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Abstract 

We prove that on any surface there is a C00 diHeomorphism exhibiting a wander­
ing domain D with the following ergodic property: for any orbit starting at D the 
correspondent Birkhoff mean of Dirac meamres converges to the invariant meMUre 
supported on a hyperbolic horseshoe A which is equivalent to the unique nontriv­
ial Hausdorff measure in A . The construction is obtained by a. perturbation of a. 

diffeomorphism inside a Newhouse domain, where the unstable and stable foliations 
of A are relatively thick and in tangential position. We describe, in addition, the 
non-trivial topological properties of the wandering domain D . 

1 Introduction. 

Many aspects contribute to the richness and complexity of a. dynamical system. One of 
them is the existence of a wandering domain, that is a non-empty connected open set 
whose forward orbit is a sequence of pairwise disjoint open sets. In general we might 
expect there were only trivial and unavoidable wandering domains { that is wandering 
domains attracted by some sort of well behaved attractor). Indeed, in the context of 
difl'eomorphisms of the circle, if there exists enough differentiability, Denjoy [3] proved 
that non-trivial wandering domains do not exist. For endomorphisms of the circle or 
interval which have finitely many non-flat critical points the same type of result happens, 
see [6]. In the case of rational maps of the Riemann sphere, see [15]. For difl'eomorphisms 
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of a compact surface there are also results assuring that, under enough differentiability, 

wandering domains do not exist (see for example [1], [5], [11] and [12]). Another important 

aspect we shall consider is related to the structure of the sets which are most frequently 

visited by orbits of points. Again we might hope that these sets were well behaved 

attractors. 
To be definite let us consider dynamical systems generated by iterations of a C" ( r ~ 1) 

diffeomorphism / of a compact lliemannian surface M. Let Diff'"(M) denotes the set of 

such diffeomorph.isms endowed with the C" topology. We say that A C M is an attractor 

for/ if A is compact, !-invariant, i.e. /(A)= A; /-transitive (or simply transitive), i.e. 

there is x E A such that {JRx }n2:o is dense in A, and the baain of attraction 

B1(A}={xeM; J"x ➔ Aasn ➔ oo} 

contains a neighbourhood of A. 
A standing conjecture of Palis [13) claims, in its weaker version, that there is a dense 

set 'P C Diff" (M}, r ~ 1, such that for every / E 'P there are only finitely many attractors 

At,··· ,An for/, whose basins B1(A1), ... ,B1(An) cover M up to Lebesgue measure 

zero. The conjecture may be improved by asking some good properties for the attrac­

tors, as for example stochastic stability and existence of an SBR-meaB1Jre. In the latter 
case, there would be an invariant probability measureµ such that supp(µ)= A and for 

(Lebesgue} almost every x E B1(A) the Birkhoff sum of Dirac measures 

converges, in the weak-* topology, to the measureµ. With respect to the abundance in 

Diff"(M), one could also ask that generic k-parameter families intersect 'P for a total 

Lebesgue measure set of parameters. This would justify what is already expected in 

practical experiments: for almost all choices of parameters there are only finitely many 

invariant sets attracting almost all initial conditions. 
However, it is a common sense that we are very far from proving or disproving this 

conjecture, mainly for r ~ 2. On the other hand some interesting and unexpected be­

haviours have been identified. For example, Newhouse showed in the 70's (see [8], [9], 

[10] and also [14], Chap. 6) that there are open sets U C Diff"(M}, r ~ 2, &nd residual 

subsets .N C U such that every / E .N presents infinitely many cohexisting hyperbolic 

attracting periodic orbits (sinks). Much later, one of the authors [2} showed that in these 

open sets U there is a dense subset C C U such that every J e C presents infinitely many 

coexisting Henon-like strange attractors (see [7] for a definition). 

In this work we are concerned with another kind of behaviour: the existence of non­

trivial wandering domains (for simplicity, just wandering domains). We prove that on 

2 



any surface there exist 0 00 difi'eomorphisms which exhibit wandering domains, and these 

diffeomorphisms we obtain are intimately related to the Newhouse phenomena. In addi­
tion, we can choose the diffeomorphism in such a way that for orbits starting at a.n open 
set, the Birkhoff sum as above converges to a measure whose support may be equal to a 
hyperbolic saddle or even a hyperbolic horseshoe. 

2 Basic Concepts and Main Results 

In dimension 2 a classical example which has (trivial) wandering domains was given by 
Bowen (see [16] and references therein): take for example a diffeomorphism with a source 
repelling all orbits to a saddle-connection ( a separatrix of the unstable manifold coincid­
ing with a separatrix of the stable manifold of the saddle) which bounds a topological 

disk containing the source. Then there are wandering domains whose forward orbits ac­
cumulate on the saddle connection. According to the definition we give in the sequel all 
of them a.re trivial. 

Let us consider a er (r:::: 1) diffeomorphism / of a compact Riemannian surface M. 

We say that a compact invariant set A c M contained in the non-wandering set of f 
is dynamically connected if it is not the union of two nontrivial closed invariant disjoint 
sets. A dynamically connected set A is a weak attractor for f if its basin B1(A) contains 
an open set W which has only finitely many connected components and whose closure 
contains A. A set W like that is called an immediate basin of attraction for A. The 
saddle-<:onnection of Bowen and attractors as defined in the Introduction are examples 
of weak attractors, as well as saddle-nodes. Inside the basin of a weak attractor there 
are trivial wandering domains. We define a non-trivial wandering domain (for simplicity, 
just wandering domain) to be a non-empty connected open set with disjoint orbit a.nd 
with no forward iteration contained in an immediate basin of a weak attractor. 

We state our main result. 

Theorem 1. Given any 81Jr/ace M there exists f E Ditf'°(M) which has a (wandering) 
domain D 11uch that: 

1. diam(r(D)) ➔ 0 as n ➔ 00 and WD, the union of the w-limit sets of points in 
D, is contained in the union of a non-empty subset of a hyperbolic horseshoe A 
(possibly equal to A) with a non-empty subset of the tangency points between stable 
and unstable manifolds of A. 

£. For any open connected set W such that W intersects wn there is z E W such that 
r(z) converges to a hyperbolic sink. 
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9. The accumulatwn points (in the weak-* topology) of the sequence of measures 

n-1 
Vn = !, L c5p., 

n j=O 

doea not depend on x, for every x ED, where c5z is the Dirac measure supported on 
z,zEM. 

4. For every accumulation point v of (vn)n, supp(v) C A. R mau happen that the 
accumulation set of (vn)n contains just one measure v which satisfies one of the 
following properties: 

{a) v = 6,., where p is a hiperbolic saddle fored point of A. 

(b) supp(v) = A and v is equivalent to the non-trivial Hatudorj.f measure of A. 

It may also happen that the accumulation set of (v11 ) 11 has more than one element 
(in other words, (vn)n does not converge). We produce an example where this set is 
{t5,, + (1- t)6p1;t E (0, 1]}, where p and p' are saddle points of A (this is analogous to 
what happens for the 'one-sided heteroclinic attractors' studied in [16]). In fact it will be 
clear that we have enough freedom to produce a great variety of examples with different 
accumulation sets. 

