
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=oaen20

Cogent Engineering

ISSN: (Print) 2331-1916 (Online) Journal homepage: https://www.tandfonline.com/loi/oaen20

A branch-and-bound method to minimize the
makespan in a permutation flow shop with
blocking and setup times

Mauricio Iwama Takano & Marcelo Seido Nagano |

To cite this article: Mauricio Iwama Takano & Marcelo Seido Nagano | (2017) A branch-and-
bound method to minimize the makespan in a permutation flow shop with blocking and setup times,
Cogent Engineering, 4:1, 1389638, DOI: 10.1080/23311916.2017.1389638

To link to this article: https://doi.org/10.1080/23311916.2017.1389638

© 2017 The Author(s). This open access
article is distributed under a Creative
Commons Attribution (CC-BY) 4.0 license

Published online: 25 Oct 2017.

Submit your article to this journal

Article views: 1224

View related articles

View Crossmark data

Citing articles: 10 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=oaen20
https://www.tandfonline.com/loi/oaen20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23311916.2017.1389638
https://doi.org/10.1080/23311916.2017.1389638
https://www.tandfonline.com/action/authorSubmission?journalCode=oaen20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=oaen20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/23311916.2017.1389638
https://www.tandfonline.com/doi/mlt/10.1080/23311916.2017.1389638
http://crossmark.crossref.org/dialog/?doi=10.1080/23311916.2017.1389638&domain=pdf&date_stamp=2017-10-25
http://crossmark.crossref.org/dialog/?doi=10.1080/23311916.2017.1389638&domain=pdf&date_stamp=2017-10-25
https://www.tandfonline.com/doi/citedby/10.1080/23311916.2017.1389638#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/23311916.2017.1389638#tabModule

Page 1 of 16

PRODUCTION & MANUFACTURING | RESEARCH ARTICLE

A branch-and-bound method to minimize the
makespan in a permutation flow shop with
blocking and setup times
Mauricio Iwama Takano and Marcelo Seido Nagano

Cogent Engineering (2017), 4: 1389638

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1080/23311916.2017.1389638&domain=pdf&date_stamp=2017-10-13

Takano & Nagano, Cogent Engineering (2017), 4: 1389638
https://doi.org/10.1080/23311916.2017.1389638

PRODUCTION & MANUFACTURING | RESEARCH ARTICLE

A branch-and-bound method to minimize the
makespan in a permutation flow shop with blocking
and setup times
Mauricio Iwama Takano1 and Marcelo Seido Nagano2*

Abstract: This work addresses the minimization of the makespan criterion for the
permutation flow shop problem with blocking, sequence and machine dependent
setup times, which is a problem that has not been studied in previous works. Many
papers considered the problem with an unlimited buffer or with the setup time
embedded in the processing time of the job. However, considering an unlimited buf-
fer may not represent reality in many industries. Additionally, separating the setup
time from the processing time allows greater flexibility for production scheduling,
thus allowing better time usage and a reduction in the makespan. Two structural
properties of the problem are presented: an upper bound for the machine idle time
and a lower bound for the machine blocking time. Using these properties, four lower
bounds for the makespan are proposed (LBTN1, LBTN2, LBTN3 and LBTN4). Each of the low-
er bounds was used in a branch-and-bound algorithm and then compared to each
other using a database containing 540 problems. A MILP model is also presented
and compared with the best of the branch-and-bound models using a second data-
base that consists of 80 different problems. Computational tests are presented, and
the comparisons indicate that the proposed lower bounds are promising.

*Corresponding author: Marcelo Seido
Nagano, Department of Production
Engineering, School of Engineering of
São Carlos, University of São Paulo, Av.
Trabalhador São-carlense, 400, 13566-
590, São Carlos, SP, Brazil
E-mails: drnagano@usp.br,
drnagano@sc.usp.br

Reviewing editor:
Wenjun Xu, Wuhan University of
Technology, China

Additional information is available at
the end of the article

ABOUT THE AUTHORS
Mauricio Iwama Takano is an Assistant Professor
in the Mechanical Engineering Department,
Federal Technological University – Paraná,
Brazil. He holds a PhD in Production Engineering
at School of Engineering of São Carlos in the
University of São Paulo, Brazil. His research
interests include integrated process planning
and scheduling, flexible job-shop scheduling and
intelligent algorithm.

Marcelo Seido Nagano is an Associate Professor
at the School of Engineering of São Carlos in the
University of São Paulo, Brazil, where is currently
hold the position of Head of the Operations
Research Group of the Production Engineering
Department. Along with your teaching duties, your
research interests refer to decision systems and
models in industry and services, including a range of
decisions related to the design and optimization of
processes, production and planning and scheduling,
as well as Knowledge Management and Innovation
Management as a supporting infrastructure. In
these areas, is carried out several research projects
and produced a number of refereed publications.

PUBLIC INTEREST STATEMENT
With the advance of the Toyota production
system and the lean manufacturing the study
of optimization methods to guarantee the best
usage of all resources of the system is becoming
more and more important. However, optimization
methods are not often explored in industries,
one of the reasons for that is that the ideal
environment assumed in theoretical problems
are not sufficiently similar to those found in real
industries. This paper considers a very common
problem found in industries, which is a production
line with limited space for buffering in process
material and setup times between products, a
problem that was never studied before in any
other work. In this paper some optimization
methods are proposed for the problem and they
are compared between then, showing that the
presented methods are very promising.

Received: 13 January 2017
Accepted: 04 October 2017
First Published: 13 October 2017

© 2017 The Author(s). This open access article is distributed under a Creative Commons
Attribution (CC-BY) 4.0 license.

Page 2 of 16

http://crossmark.crossref.org/dialog/?doi=10.1080/23311916.2017.1389638&domain=pdf&date_stamp=2017-10-13
mailto:drnagano@usp.br
mailto:drnagano@sc.usp.br
http://creativecommons.org/licenses/by/4.0/

Page 3 of 16

Takano & Nagano, Cogent Engineering (2017), 4: 1389638
https://doi.org/10.1080/23311916.2017.1389638

Subjects: Engineering & Technology; Industrial Engineering & Manufacturing; Production
Systems; Production Engineering

Keywords: flow shop; blocking; zero buffer; setup times; makespan; lower bound; branch–
and-bound; MILP

1. Introduction
This paper studies the scheduling problem in a permutation flow shop with zero buffer and sequence
and machine dependent setup environment, a problem that has not yet been explored in the litera-
ture. In the problem, there are n jobs that must be processed by m machines, and all jobs must be
processed in all machines in the same flow. The permutation constraint indicates that the process
sequence of the jobs must be the same for all machines. In this paper, the setup time is separated
from the process time (i.e. anticipatory setup), allowing a machine to be prepared to initiate the pro-
cess of a job before the previous machine has finished the process of this job. That is, whenever a
machine is not processing any job, it is possible to prepare the machine for the upcoming job in ad-
vance, regardless of whether the upcoming job is still being processed by previous machines. This
ensures a better flexibility for the scheduling but is only possible if the processed part is not necessary
for the setup. The setup time depends on the sequence of the jobs and the machine. In other words,
there is a different setup time for each pair of jobs in each machine. In an environment with blocking,
there are limited buffers in between the machines; in this paper, we consider a zero buffer constraint.
In other words, if machine k finishes the processing of job j and machine k + 1 is not able to receive
the job (because it is still processing job j − 1 or is still being set up), the job remains in machine k,
thereby blocking it. In this case, machine k is unable to receive the next job of the sequence.

