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Introdugao

A aproximagac de uma fungdo f(x) por polinomio Unico, de grau elevado, com
pontos de colocagao igualmente espagados no 1nterva1o de interpolagao,
apresenta fregtlentemente oscilagoes acentuadas, indesejaveis, entre os
pontos de colocagao.

Para a fungao f(x) = 1/(1 + x?), no intervalo (- 5, 5), por exemplo, a
interpolagao por po]1nom1os de grau n, em pontos 1gua1mente espagados, nao
converge para f(x), junto as extremidades do intervalo, quando n + = ,
Quando houver 1iberdade na escolha dos pontos de colocagao, a utilizagdo
das_abscissas de Chebyshev conduz geralmente a polinomio unico, de aproxi-
magao precisa e estavel. A aproximacdo pelos pol1nom105 de Chebyshev de
obtencao rap1da, substitui usualmente a aprox1magao pelo p011nom10 de
meThor aprox1magao onde se procura tornar minimo o erro maximo

|| e(x [IP(x) = f(x) ||=max [P(x) - f(x)| _em todo o intervalo,
1mp0ndo se igualdade de osc11a;0es ou de a1ternanczas de erros num numero
minimo de pontos dentro do intervalo.

Quando a fungao que se deseja aproximar for fornecida sob a forma de valo-
res tabelados ou de resultados empiricos, e recomendavel & aproximagao por
polinomios por partes ou por trechos. Neste caso, adotam-se, em
subintervalos, polinomios de grau nao-elevado que se 1nter11gam por conti-
nuidade de va]ores da fungao e de suas derivadas até certa ordem, nos pon-
tos nodais.

Para efeito de confronto, citam-se tres aproximactes em polinomios cubicos,
por trechos.

Na ingerpo1§§§o cubica, por trechos, de Hermite, para a determ1nagao do
polinomio clibico Hji(x ), referente ac trecho ( xj-1, xi ), 1mpoem se

Hi(xi-1) = f(x5-1)> Hi(xi) = f(x;), H;(xl_l) = 4 ( -1 ) e H' (rlj (xi).
Em cada intervalo obtem-se o erro de aproximacao
max |f(x) - H;(x) [< — hi max | £ )( £) |
384
com & em ( Xs70 X§ )e hi =% = X33

No segundo membro da expressao acima, reconhece-se o deslocamento nohmeio da
viga biengastada, de vao igual a h., sujeita a carga uniforme p = f( )(E).*

Pela interpolagao cubica, por trechos, de Hermite, tem-se, para o intervalo
(a, b), com h = max h;, o erro de aproximagao

max | £(x) - H(x) | < ;'g;méx £ 2y

com £ em (a, b)

Na 1nterpo1a;ao cubica, por trechos, de Bessel, para a determinacao do
polinomio cubico Bl(x), referente ao intervalo (xj-1, X; ) , alem de impor
B; (xj-1) = f(x;_1), Bj(x;) = f(x;) tomam-se,, para B/(x;_ ;) eB! (x;) os
va1ore5}das der1vadas, nos pontos x1 1 € Xj, dos p011nom1os de segundo grau
com pontos de colocagao em Xj-25 Xj_19 Xj € Xj_15 X5 Xj475 respectivamente.

* Admitindo-se doravante EI com valor unitario quando se estabelecer a
analogia com viga.






Com as imposigoes de B)(x ) = f'(x,) e B'(x ) = f'(x_), consegue-se, em
geral L

max | f(x) - B(x) | = 0(h*)
e, para o caso de espagamento uniforme
max | f(x) - B(x) | = O(h*)

Na interpolagdo, por trechos, pelo spline clibico, para a determinagao do
spline cubico Sj(x), referente ao intervalo ( xj-1, Xi ) , com

S; (xi-1) = f(xj-1) e Si(xj) = f(xj), os valores S!(x;-1) e Si(xj) sao agora
obtidos exigindo-se continuidade da derivada segunda %“(x) nos pontos
internos do intervalo (a, b).

Para o spline cubico, sob condjgﬁes de extremidades adequadas, em Xo € Xp,
posteriormente examinadas, obtem-se o erro de aproximagao abaixo:

max | f(x) - S(x) | ii h* max | f(*)(E) |
384
comEem (a,b).
No sequndo membro da expressao acima, reconhece-se o des]ocamento no meio

da vigs simplesmente apoiada, de vao igual a h, sujeita @ carga uniforme
p=mx |f*)(E) |.

Observar que pelo spline cubico S(x) consegue-se
max |f(x) - S(x)| = 0(h*)

mesma ordem de aproximacao obtida pela interpolacao cubica, por trechos,
de Hermite, exigindo-se, congudo, somente a metade do numero de informacoes,
isto €, somente f(x;) ao inves de f(x;) e frix;)-

No caso de espacamento uniforme, h; = h = (x; - xj-1), obtem-se, pelo
spline cubico, para os pontos nodais x;, 0 erro de aproximacao na derivada
primeira*

L
max | £'(x;) - S'(x;) | 5—';—Dmax | £ () |

com& em (a, b) .

A aproximagao acima, da ordem 0(h“), torna o spline cubico util para a
diferenciacao numerica de f(x).

Pode-se obter o spline cubico S(x) pelo calculo variacional quando se

procura © minimo do funcional
b

1(y) = | (y"(x)? dx

a

sob as condigoes y(xi) = f(xi) (i=0,1; 25 P

Encontra-se, para o funcional acima, a equacao de Euler

* Veja-se (6.13), no item 6, pag. 13,






4" y(x) . 0

dx“

para x # X; .

Isto e, o spline cubico S(x), solucdo da equagao acima, coincide com a linha
elastica de viga sujeita a cargas concentradas nos pontos nodais X;. Tal
linha elastica & funcao continua, com derivadas primeira e segunda tambem
continuas, composta por polinomios cubicos em cada trecho (x-_l, X: )
0_fato de S(x) tornar minimo o funcional mencionado, confere—*he a caracte-
ristica de interpolagao suave, por partes, com curvatura global minima para
o intervalo (a, b). Evitam-se,degta forma, as oscilagOes acentuadas
oriundas de interpolagao por polinomio Unico de grau elevado,

Para o spline cubico completo, definido posteriormente, o diagrama S"(%}),
Tinha poligonal coincidente com o diagrama de momentos fletores para a viga
sujeita a cargas concentradas nos pontos xi, representa a melhor aproximacao*
linear, pelo metodo dos minimos quadrados, da funcao f"(x), derivada

segunda da fungao f(x) que se interpola pelo spline cibico S{x).

Finalizando, utilizam-se os splines cubicos em problemas de interpolagao,
de construgao de graficos, de ajustamento de dados:; de diferenciacao e
integracdo numericas, nas solucbes de equacdes diferenciais e equaces
integrais.

1. Definigao e Obtencdo do Spline Cubico

Considere-se uma particao qualquer do intervalo (a, b) pelos pontos

d@ = Xo < X3 <Xz ... < Xp = b onde se conhecem 0s valores da fungao f(x),
denominz-se spline cubico S(x), sobre a particao realizada, a funcdo S(x)
com as seguintes propriedades:

a) S(x) e contTnua assim como as suas derivadas primeira e segunda
no intervalo (a, b ).

b) S) = flx) . (k=0,1,2, ..., n
c) S(x) & um polindmio de terceiro grau em cada subintervalo
(Xgs %) ™
No ponto X, s colocar-se-a:
M= S;(xk_) =Sﬁ+1(xk+) (1.1)

Sendo Sk(x) um polinomio do terceiro grau no intervalo ( X1 X, ), tem-se:

- X X=X 4
S¥(x) = M — M — (1.2)
k k-1 _ _
"k T X1 X T Xy
Integrando-se:
| (5 = x)*  (x - x_,)?
Spx) = - Mk‘_1 + M + C, (1.3)
2h 2h
k k
com hk =X T X -

* Aproximacao linear por trechos.







