





of a compact surface there are also results assuring that, under enough differentiability,
wandering domains do not exist (see for example [1], [5], [11] and [12]). Another important
aspect we shall consider is related to the structure of the sets which are most frequently
visited by orbits of points. Again we might hope that these sets were well behaved
attractors.

To be definite let us consider dynamical systems generated by iterations ofa C* (r > 1)
diffeomorphism f of a compact Riemannian surface M. Let Diff (M) denotes the set of
such diffeomorphisms endowed with the C™ topology. We say that A C M is an attractor
for f if A is compact, f-invariant, i.e. f(A) = A, f-transitive (or simply transitive), i.e.
there is z € A such that {f"2}n>0 is dense in A, and the basin of attraction

Bj(A)={z€M; f*z — A asn— o}

contains a neighbourhood of A.

A standing conjecture of Palis [13] claims, in its weaker version, that there is a dense
set P C Diff (M), r > 1, such that for every f € P there are only finitely many attractors
Ai,...,Apn for f, whose basins Bf(A1),...,Bs(As) cover M up to Lebesgue measure
zero. The conjecture may be improved by asking some good properties for the attrac-
tors, as for example stochastic stability and existence of an SBR-measure. In the latter
case, there would be an invariant probability measure u such that supp(s) = A and for
(Lebesgue) almost every z € By(A) the Birkhoff sum of Dirac measures
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converges, in the weak-* topology, to the measure u. With respect to the abundance in
Diff" (M), one could also ask that generic k-parameter families intersect P for a total
Lebesgue measure set of parameters. This would justify what is already expected in
practical experiments: for almost all choices of parameters there are only finitely many
invariant sets attracting almost all initial conditions.

However, it is 2 common sense that we are very far from proving or disproving this
conjecture, mainly for r > 2. On the other hand some interesting and unexpected be-
haviours have been identified. For example, Newhouse showed in the 70’s (see [8], (9],
[10] and also [14], Chap. 6) that there are open sets W C Diff" (M), r > 2, and residual
subsets A’ C U such that every f € N presents infinitely many cohexisting hyperbolic
attracting periodic orbits (sinks). Much later, one of the authors [2] showed that in these
open sets U there is a dense subset C C I/ such that every f € C presents infinitely many
coexisting Hénon-like strange atiractors (see [7] for a definition).

In this work we are concerned with another kind of behaviour: the existence of non-
trivial wandering domains (for simplicity, just wandering domains). We prove that on



any surface there exist C*° diffeomorphisms which exhibit wandering domains, and these
diffeomorphisms we obtain are intimately related to the Newhouse phenomena. In addi-
tion, we can choose the diffeomorphism in such a way that for orbits starting at an open
set, the Birkhoff sum as above converges to a measure whose support may be equal to a
hyperbolic saddle or even a hyperbolic horseshoe.

2 Basic Concepts and Main Results

In dimension 2 a classical example which has (trivial) wandering domains was given by
Bowen (see [16] and references therein): take for example a diffeomorphism with a source
repelling all orbits to a saddle—connection (a separatrix of the unstable manifold coincid-
ing with a separatrix of the stable manifold of the saddle) which bounds a topological
disk containing the source. Then there are wandering domains whose forward orbits ac-
cumulate on the saddle connection. According to the definition we give in the sequel all
of them are trivial.

Let us consider a C™ (r > 1) diffeomorphism f of a compact Riemannian surface M.
We say that a compact invariant set A C M contained in the non-wandering set of f
is dynamically connected if it is not the union of two nontrivial closed invariant disjoint
sets. A dynamically connected set A is a weak attractor for [ if its basin By(A) contains
an open set W which has only finitely many connected components and whose closure
contains A. A set W like that is called an immediate basin of attraction for A. The
saddle-connection of Bowen and attractors as defined in the Introduction are examples
of weak attractors, as well as saddle-nodes. Inside the basin of a weak attractor there
are trivial wandering domains. We define a non-trivial wandering domain (for simplicity,
just wandering domain) to be a non-empty connected open set with disjoint orbit and
with no forward iteration contained in an immediate basin of a weak attractor.

‘We state our main result.

Theorem 1. Given any surface M there ezists f € Diff°(M) which has a (wandering)
domain D such that:

1. diam(f™(D)) — 0 as n = oo and wp, the union of the w-limit sets of points in
D, is contained in the union of a non-emply subset of a hyperbolic horseshoe A
(possibly equal to A) with a non-empty subset of the tangency points between stable
and unstable manifolds of A.

2. For any open connected set W such that W intersects wp there is z € W such that
f"(2) converges to a hyperbolic sink.



3. The accumulation points (in the weak-* topology) of the sequence of measures

n—1

Vp = %Edf,z

=0

does not depend on z, for every z € D, where &, is the Dirac measure supported on
z,z€EM.

4. For every accumulation point v of (Vy)n, supp(v) C A. R may happen that the
accumulation set of (v,)n contsins just one measure v which satisfies one of the
following properties:

(a) v = &,, where p is a hiperbolic saddle fized point of A.
(b) supp(v) = A end v is equivalent to the non-trivial Hausdor[f measure of A.

It may also happen that the accumulation set of (v,)n has more than one element
(in other words, (vn)n does not converge). We produce an example where this set is
{td, + (1 — t)éy;t € [0,1]}, where p and p’ are saddle points of A (this is analogous to
what happens for the ‘one-sided heteroclinic attractors’ studied in [16]). In fact it will be
clear that we have enough freedom to produce a great variety of examples with different
accumulation sets.

The very last property in Theorem 1, as the title of this work suggests, can be the-
oretically used to ‘draw’ the hyperbolic horseshoe A. Divide the screen of the computer
into pixels, each pixel corresponding to a square of a net. Pick a point z € D and for
each pixel divide the number of visits to it by the total number of iterates already done.
The pixel will be turned on if and only if its quotient does not tend to zero as the number
of iterates increases.

In dimension one, we say that an interval I is wandering if its forward orbit is disjoint
and there is no iterate of I contained inside the immediate basin of a periodic attractor.
An equivalent definition is that no point of I has a periodic orbit as its w-limit set. On
the other hand, no point of the wandering domain D above has a periodic orbit as its
w-limit set, as an immediate consequence of the first statement of Theorem 1. However,
this property seems to be not enough to define a wandering domain in dimension greater
than one, since trivial examples could be produced. For instance, consider any open set
inside a fundamental domain of a normally hyperbolic circle with an irrational rotation
inside.

The diffeomorphism f of the statement of Theorem 1 is taken inside a Newhouse open
set Y C Diff*°(M). This means that for some fy € U there is a hyperbolic set Ay, which
has a hyperbolic continuation A = Ay defined for all f € U, and also for every f € U there
is a leaf of the stable set W*(A;) in tangential position with a leaf of the unstable set
WH(As). We strongly believe from our method of construction that the same properties
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stated in Theorem 1 are true for a dense set of diffeomorphisms inside any Newhouse
open set . This result would depend on a technical realization of the ideas involved
here, see for example [2] for a clue.