With the advancement of the Toyota production system and lean manufacturing, the buffer size
between work stations is becoming increasingly limited. Therefore, studying the limited buffer con-
straint is becoming more important (Ronconi, 2005). The flow shop problem with zero buffer can be
used to model any flow shop problem with a limited buffer because a unit capacity buffer can be
represented by a machine with zero processing time for all jobs (McCormick, Pinedo, Shenker, & Wolf,
1989).

The flow shop with zero buffer and dependent setup time is an underexplored problem. Therefore,
a bibliographic review of the flow shop with a blocking problem is presented first. This bibliographic
review considers the few works that examine a flow shop with blocking and sequence dependent
setup time problem, both with the objective of minimizing the makespan.

Among the most important and pioneering works is that of Gilmore and Gomory (1964). The au-
thors solved the one- and two-machine problems by using a one state-variable with 0(N²) simple
steps. Reddi and Ramamoorthy (1972) showed that the traditional flow shop problem with only two
machines (two work stations) and the blocking constraint can be transformed into a special case of
the travelling salesman problem.

Papadimitriou and Kanellakis (1980) proved that the problem with a limited buffer of only one unit
between machines is NP-HARD. Hall and Sriskandarajah (1996), based on the results obtained by
Papadimitriou and Kanellakis (1980), showed that the traditional flow shop with three work stations
and a blocking problem is strongly NP-complete. In the same paper, the authors related the main
works developed in the literature.

McCormick et al. (1989) presented a heuristic method denominated Profile Fitting (PF), in which
jobs are scheduled in such a way that the idle and blocking times of the machines are minimized.

Leisten (1990) presented two heuristic methods for permutation and non-permutation flow shop
problems with limited buffers. The performance measures of the methods used were the maximum
use of the buffers and the minimum blocking times. The computational experiments showed that

Page 4 of 16

Takano & Nagano, Cogent Engineering (2017), 4: 1389638
https://doi.org/10.1080/23311916.2017.1389638

the adaptation of the traditional Nawaz-Enscore-Ham (NEH) created by Nawaz, Enscore, and Ham
(1983), which was originally developed for the unlimited buffer problem, had better performance
than did the proposed methods.

Ronconi (2004) addressed the zero buffer problem with the objective of minimizing the makespan.
A constructive heuristic method that uses specific characteristics of the problem is presented. The
new method, combined with some of the best methods in the literature, was compared to the
adapted version of the NEH and presented better results.

Pan and Wang (2012) considered the flow shop with blocking problem, with the objective of mini-
mizing the makespan. Initially, the authors presented two constructive heuristic methods, named
Weighted Profile Fitting (wPF) and (PW), both of which were based on the Profile Fitting (PF) proce-
dure presented by McCormick et al. (1989). They proposed three II phase heuristics (according to
Framinan, Gupta, & Leisten, 2004 classification), named PF-NEH, wPF-NEH and PW-NEH, by combin-
ing the previous methods with the classic NEH. Finally, using a local search (LS) method based on job
insertion, three III phase heuristics (according to Framinan et al., 2004 classification) were devel-
oped: PF-NED/LS, wPF-NEH/LS and PW-NEH/LS. The proposed methods were evaluated and compared
with other existing methods using the database provided by Taillard (1993). The experiments
showed that the proposed methods outperformed all other methods previously presented in the
literature. In addition, the III phase methods significantly improved the results obtained by the con-
structive methods. The computational tests provided better solutions for 17 large problems from the
database.

Ronconi and Armentano (2001) presented branch-and-bound algorithms for the flow shop with
blocking problem. It proposed a lower bound for the departure time of the jobs. Thereafter, lower
bounds for the total tardiness and makespan were developed.

Pranzo (2004) showed that the Batch scheduling in a two-machine flow shop with limited buffer
and sequence independent setup times and removal times can be formulated as a special case of
the TSP. It can be solved in polynomial time, depending on the batch size.

Subsequently, Ronconi (2005) presented a branch-and-bound algorithm that used new lower
bounds, which advantageously used the nature and structure of the blocking problem. The new
method outperformed the method proposed by Ronconi and Armentano (2001) that was adapted
for the problem.

Moslehi and Khorasanian (2013) proposed two mixed integer linear programming (MILP), an initial
upper bound generator and some lower bounds and dominance rules to be used in a branch-and-
bound algorithm to minimize the total completion time in a permutation flow shop problem with
zero buffer. The MILP models had some trouble with solving instances with sizes (n, m) equal to (16,
10), (18, 7), and (18, 10). The branch-and-bound model was able to solve 30 of the 120 instances
from the Taillard (1993) database.

Chen, Zhou, Li, and Xu (2014) studied a two-stage flow shop problem with batch processing ma-
chines, arbitrary release dates and zero buffer, with the objective of minimizing the makespan. A
MILP model for the problem was proposed, as was a Hybrid Discrete Differential Evolution (HDDE)
algorithm. The proposed algorithm HDDE was compared to the MILP model, a Hybrid Simulated
Annealing (HSA) and a Hybrid Genetic Algorithm (HGA). The HDDE algorithm outperformed the other
methods in terms of solution quality, robustness, and computational time.

The first work to address the flow shop problem with limited buffer and sequence and machine
dependent setup found in the literature is that by Norman (1999). The evaluation criterion used in
this work was the minimum makespan. A Tabu search and two adapted constructive heuristics
methods (NEH and PF) were presented to solve the problem. A greedy improvement procedure was

Page 5 of 16

Takano & Nagano, Cogent Engineering (2017), 4: 1389638
https://doi.org/10.1080/23311916.2017.1389638

added to the constructive heuristics. Overall, 900 problems were generated to evaluate the pro-
posed methods, which had varying setup times, buffer sizes and numbers of jobs and machines.

Maleki-Darounkolaei, Modiri, Tavakkoli-Moghaddam, and Seyyedi (2012) developed a MILP model
and a Simulated Annealing (SA) for the flow shop problem with three work stations, a sequence-
dependent setup time only in the first stage and a blocking time between each stage, with two ob-
jectives: to minimize the makespan and the flow time. Problems with more than nine jobs were not
solved due to the elevated computational time.