Integrando-se _novamente:

(xk i x)B (X = xk-l)!
S x) =M —— 4 — KL i (1.4)
6h, 6h,

com y, = f(xk) e impondo-se Sk(xk_l) = Yi-1? Sk(xk) = Y,» resultam:

c Yy = %) = (M = M) hi/6
1 =

by

- - - 2
(X Yio1 = Xpmn¥i) = (6 My Xe-1 M) he/6

My

Levando (1.5) e (1.6) em (1.4), obtém-se, para o intervalo ( Xpops X )

(x = x) ((x, = x)? = h2)

C, = (1.6)

Sk(x) = Mk-l = +
k
(x = x 1) ((x - x _.)? - h2)
P M k-1 k-1 T Vg (% = X) 4
th hk
1
#e= g lx = o) (1.7)
hk
Por derivagao decorre:
hZ - 3(x, - x)? 3(x = x,__,)% - h2
I - k k k-1 k ] _
Sk(x) = Mk—l o + Mk - + E_ (_yk yk—l)
§ . : (1.8)

Mantendo-se a continuidade das derivadas sobre o apoio Xy isto e,

Sk(xk_} = Sk+1(xk+) resulta:
h h, + h h
K kT ka1 k+1 _ 1 ] o
— Weg# b Mg = Va1 = %) - = (0 = wy)
& 3 6 h h

k=T 208 v B~ T

Em (1.9) reconhece-se a equacao dos tres momentos em viga continua cujos
apoios sofreram os deslocamentos verticais yi. O spline cubico S(x)
coincide, portanto, com a linha elastica de viga continua, com apoios
situados nos pontos de particao X, s sujeita a deslocamentos de apoios
iguais aos valores Y- ®

Em (1.9) ha (n-1) equacOes para as (n+1) incOgnitas Mo, M;, M,, S

Ha necessidade de duas condigoes adicionais; estas condigoes auxiliares
caracterizarao diferentes splines para interpolacao e formarao, junto com
(1.9), um sistema tridiagonal, de equagbes lineares, para as incognitas M, .

* Com a ressalva de que (1.9) vale para quaisquer deslocamentos Vi

mantendo-se h, = X T Xp_q-






2.. Diferentes Tipos de Splines Cubicos

Nas_aplicacgbes, de acordo com as condigoes auxiliares impostas, distinguir-
S€-a0 0s seguintes splines:
@) Spline natural generalizado

Neste caso, conhecem-se M, e Mp, resolve-se o sistema tridiagonal
(1.9), desde M, ate Ma-1, colocando-se M, e My nos segundos
membros da primeira e ultima equagoes, respectivamente.

Reserva-se a denominacdo spline natural Para o caso particular
en que sao impostos M, = Mn = 0.
b) Spline sem discontinuidade para 5™ (x) nos pontos X; e X _

No modelo da viga continua, equivale impor reacoes nulas nos
apoios x; e x,_1. As éxpressoes analiticas das diversas
condicoes auxiliares serao fornecidas posteriormente,

c) Spline completo ou com tangentes extremas fornecidas

Conhegem-se 0s valores de y; e Y diretamente oy atraves de
polinomios de interpolacao adequados

d) Spline com tangentes internas
Fornecem-se y: e y;_l atraves de polinomios de interpolacao.

e) Spline com derivadas terceiras extremas
Conhecem-se yi' e y;'.

f) Spline peridgdico
Sao condicdes auxiliares M, = Mn ey, = y;, alem de y, = L.

g) Spline com igualdade de reacoes
No modelo da viga continua, igualam-se Ri =R, e Rn = ‘R

h) Spline parametrico

acumulados ou, para facilitar, igual aos comprimentos de cordas
acumulados.

3. Solugao do Sistema Tridiagonal de Equagoes Lineares

De (1.9) obtém-se o sistema de equacoes lineares:

n

Bypg s bt hy s P R - L (y1 - yo) (3.1)
6 3 6 h, h,

n

h, M + By & hy M, + L M; L (¥s - y2) - —l'fY2 “ 3] (3.2)
6 3 6 h3 hz






hn-l
M

Completado com as condigbes auxiliares, o sistema (1.9) sera escrito

notacao abaixo:

bn”n + Can

a;Mo + b]Ml + C; Mz
as Mz + by M3 + c3 M,

E sistema tridiagonal,

n-1

Definem-se:
c
Wg = =L E
bo
Lo

go = E]

vindo a solugao:

4. Condigdes Auxiliares para os Diferentes

que se resolve com o

n

Mi =9; - W, M

-l-(yk - Y3) - -l-(ya - yz)
h

hs

(yn-l ) yn-Z) 3

= £
= 9
= £,
= R

n

n-an Rn-l

M 3

n n

algoritmo abaixo.

T’ 2’ 3, s ey n‘.l)

n=1, n=2, .y 0)

Splines Cubicos

a) Para o spline natural generalizado
Em (3 I) e (3.5), deslocam-se os valores conhecidos Mo = yy e

= ¥, bara os segundos membros e resolve-se o sistema

(3.3)

(3.4)

(3

(3
(3
(3

(3.

(3

(3.

(3.

(3.

(3.

.5)

.6)
.7)
.8)

9)

.10)
(3.

1)

12)

13)

14)

15)
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tridiagonal, para incognitas desde M) até M. .1, com adaptacoes
das expressoes de (3.12) a (3.15).

Spline sem discontinuidade para S™ (x) nos pontos x, e Xp-1
Impondo-se S"'(xt) B S“’(x;) =0ou (M2 - M1)/hz = (M - Mo)/h; e

tambem
M -M M - M
gm (X+ ) _sm (X" ) =D ou n n-1 = n-1 n=2
n-1 n-1 h h
virao n =l
Mo = My + -:_1 (M; - M,) (4.1)

h
— n -
Mn B Mn-l * h (Mn-l Mn--2)

n-1

(4.2)

Substituindo-se o valor acima de My em (3.1), apos simplificacoes
encontra-se:

M1 (hy + 2hz) + My (hy - hy) = e [ (y2 - 1) - Dz‘(?l - Yo) ]
h] + hz h
(4.3)
Da mesma forma, levando-se o valor de Mn em (3.5), encontra-se:
Mn-Z (hn-l - hn) + Mn—l (hn + 2hn—l ) -
_ 6 n-1 b _
ol L LSRR S T G

h
n

n=1 n
Resolve-se novamente o sistema tridiagonal, desde M, ate Mo—1s
obtendo-se em seguida My e Mn com (4.1) e (4.2), respectivamente.
Spline completo, com tangentes extremas fornecidas
Conhecem-se f'(x,) e f'(xn), diretamente ou atraves de polinomios
de interpolacao.

% h h 1
S;(x0) = F'(x0) = - *j'Hu "1? Mi + — (y1 - Yo) (4.5)

1

obtem-se a primeira condicao auxiliar:

Mnh—i+M1h—61=-1—(_V1 - yo) - £'(x,) (4.6)

3 h,
De maneira, analoga, com

h
Sa0xa) = F10) = 2 Wy 2w Ly, -yy) (47

n

acrescenta-se ao sistema de equacoes a expressao:






d)

h
n Dy oL -1 .
*E-Mn-l + 7; Mn - fl(xn) h (yn yn-l)

n

Resolve-se o sistema tridiagonal completo, com incognitas desde
Mo ate M, a partir do algoritmo ja fornecido. Se Yo €Y,
forem obtidos por polinomios de interpolagao de quarto grau,

com pontos de colocagao em Xop, X1, X2, X3z, Xy € Xp-4s Xp-3»

X =23 Xoo1 € X espagados de h, adotam-se as expressoes abaixo

vy = f(x,) = ?-L (- 25y0 + 48y; - 36y, + 16ys - 3y)
1

¥ = 0 - ] - -
yo o= Pl ) = ;E;— (25y 48y, *+ 36y__, 16y 4 + 3y _,)
n

Havendo pontos adicionais A, B, C e D, junto as extremidades,
de modo que:

+
Xo + X1 . X1 + Xz | — xn—2 x1'1--'.1
XA=—'-s xB::———_"’ XC-'_"'""—;
2 Vi 2
x1.'1'-14»’{1:1
X & ————
2

podem-se adotar:

yo = f'(xo) = 2 (= 25y0 + 48_',1A - 36y: + 16yB - 3y2)

hy

i g z 3 -
y. = f (xn) £ E;~ (3yn_2 16yc + 36yn_1 48yD + 25yn)
n
Observar que a exigencia de pontos igualmente espacados pode
ficar restrita aos extremos, onde se adotaram polinomios de
interpolacao de gquarto grau.

Spline com tangentes internas y, e y;_l

As duas novas condigoes que se incorporam formando o sistema
tridiagonal sao obtidas do seguinte modo:

0 valor da tangente Sj(x;) = f'(x;) coincide com P.(x1) onde

Pv(x) € o polinomio de quarto grau com pontos de colocagao em
Xos A, X3, B e x,. 0 valor da tangente SplXg-1) = f'(x,-1) ©
fornecido por Pi(x,-1)s onde_agora o polinomio de quarto grau
utiliza os pontos de colocagao X o9 Cs Xy, Dex .

