear elements that are dependent on
line length and mesh topology, and the correct definition
for force densities is non intuitive. The definition for mini-
mal edges on each line addresses the direction of principal
stresses to the lines axis, and this constraint leads to the er-
ror observed. Therefore, the minimal edges length method,
which is analogous to the original force density method,
does not provides a correct solution.

The following graphs (Figure 12, 13 and 14) shows the
evolution of the geometrical error as a function of both
iteration number n and the time elapsed t.

With exception of the 10x10 grid solution, the mathe-
matical minimal surface procedure on Kangaroo presented
initial increase of the error, which starts to converge when
the other methods are already or almost on convergence
domain. It can be seen that in both terms of n and t BATS
presented direct convergence to the solution, requiring a
maximum of 20 iterations to converge (in the 50x50 grid
case).

Both methods in Kangaroo presented an oscillatory
behaviour for the error, and requiredmore iterations to con-

Figure 12: Iteration and time comparison for 10x10 grid

verge. Even that the minimal edge surface method required
fewer time per iteration, the NFDM property of directly find
viable shapes at each iteration, makes it more efficient as
quite few steps are required to achieve convergence.

Interactive pseudo-dynamic methods presented on
Kangaroo are explicit methods and so forth requires more
steps to reach a solution, as they are dependent on the
time step at each iteration. The procedure tries to find a
equilibrium state in the pseudo-dynamic scheme by im-
posing constraints on the motion, which error function in

Figure 13: Iteration and time comparison for 25x25 grid

Figure 14: Iteration and time comparison for 50x50 grid
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terms of time/iteration presents the behaviour of damped
oscillations. However, these methods can be helpfull when
dealing with non-linear structural analysis of tensile non-
linear materials, as the problem can be derived only from
the internal and external force vectors and avoids the use
of the tangent stiffness matrix, that might be singular due
to the local instabilities on the membrane. This method
for non-linear systems solution is the so called Dynamic
Relaxation method, that, although lacks computational
efficiency compared to direct methods, it is more robust
and achieve solutions which are quite difficult to using a
Newton-Raphson solver. Further reading in this topic is
addressed to [28] and [29].

Figure 15 gives the time elapsed on each procedure
for convergence. BATS performs considerably quickly than
other implementations.

SATS elapsed time is presented and requires the same
iterations than BATS, as also uses the NFDM procedure,
however presented lower performance. The main differ-
ences on the implementation of BATS and SATS is the lan-
guage (C++ and MATLAB), numerical library (Eigen and
MATLAB), sparse matrix assembly (optimized with triplets
and no optimization) and linear system solving (factoriza-
tion with Cholesky decomposition and generalized linear
system solver).

Figure 15: Comparison with SATS included

6.2 Minimal catenoid surface

This example is defined from an initial mesh of a cylinder
of radius r and height h, for the form-finding of a minimal
catenoid shape. For this class of shapes, a minimal surface
can be found analytically with the Goldschmidt solution,
which states that a minimal surface of a catenoid, with two

equal radius rings as boundary, only have a solution for
h < 1.3254868r [30].

As explained before, the minimal edges procedure is
not equivalent to a minimal surface form-finding and will
be neglected in this example. Three different heights are
defined in order to check the Goldschmidt limit: h = 1.30r
(Figure 16), h = 1.32r (Figure 17) and h = 1.34r (Figure 18).
Besides a apparent gradient of stresses showedon the stress
colour plot in the catenoid, the maximum stress variation
is on order of 10−4, and then it can be clearly assumed that
the stress distribution is uniform for all converged BATS
results.

Expected results arises for h bellow the Goldschmidt
limit, where both procedures converges to the same
shape.Above the limit, both solutions diverge into a de-
generative mesh as no solution is viable. However, it can
be seen that for h = 1.32r, which is quite close to the
limit, BATS converges to a solutionwhereas Kangaroo don’t,
showing better sensitivity of results using the NDFM.

The graph of geometrical error in function of time
elapsed is presented on Figures 19 and 20. It can be ob-
served that for h = 1.30r both solutions behaves in the

Figure 16: Catenoid solution for h = 1.30r. BATS on the left, Kanga-
roo on the right

Figure 17: σ1 plot of the catenoid solution for h = 1.32r. BATS on the
left, Kangaroo on the right

Figure 18: Conoid solution for h = 1.34r. BATS on the left, Kangaroo
on the right
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Figure 19: Iteration and time comparison for h = 1.30r.

Figure 20: Iteration and time comparison for h = 1.32r.

samemanner as the saddle surface example. Onother hand,
h = 1.32r shows Kangaroo almost reaching a solution but
diverging the minimum error is achieved, which happens
at both BATS and Kangaroo solution for h = 1.34r.

However, as NFDM produces at each iteration an viable
solution, it’s possible to retrieve the last iteration in which
the stress field deviance decreases. For h = 1.34r case,
Figure 21 shows the maximum and minimum stress acting
on the surface, where when the values are equal a uniform
stress field is achieved. It was observed that the shape with

Figure 21:Minimal and Maximum resultant stress per iteration, for
h = 1.34r

Figure 22: Last viable shape before solution diverges.

Figure 23: Comparison between the last viable shape and corre-
sponding iteration resultant geometry h = 1.34r.

the stress field closest possible to a uniform state is found
in the 20th iteration, and it can be seen on Figure 22.

The error between each iteration and this solution is
plotted in Figure 23, where the convergence domain and
divergence domain of the error function can be observed.
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7 Conclusion
This work showed a implementation of the Natural Force
Density Method in a novel framework composed by
Grasshopper components, application code in C# for com-
ponent programming, and a numerical code in C++.

Comparison with the first implementation showed
the importance of efficient memory management and the
choice of numerical libraries and methods. Comparison
with other form-finding methods in Kangaroo shows how
an efficient implemented implicit method can perform
highly better than a nicely implemented explicit method.
Besides it, the developed tool delivers viable configurations
at all iterations as also deliver the resultant stress field as-
sociated with the shape.

The combination of a robust form-finding method as
NFDM with adequate numerical programming techniques
and efficient numerical libraries inside a parametric en-
vironment produced a reliable, fast and versatile form-
finding tool for the shape finding of taut structures and
funicular shells. Future research is on applying the com-
putational framework for non-linear analysis and cutting
pattern routines for taut structures, taking advantage of the
numerical efficiency presented.
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