3 The starting diffeomorphism

The diffeomorphism f of Theorem 1 is constructed in two stages. First, we describe a
starting diffeomorphism g of a disk D C R? which exhibits a hyperbolic horseshoe A whose
stable and unstable foliations are in tangential position. It can be realized (in any surface)
as the restriction of a diffeomorphism to a local chart {for example by surgery around
an attracting fixed point). Then we consider a class of perturbations for g and, among
them, an arbitrarily small one (in the C” topology, for any r > 1). These perturbations
have support in D, so that they can be trivially extended to M to give us the desired
diffeomorphism.
We consider the square Q = [, +I]?, for some ! > 0, the disks

Dy ={(z,y);¥z 21, (z+1)?+4* <1?}
and the vertical strips

Si=[rg 07 F s + 0] x [, +],

for some o > 2 (see Figure 1).

Let D = D,UQUD._. and Z C Diff*°(D) be the (nonempty) set of C™ diffeomorphisms
g : D — D satisfying properties 1) to 7) below.

(1)g(D) C int(D), g(D4) C int(Dy) and g(D_)ND_ =@.

(2)g|Dy is a contraction; this means that there is a sink g, € D such that w(z) = ¢+
for every z € D,.

(3) g is affine in a neighbourhood of S; and S_ and

g|Si H S:h —
(z,y) +— (Fo(z£ ), F5+ M),

for some 0 < A < 1 such that Ao < 1. Define the horizontal strips L, = g(5,) and
L_ =g(S-) and L, Lo, L— the connected components of @ \ (L+ U L_), see Figure 1.

@1 S't, So, S_ are the connected components of @\ (54 US_) (as indicated in Figure
1), then g(S4+ U S_) C D4 and g(S) C D_.

A dynpamically meaningful rectangle appears naturally under the conditions above.
Let R = J* x J*, where J* = [—ay, +ay], J* = [~a,,+a,], ay = f(l"—'%cjj’ s = i'(lL—XS

5



A

:\\\ \". 1)
7))

T

[ § s\
H, ! R

Figure 1: The starting diffeomorphism g.



This rectangle has the following properties: J* x {—a;,+a;} C g(J* x {—a,}) and
g({—au, +au} x J*) C {—ay} x J*, see Figure 1.

Observe that property 4) implies that w(z) = ¢4 for any z € §; U S_. We claim
that w(z) = g% for all z = (z,y) € Q such that |z| > a,. Indeed, let f(z) = (¢,y'). If
T < —ay and z € S, we have that ¢’ = o(z + §) < —a, and —ay — 2’ = o(~a, — 2).
Then, if f(2) € S, we repeat this procedure. We get that, for some k > 1, f*(z) € §;
and, because w(z) = w(f*(z)) = ¢4+ the claim is proved. If z > a, and z € S_ we have
that &' = —o(z — %) < —ay. Then, if f(z) € §, it follows that w(z) = w(f(2)) = ¢4 and
the claim is proved. If f(z) € S; we fall into the first case.

Let A =NX._9"(Q) be the maximal invariant set in Q. It is not difficult to see that
A C R and A is the Cartesian product K* x K*® of two Cantor sets, with J* and J* as
convex hulls. The Cantor set K* (resp. K*) may be obtained by an inductive process
where, starting from the interval J* (resp. J*®), an open centred interval of proportion
1 —20"1 (resp. 1 — 2)) is suppressed from each closed connected component remaining
from the previous stage of the induction. To these Cantor sets we associate their thickness

_ ot A

T1-20717 0 1-2X

We also associate to A its thickness 7(A) = 7%7° (see [14], Chap. 4 for general definitions).
The fith property is the following:

(5) 7(A) > 1.

Let V, and V. be the two vertical strips of R which are connected components of
Rng~Y(R), and let Hy = g(Vi) be their images. Moreover, let Vp = R\ (V; UV_) be
the vertical central gap and Hy = R\ (H_ U H,) be the horizontal central gap.

The last properties concern the return function from Vp to Hy. Let U be a neighbour-
hood of (0, —a,), containing [~24, +24] x [—~as, —a, + 2al, U= [_%a +%] X [—ay, —a, +a,
for some § > 0 and ¢ > 0 and suppose that

u

T

(6) 9*(z,y) = (—au + p — Bz* —(y + a,), —az) for (z,y) € U, where a,f,7 are
positive constants and p > 0 will be chosen accordingly.

(7) If (z,y) € Vp and (2,9’) = g*(z,y) is such that z' > —ay then (z,y) € U'.

Property (6) is natural to impose and will give us a certain facility to apply our
arguments, mainly in Section 8. Condition (7) implies that only one of the following
possibilities occurs for z € D: w(z) = ¢4, z € W?(A) or the future orbit O, (2) =
{z,9(z),-.. ,¢°(2),... } has marks

0=Ng<N <N +2<Np<.. N1 +2< N <.
where g (2) € Hong?(U) for every k > 1 and ¢7(2) & V,UV_only if Nz —2 < j < Nx—1
for some k > 1. In words, the iterates between Hy and V; are done near the horseshoe,
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in the vertical strips V.. and V_, and if the orbit hits Vo outside U’ then it necessarily
escapes to the sink g,.

Observe also that in order to satisfy condition (7) for an already given U’, we have to
choose p sufficiently small, in particular 4 < ya and s < B($)2.

4 Gaps, bridges and foliations

Let g € £ as in the previous Section. To each point z € A we associate an infinite
sequence z = (-..2-i...2-12021...%.--) € {—,+}2, where z; = + if ¢’(z) € V; and
zj=—ifg(2) € V_, j€Z Let

B%(n;z1...2) = {z € R; g (z) eVy,,i=1,... ),

for n > 1, be the unstable bridges of A, where the natural number n is called the generation
of the bridge. The stable bridges are defined as

B%(n;z1...25)={z€R; g (z) €V, 5 =1,... ,n}.

We have already defined V, and Hp, the unstable and stable central gaps. Now let
G®(n; 2 ...2,) be the maximal vertical strip inside B*(n; 21 ...zp) which lies between
B*(n+1;21,... yZn,+) and B*(n+1;21,... ,Zs,—), and G*(n; 21 ... z,) be the maximal
horizontal strip inside B®(n;2; ...z,) which lies between B*(n + 1;21,... ,2,+) and
B*(n+1;21,... , 2n,—), for every n > 1. These are, respectively, the unstable and stable
gaps.

We are particularly concerned with the intersections of stable and unstable gaps. It
is easy to verify that
& (G*(ny21...2,) NHy) = G*(G;zj ... 21) NG (n — J; 241 - - 2n)
for 1 € 7 < n—1 and, in particular,
g"(G*n;z1... ) NH) =G*(nzn...20) NV .
If we denote z = (21,...2,) and 27! = (2,...21) then
|G (n;2) N Ho : G¥(n;2) NHp — G(n;27) NV
is an affine diffeomorphism whose Jacobian is given by
- o 0
II=){% » )
=1
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Figure 2: Iteration of gaps.