It is important to note that even though two works addressed the problem of blocking with se-
quence-dependent setup times, no work was found in the literature that considered the zero buffer
among with the sequence and machine dependent setup time in all machines. Therefore, there are
no existing methods to solve this problem. In this paper, a branch-and-bound (B&B) algorithm is
presented to minimize the makespan in a permutation flow shop environment with zero buffer and
sequence and machine dependent setup, with m machines and n jobs. An upper bound for the idle
time of the machines and a lower bound and the blocking time of the machines are presented in this
work. Then, four lower bounds for the makespan, based on these structural properties of the prob-
lem, are presented. The efficiency of the branch-and-bound and of the lower bounds for the makes-
pan are tested using several problems that vary in number of jobs and machines. A MILP model is
then presented for the problem, and its efficiency is compared with the efficiency of the best of the
lower bound models.

This paper is structured as follows. The calculus used to calculate the makespan is presented in
Section 2. Two structural properties of the problem (an upper bound for the machine idle time and a
lower bound for the blocking time) are presented in Section 3. The branch-and-bound algorithm and
the four lower bounds for the makespan are presented in Section 4. The MILP model for the problem
is presented in Section 5. The computational tests for the lower bound models and their results are
presented in Section 6. The computational tests for the MILP and the best lower bound models and
their results are presented in Section 7. Finally, conclusions are presented in Section 8.

2. Makespan calculus
In this section, we describe how to calculate the makespan in a permutation flow shop environment
with blocking and sequence and machine dependent setup time. Let � =

{
1, 2,… i, j,… m

}
 be an

arbitrary sequence of jobs, k =
{
1, 2,… ,m

}
 be the sequence of available machines, i be the job

that directly precedes job j in the sequence, Pjk be the processing time of the jth job in sequence in
machine k, Sijk be the setup time of machine k between the ith and jth jobs in the sequence, S01k be
the setup time of machine k before processing the first job in the sequence, Rjk be the completion
time of the setup of machine k to the jth job in the sequence, and Cjk be the departure time of the jth
job in the sequence in machine k. The makespan is then calculated by the following:

(1)R1k = S01k
(
k = 1,… ,m

)

(2)Cj1 = max
(
Rj2, Rj1 + Pj1

) (
j = 1,… , n

)

(3)Cjk = max
(
Rj,k+1, Cj,k−1 + Pjk

)
(j = 1,… ,n); (k = 2,… ,m − 1)

(4)Cjm = Cj,m−1 + Pjm
(
j = 1,… ,n

)

(5)Rjk = Ci,k + Sijk
(
j = 2,… ,n

)
;
(
k = 1,… ,m

)

Page 6 of 16

Takano & Nagano, Cogent Engineering (2017), 4: 1389638
https://doi.org/10.1080/23311916.2017.1389638

Initially, the setup completion times of the machines for the first job in the sequence are calcu-
lated by Equation (1). Next, the departure times of the first job in all machines are calculated by
Equations (2), (3), and (4). Then, Equation (5) is used to calculate the setup completion time of all
machines for the following job. Equations (2), (3), and (4) are used again to calculate the departure
times of the following job in all machines. The makespan (Cmax) is equal to the departure time of the
last job in sequence in the last machine. In other words, Cmax = Cnm.

3. An important structural property of the problem
In the permutation flow shop problem with blocking and sequence and machine dependent setup
time with n > 2 and m > 2, let Bj+1,k be the blocking time between the successive processes of the
(j + 1)th job in the sequence in machines k and k + 1. Therefore, for any j, LBBkj+1 is a lower bound for
Bj+1,k, given by

where UBOkj+1 is an upper bound for Oj+1,k. In other words, the gap between the completion time of
the setup for the (j + 1)-th job in the sequence and its start time in machine k is given by

The properties LBB and UBO are illustrated in Figures 1 and 2, respectively.

(6)LBBkj+1 = max
(
0,
(
Pj,k+1 + Sj,j+1,k+1

)
−
(
UBOkj+1 + Sj,j+1,k + Pj+1,k

))

(7)with LBBmj+1 = 0

(8)UBOkj+1 = max
(
0,
(
UBOk−1j+1 + Sj,j+1,k−1 + Pj+1,k−1

)
−
(
Pjk + Sj,j+1,k

))

(9)with UBO1j+1 = 0

Figure 1. Property LBBkj+1.

Figure 2 Property UBOkj+1.

Page 7 of 16

Takano & Nagano, Cogent Engineering (2017), 4: 1389638
https://doi.org/10.1080/23311916.2017.1389638

4. The branch-and-bound algorithm
The branch-and-bound algorithm (B&B) replaces the original problem for a set of sub problems.
According to Ignall and Schrage (1965), the original problem is rewritten in a solution tree, in which
each node represents a lower bound of the objective function. The B&B algorithm used was pro-
posed by Kim (1995), and each node represents the partial sequence of the final result. This partial
sequence is named |PS|, and the set of jobs that are not part of that partial sequence is named |NPS|.

When a node is branched, one or more partial sequences (nodes) are created by adding up a new
job from |NPS| to the partial sequence associated with the branched node. A lower bound is calcu-
lated for the makespan for each node that was created. The selection of the node to be branched
was used by Ronconi (2005) and is made by the depth first rule, where the node with the highest
number of jobs in the partial sequence is selected. In case of a tie, the node with the lowest lower
bound for the makespan is selected. The node selection rule was selected because of the successful
application of the rule in the permutation flow shop with blocking problem by Ronconi (2005). The
pseudo code of the algorithm is presented below.

B&B algorithm

  1. Initiation (creating root node)

   UB → Initial Upper Bound (calculated with any solution method);

   ||PS|| =
{
�
}

;

   ||NPS|| =
{
1, 2, 3,… ,n

}
;

   Nodes = 0 (number of nodes that will be branched);

  2. First level branching step

   For Node = 1:n do;

   ||PS||Node =
{
j
}

;

   ||NPS||Node = ||NPS|| − ||PS||Node;
   LBNode = Lower Bound for ||PS||Node;
   If LBNode < UB;

   Nodes = Nodes + 1;

   End if;

   End for;

  3. Other levels branching step

   While Nodes > 0 do;

   Nodes = 0;

   For Node = 1:Nodes do;

   For j ∈ ||NPSNode|| do;

   ||PS||Node = ||PS||Node +
{
j
}

;

   ||NPSNode|| = ||NPSNode|| −
{
j
}

;

   LBNode = Lower Bound for ||PS||Node;
   If LBNode < UB;

   If Level < n;

   Nodes = Nodes + 1;

   Else;

   LBNode = UB;

   End if;

   End if;

   End for;

   End while;

Page 8 of 16

Takano & Nagano, Cogent Engineering (2017), 4: 1389638
https://doi.org/10.1080/23311916.2017.1389638

4.1. Lower bound for the makespan
Considering a partial sequence |PS|, the lower bound for the makespan is the minimum value of the
departure time of the last job from ||NPS|| in the last machine (m). Four lower bounds for the makes-
pan were developed for the Fm|prmu, Sijk, block|Cmax problem, considering the lower bound for the
blocking (LBBkij). Let PS be the last job in the partial sequence and ||NPS|| be the set of jobs that are not
part of the partial sequence. Let S_Si,j,k be the sum of the minimum setup times of the jobs that are
not part of the partial sequence in machine k, and let S_LBBi,j,k be the sum of the minimum lower
bound for the blocking time of the jobs that are not part of the partial sequence in machine k. S_Si,j,k
and S_LBBi,j,k are given by Equations (10) and (11).