X + x
+ + = =
Com x, = 2o T X} 5 Xg = X TH Xo = = = Y
2 2 2
xn—l + xn
X, = ,» sendo

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)






hi = (xa = xo) = (x2 - X1) e hn = (xn-l - xn-Z) = (xn - xn-l)’

a derivada f'(x1) que se fixara vale:

S;(x1) = f'(x1) = q [ f(xo) - 8f(x,) + 8f(xg) - f(xzj ] (4.13)
6h,

De maneira analoga, o valor da tangente S'(x__,) sera feito igual
a:

Sa(rgen) = () = = [ BF0xg) - B(xg) = (1) + (0, (8.19)

n

Pelo spline Si(x), no primeiro subintervalo, tem-se:

Si(xy) = LYo 4 By, y by (4.15)
h 6 3
que, substituida em (4.13), fornece:
by, + Dy = 1 {76(x) -
—L Mg + —= M = — (xo) - 8f(x,) - 6f(x1) + 8f(xg) - f(x2)
% 3 6h; | (4.16)

Pelo spline Sn(x), no ultimo subintervalo, tem-se:

Y g, h h
S!(x__,) = " ol B M, - = (4.17)
h 3 6
n

que, juntamente com (4.14), fornece:

h g
B g gﬁ— [ 7F(x_) - 6F(x__,) - Bf(xp) + BF(x.) -
n
- fx,20) ] (4.18)

Spline com derivadas terceiras v, © y;' conhecidas

be s o M= My
» h
k
vITao: " My - MU m Mn 5 Mn_l
yu = e yn ————— ey

h, h
donde:

Mo = My = hy y™ (4.19)
e:

Mn = Mn_1 + hn ye (4.20)

Eliminando-se M, em (3.1), vira:






g)

30,

2
3h: + 2h2 Ml & "EMZ & _1, (y! = yl) - i (yl - yp) + -h...l..y:l (4.21)
6

6 6 h2 hi
Eliminando-se tambem M_, com (4.20) em (3.5), obtém-se:

h 3h_ + 2h__
n-1

n-1 n _ 1
e M2t Mt O

n-l) -
n

2 "
hn yn

(Vooy = ¥ooo) - (4.22)

n-1
(4.21) e (4.22) serao a primeira e a ultima equagoes, respectiva-
mente, no sistema tridiagonal para as incognitas My, Mz, ..., M -1°
Apos a obtengdo de M, e M _i» utilizam-se (4.19) e (4.20) para -
M[ e M .
Spline periodico
Neste caso, alem da condigao obrigatoria y, = Yoo utilizam-se as
condigoes aux111ares Sy = S‘ e S = S"

A rotagao anti-horaria no ponto x, vale:
§*(xo) =YL= Yo _hyy by (4.23)
hy 3 6
A rotacao anti-horaria no ponto X escreve-se:

; ‘yn n-1 n n ]
S'(x )= 2—2" 4 DM+ DM (4.24)

A equagao (3.1), com My = M . passa a ser:

2(hy + hy) My + hy My 4 by M= (v, - yy) - B (y; - yg)
hs ha (4.25)
Da igualdade de (4.23) e (4.24), com Mg = Mn, decorre:

+ Z(hn + h;) Mn =8 (Y1 = Yo) -
hy

-E oy -y ) (4.26)

h1 M] + hn M'ﬂ—l

As equacoes (4.25) e (4. 26) juntamente com (3.2) a (3.4),
formarao um sistema tridiagonal ciclico, pois na primeira
equagao aparecem M,, Mz e M,, enquanto que na ultima equacao
aparecem M;, M, _ ? sistema tridiagonal ciclico
resolve-se com a}gor1tmo especifico. Ver referencias (1) e (33).

Spline com igualdade de reacoes, R; = R; e Rn_2 = Rn_1 i

As duas condigoes auxiliares deduzem-se conforme abaixo.

Para h; = h, = h, a reacao no apoio x;, R; valera:






o Vs

h Ri = Mo - 2M1 + M2
Para o apoio xz2, com h2 = hs = h,
h Rz =M - 2M2 + M,

Da igualdade R; = Rz, obtem-se:
Mo - 3M; + 3M2 - M3 = 0 (4.27)
De maneira equivalente, a igualdade R._,= Rn_1 fornece:

Mn_3 -~ Bt 5 M _,-M =0 (4.28)
Eliminando-se M; e M;, em (4.27), com a utilizagdo de (3.1) e
(3.2), obtem-se:

Mu + 5M1 '—'h—L (7_5’0 = ]5_\/1 + 9.)’2 = y-’!) (4‘29)
Com a eliminagao de M_,e M,_3> em (4.28) atraves de (3.4) e (3.5),
consegue-se:

]
M _; +M = s (7y, - 15y _, + Wi = Va) (4.30)

o
(4.29) e (4.30) sao as duas condigbes auxiliares que permitem
completar o sistema tridiagonal para as incognitas My, My, M,, ..

M,. Observar que nas condigOes acima exigiu-se espacamento
uniforme entre o0s nos.

Spline parametrico

Para a representacao de curva plana ou a tres dimensoes, desenvol-
vem-se em splines cubicos as coordenadas x(t), y(t) e z(t),
adotando-se como variavel independente o parametro t igual aos
comprimentos de arcos acumulados ao longo da curva que se representa.
Ao inves de comprimentos de arcos, acumulam-se comprimentos de
cordas. Para curva plana, por exemplo, de coordenadas (x, y),
definem-se:

- = v 2 - 2
Lo T b Mg = %)° % il ~3)
(1 =05 15 20 ooes 0=1) com ty = 0.
A_partir dos valores xp, X1, X2, ..., Xy, determina-se o spline
cubico x(t), para os subintervalos h; = (t; - ti-1), i =1, 2, ..., n.

De maneira analoga, a partir dos valores correspondentes yo, vy, y»,
-+-» ¥ determina-se o spline cubico para a ordenada y(t).

Coeficientes para o Spline Cubico e sua Avaliacao em Cada Subintervalo

Para o intervalo ( X qn X ) , o0 spline cubico escrever-se-a:

- - o 2 e 3
Sk(x) =8, + bk(x xk_l) + ck(x xk_l) +d (X xk-l) (5.1)

onde:
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a, = f(xk_l) = Yi-1 {5.2)
b, = Sﬂ(xk-l) (5.3)
€, = 0,550 (x, 1) = 0,5M . (5.4)
1 n
dk = g Sk (5.5)
ou ainda em fungao da solugao obtida para os Mk:
3, = Y (5.6)
Yy = Yo h ( 1t 0,5 )
b, - S]L(xk-l) L W = T M1 " (5.7)
h, 3
C = O,SMk_1 (5.8)
g - e (5.9)
6h,

com h, = (X, = X ;)
No no > 8 discontinuidade da derivada terceira valera:

%:‘ xi) - S"'(xi) = 6(dk+1 - dk) (5.10)
sendo equivalente a reagao de apoio no ponto X,» no modelo de viga continua.

Para o calculo do valor numerico do spline cubico no ponto x, com

X, g S X & X,» convem utilizar a expressdo abaixo:

(X)) =3, + (x - Xy-1)
Havendo grande numero de pontos x; e devendo-se calcular S(x) para diversos
X, & recomendavel desenvolver-se programa que localize de maneira eficiente
0 intervalo onde se encontra determinado x para, em seguida, adotar-se o

polinomio cubico S(x) correspondente.

S by * (X = % 1) (¢ +d (i - X ](5.11)

k-l)

6. Estimativas deerros, na interpolacao pelo spline cubico, para a funcao

f(x) e suas derivadas

Nas estimativas de erros, abaixo discriminadas, §er50 utilizadas normas
uniformes para fungoes e vetores, com as designagoes:

Para a funcao f(x)

I £ 1 =max | f(x) | (6.1)

Xop<x<x
——nm
Para o vetor A de componentes Ai

| &g = max | A (6.2)
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Usar-se-ao tambem as seguintes notagdes:*

hy =% = x;_, (i=1,2,3, ...,n) (6.3)

h = max h (6.4)
1

h = m12 hy (6.5)

B = h/h (6.6)

Py@ =M 5 Jy® | =me (6.7

De acordo com Hall e Meyer, 1976, para os splines completo e natural
generalizado que interpolam a fungao f(x) valem as aproximagoes:

| Fe5lls = B (6.8)
Lf-sths —Rom (5.9)
| £ -s" | < gﬁz M, (6.10)
| £7-sm) < ﬂgl_/_s A oM, (6.11)

No segundo membro da primeira estimativa de erro, reconhece-se, conforme
comentario anterior, o deslocamento no meio da viga isostatica, biapoiada,
de v3c h sob a carga %ngforme p =llf*)(x)]l= My, ndo considerada pelo
spline cubico, pois S'*/(x) = O em cada tramo h,.