Figure 3: Foliations F3} and 3.

since all the iterates are done inside the linear region. In Figure 2 we show the iterations
of G*(4;+ — +—) N Hy.

Let p = (—ay, —a,) be the saddle fixed point of the boundary of A. Define the unstable
Joliation

FU(A) = W*(p) NR = [—ay,+au] X K*
and the stable foliation
F'(A) = W*(p) "R = K" x [-a,,+a,] .
Moreover, let
Fo =¢(F*nU)
and
Fy=Fng(U),

as depicted in Figure 3. The locus of tangencies between leaves of Fj; and leaves of Fy;
is the horizontal line {y = 0}, often called the line of tangencies (see [14], Chap. 6).

The intersection of F{; with the line of tangency is a piece of the Cantor set K* and the
intersection of 3} with the same line is a piece of the Cantor set K* = —ay+p—v(K"+a,)
(all possible intersections between K" and K* must happen for these pieces). It is clear
that the two Cantor sets intersect if and only if there is a tangency between leaves of
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the foliations. Since 7°7* > 1 by hypothesis, we apply Newhouse's Gap Lemma (see
{[14], Chap.4]) to ensure that in fact there is an intersection of the two Cantor sets,
independently of the choice of p.

The definition of stable and unstable bridges and gaps in R naturally induces a defi-
nition of (one-dimensional) bridges and gaps for K* and K*, via projection on the line
of tangency. For this reason, we adopt the following notation. Let m; be the projection
in the first coordinate and w2 the projection in the second. Then the bridges and gaps of
K™ are the sets Br¥(n; z) = m(B*(n;2)) and Ga%(n; z) = m1(G*(n; 2)), while the bridges
and gaps of K* are given by

Br®(n; z) = —ay + p — 7(m2(B*(n; 2)) + a,)
and
Ga’(n; z) = —ay + p —¥(72(G?(n; 2)) + as) ,

foralln >1and z € {+,—-}".

5 Wandering intervals in a one—dimensional toy model

In this section we introduce a one-dimensional model that captures at least a fraction
of the complexity of the diffeomorphisms considered here. For this model we discuss a
sufficient condition for the existence of wandering intervals that inspires the remaining
sections. At the end, the ideas developed for the two—dimensional case can be used ipsis
literis to show that this condition is satisfied for a particular deformation of the original
one—dimensional model.

Let ® be the first return function to g>(U) N {z > —a,} and i(z) = (z,0) be the
inclusion of the z-axis. The one-dimensional ‘toy model’ is the function 8(z) =T 0@ o
i(z).

The function @ has the following description (see Figure 4): its domain dom(6) is a
union of intervals, each one inside (and concentric with) a gap of K*. Some gaps of K* do
not intersect dom(#). A criterium to know whether a gap Ga*(n; z) contains a nontrivial
component of dom(8) is to determine the vertical position y, of the centre of G*(n;z 1)
and verify

p—7Ys—(—as)) >0.

If I is a connected component of dom(8), then 8}I is a quadratic function and 6(3I) =
—a,. More precisely, if c is the critical point in the centre of I and I C Ga*(n; z) then
6(z) = 0(c) — Bo*™z?, z € I. The critical value 8(c) coincides with the centre of the gap
Ga®(n;z~1) of the Cantor set K*.
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Figure 4: The one-dimensjonal toy model.

If p is allowed to vary as a parameter we characterize a family (6,),. As p increases,

the Cantor set K* = K' =p+ K’ is translated over K, and all defined critical values

0,(c) go together, a.tta,ched to the centres of the gaps (of course new connected components
of the domain appear inside empty gaps of K*).

A special situation arises when there is ¢ € I}, C I such that (], ) C I, and 6(3I}) C
8I,. This happens for values of s such that 0,,(c) is near ¢. In other words there is
a paramel;er interval J such that for all 4 € J such an interval I' does exist and for
some pg € J we have 0,,(c) = c. In particular, for some values p € J the function 6,1,
presents a sink.

Newhouse ideas can be used in a simple way to show that for a residual set of pa-
rameters 4 the function 6, presents infinitely many sinks (provided that 7¢ - 7% > 1).
The proof is based on two principles: i) whenever K¥ N (ue + K') # 0 then there is a
sequence of intervals (Ji)& accumulating on p, such that 8, presents a sink for all 4 € Ji,
k > 1 (and each sink is contained in a different gap of K*); (ii) the thickness condition
7% .7% > 1 implies that K® N (u+ K§) # @ for all p (small). See for example [14] for more
details.

Suppose 6 has a critical chain, i.e. there is a sequence of critical points (cx)k>1,
cx # cp for k # k', such that 8(ck) = cg41 for all k > 1 (although it seems extremely
hard to satisfy this requirement, it is exactly the aim of Sections 6 and 7 to show that
this is the case for some suitable perturbations of the original function).

Let G* = Ga®(ni;2*)) be the gap where ci lies, for each k > 1. According to the
dmcnptmn above, 0 has a critical chain if and only if the centre of Ga®(n; [z(F]™!)
coincides with the centre of G}, for all ¥ > 1 (or equivalently the same assertion made
with stable and unstable bridges, since the centre of each gap is the centre of the smaller
bridge that contains it). In dimension two this will be the definition of a critical chain,
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since there are no critical points.
We claim, in our one-dimensional model, that if

oon

k

E 2—k<00
k=1

then there is a sequence of intervals (Tj )x>1, cx € Ty C Ga*(n; zF)) such that 0(Ty) C
Ty, and 6(0Ty) C 9Ty, ',y for all k > 1. Therefore T7 is the wandering interval we were
looking for.

Observe that 8(8T;) C 0Ty, obliges T to be symmetric with respect to cx. Let
It = 3|T;| be the radius of T. The problem of finding (T};) now reduces to look for a
sequence of positive numbers (I})x>1 such that

BoP(1p)? =I5y -
A solution to this problem is given by I} = b, where

00 Thkii

bk = B—la_z:i=0 28

which is positive for every k > 1 if and only if the summability condition above is satisfied
(but we are not saying that if the sum diverges then there is no other positive solution).

An explicit solution to the sequence (T}); was found only because of the simplicity of
the relation between the sizes of the intervals. This simplicity comes from the requirement
that 6(ck) coincides exactly with ci+1, for all k > 1. Notwithstanding, the proof of the
existence of the sequence of intervals could be performed even if it was done a weaker
condition on the relative position of critical points and critical values. The method of
proof is inspiring for Section 8, in the two—dimensional onset, where intervals become
irregular rectangles and the width is not well defined. We point out however that the
weaker condition is as difficult to satisfy as the original one, and there is in fact no gain
in doing this for the one-dimensional onset.