The first part of Equation (10) sums the minimum setup times for all jobs that are not part of the
partial sequence. The second part of the equation removes the setup time of the last job in the se-
quence from S_Si,j,k, as the last job of the sequence is going to be determined in the lower bound
equation. A similar method is used to calculate the value of S_LBBi,j,k in Equation (11). Both S_Sni,j,k
and S_LBBni,j,k are used to calculate LBTN1, LBTN2, and LBTN4.

Let LW be the processing time summed by the value of the lower bound of the blocking time of the
last job in the sequence. The last job in the sequence is the one with the smallest value for the sum
of the processing times and the lower bound of the blocking. In other words,

The last job in the sequence is removed from ||NPS||, and the new set of jobs is named ||NPSn||. With
this new set, it is possible to calculate S_Sni,j,k, which is the sum of the minimum setup times of the
jobs that are not part of the partial sequence and are not the last job in the sequence in machine k.
S_LBBni,j,k is the sum of the minimum lower bound for the blocking time of the jobs that are not part
of the partial sequence or the last job in the sequence in machine k. We use the following
equations:

The first part of Equation (13) sums the minimum setup times for all jobs that are not part of the
partial sequence. The second part of the equation removes the setup time of the last job in the se-
quence from S_Sni,j,k, as the last job of the sequence is already identified by LW(k). A similar method
is used to calculate the value of S_LBBni,j,k in Equation (14). Both S_Sni,j,k and S_LBBni,j,k are used only
to calculate LBTN3.

The lower bounds were named LBTN1, LBTN2, LBTN3 and LBTN4 and are obtained by the following
equations:

(10)S_Si,j,k =
∑

i∈|NPS|∪ PS

(
min

(
Si,|NPS|,k

))
−max

(
min

(
S|NPS|,|NPS|,k

))

(11)
S_LBBi,j,k =

∑

i∈|NPS|∪ PS

(
min

(
LBBki,|NPS|

))
−max

(
min

(
LBBk|NPS|,|NPS|

))
∀k = 1,… ,m − 1

(12)
LW(k) = min

(
m∑

q=k+1

(
P|NPS|,q

)
+min

(
m∑

q=k+1

(
LBB

q

|NPS|,|NPS|

)))
∀k = 1,… ,m − 1

(13)S_Sni,j,k =
∑

i∈|NPSn|∪ PS

(
min

(
Si,|NPS|,k

))
−max

(
min

(
S|NPSn|,|NPS|,k

))
∀k = 1,… ,m − 1

(14)S_LBBni,j,k =
∑

i∈|NPSn|∪ PS

(
min

(
LBBki,|NPS|

))
−max

(
min

(
LBBk|NPSn|,|NPS|

))
∀k = 1,… ,m − 1

(15)

LBTN1
(
k
)
= CPS,k + S_Si,j,k +

∑

h∈|NPS|

(
Phk

)
+ S_LBBki,j +ming∈|NPS|

(
m∑

q=k+1

(
Pg,q +min

(
LBBqg,g

)))
∀k = 1,… ,m − 1

Page 9 of 16

Takano & Nagano, Cogent Engineering (2017), 4: 1389638
https://doi.org/10.1080/23311916.2017.1389638

The first part of Equations (15), (18), (21), and (24) sum the departure time of the last job in the par-
tial sequence (CPS,k), the sum of the setup times of all jobs in ||NPS|| (S_Si,j,k), the sum of the processing
times of all jobs in ||NPS|| (

∑
h∈�NPS�

�
Phk

�
), and the sum of the lower bound for the blocking times of all

jobs in ||NPS|| (S_LBB
k
i,j), respectively. The second part of the equations tries to identify the last job in

the sequence and sum the processing times and lower bound for the blocking times in all subse-
quent machines.

In Equation (15), the last job in the sequence is the job with the minimum sum of the processing
times and the minimum values of the lower bound for the blocking times in all further machines. In
Equation (18), the last job in the sequence is the job that has the minimum value for the sum of all
processing times in the subsequent machines added to the minimum value of the sum of the lower
bound for the blocking times in all subsequent machines. In Equation (21), the last job in the se-
quence is job LW, as calculated by Equation (12). Finally, in Equation (24), the departure time of the
last job in the sequence is calculated by summing the minimum value of the processing time, added
by the value of the minimum lower bound for the blocking time in all subsequent machines.

In Equations (16), (19), (22), and (25), the departure time is calculated by summing the departure
time of the last job in the partial sequence (CPS,k), the sum of the setup times of all jobs in ||NPS||

(S_Si,j,k), and the sum of the processing times of all jobs in ||NPS||
�

∑
h∈�NPS�

�
P
hk

�
�

. The lower bound for

the blocking is not considered in these equations because there is no blocking in the last machine.

(16)LBTN1(m) = CPS,m + S_Si,j,m +
∑

h∈|NPS|

(
Phm

)

(17)LBTN1 = max1≤k≤m
(
LBTN1

(
k
))

(18)

LBTN2
(
k
)
= CPS,k + S_Si,j,k +

∑

h∈|NPS|

(
Phk

)
+ S_LBBki,j +ming∈|NPS|

(
m∑

q=k+1

(
Pg,q

)
+min

(
m∑

q=k+1

(
LBBqg,g

)))
∀k = 1,… ,m − 1

(19)LBTN2(m) = CPS,m + S_Si,j,m +
∑

h∈|NPS|

(
Phm

)

(20)LBTN2 = max1≤k≤m
(
LBTN2

(
k
))

(21)LBTN3
(
k
)
= CPS,k + S_Sni,j,k +

∑

h∈|NPS|

(
Phk

)
+ S_LBBnki,j + LW ∀k = 1,… ,m − 1

(22)LBTN3(m) = CPS,m + S_Si,j,m +
∑

h∈|NPS|

(
Phm

)

(23)LBTN3 = max1≤k≤m
(
LBTN3

(
k
))

(24)

LBTN4
(
k
)
= CPS,k + S_Si,j,k +

∑

h∈|NPS|

(
Phk

)
+ S_LBBki,j +

m∑

q=k+1

(
ming∈|NPS|

(
Pg,q

)
+ming∈|NPS|

(
LBBqg,g

))
∀k = 1,… ,m − 1

(25)LBTN4(m) = CPS,m + S_Si,j,m +
∑

h∈|NPS|

(
Phm

)

(26)LBTN4 = max1≤k≤m
(
LBTN4

(
k
))

Page 10 of 16

Takano & Nagano, Cogent Engineering (2017), 4: 1389638
https://doi.org/10.1080/23311916.2017.1389638

Equations (17), (20), (23), and (26) determine that the lower bound for that partial sequence is
equal to the maximum value of the lower bounds of all machines for that partial sequence.