No segundo membro da estimativa de_erro para f'(x), identifica-se a rotacgao
nos apoios para a mesma viga isostatica, de vao h, sob a carga uniforme
mencionada.

-+ -
Para o vetor (f' - S'), erro na derivada primeira nos pontos nodais, com
componentes (f; - Si), de acordo com Kershaw, 1972, para os splines cubicos
completo e periodico vale:
| £ =S | =mix | f:-S! | <LR2mdx | h_ -h, | M +
: 1 X = . 1-1 1
i 24 i
+ — h"* M; (6.12)
60

Para o caso de espacamento uniforme hi = h, obtem-se:

- -
| £ -8 | < Gio h* M (6.13)

* De preferencia conservam-se, em cada item, na medida do possivel, as
notagoes dos trabalhos citados.
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isto &, a ordem de aproximacao & th“) para a derivada primeira nos pontos
nodais. Tal fato torna o spline cubico recomendavel para a diferenciagao
numerica de f(x).

Ainda de acordo com Kershaw, os erros | fi - S: | para o spline natural
generalizado sao superiores ao valor acima, e para recuperar-se a ordem de
aproximagao sera necessario tornar o primeiro e o ultimo intervalos h; e
h, suficientemente pequenos. Para o spline cubico completo, valem ainda
as seguintes estimativas:

| f-sS| <250 | £ | (6.14)
hs*l < 3] | (6.15)

A melhor ordem de aproximacdo que se pode conseguir pelo spline cubico e:

| £f-5S| = o(h*) (6.16)
Tal ordem e obtida, por exemplo, nos splines completo ou natural generali-
zado e sob condigoes que se examinarao nos itens 7, 8 e 9. Para o spline

natural, com S§ = S* = 0 nao correspondendo a realidade, nao se consegue
convergencia uniforme, da ordem de O(h*) em (a, b ).

7. CondicOes de Extremidades para o Spline Cubico com Nos Igualmente

Espagados, Splines E(a)

Em 1979, G. H. Behforooz e N. Papamichael apresentam condicoes de extremida-
des, para nos igualmente espacados, condicoes que so dependem dos valores
f(x;) = y(x;) e que dao origem a splines cubicos com ordem de aproximacao
O(h*). Inicialmente, para y(x) emC* (a, b)*com x em ( Xi—1s X§ )s

i=1,2, ..., n, apresentam, para nos igualmente espacados, as seguintes
estimativas:
h = ] 1 1 '
I y(X) - S(X) | f_ Emax { l Sl - 'Yl ]'! I Si—l = -Yi_l I}+
1 peom, com M, = || y(*)| (7.1)
384
] 1 - i I i ] '}.-3-
ly'(x) = S"(x)|<max { | S;-y:|.[S;, -yl ]} +Eh3 Mo (7.2)

]
o~ ¥ 13+ —=—h%M, (7.3)
1 11 12

1

ly"(x) - S* ()< mdx ]S - i L S;

" n ]2 - 1 1 1 1 ]
™ 03}~ S™0n)| £oomEe L | S) - o ) SY -yl o hh (7.8)

As expressoes acima sd3o Uteis para estimativas de erros na interpolacao
cubica de Hermite H(x), no lugar de S(x), bastando colocar

S3=¥ € Siye¥y

m
* Coloca-se y(x) em C" (a, b) significando y(x) € C (a, b), em todo o texto.
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Em seguida, para os denominados splines E(x), procuram condigoes de
extremidades sob a forma: ]

S; + 4S8! = ﬁ-(ac Yo+ o1 y1 4+ a2y + 0y ys) (7.5)

) , 1
Qo Sl‘i"‘l + Sl’l = - -h— (00 yl‘l + oy yn_l + 03 yn_z + 0y yn_3) (7.6)

de modo que se obtenha a ordem de convergéncia [y -S| =0(h"), sendo
incognitas a, oy (i=0,1, 2, 3).
Finalmente, concluem:

Seja S(xg um spline cubico de interpolagdo que coincide com
y(x)emC®> (a, b ) em pontos igualmente espagados e que satisfaca
as condigoes acima, onde @ < 11/3 ou a > 19/5, com n > 5, entdo:

1y® =s® <o) (r-0,1,2,3 (7.7

somente se
a =1 (-20-1), a =1 (- 30+ 18) (7.8)
6 6
_ 1 .
ar == (6a~9) , q5=-— (- o+ 2) (7.9)
6 6

Para qualquer valor de a_no dom7nio indicado existe e & @inico o spline E(a),
com as ordens de convergéncia indicadas.

Ha, portanto, uma infinidade de condigOes que permitem a obtengao de
If = sl =o0(*). -

As condigGes de extremidades para os splines E(a) podem ser colocadas sob
diversas formas equivalentes.

Numa primeira forma:
So + o S1 = po(Xe)ta ph(x;) (7.10)

®One1 P ST e py a0 ) 4Rl g(x) (7.11)
onde .p.(x) e o polinomio cﬁgico com valores yg, yi1, y; € ys nos pontos
X0s X1, X2 € X3, € py_3(x) € 0 polinomio cubico com valores Yn-3s ¥p-2s
y € y_ nos pontos X -32 X _os X -1 € X -
Para o + =, o spline E(a) corresponde a:

S} = py(x1) (7.12)

n-1

Sa-1 = Pa-3 (%) 7-13)

isto e, fixam-se valores das derivadas primeiras no segundo e no penultimo
nos.

Numa segunda forma, as condigoes de extremidades podem ser escritas:
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(2 - o) 8% Mg + (9 - 3a) A2 M,

0 (7.14)

(2-0) VM - (9-30) VM

"

0 . (7.15)

onde aparecem diferencas de segunda e terceira ordens, ascendentes e
descendentes.

Em particular, para a = 2, obtem-se:

A% M,
VZ M
n

0 (7.16)
0 (7.17)

Numa terceira forma, as condicoes de extremidades podem ser escritas

(a - 2) d, (7.18)
= (a-2)d_

(7 - 2&) dl
(7 - 2a) d

: (7.19)

onde d; = S™ (x;,) - S™ (xj.), isto €, discontinuidade da derivada terceira
no ponto X, 0 que equivale a reagao de apoio Ri’ no modelo da viga continua.

Com o = 2, para o spline E(a) equivale a exigir:
d, =0 (7.20)
d . =0 (7.21)

Isto e, eliminam-se as discontinuidades de S"(x) nos pontos x, e X1 (O
de maneira equivalente, sao_impostos R, = Rh-1 = 0, no modelo da viga
continua, dando interpretacoes a (7.16) e (2.17).

Para o = 3,0, obtem-se o melhor dos E(a)¥ com o significado:
d‘_. — dZ ou Rl = Rz (?:22)
d = d ou R = R (7.23)

no modelo da viga continua, igualam-se os valores das reagOes de apoio em
X1s Xz € tambem em x : X .
n-1 n=2

Finalmente, sob uma quarta forma, Util para estabelecer a primeira e a
ultima equagoes do sistema tridiagonal, as condicbes de extremidades podem
ser colocadas:

(@ = 2) Mg + (20 - 1) My = (a - 2) pi(xo) +(2a - 1) Po(x1) (7.24)

(Za= )M _ 4+ (a-2) M = (20-1)p (x_)+ (a-2) pY_4(% )

(7.25)

pelas expressbes acima, para « = 0,5, por exemplo, obtem-se:
Mo = py(xo) (7.26)
Mn = p;_s(xn) {7.27)

* Veja-se referéncia 2, pag. 362.
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sendo condigoes para o spline natural generalizado, com derivadas segundas
obtidas por polinomios cubicos de interpolacio,

8. Condicoes de Extremidades para o Spline Cubico com Nos com Espacamentos
Quaisquer, Splines E(ap, an)

Num segundo trabalho, G. H. Behforooz e N. Papamichael, através dos
chamados splines cubicos E(a,, a,), procuram generalizar os resultados
conseguidos pelos splines E(a) referentes a nos igualmente espacados.