The very wt property in Theorem 1, as the title of this work suggests, can be the­
oretically used to 'draw' the hyperbolic horseshoe A. Divide the screen of the computer 
into pixels, each pixel corresponding to a square of a net. Pick a point z E D and for 
each pixel divide the number of visits to it by the total number of iterates already done. 
The pixel will be turned on if and only if its quotient does not tend to zero as the number 
of iterates increases. 

In dimension one, we say that an interval I is wandering if its forward orbit is disjoint 
and there is no iterate of I contained inside the immediate basin of a periodic attractor. 
An equivalent definition is that no point of I has a periodic orbit as its w-limit set. On 
the other hand, no point of the wandering domain D above has a periodic orbit as its 
w-limit set, as an immediate consequence of the first statement of Theorem 1. However, 
this property seems to be not enough to define a wandering domain in dimension greater 
than one, since trivial examples could be produced. For instance, consider any open set 
inside a fundamental domain of a normally hyperbolic circle with an irrational rotation 
inside. 

The diffeomorphism / of the statement of Theorem 1 is taken inside a Newhouse open 
set UC Diff"'(M). This means that for some / 0 EU there is a hyperbolic set Ao, which 
has a hyperbolic continuation A= Ai defined for all/EU, and also for every/ e U there 
is a leaf of the stable set w•(A1) in tangential position with a leaf of the unstable set 
wu(A1)- We strongly believe from our method of construction that the same properties 
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stated in Theorem 1 are true for a dense set of diffeomorphisms inside any Newhouse 
open set U. This result would depend on a technical realization of the ideas involved 
here, see for example [2] for a clue. 

3 The starting diffeomorphism 

The diffeomorphism f of Theorem 1 is constructed in two stages. First, we describe a 
starting diffeomorphism g of a disk V C R2 which exhibits a hyperbolic horseshoe A whose 
stable and unstable foliations are in tangential position. It can be realized (in any surface) 
as the restriction of a diffeomorphism to a local chart (for example by surgery around 
an attracting fixed point). Then we consider a class of perturbations for g and, among 
them, an arbitrarily small one (in the C" topology, for any r ~ 1). These perturbations 
have support in V, so that they can be trivially extended to M to give us the desired 
diffeomorphism. 

We consider the square Q = [-l, +l]2, for some l > 0, the disks 

D± = {(x,y); =i=x ~ l, (x ± l)2 + y2 ~ Z2} 

and the vertical strips 

[ z -1 l -1z1 [ l s± = :i:2 - u l, :i:2 + u x -l, +l , 

for some u > 2 (see Figure 1). 
Let V = D+UQUD_ and Z C Difl°"(V) be the (nonempty) set of COO diffeomorphisms 

g : V -+ V satisfying properties 1) to 7) below. 

(l)g('D) C int(V), g(D+) C int{D+) and g(D_) n D_ = 0. 

(2)glD+ is a contraction; this means that there is a sink q+ ED+ such that w(z) = q+ 

for every z E D+· 

(3) g is affine in a neighbourhood of S+ ands_ and 

ulS±= S± ~ Q 
(x, y) 1--1- (±u(x ± }l), =i=½ ± >.y) , 

for some O < ). < ½ such that >.u < 1. Define the horizontal strips L+ = g(S+) and 
L_ = g(S_) and L+,L0 ,L_ the connected components of Q \ (L+ UL_), see Figure 1. 

(4) If S+, So,[;_ are the connected components of Q\ (S+US_) (as indicated in Figure 
1), then g(S+ U §_) CD+ and g(So) CD_. 

A dynamically meaningful rectangle appears naturally under the conditions above. 
Let R = JU X J', where JU= [-au,+au], J' = [-a.,,+a,], Ou= 2(1-'u-l)' a,= 2(1~Xr 
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Figure 1: The starting difl'eomorphism g. 
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This rectangle has the following properties: Ju x { -a., +aa} C g( JU x {-a,}) and 
g({-au,+au} x J') c {-au} x J', see Figure 1. 

Observe that property 4) implies that w(z) = q+ for any z E S+ U §_. We claim 
that w(z) = q+ for all z = (x,y) E Q such that lxl > Ou· Indeed, let f(z) = (x',y'). If 
x < -au and z ES+ we have that x' = u(x + ½) < -au and -au - x' = u(-au - x). 
Then, if f (z) E S+, we repeat this procedure. We get that, for some k ~ 1, Jk(z) E B+ 
and, because w(z) = w(fk(z)) = q+ the claim is proved. If x > au and z ES'"" we have 
that r = -u(x - ½) < -au. Then, if /(z) EB+ it follows that w(z) = w(f(z)) = q+ and 
the claim is proved. H f(z) ES+ we fall into the first case. 

Let A= n~_00gn(Q) be the maximal invariant set in Q. It is not difficult to see that 
A C R and A is the Cartesian product Ku x K 8 of two Cantor sets, with JU and J• as 
convex hulls. The Cantor set Ku (resp. K 8

} may be obtained by an inductive process 
where, starting from the interval JU (resp. J8), an open centred interval of proportion 
1 - 2u-1 (resp. 1 - 2.>.} is suppressed from ea.ch closed connected component remaining 
from the previous stage of the induction. To these Cantor sets we associate their thickness 

u-1 • ,\ 
ru = 1 - 2u-1 ' r = 1 - 2,\ · 

We also associate to A its thickness T(A) = 'Tu'Ts (see [14}, Chap. 4 for general definitions). 
The 6th property is the following: 

(5) T(A) > 1. 

Let V+ and V_ be the two vertical strips of R which are connected components of 
Rn y-1(R), and let H± = g(V±) be their images. Moreover, let Vo = R \ (V+ UV_) be 
the vertical central gap and Ho= R\ (H_ UH+) be the horizontal central gap. 

The last properties concern the return function from Vo to H0• Let U be a. neighbour­
hood of (0,-a,), containing [-25,+2o} x [-a., -a.+2a], U' = [-!,+fl x [-a.,-a. +a], 
for some 6 > 0 and a > 0 and suppose that 

(6) g2(x,y) = (-au+µ - {3x2 - -y(y + a 3 ), -ax) for (x,y) E U, where a,fJ,'Y are 
positive constants and µ > 0 will be chosen accordingly. 

(7) If (x,y) E Vo and (x',y') = g2(x,y) is such that x' > -au then (x,y) EU'. 