5. MILP model
Mixed Integer Linear Programming (MILP) models can be used to find the optimum solution for small
and medium problems. With the advances in computation, the number of studies in this field has
grown considerably (Ronconi & Birgin, 2012). However, the use of MILP models to optimize schedul-
ing problems in permutation flow shop with blocking environment is not yet widely reported due to
the high computational time.

In this paper, a MILP model is presented for the problem. The model is named TNZBS1, and the
notations used for it are as follows:

n  Number of jobs;

m  Number of machines;

Pjk  Processing time of job j in machine k;

Sijk  Setup time of machine k between the departure time of job i and the starting time of job j;

Rσk  Completion time of the setup of machine k to the σth job in the sequence;

Cσk  Departure time of the σth job in the sequence at machine k;

xjσ 
{

1 If job j is the � th job in the sequence

0 otherwise;

yijσ 
{

1 If job i directly precedes job j, which is the � th job in the sequence

0 otherwise;

5.1. Model TNZBS1

(27)Minimize: Cmax = Cnm

(28)
n∑

j=1

xj� = 1 ∀� = 1,… ,n

(29)
n∑

�=1

xj� = 1 ∀j = 1,… ,n

(30)yij� ≥ xj� + xi,�−1 − 1 ∀i = 1,… ,n; j = 1,… ,n; � = 1,… ,n; i ≠ j

(31)
n∑

i=1

n∑

j=1

yij� = 1 ∀� = 2,… ,n

(32)
n∑

i=1

n∑

j=1

yij1 = 0

(33)R1k =

n∑

i=1

∑

j=1

Sijk ∗ xj1 ∀k = 1,… ,m

(34)R
�k = C�−1,k +

n∑

i=1

∑

j≠i

Sijk ∗ yij� ∀� = 2,… ,n; k = 1,… ,m

(35)C
�k ≥ R�,k+1 ∀� = 1,… ,n; k = 1,… ,m − 1

Page 11 of 16

Takano & Nagano, Cogent Engineering (2017), 4: 1389638
https://doi.org/10.1080/23311916.2017.1389638

Constraints (28) and (29) guarantee that each job will be allocated to exactly one position in the
sequence and that each position in the sequence has exactly one job associated with it. Constraints
(31) and (30) ensure that each job will have exactly one job that precedes it in the sequence. From
constraint (30), if job j is not the σ-th job in the sequence and job i is not the (σ − 1)-th job in the se-
quence, yijσ will be greater than or equal to −1. If job j is the σ-th job in the sequence and job i does
not directly precede job j in the sequence, yijσ will be greater than or equal to zero. Finally, if job j is
the σ-th job in the sequence and job i directly precedes job j in the sequence, yijσ will be greater than
or equal to one. Constraint (31) grants that only one yijσ will be equal to one for each position (σ) of
the sequence. Constraint (32) guarantees that no job will precede the first job in the sequence.
Constraints (33) and (34) are used to calculate the completion time of the setup of the machines.
Constraint (33) is applied just to the first job in the sequence, whose completion time of the setup
depends only of the release date (represented by Sjjk). In contrast, constraint (34) is the general for-
mula for the completion time of the setup of the machines. In other words, the departure time of the
(σ − 1)-th job in the sequence summed to the setup time of machine k between the processing of the
(σ − 1)-th and σ-th jobs in the sequence. Constraints (35–37) are used to calculate the departure
time of the jobs in the machines, considering the possibility of blocking. Constraint (35) is applied to
all jobs in all machines except the last one and is used to verify the occurrence of blocking. If
Cσk > Rσ,k+1, then blocks have not occurred in the machine, and constraints (36) or (37) will determine
the value of Cσk. If Cσk = Rσ,k+1, then blocking has occurred, and its value is greater than zero. Constraint
(36) is applied to all the jobs only in the first machine, where because there is no idle time, the start-
ing time of the processing of all jobs is equal to the completion time of the setup of the machine. For
all other machines, constraint (37) is applied, which determines the starting time of the processing
of all jobs as equal to its departure time in the preceding machine.

6. Computational results for the branch-and-bound algorithms
The B&B algorithm was applied to 540 problems. Processing time data were proposed by Ronconi
(2005). The problems vary in the number of jobs and machines and are classified into 27 different
classes, each with 20 problems. In this database, the processing times are uniformly distributed
between 1 and 99. The database provided by Ronconi (2005) does not include setup times. Therefore,
the setup times for the machines were generated for these tests using the same method, where the
values were uniformly distributed between 1 and 99. By doing so, it is possible that the setup time
might be lower than, equal to, or higher than the processing time without a very large discrepancy
in the values. Much lower values of setup times might generate problems where there is no blocking,
and much higher values of the setup time might impose too many blocking occurrences. All lower
bounds and branch-and-bound algorithms were written in C language. The experiments were per-
formed on an Intel® core i7 3610QM with 2.3 GHz, 8 Gb DDR3 RAM and the Windows 7 operating
system. The initial solution for the problems was calculated using the NEH algorithm adapted to the
problem. The computational time for each problem was limited to 3,600 s.

To compare each class of problems, the mean computational time in seconds and the mean num-
ber of nodes were calculated. Table 1 presents the obtained results of the problems that were solved
within the established computational time, using the four lower bounds.

(36)C
�1 ≥ R�1 +

n∑

j=1

Pj1 ∗ xj� ∀� = 1,… ,n

(37)C
�k ≥ C�,k−1 +

n∑

j=1

Pjk ∗ xj� ∀� = 1,… ,n; k = 2,… ,m

(38)C
�k,R�k ≥ 0 and integer ∀� = 1,… ,n; k = 1,… ,m

(39)xj� , yij� ∈
{
0, 1

}
∀i = 1,… ,n; j = 1,… ,n; � = 1,… ,n

Page 12 of 16

Takano & Nagano, Cogent Engineering (2017), 4: 1389638
https://doi.org/10.1080/23311916.2017.1389638

The classes of problems that are not shown in the table are those in which one or more lower
bounds could not solve any of the problems within the computational time of 3,600 s. Therefore, the
mean computational time and the mean number of nodes were not calculated for these classes.
From Table 1, the best lower bound was LBTN2, which solved all the problems while using fewer nodes
and a shorter computational time.

After 3,600 s, the program stops and records the best result obtained so far. Therefore, to compare
the methods, the mean relative deviation of the makespan and the number of unsolved problems
for each class of problems were also computed for each lower bounds used. Table 2 shows the mean
relative deviation of the makespan and the number of unsolved problems for each class of problems
using each of the four proposed lower bounds.

Each class of problems has 20 different problems, for a total of 540 problems. Having 20 unsolved
problems in a class of problems means that the branch-and-bound algorithm using that lower
bound was not able to find the optimal solution within the stated computational time for any of the
problems in that class.

In Table 2, a mean relative deviation of the makespan of 0% means that that particular lower
bound was able to achieve the best makespan in all 20 problems among all lower bounds compared
in that specific class of problem. After 3,600 s, the branch-and-bound algorithm stopped running,
and the best result obtained so far was taken as the best result obtained by that particular lower
bound for that problem. A smaller value of the relative deviation of the makespan means that that
particular lower bound was able to achieve the best (or close to best) makespan for most of the
problems among all lower bounds that were compared in that specific class of problems.