Para os splines E(aos an), procuram-se condigoes de extremidades sob a
forma:

1) ] ]
S, * a, 5_1 =— (a0 yo + a,, Y1+ 80y, +a;,y,) (8.1)

2

; I i ]
0n sn-l Sn n “n-1 n “n-3

1
;‘ (aon y ta vy + azn yﬁ-Z ta; y )
n (8.2)

de modo que, para nos desigualmente espacados, ainda se consiga:

” y(r) _ s(r) ” = O(Ed—r) (r=o0, 1, 2, 3) (8.3)
Sao impostas as seguintes restricdes:
y(x)emCS (a, b)), n>5

ho/hy, hy/h, e hn_z/hn, hn-l/hn’ permanecam constantes quando h » Q.

Adotam-se a seguir as notacdes adicionais:

qo=fthe by vy, (8.4)
h + h h + h + h
qn = --—n—l__,E : rn = ___!'1_2 n-1 n (8.5)
h h
n iol

Para que haja solucao unica, exigem-se agora dominios para Qg € o conforme
abaixo:

a, < Cj 3 G, > Dj (3 =0, n) (8.6)
isto e: L "
490 ro- 2q, - 90 = 1y 4qory + 2q, - 5qp - ry
el = Ou ay > Dy = — (8.7)
& ® " (qo =1)(2r, - q, - 1) (90 =1)(2r, + Qo - 3)
4 r - 292 - -r 4qr + 292 -59 -,
a < C = qn Il qn qn n ou o N D = qn n q'ﬂ qn n (8.8)

n n = _ n n _ -
(q, - 1)(ar 1) (9, = D(2r_ +q -3
Sendo S(x) o spline cibico que coincide com y(x) em (S (a, b)nos nos x_,
i=0,1, ..., n, satisfazendo as condicoes referentes aos splines_ 1
E(ag, o )s coma, e @ nos dominios ja definidos, com restricoes ja impostas

n 9%
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para ha/hy, hs/h,, h,-1/h e h.-5/h_» haverd solugdo Ginica somente se:

q] + (1 - QJ)QJ

asj = (8.9)
rj(rj - 1)(rJ = qJ)
rj + (1 - rj)a.
2z = 3 (8.10)
q_] (q_] - ])(q_] = I"J)
a;j = aj + 1 =~ qj azj - rj-aaj (8.11)
aoj r - (alj + azj + agj) comj =0, n. (8.12)

Para nos igualmente espacados, 9; = 2,0, r; =3,0 (j=0, n), e se tambem
Go = a, = o, entaoc os coeficientes acima coincidem com 0s ja deduzidos para
0 spline E(a), isto e:

o
w
"

L(-a+2) , a=1(ga-09 (8.13)
6 J 6

w
—
n

L TS W A 1) (8.14)
6 I 6

comj=0,n, e as exigencias a < 11/3 ou o > 19/5.

Os splines E(a) sdo, portanto, casos particu?areE dos splines E(ag, a’ ) onde
@ = a_ = a € ha espacamento uniforme entre os nos. u
n

As condigcOes de extremidades para os aplines E(ag, an) podem ser escritas:

S+ @, S) = Py (%) + @ Polx;) (8.15)

Ctn Sn—l * Sn - cxn pn—3(x

)+ P4l ) (8.16)

onde p,(x) & o polinomio cubico com valores yo, ¥1, y» € y; nos pontos

Xos X35 Xz € X3 €, da mesma forma, p _B(x) e o polinomio cubico com valores
Yn-3s Yp-2> ¥n-1 € ¥q nos pontos_xn_g, Xp-23 Xp-1 € X, sendo conveniente
resSaltar que aqui as interpolacoes Se fazem para pon{bs sem espacamento
uniforme.

n-1

Com q, = g = 0, obtem-se o spline E(0, 0) para o qual
So = Pylx,) (8.17)

L= bl (x) (8.18)

e spline do tipo completo mas aproximando-se as derivadas extremas atraves de
derivadas de polinomios de interpolacao.

Para o, = o =+« 80 spline E(=, =) correspondem:
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S = Polxy) (8.19)
Sa-1 = Pa-3(Xp-q) (8.20)

agora fixam-se, atraves de interpolagdes, derivadas nos segundo e penultimo
pontos.

G. H. Behfrooz e N. Papamicha%] comentam em particular quatro splines
E(@o, a_), designados por E(aol).aél)), comi-=1, 2, 3, 4.

Para o spline E(a§1).aél)), colocam-se:

Qo q
agt) 3 all) =2 (8.21)
Qo = 1 4, & |
vindo as condicoes de extremidades:
S* ( Xps XasXp ) =0 (8.22)
s* ( X _ps Xo 10 X, )=10 (8.23)
onde f ( Xos X1, ..., Xy ) denota a diferenca dividida de ordem n com base

nos pontos X, § 2l Vs s wwmy N

As condicoes acima equivalem a dizer que S™ (x) e continua nos pontos x; e
X -1 isto e, no modelo de viga continua anulam-se as reagoes R; e Rn_l.

Para nos igualmente espagados, ugl) = aé‘)

2, e recai-se no spline E(2).

Para o spline E(a(?), aézj), definem-se:

( o ro
af?) = + (8.24)
qo =1 ro-1+(ro-qo)?
g r
al2) = 24 2 (8.25)
B q.~T E-1#%(r = q,)°
resultando como condicoes de extremidades:
§* ([ Xoy Xiy Az, X5 ) =10 (8.26)
S" (X__gs X _9» X, 95 X, ) =0 (8.27)
Quando os nos forem igualmente espacados, aéz) = aéz) = 3, e volta-se ao

spline E(3).

Designando por di a discontinuidade da derivada terceira no ponto X;» isto
e,

d, = §" (x.,) ~§" {x; )

i-

pode-se demonstrar que:

)

d;= (g * hyg) 5% UXggs X5 Xiay






el

comi=1,2,3, ..., n-1, oque significa que as reacoes de apoio, no mode-
lo de viga continua, para os apoios internos, sao proporcionais as diferen-
¢as divididas com bases em Xio1s X§ € Xj4q-

As condicoes de extremidades para os splines E(a,, a ) podem ser colocadas
sob a forma: .

Fo di = Go do (8.28)
Fod ;=6 d_, (8.29)
onde
Fj = (rj - 1) { rs (1 - qj) + (1 - rj) ( qj - o (qj -1))1} (8.30)
G, = g(r; - qj)2 {q - o (95 - 1)} j=0,n (8.31)

isto e, correspondem a relacoes entre as reacoes de apoio R;, R, e Rn—l’
n-2°

3)

Para o spline E(ag ,aﬁg)) definem-se:

Qo o

al®) - + (8.32)

|
i

als) - _m n (8.33)

e as condicoes de extremidades expressam que S™ (x) €& continua nos pontos
Xz € X__,, isto e, anulam-se d, = R; e d_, =R _,.

Finalmente, para o spline E(ug“),aé“)), colocam-se:

qi(rn- Go)? + Qo(ro = 1j2 + ro(r, - 1)(qo - 1)

a(*) = (8.34)
’ (e = 1) ((ro = 1)* + qo(ro - qo)?)
2 - 2 _ 132 _ _
(o) - Iy = 9" + a,(ry - D+l - 1)(q, - 1) (8.35)

(a, = 1) ((ry = 1) +q(r -q)?)

Para o spline E(a&“),aé“)) as condicdes de extremidades significam que
d, =d; e d,_q = dp-p, isto e, igualam-se as reacoes de apoio R, = R, e
R_; =R _, No mogefo da viga continua com tramos desiguais.

Quando os nos forem igualmente esBagados, a§3) = q® - 3,5, vindo o
spline E(3,5), por outro lado, of ) = aé“) = 3,0, resultando o spline
E(3,0).

Os quatro splines acima abordados existem de maneira unica para quaisquer
distribuigoes dos nos.
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As condigoes de extremidade para o spline E(ap, @ ) podem ser expressas
sob a forma abaixo (bastante Util quande se vai résolver o sistema
tridiagonal paraas incognitas M;).

(00 = 2)Mo + (200 = )My = (o = 2) pl(xo) + (200 - 1) pi(x1) (8.36)

(20, = 1M, + (@ -2)M = (200, = 1) pp_g(x ;) + (@, = 2) p2_5(x )

(8.37)
onde os polinomios po(x) e pn_3(x) ja foram anteriormente definidos.

Para oy = a, = 0,5, obtém-se o spline E(0,5, 0,5) com as condigoes de
extremidades:

Mo
M

n

n

Py (X,) (8.38)
g (%) (8.39)

que correspondem a condigoes para o spline natural_generalizado, mas com

-

derivadas segundas obtidas atraves de polinomios cubicos de interpolacao.