Property (6) is natural to impose and will give us a. certain facility to apply our 
arguments, mainly in Section 8. Condition (7) implies that only one of the following 
possibilities occurs for z E 'D: w(z) = q+, z E w•(A) or the future orbit O+(z) = 
{z,g(z), ... ,gi(z), ... } has marks 

0 = No ::5 N1 < N1 + 2 < N2 < ... N1.-1 + 2 < N1;; < ... 
wheregN•(z) E H0ng2(U) for every k ~ 1 and gi(z) \t V+UV- only if NA;-2 ::5 j ::5 N1c-l 
for some k ~ 1. In words, the iterates between Ho and Vo are done near the horseshoe, 
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in the vertical strips V+ and v_, and if the orbit hits Vo outside U' then it necessarily 

escapes to the sink q+. 
Observe also that in order to satisfy condition (7) for an already given U', we have to 

chooseµ sufficiently small, in particular /J < -ya and /J < P(f )2
• 

4 Gaps, bridges and foliations 

Let g E Z as in the previous Section. 'lb each point z E A we associate an infinite 

sequence.:![= ( ... Z-i••·z-1zoz1 ... z; ... ) E {-,+}z, where z; =+if !f(z) EV+ and 

z; = - if gi(z) EV_, j E Z. Let 

B"(n;z1 ... z,,) = {z ER; gi-1(z} E VaJ , j = 1, ... ,n}, 

for n ~ 1, be the mutable bridges of A, where the natural number n is called the generation 

of the bridge. The ,table bridgea are defined 88 

B•(n;z1 ... z,,) = {z ER; g-i(z) E Vz1 , j = 1, ... ,n}. 

We have already defined Vo and Ho, the unstable and stable central gaps. Now let 

G"(n;z1 ... z,,) be the maximal vertical strip inside B"(n;z1 ... z..) which lies between 

B"(n+ l;z1, ... ,Zn,+) and B"(n+ l;z1, ... ,Zn,-), and G•(n;z1 ... z,,) be the maximal 

horizontal strip inside B•(n;z1---Zn) which lies between B•(n+ l;z1 1 ... ,Zn,+) and 

B•(n + l; z1, ... , Zn,-), for every n ~ 1. These are, respectively, the unatable and stable 

gaps. 
We are particularly concerned with the intersections of stable and unstable gaps. It 

is easy to verify that 

gi (G"(n;z1 ... z,,) nHo) = G•(j;z; .. ,z1) nG"(n -j;z;+1 ... z..), 

for 1 :5 j :5 n - 1 and, in particular, 

gn (G"(n;z1 ... z..) nHo) = G•(n;z.. ... z1) n Vo. 

ll we denote 1,. = (z1, ... Zn) and ;.-1 = (Zn ... z1) then 

gnlG"(n;e) n Ho: G"(n;_v n Ho ➔ G•(n;~-1) n Vo 

is an affine diffeomorphism whose Jacobian is given by 
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Figure 2: Iteration of gaps. 
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Figure 3: Foliations Pu and :FtJ. 

since all the iterates are done inside the linear region. In Figure 2 we show the iterations 
of G'"(4; + - +-) n Ho. 

Let p = (-au, -a.) be the saddle fixed point of the boundary of A. Define the unstable 

foliation 

and the stable J oliation 

Moreover, let 

:Fl} =u2(:F"nU) 

and 

as depicted in Figure 3. The locua of tangencies between leaves of :Fu and leaves of :Ft, 
is the horizontal line {y = O}, often called the line of tangencies (see [14], Chap. 6). 
The intersection of :Ft, with the line of tangency is a piece of the Cantor set K" and the 
intersection of :f1j with the same line is a piece of the Cantor set k• = -au +µ-7(K 1 +a1 ) 

(all possible intersections between K"' and k• must happen for these pieces). It is clear 
that the two Cantor sets intersect if and only if there is a tangency between leaves of 



the foliations. Since r•ru > 1 by hypothesis, we apply Newhouse's Gap Lemma (see 
[[14], Chap.4]) to ensure that in fact there is an intersection of the two Cantor sets, 
independently of the choice of µ,. 

The definition of stable and unstable bridges and gaps in R naturally induces a defi­
nition of (one-dimensional) bridges and gaps for Ku and k•, via projection on the line 
of tangency. For this reason, we adopt the following notation. Let 71"1 be the projection 
in the first coordinate and 11"2 the projection in the second. Then the bridges and gaps of 
KB are the sets Bru(n;!) = 7r1(Bu(n;&:)) and Gau(n;&:) = 7r1(Gu(n;&:)), while the bridges 
and gaps of k• are given by 

and 

Ga8 (n;&:) =-au+µ --y(7r2(G8 (n;e)) +as), 

for all n ~ 1 and! E { +, -}". 

5 Wandering intervals in a one-dimensional toy model 

In this section we introduce a one-dimensional model that captures at least a fraction 
of the complexity of the diffeomorphisms considered here. For this model we discuss a 
sufficient condition for the existence of wandering intervals that inspires the :remaining 
sections. At the end, the ideas developed for the two-dimensional case can be used ipsis 
literis to show that this condition is satisfied for a particular deformation of the original 
one-dimensional model. 

Let ct> be the first return function to g2 (U} n {x ~ -au} and i(x) = (x,O) be the 
inclusion of the x-axis. The one-dimensional 'toy model' is the function 8(x) = 11"1 o IP o 
i(x). 

The function 8 has the following description (see Figure 4): its domain dom(B) is a 
union of intervals, each one inside {and concentric with) a gap of Ku. Some gaps of Ku do 
not intersect dom(B). A criterium to know whether a gap Gau{n; !) contains a nontrivial 
component of dom(B) is to determine the vertical position 1/s of the centre of G•(n; &:-1

) 

and verify 

HI is a connected component of dom(8), then Bil is a quadratic function and 8(81) = 
-au. More precisely, if c is the critical point in the centre of J and JC Ga"(n;!) then 
8(x) = B(c) - {Ju2"x2 , x EI. The critical value 8(c) coincides with the centre of the gap 
Ga•(n;e-1) of the Cantor set k•. 
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Figure 4: The one,!imensional toy model. 

Ifµ is allowed to vary as & parameter we characterize a family {9µ),... Asµ increases, 

the Ca.ntor set k• = k; = µ + k& is tr&DSlated over K", and all defined critical values 

Oµ{c} go together, attached to the centres of the gaps { of course new connected components 

of the domain appear inside empty gape of K"). 
A special situation &rises when there is c E 1~ C 1 such that 9(1~) C 1~ and 9(81~} C 

ar,.. This happens for values ofµ such that e,..(c} is near c. In other words, there is 

a parameter interval J such that for all µ e J such an interval 1~ does exist and for 

some JJo e J we have 9"°{c) = c. In particular, for some valuesµ e J the function 9µ11~ 
presents a sink. 

Newhouse ideas can be used in a simple way to show that for a residual set of pa­

rameters /J the function 9,.. presents infinitely many sinks {provided that ,,. • T,. > 1). 
The proof is based on two principles: i) whenever K" n (µ. + k&) f,. 0 then there is a 

sequence of intervals (jt)t accumulating onµ. such that e,.. presents a sink for all JJ e jt, 
k ~ 1 (a.nd each sink is contained in a different gap of K"); (ii) the thickness condition 

,,. • r,. > 1 implies that K• n (JJ + k&) f,. 0 for ell µ (smell). See for example [14] for more 

details. 
Suppose 9 has a critical chain, i.e. there is a sequence of critical points (c1:)t>1, 

Ct =/- cw for k f,. k', such that O(c1:) = C1:+1 for all k ~ 1 (although it seems extremely 

hard to satisfy this requirement, it is exactly the aim of Sections 6 and 7 to show that 

this is the case for some suitable perturbations of the original function). 
Let q = Ga•(n1:;it>) be the gap where c1: lies, for each k ~ 1. According to the 

description above, 9 has a critical chain if and only if the centre of Ga•(n1:; [!_('=)]-1) 

coincides with the centre of Gk+l• for all k ~ 1 (or equivalently the same assertion made 

with stable and unstable bridges, since the centre of each gap is the centre of the smaller 

bridge that contains it). In dimension two this will be the definition of a critical chain, 
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since there are no critical points. 
We claim, in our one-dimensional model, that if 

00 

~nk 
L....J 2k < 00 
k=l 

then there is a sequence of intervals (T;}t2:i, Ck ET; C Gau(nt;e_<A:)) such that 0(T;) C 

Tk+l and O(&r;) C UT;+1 for all k ~ I. Therefore Ti is the wandering interval we were 

looking for. 
Observe that O(&r;) C &r:+i obliges T; to be symmetric with respect to ct , Let 

lZ = ½IT;I be the radius of¾· The problem of finding (T;) now reduces to look for a 

sequence of positive numbers (liki:1 such that 

{3a2n~ (li)2 = z;+l . 