Let (bi)k>1 be defined as above, with the summability condition satisfied. This means
that bg > 0 for all £ > 1. Suppose that

1
|8(ck) — ceal < EbH-l

for all k > 1 (we say that 8 has a relazed critical chain). We claim that there is a sequence
of intervals (T} )k>1, each T centred at ¢x such that #(TF) C Ty, and 6(8Ty) C OTy,,-

To prove the claim, first consider the sequence (T7); where each T} is the connected
component of dom(6) to which ¢, belongs. Then §(8TF)NTE,, = 0, since §(3T}) = {—au}
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and all the T’s are placed to the right of —a,,. Let I} be the radius of TP, for all k > 1.
We can give a lower bound for these radia. As

1§ =B7%0™™V/18(ck) — (~64)]

and, for g small (and hence n; big),
1 L,
18(ck) — cryal < Tgbr+1 << @00 < ok4n — (—a)l,
where ag is the half of the width of Vj, then
1
0 —
lk >> 10bk .

This implies that 8(c;) € T,?+1 forall k > 1.

Once defined the starting sequence (T¢)x we inductively define the sequence (T
from the sequence (T)x. The induction step is authorized if 8(cx) € T, and 8(9T¢) N
Tg,, =9, for all k > 1. In that case,

T =071(T3,,)

for every k> 1.

Let I be the radius of T}, for all k > 1 and s > 0. The procedure above implies that
for a fixed k > 1 the sequence (I}), decreases as s increases, whenever the induction step
is allowed. If the induction is defined for every s > 0 and I} — I; > 0 a8 # = oo then the
intervals T¢ = [cx — I}, cx + I}] are the solution to our problem.

So it remains to show that the induction step is defined for any s > 0 and that the
infimum of the sequence (If), is positive for every k > 1. Suppose that the step s of the
induction is done. Observe first that

1+ = gV \/l; +1 +8(ck) — ceq1-

So, if If .} > 3be41, we have that

3
l,:'H > \/;bk > %bk .

As I > lb; for all k£ > 1 then, by induction, I} > 3by for every s. This will imply
positiveness of the infimum and that 0(cx) € T§,, for every s and k. The condition
88Ty ') NTLEL = 0 is clearly implied by the fact that 8(8T¢*!) C 8T}, and T3} C
-
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6 Linking Lemma

Up until now, we have given no serious restriction to the choice of 4, except that it must
be small (and positive) according to the choice of U, just in order to satisfy Property (7)
in Section 3. Suppose y is inside this range. We have also seen that Property (5) and
Newhouse’s Gap Lemma guarantees that there is always at least one point of intersection
between K® and K*. The content of the Linking Lemma we discuss in the sequel is
that for some residual set of choices of 4 near the origin there are in fact infinitely many
intersections (or even a Cantor set of intersections) between K* and K*. However, we
must be more precise about the way these intersections are obtained and then choose the
suitable u.

The Linking Lemma has been similarly applied in [2] to prove the cohexistence of
infinitely many Hénon-like strange attractors, but it appeared before in [4].

Let Br®* = Br%(n;z) and Br* = Br’(m;w), where z = (z1,...,2,) and w =
(wi,... ,wm), n,m > 1. We say that Br® and Br? are linked or, equivalently, (Br*, Br*)
is a linked pair if Br® N Br® # @, Br* is not contained inside a gap of Br* NK?* and Br®
is not contained in a gap of Br% N K*. As Br% N K* and Br® N K* are affine images of
K* and K*, the product of their thickness is still greater than one, implying that if Br*
and Br* are linked then (Br® n K*) N (Br® N K*) # #, by Newhouse’s Gap Lemma.

A linked pair (Br¥, Br?) is said to be {-linked, for £ > 0, if

|Br® N Br®| > £ min{|Br*{,|Br*|} .
We say that the pair (Br®, Br®) is proportional if
A|Br¥| < |Br’| < |BrY|.
In this case there is A = A(), 0,a,,6y,7) > 0 such that

-1
. log A
logo

me[—A 4]

Two bridges Br;‘(’) and Bry ®) are said to be related if they are the two maximal bridges
—u(s)

properly contained in another bridge Br

Linking Lemma. Let ¢ = =51 and suppose that (Br®, Br*) is o linked pair. Then
for any € > 0 there are |A| < ¢, related unstable bridges Br}, Br} contained in Br*
and related stable bridges Br], Brj contained in Br® such that (A + Bri{,Br{) and
(A + Br3, Bry) are & -linked proportional pairs. Moreover

Ne

|Br3| > |Bri| 2 5
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for i = 1,2 and whenever € < |[Br* N Br?|.
Proof. If € < |Br® Br*| then let 5, and b, be such that

,\2255,<A§,a*13u<5,53u,
and take the collection of all stable bridges of size b, and all unstable bridges of size by.
As (Br®, Br®) is a linked pair, (Br* N K*) and (Br‘ ﬂ K*) have a common point, which
implies that there is at Xe lea.st one linked pair (Br Br ) with these sizes.

Note that |Br |+ |Br | < (,\a)§+z\§ < ¢, s0 that there is an interval I of size smaller
than € for which (A + Br yn B #OxfandonlylfAeI

Take A € [ such that the centre of A+ B Br coincides with the centre of Br'. Denote
by Ga' and Ga’ the gaps in the centre of Br" and Br , respectively.

The thickness condition 7%7* > 1 implies that max{r*,7*} > 1. But 7 < 7%,
since A < o~!, hence 7% > 1. Therefore, eza.choneoft;hetwomlat:edbndgesBr1
and Br% contamed in Br® of size a‘1|Br | must be blgger than Ga (more preclsely,

o~ YBr | = -r“IGa ). This implies, by the choice of b, and b,, that |Br'} > |Ga"| ,ie.
Ga'ca+Br.

Suppose that Br¥ is to the left of Bry and let Br{, Brj be the bridges contained in
Br' of size A|Br'|, with Br¢ to the left of Brj.

The pairs (Br}, Br{), i = 1,2, are proportional, since

|Bri] = NBr'| <ABr'| < o7!|Br'| = |Br}|
and
|Bré| = ABF'| > Ao~} Br'| = A|Br}] .
To prove that @\ese pairs are {o-linked, we consider two cases (see Figure 5): (a) A+Ga’ C
Ga;and (b) Ga' C A+ Ga -
In case (a), they are automatically linked, since for each i = 1,2 only one of the
boundary points of A + Br{ belongs to Br{. Moreover,

\Br:nBrY  }(Br'|—|Ga')) 5> Loy 1GaTl |Ga" |

|Bryl — XBr| 2! o-1Br|
hence they are £p—linked.