As shown in Table 2, the lower bound LBTN2 again gave the best results for most of the classes of
problems. However, it can be noticed that the performance of the lower bound LBTN4 improves as the
number of jobs increases. A bigger problem database may be used to analyze the lower bound
performances.

Table 1. Performance of the branch-and-bound algorithms

Note: Bold values are the minimum value of each category of problems.
*Mean computational time and mean number of nodes of the problems that were solved by all the lower bounds within the computational time of 3,600 s.

Size B&BTN1 B&BTN2 B&BTN3 B&BTN4

n m CPU time
(sec)

Number of
nodes

CPU time
(sec)

Number of
nodes

CPU time
(sec)

Number of
nodes

CPU time
(sec)

Number of
nodes

10 2 6.48 41,633.85 5.91 41,633.85 17.25 50,223.30 6.49 41,633.85

10 3 22.51 104,918.90 20.00 104,918.90 76.23 127,231.35 23.47 109,484.15

10 4 52.24 194,619.30 45.29 193,334.70 202.77 235,896.20 58.66 218,670.85

10 5 64.81 202,104.35 54.93 199,743.05 265.87 249,201.45 74.72 232,867.15

10 7 127.87 302,099.05 105.80 295,858.65 574.30 387,785.70 161.24 380,684.20

10 10 164.93 284,526.60 129.95 270,314.60 691.52 330,139.70 198.64 344,718.40

12 2 91.21 572,712.55 83.32 572,712.55 229.24 659,327.55 91.11 572,712.55

12 3* 423.18 1,903,380.06 376.59 1,903,380.06 1439.92 2,345,772.67 456.63 2,056,967.72

12 4* 727.54 2,648,836.14 629.66 2,618,464.14 2800.96 3,205,695.29 898.19 3,248,940.57

12 5* 785.60 2,389,311.00 660.51 2,337,803.00 2793.43 2,568,676.33 870.45 2,651,519.67

14 2* 594.16 3,890,057.80 542.23 3,890,057.80 1559.40 4,683,547.90 594.78 3,890,057.80

Mean 278.23 1,139,473 241.29 1,129,838 968.2627 1,349,409 312.2164 1,249,842

Page 13 of 16

Takano & Nagano, Cogent Engineering (2017), 4: 1389638
https://doi.org/10.1080/23311916.2017.1389638

7. Computational results for the MILP model and the branch-and-bound algorithm
Due to the elevated computational time, the MILP model is recommended for small or medium sized
classes of problems. Therefore, a new database was generated for these tests that was composed of 80
problems, which were classified into eight different classes of problems. Each class of problems varied
in the number of jobs and machines, and each had 10 different problems. The processing and setup
times were uniformly distributed between 1 and 99, as was made for the branch-and-bound tests. The
MILP algorithm was programmed in GAMS software and solved using CPLEX 12. The lower bound used
for the comparison was the LBTN2, as it presented the best results for the problem. The branch-and-
bound algorithm was again written in C language. The computational experiments were performed on
a 2.3 GHz Inter® core i7 3610QM with 8 Gb DDR3 RAM memory and the Windows 7 operating system.
The computational time was limited to 3,600 s to solve each problem using each of the models.

Table 2. Mean relative deviation of the makespan and number of unsolved problems by the branch-and-bound algorithm
size B&BTN1 B&BTN2 B&BTN3 B&BTN4

n m Mean
relative

deviation
of the

makespan

Number of
unsolved
problems

Mean
relative

deviation
of the

makespan

Number of
unsolved
problems

Mean
relative

deviation
of the

makespan

Number of
unsolved
problems

Mean
relative

deviation
of the

makespan

Number of
unsolved
problems

10 2 0.000% 0 0.000% 0 0.000% 0 0.000% 0

10 3 0.000% 0 0.000% 0 0.000% 0 0.000% 0

10 4 0.000% 0 0.000% 0 0.000% 0 0.000% 0

10 5 0.000% 0 0.000% 0 0.000% 0 0.000% 0

10 7 0.000% 0 0.000% 0 0.000% 0 0.000% 0

10 10 0.000% 0 0.000% 0 0.000% 0 0.000% 0

12 2 0.000% 0 0.000% 0 0.000% 0 0.000% 0

12 3 0.000% 0 0.000% 0 0.000% 2 0.000% 0

12 4 0.000% 0 0.000% 0 0.192% 13 0.000% 1

12 5 0.000% 4 0.000% 1 0.192% 17 0.000% 5

12 7 0.000% 8 0.000% 4 0.958% 20 0.000% 14

12 10 0.003% 17 0.003% 15 0.875% 20 0.395% 17

14 2 0.032% 5 0.032% 4 0.160% 10 0.032% 5

14 3 0.004% 18 0.004% 16 0.551% 20 0.004% 18

14 4 0.415% 20 0.242% 20 0.978% 20 0.444% 20

14 5 0.859% 20 0.735% 20 1.628% 20 0.855% 20

14 7 0.255% 20 0.191% 20 0.998% 20 1.009% 20

14 10 0.790% 20 0.542% 20 1.376% 20 1.276% 20

16 2 0.382% 16 0.220% 16 0.760% 20 0.382% 16

16 3 0.777% 20 0.773% 20 1.111% 20 0.921% 20

16 4 0.815% 20 0.729% 20 1.761% 20 1.470% 20

18 2 0.721% 20 0.721% 20 1.036% 20 0.721% 20

18 3 0.484% 20 0.484% 20 1.023% 20 0.272% 20

18 4 1.153% 20 1.090% 20 1.372% 20 1.061% 20

20 2 0.378% 20 0.378% 20 1.196% 20 0.378% 20

20 3 1.194% 20 1.167% 20 1.325% 20 0.805% 20

20 4 1.113% 20 1.095% 20 1.284% 20 1.361% 20

Total 9.375% 308 8.406% 296 18.776% 362 11.386% 316

Mean 0.347% 11.407 0.311% 10.963 0.695% 13.407 0.422% 11.704

Note: Bold values are the minimum value of each category of problems.

Page 14 of 16

Takano & Nagano, Cogent Engineering (2017), 4: 1389638
https://doi.org/10.1080/23311916.2017.1389638

For comparison, we calculated the mean computational time (CPU time) in seconds. As the com-
putational time was limited to 3,600 s, some models were unable to obtain the optimum result for
some of the problems. Therefore, the mean relative deviation of the obtained results (makespan)
and the number of unsolved problems were also calculated. The obtained results for the problems
are presented in Table 3.

Each class of problems has 10 different problems, for a total of 80 problems. Having 10 unsolved
problems in a class of problems means that the method was not able to find the optimal solution
within the stated computational time for any of the problems in that class.