Para nos igualmente espacados, com a = 3,0, obteve-se o melhor dos E(a);
para nos com espacamentos quaisquer, ndo se pode determinar prontamente o
melhor dos E(ae, oy); contudo concluem H. G. Behforooz e N. Papamichael que
entre todas_as condis§es ?e extremidades analisadas destacam-se

E(a§?), uéz)) e E(af®), an“)) por conduzirem a resultados com melhores
aproximacoes, bastando lembrar-se que ambas recaem no E(3) quando o espaga-
mento € uniforme.

9. Spline CGbico com N3s Igualmente Espacados, Condicbes de Extremidades

que Permitem Obter Melhores Aproximacoes para as Derivadas de f(x)

N. Papamichael e A. J. Worsey, em 1981, estabelecem condigoes de extremi-
dades e expressoes em M; = S"(x;) que conduzem 3 melhor ordem de aproximacao
para as derivadas de f(x). Admitem-se funcoes f(x) de classe C® ( a, b)e
nos igualmente espacados, na interpolagao pelo spline cubico.

Inicialmente examinam-se condicoes de extremidades que so contenham valores
da funcao f(xi) = y; sob a forma:

aMg+BM = E% (a0 yo + @, y; + a5 Y2 + a3 ¥ys + a, y,) (9.1}

+ay Yoy ) (9.2)

Para a forma acima, conseguem-se condigcoes de extremidades mais precisas
quando o = 1 e B = 4, sendo, neste caso, equivalentes a:

A* M,
V¢ M
n

(9.3)
(9.4)
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que se podem transformar em:

Mo + 4M; = # (37yo - 82yy + 9y2 - 10ys + yu) (9.5)
— a
M, M = E;;(B?yn 82Y,1 + W, 5 - 0y _3+y ;) (9.6)

Splines cubicos sob as condicdes de extremidades (9.5) e (9.6) oferecem as
seguintes ordens de aproximagao:

Para a derivada primeira

max | Si - yi | = O(h") (9.7)
Oiiin
max ! S'"(x, + 0,5h) - y'(x. + 0,5h)|= O(h“) (9.8)
0<i<n-1 . *
Para a derivada segunda
|yt - é (14My - 5M, + 4M; - M3) | = O(h") (9.9)
- 1
max | y¥ = — (M. . + 10M. + M, ) | = O(h" 9.10
liiin—l 1 12 1-1 1 b o l ( ) ( )
L _.I_ - - _ L
| yn - (14Mn 5Mn_1 + 4Mn—2 Mn—B) [ = 0(h*) (9.11)
Para a derivada terceira
= 1
max | y! - — (M._ - 14M. _ + 14M. -M..) | = 0(h?)
Ziif_n-Z 1 24h 1-2 i-1 1+1 1+2 (9 ]2)

Para a derivada quarta

= 4 1
max | y{ - — (M, - M, + M) | = 0(h?) (9.13)
1<i<n-1

Em resumo, sob as condicoes de extremidades (9.5) e (9.6), conseguem-se
ordens de aproximagao O(h"*) para y, y' e y", com as derivadas calculadas nos
pontos nodais x; indicados.

Para condicoes de extremidades que so contenham valores das derivadas
primeiras, sob a forma:

aS, +BS; +YS,=b, y; +byy, +b, y; (9.14)

+aS =byy ,+biy  +boy  (9.15)






23

as mais precisas correspondem a @ = 1, B=-2¢ ¥ = 1, tornando-se
entdao equivalentes a:
8% S, = A%y, (9.16)
2 I o g2 '
V2 Sk -ty (9.17)
que podem ainda ser escritas:
Mo+ 2 =L (30 - by + 3y2 + h(- vy 4 2y; - ) ) (9.18)
- - VoL o :
2Mn-l : Mn - —;‘[ 3yn 6‘yn-l ¥ 3yn-2 * h('yn 2'yn—l * yn-Z)}r
h 79.19)

Na deducdo de (9.18) e (9.19) utilizaram-se as relagoes entre a, B, y com
o, B, Y, conforme referencia citada, e eliminaram-se M, e Mn_2 nas expressoes
obtidas.

Sob as condigoes de extremidades (9.18) e (9.19), consegue-se ordem de
aproximagao O(h") ate (9.12) inclusive e 0(h®) em (9.13).

Para obter as mesmas ordens de aproximacao, citam os autores do trabalho as
seguintes alternativas para as condigoes de extremidades:

My = —— (185y, - 316y, + 180y, - 32y, + 3y, + 60h y!) (9.20)
72h

.M = 1

=l gop2

(TSSyn - 336yn_1 + 180yn_2 - 32_yn_3 + 3yn_4 - 60h y;] (9.21)
observando que em (9.20) e (9.21) exigem-se somente Yo € y' alem dos valores
ja disponiveis de Y. a
Como segunda alternativa:
144M, + 876M, = -‘;-(13133;D - 2888y, + 1866y, - 320y; + 20y, - 60h y")
h
(9.22)
_ 1
876Mn_1 + 144 Mn = ;; (1313yn - 2888yn_1 + 1866yn_2 - 320yn_3 +

= 2 n
+ 29 _, - 60h yr) (9.23)
onde, em (9.22) e (9.23), sao exigencias adicionais somente Yo ey

Para condigoes de extremidades que so contenham derivadas segundas, sob a
forma:

oMo+ BM +y My =cpyl +cy y! 4, Y, (9.24)

YH BN ytaM =cy vy +coy" (9.25)

n-2
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s80 mais precisas as obtidas coma =y =7 e B = 46, vindo:
TMo + 46My + TM2 = 2yp + 56y! + 2y (9.26)
TH, o 46N\ + TM_ = 2y" ) +56y" | + 2y" (9.27)

Eliminado-se M, e Mn_2 de (9.26) e (9.27), resultam:

M =y, + 28y] +y) - ﬁ% (7yo - 14y, + 7y,) (9.28)

- n n n - 3 =
9”n-1 o A 28yn_1 ik = EE'(7yn-2 14yn_1 + 7yn) (9.29)

Sob as condigoes de extremidades acima, consegue-se ordem de aproximacao
0(h") desde (9.7) at&(9.13) inclusive, isto e, 0(h") para a expressdo que
define yf“).

Nao se conhecendo as derivadas segundas nos seis pontos, tres em cada extre-
midade, propGem Papamichael e Worsey, para obter a mesma ordem de aproxima-
¢do 0(h"), ate para y{*), as condigoes:

Mo + 2My = —L _ (- 1187y, - 864y, + 2376y, - 352ys + 27y, - 2940h y! -

864h?
- 360h% y" ) (9.30)

N -
n T gp4h?

(- T]8?yn - 864yn_1 + 2376yn_2 - 352yn_3 + 27yn_4 +
+ 2940h y* - 360h2y;) (9.31)

(9.30) e (9.31) serdo a primeira e a Gltima equacoes na formagao do sistema
tridiagonal de equagOes lineares contendo desde Mo ate Mn.
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REPRESENTAGCAO DAS RELAGOES MOMENTO-CURVATURA-FORCA NORMAL, PARA SECAO TRANSVERSAL
DE CONCRETO ARMADO, POR MEIO DE SPLINES COBICOS *

Na referencia bibliografica (9), pag. 100, tabela A3-1, fornecem-se valores de
momento-curvatura-forga normal para segao transversal retangular, de concreto
armado, submetida a flexao composta normal.

Designando por x a curvatura relativa, x = 10® h/r e por y o momento fletor relativo,

y = 10 M/NC h, para
¢ =0, €g = 0,27, d'/h = 0,1, V=0,30 e w=0,3,
retiraram-se da tabela os seguintes pares de valores (x; y):
(13 106) (25 174) (35 236) (4; 294) (5; 334) (6; 340) (7; 343) (8; 343)
Na Fig. 1, representa-se o diagrama obtido com a utilizagao do spline cubico

completo, com tangentes extremas obtidas por polinomios de interpolacgao sem
pontos adicionais,

*Neste trabalho, as aplicagoes limitaram-se a problemas de interpolagao.