In case (b), A + Br? C Br}?, for i = 1,2. We have only to show that A + Br] is not
contained inside a gap of BrNK™. Suppose by contradiction that this happens and take

=&,
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A+Br} .G A+Br) A+Br} AG A+Bry

Brl" Ga" Br2“ Brl“ Gav Brz"

(a) (b)
Figure 5: Two cases in the proof of the Linking Lemma.

i=1y w1thout loss of generality (or simply by simmetry). Let Ga' be the referred gap,

a.nd Br’ be the greatest bridge adjacent to the right boundary point of Ga'. Clearly
BricAa+ Ga hence

1Br| 1Bril
Gl 1Ga"]

On the other band,
|Br'| |Bril
|Ga"| |Ga’|

a contradiction. As |Br?| = b, and |Br¥| = 0~ by, for i = 1,2, the inferior bounds for
their sizes follow. O

> >1,

A consequence of the Lemma above is that for a residual set of translations of K?* (each
translation corresponding to a choice of u) the intersection K™ NK?* contains a Cantor set
(see [4]). However, we use its precise statement to derive the following Lemma, adapted
to the purposes of Section 8. It says that for a convenient small translation there are
infinitely many linked pairs, with generations growing linearly. This will be much more
than we need in order to satisfy the summability condition of the previous section.

Linear Growth Lemma. Let § =
of U'. Foranye > 0, there are |A| < e and collections of bridges (Brk)k>1, (Bri)i>1 such
that (A + Bri, Br¥) is a -linked proportional pair for each k > 1. If ny (respectively
my )} is the generation of Br;: (respectively Bri) then

mr <Mmpp Smg+ N,

ng < npyp <np+ Ny,
where N, = N,y(), &) and Ny = Ny(A, 0, &)
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Proof. Take the first ng such that 2a,0~(M0+1) < p. This means that the bridge Brj =
Br%(ng; + + ... +) has the left boundary point at —a, and the right one at the right of
—ay+p. On the other hand, take the first mg such that 2a,7A™ %! < . Then the bridge
Br§ = Br*(mg;+ + ...+) has its right boundary point at —a, + p and the left one at
the left of —a,. Therefore (Br¥, Brf) is a linked pair and |Br§ N Br{| =

By the Linking Lemma, for any e < p there are [A3] < ¢, related unstable bndges Br1 s
Br} and related stable bridges Br!, Bry such that (A; + Br{, Br{) and (A + Bry,Bry)
are {o-linked proportional pairs. Moreover, lBr1| = |Br{| £ e [Br1| = |Br¥| < & and
|Bry| > |Bri] > &

We proceed by induction. Let & = &(1 —
for any k > 1 we have:

1. real numbers A;, Ao, ... , Ay such that

2 t-1
IAt| < (',\—8'6—0') €
forallt=1,... k;

2. bridges Br{ and Brf, fort = 1,... ,k, such that (A + ...+ Ay + Br§,Brf) is a
&x—¢-linked proportional pair;

47%) for all § > 1 and suppose that

1—1

2
X015 ) < 1Bri) < 204Brt

forallt=2,...,k;

4. a bridge Br,c related to Br} and a bridge Brk related to Brj such that (A; +
LA+ Br,,,Br,,) is a §p-linked proportional pair,

We will prove that the same is valid for k + 1. At the end, the value A = "2, A,
fits the statement of the Lemma.

Applying the Lmkmg Lemma to the linked pair (A; +.. +Ak +Br,‘, Br,,) we obtmn
|Ak+1] < e = £|Bry} and related bridges BrHl,BrH_l c Bry, Brl _H,Br,,_,_l c Br,
such that (A1 +...+ Agqa + Bri,,, Bry,)) and (A1 + ...+ Agyq + B"h+17B"k+1) are
&o-linked proportmnal pairs.

As (Ay+...+ Ag + Brf, Br}) is a £ linked proportional pair, for all t = 1,... ,k,
then (Ay +...+ Agy1 + Bri,Br¥) is a (£e—s — lﬁ"ﬁr’rl)—linked proportional pair. But

k=t

k—t
fk—t _ I'Bktlll _{ (1 _24—1) 60 (Asgﬂ) > £k+1—t .

i=1
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Finally, the Linking Lemma assures that
e A
|Brinl 2 ¥% = 2 2Br,
proving the relation between mgy, and m, for
A
N log (—éﬂ)
57 loga-l

As the links are proportional,

Mg 23y
0 \ry) < X 21Brt] < 1Bl < Brial

proving the relation between ny,; and ng, for

log Mo\~
n-E

7 Critical chains via perturbation

In Section 3 we have defined the starting diffeomorphism g, but we left y as an arbitrary
parameter. Now we fix p1 as u+ A, according to the Linear Growth Lemma in Section 6,
in order to have a sequence of 5-linked proportional pairs (Bry,Bry), k > 1, with
generations fix and fiig, such that

g < Mppr S+ Ny,

fig < figqr < fig + N,

for some 1 < N,, N, < oco.

We now describe the kind of C™ perturbations we aim at using to satisfy a Chain
Property like that of Section 5. First, consider a non—negative and non-decreasing C*°
function ¢ : R =+ R, null in {z < —1} and equal to 1 in {z > 0}. Let p> 0, I =[a,b] be
an interval and define

b= [ (52) +¢(-57) -
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a 1
plll

G-
©
=

Figure 6: Bump function on an interval I.

(see Figure 6). If || - || is the norm given by the derivatives until order r then

1
< ——Nélle.
Recall that U’ C [~4, 4] x [~a,,—a, + a], and define
¢ = ¢%,[—5,+6] :
Let E;-; be written as E‘;: = Br*(1; Q(")) and take the interval
L= (B (i 2M))

i.e. the y—projection of the stable bridge B*(si; *)). As the projections of the adjacent
stable gaps to this bridges have length bigger than L |Ii|, the functions

¢k=¢#n1‘ ] kZI,
have disjoint supports.
Let ¢ = (¢;,22,... ,2k,... ) be a sequence of real numbers and let
[» <}
hy(z,y) = (w,y — 7 '¢(z) Ztkdm(y)) .
k=1
Then

oo
- t
Iy~ Xalle < Oy (37)" 3 ol
k=1
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We call t a perturbation vector. If (¢()) M>1 i8 a sequence of perturbation vectors, with
M) = (M ... tM,...), satisfying

e8] < AME,

then hyan — 1d a8 M — oo in the C” topology, for any r > 0 (since |x| > 2a,A™ and
my < my + Nyk).
For a sufficiently large M we define the diffeomorphism

f=fm=gohuo .

Let us examine the effect of this perturbation to the dynamics. Since f = g outside
U, the horseshoe is preserved and the dynamics near it remains the same. The only
change is in the image of the stable bridges and gaps that cross U. More precisely, if
B*(m;w) C B*(y; ©*)) then

Az, y) = (t¥,0) + g(=,v)

for every (z,y) € B*(m;w) N {~8 < z < §}. In particular, the correspondent bridge
Br*(m;w) is translated by ¢} in the line of tangency.