From Table 3, the B&B algorithm outperformed the MILP model in terms of both the computa-
tional time and the mean relative deviation of the makespan. However, for problems with 15 jobs
and 7 and 10 machines, the MILP model presented better values for the mean relative deviation of
the makespan. This indicates that the model converges to better results more quickly for problems
with more machines. However, only a test with a bigger problem database could ensure that
finding.

8. Conclusions
This paper considered a permutation flow shop problem with blocking and sequence and machine
dependent setup times. Many papers considered the problem with an unlimited buffer (Ignall &
Schrage, 1965; Nawaz et al., 1983) or the setup time embedded in the processing time of the job
(Hall & Sriskandarajah, 1996; Leisten, 1990; McCormick et al., 1989; Pan & Wang, 2012; Papadimitriou
& Kanellakis, 1980; Ronconi, 2004, 2005; Ronconi & Armentano, 2001; Ronconi & Birgin, 2012).
Separating the setup time from the processing time allows greater flexibility for the production
scheduling, thus allowing a better use of time and a reduction in the makespan. Only two works
considered blocking and sequence-dependent setup times (Maleki-Darounkolaei et al., 2012;
Norman, 1999). However, none considered the sequence and machine-dependent setup time and
the zero buffer constraints in the same problem. Therefore, there are no existing methods to solve
this problem.

Four lower bounds for the makespan that explore a structural property of the problem were pro-
posed and demonstrated in this paper. The four lower bounds were then used in a branch-and-bound
algorithm, and computational tests were performed. The numerical experiments indicate that the
best lower bound was the LBTN2, followed by LBTN1, LBTN4, and LBTN3. In 100% of the studied problems,
the lower bound LBTN2 allowed the branch-and-bound to reach the optimum result for the problem by

Table 3. Computational time and mean relative deviation of the makespan and number of
unsolved problems by the branch-and-bound algorithm and the MILP model
Size CPU Time (sec) Number of unsolved

problems
Mean relative deviation

of the makespan
n m B&B MILP B&B MILP B&B MILP
5 3 0.054609 0.1455 0 0 0.0000% 0.0000%

10 3 61.31284 213.107 0 0 0.0000% 0.0000%

10 7 249.5021 477.674 0 0 0.0000% 0.0000%

10 10 271.4882 453.3423 0 0 0.0000% 0.0000%

15 3 3600.002 3,600.022 10 10 0.3514% 0.8025%

15 7 3600.003 3,600.026 10 10 0.9361% 0.6603%

15 10 3600.003 3,600.054 10 10 1.5787% 0.3962%

20 3 3600.002 3,600.043 10 10 0.0000% 2.9399%

Total 14,982.37 15,544.41 40 40 2.8661% 4.7989%

Mean 1872.796 1943.052 5 5 0.3583% 0.5999%

Note: The minimum value of the mean relative deviation of the makespan of each category are presented in bold.

Page 15 of 16

Takano & Nagano, Cogent Engineering (2017), 4: 1389638
https://doi.org/10.1080/23311916.2017.1389638

using fewer nodes than the other algorithms used, and it had a 75.08% smaller mean computational
time compared to the less effective lower bound (LBTN3). The lower bound LBTN2 was also the one that
solved most of the problems within the proposed limit computational time among all proposed lower
bounds (18.23% fewer unsolved problems than the lower bound LBTN3). For the problems in which the
optimum result was not achieved within the computational time of 3,600 s, it was also the lower
bound that obtained the best results (observed by the mean relative deviation of the makespan).
However, it is important to note that the performance of the lower bound LBTN4 improved as the num-
ber of jobs increased (as observed by the mean relative deviation of the makespan of the bigger
classes). Therefore, a larger problem database may be used to validate that finding.

A MILP model was also proposed for the problem. The best lower bound (LBTN2) was compared with
the presented MILP model. A new database consisting of 80 problems that varied in the numbers of
jobs and machines was created for this comparison. The number of unsolved problems was the
same for both methods. However, the computational time required for the branch-and-bound algo-
rithm to solve the problem was 3.616% shorter (50.893% if only problems in which “CPU time” was
less than 3,600 s) than the computational time required for the MILP model. Additionally, the prob-
lems that were not solved within the computational time of 3,600 s had better results when solved
by the branch-and-bound algorithm (on average, 40.275% lower than the results obtained by the
MILP model). These results show the consistency of the proposed lower bounds for the branch-and-
bound algorithm.

It is also important to notice (from Table 3) that the performance of the MILP model tends to im-
prove relative to the branch-and-bound algorithm as the number of machines increases. However,
the branch-and-bound model tends to improve in relation to the MILP model as the number of jobs
increases. For a more accurate result, a larger database is required.

For future works, we propose developing a dominance rule for the branch-and-bound algorithm to
reduce the number of nodes. Additionally, the use of heuristics other than NEH, such as MM (Ronconi,
2004), PF, or wPF (Pan & Wang, 2012), can be studied and adapted to the problem as an initial solu-
tion for the branch-and-bound. Some other MILP models can be studied and evaluated for their
performance.

Funding
The authors acknowledge the partial research support
of Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq) – Brazil (projects 448161/2014-1,
308047/2014-1).

Author details
Mauricio Iwama Takano1

E-mail: takano@utfpr.edu.br
ORCID ID: http://orcid.org/0000-0002-7622-0283
Marcelo Seido Nagano2

E-mails: drnagano@usp.br, drnagano@sc.usp.br
ORCID ID: http://orcid.org/0000-0002-0239-1725
1 �Federal Technological University - Paraná, Av. Alberto

Carazzai, 1640, 86300-000, Cornélio Procópio, PR, Brazil.
2 �Department of Production Engineering, School of

Engineering of São Carlos, University of São Paulo, Av.
Trabalhador São-carlense, 400, 13566-590, São Carlos, SP,
Brazil.

Citation information
Cite this article as: A branch-and-bound method to
minimize the makespan in a permutation flow shop
with blocking and setup times, Mauricio Iwama Takano
& Marcelo Seido Nagano, Cogent Engineering (2017), 4:
1389638.

Cover image
Source: Authors

References
Chen, H., Zhou, S., Li, X., & Xu, R. (2014). A hybrid differential

evolution algorithm for a two-stage flow shop on batch
processing machines with arbitrary release times and
blocking. International Journal of Production Research,
52(19), 5714–5734. https://doi.org/10.1080/00207543.2
014.910625

Framinan, J. M., Gupta, J. N., & Leisten, R. (2004). A review and
classification of heuristics for permutation flow-shop
scheduling with makespan objective. Journal of the
Operational Research Society, 55, 1243–1255.
https://doi.org/10.1057/palgrave.jors.2601784

Gilmore, P. C., & Gomory, R. E. (1964). Sequencing a one state-
variable machine: A solvable case of the travelling
salesman problem. Operations Research, 12(5), 655–679.
https://doi.org/10.1287/opre.12.5.655

Hall, N. G., & Sriskandarajah, C. (1996). A survey of machine
scheduling problems with blocking and no-wait in
process. Operations Research, 44(3), 510–525.
https://doi.org/10.1287/opre.44.3.510