A solution to this problem is given by li = bt, where 

which is positive for every k ~ 1 if and only if the summability condition above is satisfied 

(but we are not saying that if the sum diverges then there is no other positive solution). 

An explicit solution to the sequence (T;}t was found only because of the simplicity of 
the relation betwllen the sizes of the intervals. This simplicity comes from the requirement 

that 8(cA:) coincides exactly with ck+1, for all k 2:'.: 1. Notwithstanding, the proof of the 

existence of the sequence of intervals could be performed even if it was done a weaker 

condition on the relative position of critical points and critical values. The method of 

proof is inspiring for Section 8, in the two-dimensional onset, where intervals become 

irregular rectangles and the width is not well defined. We point out however that the 

weaker condition is as difficult to satisfy as the original one, and there is in fact no gain 

in doing this for the one-dimensional onset. 
Let (bt)A:>l be defined as above, with the summability condition satisfied. This means 

that bk > 0 fur all k ~ 1. Suppose that 

1 
l8(cA:) - CA:+11 < 

10
bc+1 

for all k 2:'.: 1 (we say that 8 has a relaxed critical chain). We claim that there is a sequence 

of intervals (7t")A:;~1, each 7t° centred at Ct such that 8(71) C Tk+l and O(En;) C c:.171+1 · 
To prove the claim, first consider the sequence ('.Tf)t where each '.ff is the connected 

component of dom(O) to which CA: belongs. Then 9(&Tf)n'.Tf+1 = 0, since 9(M2) = {-a..} 
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and all the ~'s are placed to the right of -au. Let ii be the radius of ~, for all k ~ 1. 
We can give a lower bound for these radia. As 

and, for /J small (and hence n1 big), 

IO(c1:) - CJ:+11 < 1
1
0bk+t << aou-"'+l ~ ICJ:+t - (-au)I, 

where a0 is the half of the width of Vo, then 

0 1 
11: >> lObA:. 

This implies that O(c.1:) E 1'f+1 for all k ~ 1. 

Once defined the starling sequence (~)A: we inductively define the sequence (T;+1)J; 
from the sequence (Tt).1:, The induction step is authorized if O(c.1:) E Tt+i and 9(lfl't) n 
T;+1 = 0, for all k ;:= 1. In that case, 

r;+l = 9- l(Tf+1) 

for every k 2:: 1. 
Let 1: be the radius of Tl, for all k 2:: 1 and tJ 2:: 0. The procedure above implies that 

for a fixed k ;:= 1 the sequence (l:). decreases as II increases, whenever the induction step 
is allowed. H the induction is defined for every tJ 2:: 0 and 1: ➔ 1; > 0 as a ➔ oo then the 
intervals '1'; = [c1: - 1;, c1: + ltl are the solution to our problem. 

So it remains to show that the induction step is defined for any tJ ;:= 0 and that the 
infimum of the sequence (l:}. is positive for every k ;:= 1. Supp06e that the step a of the 
induction is done. Observe fust that 

1:+1 = p-1/20'-n, ✓l:+1 + lJ(cA:) - Ci:+1• 

So, if lt+i > ½b1:+1, we have that 

.+1 /3 1 
'• > v ,/.1: > 2b1: • 

As ii > ½b1: for all k ~ l then, by induction, ll > ½b.1: for every s. This will imply 
positiveness of the infimum and that O(c1:) E T;+l for every s and k. The condition 

9(8'1';+1) n T::t: = 0 is clearly implied by the fact that ecw,;+1) C lfl'l+1 and Tt!t C 

7?+1· 

14 



6 Linking Lemma 

Up until now, we have given no serious restriction to the choice ofµ, except that it must 
be small (and positive) according to the choice of U', just in order to satisfy Property (7) 
in Section 3. Suppose µ is inside this range. We have also seen that Property (5) and 
New house's Gap Lemma guarantees that there is always at least one point of intersection 
between K" and k•. The content of the Linking Lemma we discuss in the sequel is 
that for some residual set of choices of µ near the origin there are in fa.ct infinitely many 
intersections (or even a Cantor set of intersections) between Ku and k•. However, we 
must be more precise about the way these intersections are obtained and then choose the 
suitableµ. 

The Linking Lemma has been similarly applied in [2} to prove the cohexistence of 
infinitely many Henon-like strange attractors, but it appeared before in [4]. 

Let Bru = Bru(n;&:) and Br• = Br'(m;!!l), where&: = (z1 1 ••• ,zn) and !!l = 
(w1, ... ,wm), n,m ~ 1. We say that Bru and Br' are linked or, equivalently, (Bru,Br') 
is a linked pair if Bru n Br' =I- 0, Bru is not contained inside a gap of Br' n k• and Br' 
is not contained in a gap of Bru n K". As Bru n XU and Br11 n k• are affine images of 
Ku and K', the product of their thickness is still greater than one, implying that if Bru 
and Br' are linked then (Brun Ku) n (Br' n k•) =I- 0, by Newhouse's Gap Lemma. 

A linked pair (Bru, Br') is said to be (-linked, for ( ~ O, if 

IBrunBr'I ~ {min{IBr"l,IBr•I}. 

We say that the pair (Bru, Br') is proportional if 

>.IBrul < IBr'I $ IBrul. 

In this case there is A= A(>.,u,a,,a..,-y) > 0 such that 

log>.-1 
n---m E [-A,A]. 

logu 

Two bridges Br~<•) and Br;<•) a.re said to be related if they are the two maximal bridges 
. . . -u(,) 

properly conta.med ID another bmlge Br . 

Linking Lemma. Let {o = ½"·:;1 and suppose that (Bru,Br') is a linked pair. Then 
for any f > 0 there are IAI < f, related unstable bridges Brf, Br~ contained in Br" 
and related stable bridges Bri, Br; c.ontained in Br' such that (A+ Bri,Brf) and 
(A+ Br~, Br~) are (o-linked proportional pairs. Moreover 

1Br1:'I > IBr~I > A
3

f 
I - I - 2 
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for i = 1, 2 and whenever f < IBr11 n Br'I• 

Proof. If f < jBrv n B,-aj then let b, and bu be such that 

2f A f lA A A 

A 2 5 b, < >.2 , u- bu < b, 5 bu , 

and take the collection oC all stable bridges oC size b, and a.11 unstable bridges oC size bu. 
AB (Bru, Br') is a linked pair, (Brun K") and (Br' n .K') have a common point, which 

implies that there is at least one linked pair (.Bru,.Br') with these sizes . 
..-...u ...-.., A 

Note that IBr I +IBr I< (>.u)½+>.! < f 1 so that there is an interval J ofsize smaller 

than f for which (A+ Br1
) n Bru ,/: 0 if and only if A E J. 