Critical Chain Lemma. For every M >> N, there is a sequence =E1,t2, cer o lEy )
with t; = 0, |t} < AM% k> 1, and a bridge Br} = Br¥(ny; 2¥) C Bry, such that the
centre of tpyy + Bri(nyg; [g(")]_l) coincides with the centre of Br"(nk_,.l;g(""‘l)), for every
k > 1. Moreover, we can write :

_z.(k) _ 2(1:) Eg‘)@(k&l)]—l

where 2%), _gf)k), @5+ have sizes fig, nQ, i1, respectively, with

log 7!
logo

Mk

g + gy <5

and ng arbitrary.
Proof. As in the Linking Lemma, let Bry C Bry and Br, C Bry, form a linked pair, with
sizes

AMk Mk

2 A s A
X2 < Bl <A,

o~ Bry| < |Bri| < |Bry .
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Let Ji be the interval such that ¢ € Ji if and only if (tx +§;':) n]’a;: # 0. By the choice
of sizes, |Ji| < AME.
Let Br: and Br; be written as

Bry = Br*(; 2%) , Bry = Br'(i; &),
and define Br} = Br"(nk;_z_:_(")), where ny = fix + ng + g4 and
PONS Z(()’c) L@(k+1)]—1
and 2" is an arbitrary sequence of size nl. With this definition, Br} C Br, and
Bri,, = Br*(ny; [2®]~Y) C Bryy,, for all k > 1. Now it is enough to take ty41 € Jp41

such that the centre of Br}_, coincides with the centre of Br}, ; and the proof is complete.
O

An important remark concerning the last Lemma is the freedom to choose the inter-
mediate sequence gg, whose combinatorics is the responsible for the alternative ergodic
properties deduced in Section 9. We fix from now on its size (and in Section 9 its code)
and derive some quantitative information.

Take ng = k2, in such a way that

Tig + Mgy
____O_L_)o
g

as k — 0o. At the same time, for every 1 > 0 there is kg = ko(n) such that
k41 < (L+ )y

for every k > kg.

Let 1y be such that if one defines m = -12_5?5 then Ao'*™ < 1 and take ky = ko(no)
as above. Without loss of generality we can suppose that ky = 1, by simply choosing the
first gap of the critical chain as Ga"(nko;g("")). By the same argument we can suppose
ny sufficiently big with respect to some constants that depend only on the definition
parameters of g.

If 5 < 1 then the numbers

bi =ﬂ_10—2'9:°:§# y k21,
are positive. A lower bound is given by

b > floIm(l-m) ™t
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for all £ > 1. On the other hand, as ng4y > ni,
b < B lo" 2o

for all k > 1. For the calculations of the next section, remember that
Bo®™ b} = bri1

for all k > 1.

Conclusion. If we take f = g o hy, where ¢ is chosen accordingly to the Critical Chain
Lemma, then we have a sequence of rectangles (Rj)x>: with the following properties:

1. R C G¥(ny;2®), where 2% is specified as above;

2. the centre of Ry is the centre (zx,0) of G¥(ni;2¥)); the height of Ry equals the
height of G*(ng; g(")) N Hy and its width is equal to 260~ ™*; in other words,

By = £~ ({-6 <2 < +}n G (ns 29)7) 5
3. let Fi = f™%2|Ry; then

Fy : (z + 7,9) = (Tp41 — Bo?™ 2% £ Ay, tao™z) ;
in particular Fi(zg,0) = (zk+1,0)-

8 Construction of a restrictive chain of rectangles
We will say that R is a C"—rectangle, r > 0, if

R={(2,¥);—yr < ¥ < yr,ha(y) < = < KR},

where hY%, h}; are C™ functions and kY (y) < hi(y) for every y € [-yr, YRl
The boundary of R is the union of the four segments

R = {y=uyrhilyr) <z <hR(yR)},
OR {y = ~yr, Bh(-yr) <z < hR(-¥R)},
AR {~yr <y <yr,z =hR(®)},
R = {-yr<y<uyrcz=h%1)},
where the indices u, b, r and ! come from up, bottom, right and lefi.

Let (Ri)i>1 be the sequence of rectangles in the Conclusion of Section 7, each Rj
inside an unstable gap of generation ny. We say that a sequence (R})r>1 where R} C Ry
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* *

R Rk.

ﬁm! 'S l F1 l )
R

Flgure 7: Restrictive critical chain of rectangles.
is a restrictive critical chain of rectangles if Fi(R}) C R}, and Fi (G R;UO,Ry) C QiR; .,
(see Figure 7).

Rectangles Lemma. Let f be a diffeomorphism obtained from g as in Section 7. Then
there is a restrictive critical chain of rectangles (R})>1.

In Section 9 we define D = R} and explore the outgoing consequences. The remaining
of this Section is devoted to prove the Lemma above.
Let y} = 20af~/2\/b and
int 1 1 * %
Bt = [z = gbeza+ S0l x [-vh vl
Rix" = [:L'k — 10bg, zx + 10bk] X [—y,:,y,‘,] .
We will inductively construct a sequence of C'-rectangle sequences
((R)k21)s20
such that for every s > 0 and k > 1 we have:
L yry =¥k
2. R C Ry;
3. R, = RY™
4. R D RI™;
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5. let b} , = hf, and hj, = h%,; there is d small such that
D, DAL | < dyi 5

6. F(RLUO,R})NR;,, = ;
7. Fy(R}) NORL,, = Fy(R}) NRY,, #6;
8. GRIT VR = F ' (Fu(RY) N QRE,,).

By (1)-(5) above, hi(";) converges, uniformly in the C? topology, to a C° function h;c(;)
in y € [~y},¥}), and this will define the left and right boundaries of Ry. From (6)—(8) it
follows that Fr(R}) C Ry, and Fi(6,R U O-R}) C 8 Ry ;.

Width comparison. Given the above definition of y;, we claim that the horizontal

semi-width of Fx(R}) (equal to yA™y}) is much smaller than the semi-width of R,
(equal to 1bx41). We compare the sizes by the quotient

YAy

Pk+1+i
; .
sbk41

- 400,7)‘%0—"1«/20-% T =%

By the remarks just after the Critical Chain Lemma, in Section 7, the quotient above is
bounded by 40ya(Aolt™ )™, which is small if n; is chosen sufficiently big. This estimate
will be used in the proof of the Pre-images Lemma below.

We will show by induction in s > 0 that for every k > 1 and yo € [~v}, ;] the image
under Fy of the segment {y = yo} N R} (which we call a parabolic segment) intersects
&R}, transversally exactly two times. Moreover, if the pre-images of the two points
are written as (h}, , ,, (o), yo) and (R}, ,(30), v0), then

1 1
hL,a(llo) < hf:,a+1(y0) <z — Ebk <zx+ Ebk < hf,(w) < hy 5(v0) »

where hLo = 3 — 10bx and A} o = 75 + 10b;.. This will give the next sequence (R;"'l);,zl
in the induction process.