103 o
L-:ch T
350 +*+*..++++o++-§-r
L ]
; . i
{tabela A3-1) v= 0,30 ¢=0 +
CEB-FID : +
300 d'/h = 0,1 e
+
+
+
+
250 .
+
+
- +
. 200
+
-+
150 +
+
» pontos fornmecidos
-+
. e 4pontos calculados velo spline comnleto
(inter~olacio sem pontas adicionais)
1ud
50
10%
1,0 2,0 . 3,0 11:,0 .3’0 - 39 ; 7,0 :C

Fis. 1 - “lomentn»—Curvatura - Forga Hormal
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Variando somente o coeficiente de fluencia para ¢ = 2,0, extrairam-se da

mesma referencia citada os novos pares de valores (x;

(I; 74) (25 137) (3; 195) (4; 251) (5; 285)

y):

(6; 313) (7; 328) (8; 331)

Na Fig. 2, representou-se o diagrama obtido pelo spline cubico completo,
com tangentes extremas fornecidas por polinomios de interpolagao sem pontos

adicionais.

_— v = 0,30 ¢ = 2,0

(talela A3-1)
CEE-FIP d'/h = 0,1 +

230

150

-100 +

L 50 .

.» pontos fornmecidos

* 4 pontos calculades pelo soline com-:

(interpolagao 'ser pontoe adicionais|

+
-+
4

Fig. 2 - Momento-Curvatura - Forga Normal
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Para a obtengao do dzagrama momento-curvatura-for¢ca normal da Fig. 3,
utilizaram-se os seguintes pares de valores (x; y):

(1; 100) (2; 174) (3; 243) (4; 309) (5; 353) (6; 372) (7; 384) (8:; 389)

Para a interpolacao, adotou-se o spline cubico completo, com tangentes
extremas fornecidas por polinomios de interpolagao sem pontos adicionais.

100 M
K h ¢ 5
400 c L 0,5
- + + +
{tabela A3-2) ve= 0,20 ¢ =0 e ++ 7 .
. CEB-FIP d'/h = 0,1 + 7
& *
-+
-+
L
300 -+
+
+
P
250 -
+
+
200 + = pontos fornecidos
+
. o 4 pontos calculados pelo spline compl
% (interpolagac sex pontos adicionais
| 150
+
+
+
100 .
50
10°
el P o — " S TB oz 1

Fig.3 - Mowento-Curvatura - Forga Normal
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Novos valores de momento-curvatura-forga normal foram retirados da referencia

(7), tabela 8d, aco CA-50B, com 102 n. =10 e w = 0,35, fornecendo os pares

(x; y) abaixo: g

(0,5; 40) (1,0; 64) (1,5; 86) (2,0; 108) (2,5; 129) (3,0; 144)

(3,5; 152) (4,0; 159) ‘(4,5; 164) (5,0; 169) (5,5; 174) (6,0; 178) (6,5: 179)
(7,0; 179) (7,5; 180) (8,0; 180) (8,5; 180) (9,0; 181) (9,5; 181)

(10,0; 181)

Na Fig. 4, representa-se o diagrama obtido com utilizacao do spline cibico

completo, com tangentes extremas fornecidas por polinomios de interpolacao,
sem pontos adicionais.

200
& M;
103 - .
bhf g 5: , wp ™ 035
2 i ;
= 10 ¢ . 0,90 = cddtoditodttotres
(tabela 8d) 107 % 2 no AR E AR
Buchaim +.+++
o+t
++7
-
5 B
L 150 ++°
-+
L]
+
-+
+
L]
+
+
+
* * pontos formecides
+
- 100 +
=+ * 4+ pontos calculados pele splinme complezo
S (interpolacao sem pontos adiciomnais)
+
R
+
L]
-+
L so t
-
0 1,0 2,0 3,0 (4.0 45,0 , 6.0 7.0 L 8.0 . 9.0 i
3
Fig. &4 - 10

Momento-Curvatura-Forga Normal
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REPRESENTAGAO DO DIAGRAMA DE INTERAGAO M-N, PARA A FLEXAO COMPOSTA NORMAL
EM SEGAO RETANGULAR DE CONCRETO ARMADO (referencia (26))

Do abaco 3.4, pag. 50, da referencia, leram-se as coordenadas x = ve y = v(e/h),
formando os pares (x; y) conforme abaixo:

para w = 1,0:

(- 1; 0) (- 0,8; 0,090) (- 0,6; 0,186) (- 0,4; 0,278) (- 0,2; 0,370)
(0; 0,463) 0,2; 0,541) (0,4; 0,570) (0,6; 0,531) (0,8; 0,472)
(1; 0,398) (1,2; 0,335) (1,4; 0,255) (1,6; 0,157) (1,8; 0,00Q)

Para w = 0,5:

(- 0,5; 0) (- 0,3;-0,093) (- 0,1; 0,187) (0,1; 0,274) (0,3; 0,336)
0,5; 0,337) (0,7; 0,295) (0,9; 0,248) (1,1; 0,168) (1,3; 0,074)
para w = 0

(0; 0) (0,2; 0,080) (0,45 0,120) (0,6; 0,120) (0,8; 0,080)
(1,0; 0,0)

Na Fig. 5, encontra-se o diagrama obtido com interpolagao pelo spline cibico
com igualdade de reagoes.

“ ++l+
e +
V= . +
h " 4
+
1+ 4+
+ +
L]
+
s +
+ +
+ ] .
&
2 +
+
+ ..|.++_+ .
+ +
+ . *w=1,0
* i + ° +
o . ++ +
E + % 0,5
+ 4 + +
+ +) + + e pontos formecidos
+ -
: : + . + pontos obticos pelo spli:
% + * . com igualdade de reagoes
+ + +
+
+ + ‘+++‘++ “*
. . + b0 . 4
+ + + + . +
+ % + +
+ + + +
~ 4 4 >
1,5 1,0 1] 0,5 1,0 1,3 2,5 Y

Fig. 5 = Diagrama de Interacao M-N, flexijo composta pcrmal (Pfeil, pp. 50)
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REPRESENTAGAO DO EIXO DE UM CABO DE PROTENSEO PELO SPLINE COBICO

Para o eixo de um cabo de protensao, forneceram-se as coordenadas (x; y) com

08 seguintes valores:

(0; 20) (6; 23,8) (12; 25,5) (18; 24,5) (243 22,5) (30; 21)
(36; 19,5) (42; 18,5) (48; 18,2) (54; 18,5) (60; 19,5) (66; 21)

(725 22,5) (78; 24,5)  (84; 25,5) (90; 23,8) (96; 20)

Na Fig. 6, desenha-se o eixo do cabo de protensao com os pontos obtidos por

~

interpolagao pelo spline cubico com igualdade de reagoes.

.+ -
+ +
'+§o++.++.+"’.

* pontos fornecidos
* -4 pontos calculados pelo spline

(spline com igualdade de reagoes)

Fig. 6 - Eixo de um cabo de protensio
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REPRESENTACAO DE DESLOCAMENTOS, LINEAR E ANGULAR, EM ESTACAS ENTERRADAS

Na referencia (32), calcularam-se estacas enterradas, com extremidades livres,
sob esforgos de extremidades, em solo com reagao lateral com distribuigao
triangular.

Resolveu-se a equacao diferencial de quarta ordem

5
__X+_._xy+;\_y=0
dx" 32 32

para diversos valores do parametro de rigidez A = a L, com

5/ K
EI

sendo L o comprimento da estaca.

Para a estaca com extremidade inferior livre, sob forga horizontal H
aplicada na extremidade superior, a linha elastica escreve-se:
H

y(z) = A
a? EI

Para a mesma estaca, sob momento M aplicado na extremidade superior, obtem-se
a linha elastica:

M
Y o2 EI

y(z) = B

Ainda sob momento aplicado na extremidade superior, a rotacao da segac
transversal da estaca escreve—se:

M
a EI

¢(z) = B

s

Nas Figs. 7, 8 e 9, respresentamse, atraves de splines cubicos, os coeficentes
A, B e Bs’ em funcao de XA, para secao transversal do topo da estaca.
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REPRESENTAGAO DO DESLOCAMENTO DO TopO DA ESTACA SOB FORCA HORIZONTAL NA
EXTREMIDADE SUPERIOR, POR MEIO DE SPLINE COBICO

Para a constru;Eo da Fig. & abaixo, com x = Aey=Aa » forneceram-se og
seguintes pares (x, y): y

(1,0; - 18,0301) (1,2; - 12,5520) (1,4; - 9,2662) (1,6; - 7,1541)
(1,8; - 5,7298) (2,0; -~ 4,7374) (2,2; - 4,0319) (2,4; - 3,5257)
(2,6; - 3,1628) (2,8; - 2,9054) (3,0; - 2,7266)