Take A E J such that the centre of A+ iii! coincides with the centre of J!ir". Denote -- -· -· -· by Ga and Ga the gaps in the centre of Br and Br , respectively. 

The thickness oondition -r"r > 1 implies that max{-r", -r'} > 1. But r < .,.u, 
since >. < u-1 , hence T" > 1. Therefore, each one of the two related bridges Brf 

and BrJ contained in Br" of size u-11.Br"I must be bigger than ffa" (more precisely, 

u-11iir I = ,-"IGa"I). This implies, by the choice of 6.. and b., that 1iir'1 > 1aa·1 , i.e. 
-u -· Ga cA+Br. 

Suppose that Brf is to the left of Brf and let Brf, Br~ be the bridges contained in 
............ ----· Br of size AjBr I, with Brf to the left of Br;. 

The pairs (Brf,Brf), i = 1,2, a.re proportional, since 

and 

.-... 1 ---.." 
IBrfl = AIBr I> >.u- IBr I= ).jBrfl. 

To prove that these pairs are ea-linked, we consider two cases (see Figure 5): ( a) ll.+Ga • c 
-u -u -· Ga ; and (b) Ga c A+ Ga . 

In case (a), they are automatically linked, since for each i = 1, 2 only one of the 

boundary points of A+ Brf belongs to Brf. Moreover, 

IBrf n Brfl = ½(I.Br"! - IGa"I) > !c,-" - 1) 10a"1 -
IBrtl >-I.Br'[ 2 u-11Fr"1 - (a' 

hence they are (a-linked. 
In case (b), A+ Brf C Brf, for i = 1, 2. We have only to show that A + Brf is not 

contained inside a gap of Brf n .KU. Suppose by contradiction that this happens and take 
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Br 0 
1 

(a) (b) 

Figure 5: Two cases in the proof of the Linking Lemma. 

i = 1, without loss of generality (or simply by simmetry). Let Gau be the referred gap, 

and ii? be the greatest bridge adjacent to the right boundary point of Gau_ Clearly 
-u ---· Br C l:l.+Ga, hence 

On the other hand, 
-u 

IBr) .1~!1 > ,,.u,,.• > l, 
jGa I IGa I 

a contradiction. As IBrt I = >.b. and IBrfl = o--16-, for i = 1, 2, the inferior bounds for 
their sizes follow. D 

A cowiequence of the Lemma above is that for a residual set of translations of k• ( each 

translation corresponding to a choice ofµ) the intersection K"nk• contains a Cantor set 

(see [4]). However, we use its precise statement to derive the following Lemma, adapted 

to the purposes of Section 8. It says that for a convenient small translation there &re 

infinitely many linked pairs, with generations growing linearly. This will be much more 

than we need in order to satisfy the summability condition of the previous section. 

Linear Growth Lemma. Let {o = ½ T:;1 andµ > 0 be chosen accordingly to the choice 

of U'. For any t > 0, there are l~I < f and collections of bridges (Brf)i~1, (B"k)i2:1 ,uch 

that (l:l. + Brt, Brt) is a Y.-linked proportional pair for each k ~ 1. Ifni (respectively 

m1,:} is the generation of Brt {respectivelv B~) then 

mi < mt+1 ~ mi + N. 
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Proof. Ta.ke the first no such that 2auu-Cno+1> :5 µ. This means that the bridge Br~ = 
Bru(no; + + . .. +) has the left boundary point at -au and the right one at the right of 
-au+µ. On the other hand, take the first mo such that 2a.-y~mo+l :5 µ. Then the bridge 
Brg = Br•(mo; + + ... +) has its right boundary point at -au+µ and the left one at 
the left of -a.. Therefore (Brg, Brg) is a linked pair and IBrg n Brgl = µ. 

By the Linking Lemma, for any E <µthere are IA1I < E, related unstable bridges Brr, 
-- -· -· -u Br1 and related stable bridges Brf, Br1 such that (A1 +Brf,Brr) and (A1 +Bri,Bri) 

-· ~2 -- Af are {o-linked proportional pairs. Moreover, IBr1I = IBrfl ~ 9, IBr1 I= IBrrl ~ 2 and 

IBrf I 2:: IBrf I > ~-
We proceed by induction. Let{; = {o(l - Ef=t 4-i) for all j ~ 1 and suppose that 

for any k ~ 1 we have: 

1. real numbers A1, A2, ... , A-, such that 

for all t = 1, ... , k; 

2. bridges Brf and Brf, lor t = 1, ... , Ii:, such that (..6.1 + ... + .da, + Brf, Br:') is a 
6,-e-linked proportional pair; -

3. 

for all t = 2, . . . , k; 

-u -· 4. a bridge Br., related to Br: and a bridge Br., related to BrZ such that (A1 + 
... .::lA: + .Br:,Br;) is a !o-linked proportional pair. 

We will prove that the same is valid for k + 1. At the end, the value Ii = E:1 lie 
fits the statement of the Lemma. 

Applying the Linking Lemma to the linked pair (A1 + ... +At+ Br:, Br;} we obtain 

IAA:+il <Ek= ~1.ih-:1 and related bridges Br:+1,Br;+l C Br:, Br:+l,&:+l c Br: 
such that {.::l1 + ... + /ik+l + Brl+i • Br;+l) and (li1 + ... + lit+l + Br:+1, Br;+l) are 
!o-linked proportional pairs. 

AB. (.::l1 + ... +a.,+ Brt, Brf) is a !A:-clinked proportional pair, for all t = 1, ... , k, 
then (.6.1 + ... + .6.A:+1 + Brt ,Brf) is a ({A:-t - ~)-linked proportional pair. But 1Br:T 
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Finally, the Linking Lemma assures that 

1B • I ,3E,1: A3{o1B 'I 
r.1:+1 ~ "' 2 = - 8- r,1: ' 

proving the relation between m.1:+1 and m,1:, for 

As the links are proportional, 

A:{o IBr:I < A:{o IBrtl $ IBrl+1I $ IBrk+tl , 

proving the relation between n.1:+1 and n,1:, for 

log(~rt 
Nu= - ~~-

loga 

7 Critical chains via perturbation 

□ 

In Section 3 we have defined the starting diffeomorphism g, but we left µ as an arbitrary 

parameter. Now we fix µ as µ + 6., according to the Linear Growth Lemma in Section 6, 

in order to have a sequence of ,-linked proportional pairs (Br:,Br;), k ~ 1, with 

generations fo, and m.1:, BUch that 

for some 1 ~ N,,Nu < oo. 
We now describe the kind of C00 perturbations we aim at using to satisfy a Chain 

Property like that of Section 5. First, consider a non-negative and non-decreasing COO 

function <P: R ➔ R, null in {x ~ -1} and equal to 1 in {:z: ~ O}. Let p > 0, I= [a,b] be 

an interval and define 
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<t>p,111 

,\ 
I b 

I pill I ~ 
Figure 6: Bump function on an interval I. 