First step. If z = +10b; and |y| < y} and (Trq1 + 7, ¢) = Fi(zx + z,y) then || >
90bi+1 and [¢/| < yi,,- This can be shown with the expression of Fi and the Width
Comparison above. The consequence is that the parabolic segments Fy([zg — 10bg, zx +
10bx] X yo), for |yo| < y}, cross {z — 10b41} x {ly| < yi41} exactly two times.

Induction. We have only to show that (i) if |A) — 2| > bx for all k > 1 then

K, — 2] > Sy, for all k > 1; (i) if [ DAY7] < dyf for all k 2 1 then DRy | < dyf;

25



(iii) the slope of the pa.ra.bohc images in Ry, with respect to the vertical is greater than
dy .y if |z — z¢| > -bk, i.e. transversal to the lateral boundaries of R}, for any s > 0.
These requirements w1ll be proved by the two Lemmas below.

Let d= - 1—0%1 and let Ci be a uniform cone field in Ry, given by
Cr = Ci(z,y) = {v = (vz,v); lvs] < dyplngl},
for every k > 1.
Cone Lemma. With the definitions above, if n) is big enough we have that
DF; (zks1 + 2, 3) - Cra(aan + 2',y') € CelFy Hanar + 2,y)
whenever |yf] 2 B~V \/ber1 = s5¥i-
Proof. Take
Fl(zea +2,Y) = (mr 2 a7 lo ™™y, 27 (@ + Ba2(y)?))
and

(vzy2y) = DF;'(zksr+,¥) - (vayty)
= (talo Ty, 2y TINT R (u, + 280 2 ) .

If y/ is as above and (uz, uy) € Cr41 then

g 100070 _ 1

a2y Juyl = B 100’

hence
|vzl g 9:1 o AT < 10y oT™A™ '
) W T AR
Comparing with dy} = 20daf~'/2/b; we get

lvz‘i/l:)yl 78 (MH,,,),;. :

which is smaller than one for a sufficiently big n;, proving the cone invariance.
O

Pre—images Lemma. Let (zx41+2,y) = Fe(ax+2,y) and (uz,uy) = DF(zx +2,v)-
(1,0). If|2'| > Lbxyy and ly| <y} then
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1. |y’| > ﬁy;.ur'

2. o=t > dyy
8. I:L'I > %bk.
Proof. As z’ = —fo?g? &+ y\My, then

1
Bo*rea? > e+ = YA YR > %bk+1 ,
by the estimate in the Width Comparison. Hence
1 1 1
z| > =B V2% ™ fop = — =
l |—\/§ﬂ g k+1 ‘/g'\/l;> 2bk7
proving (3). On the other hand,
1 1
ly/| = ao™|z]| > Eaﬂ V2 foppr = 4—03IZ+1 )
proving (1). Finally

(uz, 1) = (—2B0%"*z, ag™)

and therefore

ahby = iy"‘ = 500dy}
2002 k+1 k+1 1

proving (2).

9 Properties of the wandering domain

In this section we derive the properties stated in Theorem 1 about D, which is defined

as the rectangle R} in Section 8.

Diameter. Each rectangle R} has height 2y; proportional to V¢ and width smaller
than 20bg, and by goes to zero as k goes to 0o. In the ny subsequent iterates, the height
is shrinked by a factor of A", although the width is enlarged by a factor of o™*. But at
the end, the width of f™(R}) is of the order of the height of R} ;. This proves that the

diameter of f®(R}) goes to zero with n.

Description of wp. Let E be the intersection G*NG* between an unstable and a stable
gap, eventually including the central gaps. Then the future orbit of R} intersects E at
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most one time. This is because each R} lies inside a different unstable gap (intersected
with Hp) and different gaps have disjoint orbits until hitting Vp. The consequence is that
E contains no accumulation point of the orbit of D, i.e.

wp NR C F*(A)UF(A) .

Let us see who are the accumulation points inside f2(U). They are exactly the
accumulation points of the sequence (R})x. As each Ry is inside a different unstable
gap, the accumulation points must lie in F*(A). Moreover, as the rectangles are centred
in (zx,0) and the diameters are shrinking, the accumulation points are on the line of
tangencies ({y = 0} in our example). On the other hand, for each k > 2, R} intersects
the image under f2 of a stable gap, hence the accumulation points are contained in
f3(F*(A)). Therefore the accumulation points in F2(U) are contained in the set of
tangencies between the two foliations. The same is clearly true for U and f (U). The set
f(U) is also the only place where wp can intersect the complement of R, otherwise the
orbits escape to the sink g, according to the Property (7) of Section 3.

By the same reason, every point of wp in F*(A)\ A has a point in the pre-orbit which
is in f2(U), hence, by the invariance of wp and the above, it belongs to W*(A) N"W*(A).
At the same time, every point of wp in F*(A) \ A has a point in the future orbit in U,
hence in W*(A) N W*(A).

Therefore we have proved that wp C W*(A) N W*(A), with a nonempty intersection
outside A. It remains to show that there is a nonempty intersection with A.

But a point in W?(A)\ A accumulates in A, hence by the invariance of wp it intersects
A

Escaping points. Every point of z € A is accumulated by unstable gaps, by the two
sides of the stable leaf of F?(A) to which it belongs. Every unstable gap eventually hits
Vo after an appropriate number of iterations, and the corresponding image crosses Vg
horizontally. Hence there are points of this image outside U, in particular every point
outside a vertical strip containing U, and these points escape to the sink ¢;. Pushing
backwards, this means that z is surrounded (and accumulated) by open vertical strips
made of points that escape to the sink g;. Therefore every open set W such that dW

intersects z must intersect these vertical strips and hence contains points that escape to
the sink.

Accumulation measures. Let v(z), z € D, be an accumulation measure of the se-
quence v;(z) given in Section 1. This means that there is a sequence l; such that

I;-1

1
2; Z 5};’(1) = v(z)
=0

as j — 00.
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Clearly supp(v(z)) C wp. We will show that for every z € wp \ A there is € > 0 such
that v(z)(Be(z)) = 0. As such a point z has a point of the orbit inside f3(U), it suffices
to show it for z € wp N f2(U). In this case, take € > 0 such that B.(z) C f2(U) and
observe that

V@) () = lim HOSE<ki /@) € PU)}
¥

B I;
Let k(j) be the biggest integer such that
ni+ng+... g <lj,
where the n’s give the number of iterations to send R} from f%(U) to U. Then

Ho<i<lifize fAU)} k(5)
L Snidned o+

But n > k2, by the choices made in Section 7, so that the quotient is bounded by 1/k(5).
As l; goes to infinity with 7, also k(j) does it, and the claim is proved.

The accumulation measures do not depend on the initial condition. Two mea-
sures v and ¥ with support in A are equal if and only if they have the same pound on every
cylinder AN B* N B?, where B* = B%(n;z), B*(m;w), z=(z1...z3), w = (w1...wy),
n,m>1.