Ignall, E., & Schrage, L. (1965). Application of the branch and
bound technique to some flow-shop scheduling
problems. Operations Research: The journal of the
Operations Research Society of America, 13(3), 400–412.
https://doi.org/10.1287/opre.13.3.400

Kim, Y.-D. (1995). Minimizing mean tardiness inpermutation
flowshops. European Journal of Operational Research,
85(3), 541–555. https://doi.
org/10.1016/0377-2217(94)00029-C

mailto:takano@utfpr.edu.br
http://orcid.org/0000-0002-7622-0283
mailto:drnagano@usp.br
mailto:drnagano@sc.usp.br
http://orcid.org/0000-0002-0239-1725
https://doi.org/10.1080/00207543.2014.910625
https://doi.org/10.1080/00207543.2014.910625
https://doi.org/10.1057/palgrave.jors.2601784
https://doi.org/10.1057/palgrave.jors.2601784
https://doi.org/10.1287/opre.12.5.655
https://doi.org/10.1287/opre.12.5.655
https://doi.org/10.1287/opre.44.3.510
https://doi.org/10.1287/opre.44.3.510
https://doi.org/10.1287/opre.13.3.400
https://doi.org/10.1287/opre.13.3.400
https://doi.org/10.1016/0377-2217(94)00029-C
https://doi.org/10.1016/0377-2217(94)00029-C

Page 16 of 16

Takano & Nagano, Cogent Engineering (2017), 4: 1389638
https://doi.org/10.1080/23311916.2017.1389638

Leisten, R. (1990). Flowshop sequencing problems with limited
buffer storage. International Journal of Production
Research, 28(11), 2085–2100.
https://doi.org/10.1080/00207549008942855

Maleki-Darounkolaei, A., Modiri, M., Tavakkoli-Moghaddam, R.,
& Seyyedi, I. (2012). A three-stage assembly flow shop
scheduling problem with blocking and sequence-
dependent set up times. Journal of Industrial Engineering
International, 8–26.

McCormick, S. T., Pinedo, M. L., Shenker, S., & Wolf, B. (1989,
йил Novembro). Sequencing in an assembly line with
blocking to minimize cycle time. Operations Research,
37(6), 925–935. https://doi.org/10.1287/opre.37.6.925

Moslehi, G., & Khorasanian, D. (2013). Optimizing blocking flow
shop scheduling problem with total completion time
criterion. Computer and Operations Research, 40(7), 1874–
1883. https://doi.org/10.1016/j.cor.2013.02.003

Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic
algorithm for the m-machine, n-job flow-shop sequencing
problem. Omega, 11(1), 91–95.
https://doi.org/10.1016/0305-0483(83)90088-9

Norman, B. A. (1999). Scheduling flowshops with finite buffers
and sequence-dependent setup times. Computer &
Industrial Engineering, 36(1), 163–177.
https://doi.org/10.1016/S0360-8352(99)00007-8

Pan, Q. K., & Wang, L. (2012). Effective heuristics for the
blocking flowshop scheduling problem with makespan
minimization. Omega, 40(2), 218–229.
https://doi.org/10.1016/j.omega.2011.06.002

Papadimitriou, C., & Kanellakis, P. (1980). Flow-shop scheduling
with limited temporary storage. Journal of the Association

for Computing Machinery, 27(3), 533–549.
https://doi.org/10.1145/322203.322213

Pranzo, M. (2004). Batch scheduling in a two-machine flow
shop with limited buffer and sequence independent setup
times and removal times. European Journal of Operational
Research, 153(3), 581–592.
https://doi.org/10.1016/S0377-2217(03)00264-9

Reddi, S. S., & Ramamoorthy, C. V. (1972). Flowshop sequencing
problem with no wait in process. Operational Research
Quarterly, 23(3), 323–331.
https://doi.org/10.1057/jors.1972.52

Ronconi, D. P. (2004). A note on constructive heuristics for the
flowshop problem with blocking. International Journal of
Production Economics, 87(1), 39–48.
https://doi.org/10.1016/S0925-5273(03)00065-3

Ronconi, D. P. (2005, Setembro). A branch-and-bound
algorithm to minimize the makespan in a flowshop with
blocking. Annals of Operations Research, 138(1), 53–65.
https://doi.org/10.1007/s10479-005-2444-3

Ronconi, D. P., & Armentano, V. A. (2001). Lower bounding
schemes for flowshops with blocking in-process. Journal
of the Operational Research Society, 52(11), 1289–1297.
https://doi.org/10.1057/palgrave.jors.2601220

Ronconi, D. P., & Birgin, E. G. (2012). Mixed-integer programming
models for flowshop scheduling problems minimizing the
total earliness and tardiness. Just-in-Time Systems, 91–
105. https://doi.org/10.1007/978-1-4614-1123-9

Taillard, E. (1993). Benchmarks for basic scheduling problems.
European Journal of Operational Research, 64(2), 278–285.
https://doi.org/10.1016/0377-2217(93)90182-M

© 2017 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Engineering (ISSN: 2331-1916) is published by Cogent OA, part of Taylor & Francis Group.
Publishing with Cogent OA ensures:
• Immediate, universal access to your article on publication
• High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online
• Download and citation statistics for your article
• Rapid online publication
• Input from, and dialog with, expert editors and editorial boards
• Retention of full copyright of your article
• Guaranteed legacy preservation of your article
• Discounts and waivers for authors in developing regions
Submit your manuscript to a Cogent OA journal at www.CogentOA.com

https://doi.org/10.1080/00207549008942855
https://doi.org/10.1080/00207549008942855
https://doi.org/10.1287/opre.37.6.925
https://doi.org/10.1016/j.cor.2013.02.003
https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1016/S0360-8352(99)00007-8
https://doi.org/10.1016/S0360-8352(99)00007-8
https://doi.org/10.1016/j.omega.2011.06.002
https://doi.org/10.1016/j.omega.2011.06.002
https://doi.org/10.1145/322203.322213
https://doi.org/10.1145/322203.322213
https://doi.org/10.1016/S0377-2217(03)00264-9
https://doi.org/10.1016/S0377-2217(03)00264-9
https://doi.org/10.1057/jors.1972.52
https://doi.org/10.1057/jors.1972.52
https://doi.org/10.1016/S0925-5273(03)00065-3
https://doi.org/10.1016/S0925-5273(03)00065-3
https://doi.org/10.1007/s10479-005-2444-3
https://doi.org/10.1007/s10479-005-2444-3
https://doi.org/10.1057/palgrave.jors.2601220
https://doi.org/10.1057/palgrave.jors.2601220
https://doi.org/10.1007/978-1-4614-1123-9
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1016/0377-2217(93)90182-M

	Abstract:
	1. Introduction
	2. Makespan calculus
	3. An important structural property of the problem
	4. The branch-and-bound algorithm
	4.1. Lower bound for the makespan

	5. MILP model
	5.1. Model TNZBS1

	6. Computational results for the branch-and-bound algorithms
	7. Computational results for the MILP model and the branch-and-bound algorithm
	8. Conclusions
	Funding
	References