(see Figure 6). ff 11 · llr is the norm given by the derivatives until order r then 

1 
114>p.rllr $ (plIIY llef>llr · 

Recall that U' C (-5, 5] x (-a,, -a,+ a], and define 

t/J = 'P¼,[-6,+6) . 

Let ih-; be written as Br;= Br'(mi;~(A:)) and take the interval 

I1c = 1r2 (B'(m1c;l1/.c.1:>)) , 

i.e. they-projection of the stable bridge B'(mi; ll!(A:)). AB the projections of the adjacent 
stable gaps to this bridges have length bigger than ;. II.1:I, the functions 

'PA: = <f> 1 1 , k 2: 1 , P•• 

have disjoint supports. 
Let t = (ti, t2, ... , tk, ... ) be a sequence of real numbers and let 

Then 
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We call! & perturbation tJector. H (!CM))M>i is a sequence of perturbation vectors, with 
1_(M) = (tf, ... ,tf, ... ), satisfying -

jtfl <>,.Mk' 

then ht<M> -t Id as M -t oo in the er topology, for any r ~ 0 (since II1cl ~ 2a,>.m• and 

m1c :5 mi + N,k). 
For a sufficiently large M we define the diffeomorphism 

f = IM = g O h1_(M) • 

Let us examine the effect of this perturbation to the dynamics. Since f = g outside 
U, the horseshoe is preserved and the dynamics near it remains the same. The only 
change is in the image of the stable bridges and gaps that cross U. More precisely, if 
B'(m;l&!.) c B'(m1c;Y1.CA:)) then 

for every ( x, y) E B" ( m; !!L) n { -c5 :5 x :5 c5}. In particular, the correspondent bridge 
Br'(m;l&!.) is translated by tf in the line of tangency. 

Critical Chain Lemma. For etJery M >> N, there is a sequence!= (ti, t2, ... , t1c, ... ) 
with ti = 0, !ttl < >,.Mk, k ~ 1, and a bridge Brf = Bru(nt;,c{(k)) C .Br:, auch that the 
centre o/t1:+1 +Br•(n1:; [!_(A:)J-1) coincides with the centre of Bru(n1:+1;ik+l)), for et1ery 

k ~ 1. Moreot1er, we can write 

where !_Ck), ~le), !'.i!.(k+t) have sizes n1c, n2, m1:+1, respectively, with 

and n2 arbitrary. 

Proof. AB in the Linking Lemma, let Br; C Br: and Br: c Br: form a linked pair, with 

sizes 
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Let J1c be the interval such that t,. E J1c if and only if (t1: + Br:) n Br; ::/: 0. By the choice 
of sizes, IJ1:I < >,.Mt_ 

......... " ~. 
Let Br1c and Br,. be written as 

Br== Bru(n1.;i(")), Br:= Br•(mi:;.1i"l), 

and define Br:= Bru(n1.;i"l), where n,. = nt + n~ + mt+l and 

i") = i'k)~)[!!!_(t+l)i-1 

and ~k) is an arbitrary sequence of size n~. With this definition, Brf C Br; and 

Br;+i = B~(n1c; [&:(klJ-1) C Br:+1, for all k ~ 1. Now it is enough to take t1c+1 E J1c+1 
such that the centre of Brt+1 coincides with the centre of Brf+i and the proof is complete. 

D 

An important remark concerning the last Lemma is the freedom to choose the inter­
mediate sequence ~. whose combinatorics is the responsible for the alternative ergodic 
properties deduced in Section 9. We fix from now on its size (and in Section 9 its code) 
and derive some quantitative information. 

Take n2 = k2, in such a way that 

n,. +m1c+1 . 
0 0 ➔ 

n1: 

ask ➔ oo. At the same time, for every f/ > 0 there is ko = ko(11) such that 

n1c+1 < (1 + 11)n1c 

for every k ~ /co. 
Let f/0 be such that if one defines '11 = 1:i then .Xu1-+tl1 < 1 and take ko = ko('lo) 

as above. Without loss of generality we can suppose that ko = 1, by simply choosing the 
first gap of the critical chain as Gau{n1:0 ;i"0l). By the same argument we can suppose 
n1 sufficiently big with respect to some constants that depend only on the definition 
parameters of g. 

ff '1 < 1 then the numbers 

are positive. A lower bound is given by 

b1c ~ p-lu-2n.(l-T10)-1 
, 
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for all k ~ 1. On the other hand, as n1:+1 > n,., 
b,. :513-1(1-2U-2n,. 

for all k ::= 1. For the calculations of the next section, remember that 

/3<12n,. bl = bk+ l , 

for all k ~ 1. 

Conclusion. H we take / = g o h1, where t is chosen accordingly to the Critical Chain 

Lemma, then we have a sequence of rectangles (R1ok::l with the following properties: 

1. R,. c Gu(n,.;ik)), where ik) is specified as above; 

2. the centre of R,. is the centre (x,., 0) of OU(nki!:(k)); the height of R,. equals the 

height of OU(nk;i">) n Ho and its width is equal to 26u-n"; in other words, 

R1. = r"• ({-6 $ X $ +o} n G•(nkj ~(k)]-
1
)) 

3. let F,. = r~+2IR1:; then 

F,.: (x1:+x,y) t-+ (x1o+1-.Bu2n•x2 ±-y>."•y,±au""x); 

in particular F1:(x1:,0) = (x1:+1,0). 

8 Construction of a restrictive chain of rectangles 

We will say that R is a er -rectangle, r ~ 0, if 

R = {(x,y);-yR $ y $ 1/R,hk(y) $ X $ ha(Y)}, 

where hk, hn are er functions and hk(y) < ha(y) for every y E [-YR,1/Rl• 
The boundary of R is the union of the four segments 

auR {y = YR, hkC!IR) :5 X $ hR(JIR)} ' 

a,,R = b = -yR,hk(-11R)::; x:::: hn(-11Rn, 

8,R = {-YR :5 y $ YR,X = hk(y)} ' 

8rR = {-YR $ ti $ YR, x = ha(y)} , 

where the indices u, b, r and l come from up, bottom, right and left. 
Let (Rt)A:>l be the sequence of rectangles in the Conclusion of Section 7, each R,. 

inside an unat~ble gap of generation n1:. We say that a sequence (.RZ)A:~l where .RZ C R1,: 
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Figure 7: Restrictive critical chain of rectangles. 

is & restrictive critical chain of rectangles if F1:(Rn C RZ+1 and F1:(8iR;ua,.a;) C 8iRZ+1 
(see Figure 7). 

Rectangles Lemma. Let f be a diffeomorphism obtained from g as in Section 7. Then 
there ia a restrictive critical chain of rectangles (R;)1:~1-

In Section 9 we define D = Ri and explore the outgoing consequences. The remaining 
of this Section is devoted to prove the Lemma above. 