If v(z) is an accumulation measure of the forward orbit of =, z € D, then v(z)(A N
B* N B?%) = v(z)(B* N B*) is an accumulation point for the mean of passages of the
forward orbit of z inside B N B?. But by the construction of D, f*(z) € B*N B?* if and
only if f{(D) C B* N B*. Hence v(z) = v(y) for any z,y € D.

As the accumulation measures do not depend on the initial condition taken inside
D, we will denote, for simplicity, 11 = y(z), an equality which also makes sense when
measuring intersections of bridges.

Convergence to the Dirac measure on a saddle point. Suppose that for each k we
choose z) = (+ +...+) (with size k%), according to Section 7. We will prove that

lim v (B*(n; +...+) N B*(m;+...4)) =1,
=00
for every n,m > 1. This clearly implies that v = 8., where p, = (—a,, —ay) is the
saddle fixed point corresponding to the code (... + + + +...).
Recall that for every & > 1,

| ]
FEIEi=1™ (D) € GM(ngyr; 2641) N Ho
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where z; = 2,202/, and the sizes of z}, z} and 2} are, respectively, n}, nd and ny, with
nh+n) <Ck, n) =k,

for some constant C > 0. So the number of visits of the orbit of D to B*N B* =
B*(n;+...+) N B*(m; +...+) can be counted by

Y1 <i<n; £ (G¥(mes z4) N Ho) C B*NB°} .
k>1

Let k; be such that k2 > n +m and k > k;. Denoting 2z, = (122 . - 2, ), recall that
(Section 4)

(G (ng; 2;) N Hy) = G¥(ng — 52641 .- . 20, ) NG (85 55 ... 21)

for all i = 1,... ,nx — 1. Therefore we conclude that among the first n; — 1 iterates of
G®(ni;2;) N Hy at least k2 — (n + m) iterates fall inside B® N B®, that is a proportion
greater than

n+m+Ck
e

This proves that the frequency of visits in B* N B* of the orbit of D tends to 1 or, in
other words, v(B* N BY%) =1.

An example for the lack of convergence for the frequency measures. Let (k;)5>1
be such that

1

kat1 ks
> E>8) 2,
k=ks+1 k=1
for all s > 1. For every k, < k < ky41, 8 0dd, define z) = (— —...~), and for s even,

2-(++...4).

It is easy to show that the accumulation measures are all the convex combinations of
the Dirac measures supported on the saddles p; and p_, where p_ corresponds to the
code (... — — — —...) (in fact, the set of accumulation measures is always convex).

Convergence to a measure equivalent to the nontrivial Hausdorff measure on
A. It is enough to find suitable sequences z) such that the limit measure satisfies

v(B®N B*) = 27"

for all B* = B%(n;z) and B* = B*(m;w), n,m > 1. In this case v is exactly the
nontrivial Hausdorff measure # in A, which is also an invariant measure for f.
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Let 2 € A be a generic point for H, i.e. such that

-1

fim 3 3y = HEB* 0B,

for all pairs of bridges B* and B®. For fixed B¥ and B’ and given any ¢ > 0, there is
lp = lp(€) such that

<3 . fifs 8 u
“{O—K"f(lz)eB NBY -1+ denzm

for any [ > ly (probably Il >> 2"2™). If we denote the code of Z by

2= (..508150815...),

then we see approximately 27"2"™] times the block [w] ™'z inside (2, 21,... ,2).
Now take ky such that k2 > I, and for each k > ko the sequence

20 = (30,81, , 52 -

Then it is easy to show that for this choice the sequence y(B* N B®) € [1' — 26,1 +
2¢]H(B* N B?), for large I. As € is arbitrary, v(B* N B*) = #(B* N B’), and since B*
and B* are arbitrary, v = H.

References

[1] C. Bonatti, J. M. Gambaudo, J. M. Lion, C. Tresser. Wandering domain for in-
finitely renormalizable diffeomorphisms of the torus. Proc. of the Amer. Math. So-
ciety 122(4) (1994), 1273-1278.

[2] E. Colli. Infinitely many coexisting strange attractors. Ann. de !'Inst. Henri Poincaré
- Analyse non-linéaire 15(5) (1998), 539-579.

[3] A. Denjoy. Sur les courbes définies par les équations différentielles & la surface du
tore. J. de Math. Pures et Appl. 11 (9) (1932), 333-375.

[4] R. Kraft. Intersection of thick Cantor sets. Mem. Amer. Math. Soc. 97, 468(2) (1992),
1-119.

[5] P. D. McSwiggen. Diffeomorphisms of the torus with wandering domains. Proc. of
the Amer. Math. Society 117(4) (1993), 1175-1186.

[6] W. de Melo and S. J. van Strien. One-dimensional dynamics. Springer Verlag, Berlin,
Heidelberg, New York, 1993.

31



[7) L. Mora, M. Viana. Abundance of strange attractors. Acta Math. 171 (1993), 1-71.

[8] S. Newhouse. Non-density of axiom A(a) on S%. Proc. A. M. S Symp. Pure Math.
14 (1970), 191-202.

[9] S. Newhouse. Diffeomorphisms with infinitely many sinks. Topology 18 (1974), 9-18.

[10] S. Newhouse. The abundance of wild hyperbolic sets and nonsmoth stable sets for
diffeororphisms. Publ. IHES 50 (1979), 101-151.

[11] A. Norton. An area approach to wandering domains for smooth endomorphisms.
Ergod. Th. and Dyn. Syst. 11 (1991), 181-187.

[12] A. Norton and J. A. Velling. Conformal irregularity for Denjoy diffeomorphisms of
the 2-torus. Rocky Mountain Journal of Math. 24(2) (1994), 655-671.

[13] J. Palis. A global view of dynamics and a conjecture on the denseness of finitude of
attractors. Astérisque 261 (2000), 339-351.

{14] J. Palis and F. Takens. Hyperbolicity and sensitive chaotic dynamics at homoclinic
bifurcations. Cambridge University Press, 1993.

[15] D. Sullivan. Quasiconformal homeomorphisms and dynamics I: Solution of the
Fatou—Julia problem on wandering domains. Annals of Math. 122 (1985), 401-418.

[16] F. Takens. Heteroclinic attractors: time averages and moduli of topological conju-
gacy. Bol. Soc. Bras. Mat. 25(1) (1994), 107-120.

32



RELATORIOS TECNICOS DO DEPARTAMENTO DE MATEMATICA APLICADA

2000

RT-MAP-0001 - Laécio C. Barros, Suzana A. 0. Souza &
Pedro A. Tonelli
“Two Cases of Asymptotic Smoothness for Fuzzy
Dynamical Systems”
February 16, 2000 - Sdo Paulo — IME-USP - 10 pg.

RT-MAP-0002 - Carlos Juiti Watanabe, Paulo Sérgio Pereira
da Silva e Pedro Aladar Tonelli
“Algebra Diferencial em Teoria de Controle”
Abril de 2000 - Sdo Paulo - IME-USP - 15 pg.