Let YZ = 20afJ-1l2,lo; and 

Rrt = [x1: - ~bk, Xk + ib1:] X [-yz, 11k] , 

~ = (x1: - l0b1:, XA: + 1061:] X (-11:, 11:1 • 

We will inductively construct a sequence of 0 1-rectangle sequences 

such that for every s ~ 0 and k ~ 1 we have: 

1. JIR; = Yti 

2. ~+l C Rt; 

3. Rl=~; 
4. Rk :> R~D1; 
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5. let h~ • = h~. and ht• = hrR•; there is d small such that 
' ii llit " 

6. F1c(8iRt U o,.Rt) n Rt+i = 0; 

1. F1c(R:) n 0RZ+1 = F1c(R:) n 8,RL+i f 0; 

8. o,Rk+l U OrJlt+1 = F; 1(F1;(R:) n o,Ri+1>· 

By (1)-(5) above, h~~) converges, uniformly in the Co topology, to a Co function h~~? 

in y E [-y;,yz], and this will define the left and right boundaries of R;. From (6)-(8} it 

follows that F1:(RZ) C Rk+l and F1c(oiR; U 8rR:) C 01Rk+l· 

Width comparison. Given the above definition of yz, we claim that the horizontal 

semi-width of F1;(R{) (equal to -y>.11•y:) is much smaller than the semi-width of R~n_:.1 

(equal to ½b1:+1). We compare the sizes by the quotient 

-y>.n•y• I ~ ~"" ~ 
_l __ k = 40a-y>.n•u-n• 2u' .£..i=O l' . 

2b1.+1 

By the remarks just after the Critical Chain Lemma, in Section 7, the quotient above is 

bounded by 40-yo(>.ul+'li )11•, which is small if n1 is chosen sufficiently big. This estimate 
will be Wied in the proof of the Pre-images Lemma below. 

We will show by induction in s ~ 0 that for every k ~ 1 and 110 E [-yz, y_;] the image 

under Fi. of the segment {y = yo} n Rt (which we call a parabolic segment) intersects 

&Rt+i transversally exactly two times. Moreover, if the pre-images of the two points 

are written as (hL+l (yo), 110) and (ht,.+l (yo), 110), then 

h~,,(Yo) < hi,_+1(Yo) < Xk - ~bk< Xk + ~b1c < ht,.+1('1/0) < ht,,(Yo), 

where hto = xi. -10b1c and hi,o = x1c + 10b1c. This will give the next sequence (~+l )1:~1 

in the induction process. 

First step. If x = ±10b1c and IYI $ y_; and (x1:+1 + z',y') = Fk(x1, + x,y) then lx'I > 
90b1:+1 and Ir/I $ 11Z+i· This can be shown with the expression of F1: and the Width 
Comparison above. The consequence is that the parabolic segments F1:([x1: - l0b1,,x1c + 
10b1:] x Yo), for lvol $; y_;, cross {x - 10b1:+1} x {IYI ~ YZ+1} exactly two times. 

Induction. We have only to show that {i) if lh~1- x1cl > ½b1: for all k ~ 1 then 

lht}+l - z1:I > ½b1:, for all k ~ l; (ii) if IDht}1 < dyk for all k ~ 1 then IDh~;+ll < dyz; 
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(iii) the slope of the parabolic images in R1c+1 with respect to the vertical is greater than 

dyk+l if Ix - x1cl > ½b1c, i.e. transversal to the lateral boundaries of R£+t• for any s ~ 0. 

These requirements will be proved by the two Lemmas below. 

Let d = I&i · 10l2 and let C1c be a uniform cone field in Rt given by 

011: = 011,(x,y) = {v = (vz,v,); lvzl S dyZlv,I}, 

for every k ~ 1. 

Cone Lemma. With the definitiona above, if n1 ia big enough we have that 

DF1c-1(x11:+1 + x',y') • C11:+1(z11:+1 + z',t/) C C,1:(F1c-1(xt+1 + x',y')) 

whenever It/I~ ifiafJ-112 ~ = ~Yt+t· 

Proof. Take 

F;-1(:i:11:+1 + x',y') = {:z:11: ± a-lu-n•y', ±-y-1 ,x-"•(x' + fJa-2(y')2)) 

and 

(t1z,t1p) = DF;-1(x1c+1 +x',t/) · (uz,Uu) 
= (±a-1u-"•t4u,±-y-1,x-n•(Uz + 2pa-2y't4u)) . 

If ti is as above and (Uz, t4u) E C1;+1 then 

. IUzl < 100a2d I 
2pa-2lvl · IUul - - .8 - < 100' 

hence 

lvzl a-y u-n•.xn• 10-y u-"•.X"• 
- <-·--- <-· - --
lv,I fJ 1111 fJ1l2 Jbm · 

Comparing with dyz = 20dafJ-1l 2 ..;T;; we get 

lvzl/lv.,I < -yfJ (.X l+'ll)fl• 
dyz 2da u ' 

which is smaller than one for a sufficiently big n 1, proving the cone invariance. 

□ 

Pre-images Lemma. Let (x.1:+1 +x',y') = F1:(x1c+x,y) and (u.1:,t4u) = DF1:(x1c+x,y)• 
(1,0). If lx'I > ½b1c+1 and IYI S 11Z then 
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9. lxl > ½b1:. 

Proof. AB r = -{3umi.x2 ±-y.\n•y, then 

f3 2n1, 2 > 1 b 'n,. * 1 b a x _ 2 1:+1 - 'YA Yk > 3 #:+I , 

by the estimate in the Width Comparison. Hence 

lxl ~ )a13-1l2u-n• Jbm = )a,/b; > ~bk , 

proving (3). On the other hand, 

IY'I = aan• Ix! > iap-l/2 ~ = ~Yt+l , 

proving (1). Finally 

and therefore 

luzl > /3 n,.b f3 * 500d * IUitl _ au 1c = 20a2 Y1:+1 = Yk+l , 

proving (2). 

9 Properties of the wandering domain 

D 

In this section we derive the properties stated in Theorem 1 about D, which is defined 

as the rectangle Ri in Section 8. 

Diameter. Each rectangle RZ has height 2yZ proportional to ./bt and width smaller 

than 20bA:, and bk goes to zero as k goes to oo. In the nk subsequent iterates, the height 

is shrinked by a factor of >.n1 , although the width is enlarged by a factor of an•. But at 

the end, the width of r• (Rt> is of the order of the height of Rk+l. This proves that the 

diameter of r(Ri) goes to zero with n. 

Description of wv. Let E be the intersection G" n G• between an unstable and a stable 

gap, eventually including the central gaps. Then the future orbit of Rj intersects E at 
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most one time. This is because each .RZ lies inside a different unstable gap (intersected 

with Ho) and different gaps have disjoint orbits until hitting Vo. The consequence is that 

E contains no accumulation point of the orbit of D, i.e. 

wn n R c .r•(A) u P'(A) . 

Let us see who are the accumulation points inside / 2 (U). They are exactly the 

accumulation points of the sequence (Ri).t- As each Rk is inside a different unstable 

gap, the accumulation points must lie in .1''(A). Moreover, as the rectangles are centred 

in (x11 , 0) and the diameters are shrinking, the accumulation points are on the line of 

tangencies ( {y = O} in our example). On the other hand, for each k ~ 2, RZ intersects 

the image under J2 of a stable gap, hence the accumulation points are contained in 
/2(P(A)). Therefore the accumulation points in /2{U) are contained in the set of 

tangencies between the two foliations. The same is clearly true for U and /(U). The set 

/(U) is also the only place where wn can intersect the complement of R, otherwise the 

orbits escape to the sink q+, according to the Property (7) of Section 3. 
By the same reason, every point of wn in.P{A)\A has a point in the pre-orbit which 

is in / 2(U), hence, by the invariance of wn and the above, it belongs to wu(A) nw•(A). 

At the same time, every point of wn in P'(A) \Ahas a point in the future orbit in U, 
hence in wu(A) n W'"(A). 

Therefore we have proved that wv C W'(A) n wu(A), with a nonempty intersection 

. outside A. It remains to show that there is a nonempty intersection with A. 

But a point in W'(A) \A accumulates in A, hence by the invariance of wn it intersects 

A. 
Escaping points. Every point of z E A is accumulated by unstable gaps, by the two 

sides of the stable leaf of .r'(A) to which it belongs. Every unstable gap eventually hits 
Yo after an appropriate number of iterations, and the corresponding image crosses Vo 
horizontally. Hence there are points of this image outside U, in particular every point 

outside a vertical strip containing U, and these points escape to the sink q+. Pushing 

backwards, this means that z is surrounded (and accumulated) by open vertical strips 

made of points that escape to the sink q+· Therefore every open set W such that 8W 
intersects z must intersect these vertical strips and hence contains points that escape to 
the sink. 

Accumulation measures. Let v(x), x e D, be an accumulation measure of these­
quence v,(x) given in Section 1. This means that there is a sequence l; such that 

1 1,-1 

f. L Oji(:,:) ➔ v(x) 
J i=O 

asj ➔ oo. 
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Clearly supp(v(x)) C wo. We will show that for every z E wo \ A there is E > 0 such 
that v(x)(BE(z)) = O. As such a point z has a point of the orbit inside /2(U), it suffices 
to show it for z E wo n /2(U). In this case, take E > 0 such that BE(z) c /2(U) a.nd 
observe that 

Let k(j} be the biggest integer such that 

n1 + n2 + ... + nk(j) < l; , 

where the nk's give the number of iterations to send RZ from /2(U) to U. Then 

HO ~ i < l;; fix E / 2(U)} < k{j) 

l1 - n1 + n2 + ... + n1:(;) 

But nk ~ k2, by the choices ma.de in Section 7, so that the quotient is bounded by 1/k(j). 
AP, l1 goes to infinity with j, also k(j) does it, a.nd the claim is proved. 

The accumulation measures do not depend on the initial condition. Two mea­
sures II a.nd ;;, with support in A are equal if a.nd only if they have the same pound on every 
cylinder An BU nB•, where B'U = Bu(n;e), B•(m;m), ,[ = (z1. --Zn), Y/. = (w1 .. . Wm), 
n,m~ 1. 

If v(x) is a.n accumulation measure of the forward orbit of x, x ED, then v(x)(A n 
B., n B') = 11(x)(B11 n B•) is an accumulation point for the mean of passages of the 
forward orbit of x inside B., n B". But by the construction of D, Ji(x) E B"' n B• if and 
only if Ji(D) c B., n B•. Hence v(x) = v(y) for any x, y E D. 

AP, the accumulation measures do not depend on the initial condition taken inside 
D, we will denote, for simplicity, v, = vz(x), an equality which also makes sense when 
measuring intersections of bridges. 

Convergence to the Dirac measure on a saddle point. Suppose that for each k we 
choose~=(++ ... +) (with size k2), according to Section 7. We will prove that 

lim vi (B.,(n; + ... +) n B•(m; + ... +)) = 1, 
l➔oo 

for every n,m ~ 1. This clearly implies that v = 511+, where P+ = (-a., -a,,.) is the 
saddle fixed point corresponding to the code ( ... + + + + ... ). 

Recall that for every k ~ 1, 

121:+EJ=1 ,., (D) c G"(nA:+1i,[1;+1) n Ho, 
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where h = ~~ii:, and the sizes of~.~ and tf: are, respectively, n1:, n~ and n~, with 

n1: + nZ 5 Ck , ni = k2 
, 

for some constant C > 0. So the number of visits of the orbit of D to Bu n B' = 
Bu(n; + ... +) n B'(m; + ... +)can be counted by 

Et{l 5 i < n1c; !' (G"(n1c;e1c) nHo) c Bun B'}. 
Tc~l 

Let k1 be such that /q > n + m and k ~ k1. Denoting .!k = ( z1 z2 ... z...), recall that 

(Section 4) 

for all i = 1, ... , n1: - 1. Therefore we conclude that among the first n1: - 1 iterates of 

G"(n1:; h) n Ho at least k2 - (n + m) iterates fall inside B" n B', that is a proportion 
greater than 

1 - n+m+Ck 
k3 . 

This proves that the frequency of visits in B" n B' of the orbit of D tends to 1 or, in 

other words, v(B' n B") = 1. 

An example for the lack of convergence for the frequency measures. Let {k,),~1 
be such that 

A:.+1 1c. 

L k2>sEk2, 
lc=A:.+1 1c=l 

for all s ~ 1. For every k, < k 5 k,+1, s odd, define ~ = (- - ... - ), and for s even, 

~-(++ ... +). 
It is easy to show that the accumulation measures are all the convex combinations of 

the Dirac measures supported on the saddles P+ and P-, where P- corresponds to the 
code ( ... - - - - ... ) (in fact, the set of a.ccumul&tion measures is always convex). 

Convergence to a measure equivalent to the nontrivial Hausdorff measure on 
A. It is enough to find suitable sequences .,d such that the limit measure satisfies 

v(B" n B') = rnrm 

for all Bu = Bu(n;e) and B' = B'(m;!li), n,m ~ 1. In this case v is exactly the 

nontrivial Hausdorff measure 11. in A, which is also an invariant measure for f. 
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Let i E A be a generic point for 11., i.e. such that 

1-1 

,lim L 6r(z) = 11.(Bu n B'), 
-+oo i=O 

for all pairs of bridges Bu and B'. For fixed Bu and B' and given any E > O, there is 

lo = lo(E) such that 

P{O S i < l; 1y) E B' n BU} E [1 _ E, 1 + fjrnrm 

for any l ~ lo (probably lo >> 2n2m). If we denote the code of z by 

then we see approximately rn2-m l times the block (!cl-1 ~ inside ( zo, z1, . . • , z1). 

Now take ko such that~~ lo, and for each k ~ ko the sequence 

~ = (zo,i1,•-· ,i,t2). 

Then it is easy to show that for this choice the sequence v,(Bu n B') E [1 - 2E, 1 + 
2f]'H.(BU n B'), for large l. As e is arbitrary, v(BU n B') = 11.(BU n B'), and since Bu 
and B' are arbitrary, v = 11.. 
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