? la, |
L 20,0
y(© =a H,
* o’EI
[ 15,0 +
-+
+
L]
-’
+ i .
[ 10,0 ++ - * pontos fornecidos .
g ® + Pontos calculados pelo spline completo
"‘++ (interpolagao sem pontos adicionais)
o++
+ :
) +.+
5,0 +++t
+4 .
s O
++++- ++++.++++.
10 L2 14 16 (18 2,0 2.2 2,6 2,6 2,8 3,0

1 ] 1 (] _._

. Fig. 7 - Coeficiente Ay Para deslocamento horizontal do topo da estaca
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REPRESENTAGCAO DOS DESLOCAMENTOS

EXTREMIDADE SUPERIOR, POR MEIO DE SPLINE COBICO

referencia
y) abaixo:

Das tabelas 15 g 25, da
Os pares de valores (x;

(1,0; - 24,1059) (1,2; - 14,0413)

(1,8; - 4,4558) (2,0; - 3,4182)

(2,6; - 2,0483) (2,8; - 1,8695)

Da utilizagdo dos pares de valores

(32), comx = ) e y =B

(1,4; - 8,9536)

(2,2; - 2,7559)

3,0; - 1,7575)

DO TOPO DA ESTACA, Sop MOMENTO APLICADO NA

¥ conseguiram-se

(1,6; - 6,1294)

(2,4; - 2,3268)

acima resultou o grafico da Fig. 8,

25
+
- 20
+
M
+ (0) = By ( EI
"
- 15
4
+
- +
* 10 + * pontos fornecidos
- -
+ * + pontos calculados Pelo spline completo
++ (interpolagio sem pontos adicionais)
.
+41
5 +4
l++
+4
TR 4 5
+4
++'++++'++++-++++-
1,0 1,2 1,4 1,6 1,3 2,0 2,2 2.4 2.& 2.8 3,0
; ——gp =Y 22 Pt 43,0,







Para a construcao do grafico da Fig. 9, comx = } ¢ y = B_, das tabelas 15

(1,0; 36,4856) (1,2; 17,9436) (1,4; 10,0501) (1,6; 6,2681)

1,8;

(2,6;

4,2992) (2,0; 3,2132) (2,2; 2,5910) (2,4; 2,2269)

2,0129) (2,8; 1,8886) (3,0; 1,8185) '

= 40

- 35

- 30

- 25

| 20

15

10

o+~
+
&
M
$(0) =B ¢ )
4, 5 o EI -
+
+
+
+ ¢ pontos fornecidos
° s 4 pontos calculados pelo spline completo
++ (interpola;ao sem pontos adicionais)
+
+
‘4
*3

1,0 1,2 1,4 1,6 1,8 . 2,0 -2,2 2,4 2,6 2,8

T T T T T T T T

Fig. 9 - Coeficiente B, para rotagdo do topo da estaca







Datas tabelas ] a 11 da referencia (32), retiraram-se para cada valor de )

0s valores maximos de - Colocando-se x = ) € Y = valor maximo de AM’

(1,0; 0,2591) (1,2; 0,3116) (1,4; 0,3629) (1,6; 0,4131) (1,8; 0,4618)
(2,0;°0,5111) (2,2; 0,5581) (2,4; 0,6012) (2,6; 0,6393) (2,8; 0,6745)

.~

(3,0; 0,7032)

Os pares acima deram origem ao grafico da Fig. 10.

L G2
0,7 e
4++7
H +++.
8 M = o
0,6 = A“('&') I
+.
++7
‘0,5 + °
4+
+
L]
++
0,4 +'+-iL
’ +++
++°
4
+
0,3 ++°
+
o +
- 0,2
® pontos fornecidos
* +pontos calculados Pelo spline completo
0,1 (interpolag3o gen pontos adicionais)
1,2 1,2 1, 1,6 1, 2,0 2,2 2,6 2, *,0

#ig. 10 - Coeficiente Ay; para momento fletor mAXimo na estaca
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REPRESENTACAO DE CURVAS DE NIVEL PELO SPLINE PARAMETRICO NATURAL

Para a superficie de influéncia de M _, numa placa retangular, de acordo com

a referencia (28), diagrama 62, leram-se as seguintes coordenadas (x; y): %
Para a curva de nivel - 2:

(80; 0) (60; - 32) (40; - 49) (20; - 55) (0; - 51,5) (- 20; - 42)
(= 40; 0) (- 20; 42) (0; - 51,5) (20; 55) (40; 49) (60; 32)

(80; 0)

Para a curva de nivel - 3:
(80; 0) (60; - 24) (40; - 38,5) (20; - 42,8) (0; - 37) (- 20; - 15)
(= 23: 0) (- 20; 15) (0; 37) (20; 42,8) (40; 38,5) (60; 24)

(80; 0)

Para a curva de nivel - 4:
(80; 0) (60; - 18,5) (40; - 29) (20; - 30) (0; =~ 16,5) (— 5: 0)

(0: 16,5) (20; 30) (40; 29) (60; 18,5) (80; 0)

Para a curva de nivel - 5:
(80; 0) (60; = 13,5) (40; - 19, 5) (20; - 15.5) (10,5; 0) (20; 15,5)

(40; 19,5) (60; 13,5) (80; 0)

Para a curvz de nivel - 6:

(80; 0)  (60; - 8,5)  (40; - 10,5)  (28,5: 0) (40; 10,5)  (60; 8,5)
(80; 0)

Na Fig, 11, encontram-se desenhadas as_curvas de nivel acima, com pontos de
interpolagcao obtidos pelo spline paramétrico natural. Ressalta-se o fato de

que os pontos dos desenhos, obtidos POT um passo uniforme da variavel t,
nao coincidem aqui com os pontos lidos nas variaveis (x: v)

*Na leitura dos pontos (x; y) considerou-se o eixo x horizontal, designado
Por y na Fig., 11.
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REPRESENTACAO DE CURVAS DE NIVEL PELO SPLINE PARAMETRICO NATURAL
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REPRESENTAQKO DE CURVAS DE NIVEL PELO SPLINE cUBICO PARAMETRICO PERIDDICO

Para a8 superficie de influencia de By, placa c?rcular, de acordo com a
referencia (28), diagrama 89, leramse ag Segulntes coordenadas (x; y):

Para a curva de nivel 2:

(41; 0) (40; 8) (30; 29) (20; 37,5) (10; 42) (0; 44)

(- 10; 43) (= 20; 40,5) (- 30; 37) (- 40; 31,5) (= 50; 26) (- 60; 23,5)
(- 705 20,5) (- 80; 11) (~182,5; @) (= 80; -11) (= 70; -20,5) (- 60; - 23,5)
(= 50;-26) (- 40; -31,5) (- 30; =-37) (- 20; - 40,5) (- 10; - 43)  (0; -44)

(10; -42)  (20; =37,5) (30; -29) (40; - 8) (41; 0)

Para a curva de nivel 3:

(11; 0) (10; 6) (0; 20) (- 10; 24, 0) (- 20; 24,5) (- 30; 22,5)
(- 405 19) (- 50; 15,5) (- 60; 14,5) (- 70; 10) (- 74,5; 0) (- 70; - 10)
(= 60; -14,5) (- 505 -15,5) (- 40; - 19) €~30;~22,5) (~20;- 24,5) (- 10; -24)

(0; - 20) (10; -6) (11; 0)

Pa%a a8 curva de nivel 4:

(= 14,5; 0) (= 20; 9,5) (=.30; 13) (- 40; 12) (- 50; 9) (- 60; 8,5)
(- 67,5; 0) (- 60; -8,5) (- 305 -9) (- 40; =12) (- 30; -13) (- 20; -9,5)
(= 14,5; 0)

Na Fig. 12, Tepresentamse as curvas de nivel acima com pontos obtidos pelo
spline cubico parametrico Periodico. Aqui as curvas fechadas sap continuas,

com derivadas primeira e segunda tambem continuas, diferindo das curvas
fechadas ga Fig. 11,
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- Superficic de influsncia para
(Pucher, diagrama 89).

By, Placa circuler, curvas de nivel 2, 3, 4

cher Pontos obtidos pelo dipline eubico paramztrico
periodiceo.
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REPRESENTAGAO DO PERFIL DE UM VEICULO PELO SPLINE COBICO

Para o trecho inicial do perfil do veiculo:

(10; 12) (15; 24,8) (20; 29) (25; 31,6) (30; 33,5)

(35; 34,5) (40; 35)
(47,5; 35,5)

Para o trecho final do perfil do veiculo (apds o para-brisa):

(53,5; 44,5) (58,5; 46,7) (63,5; 47,5) (68,5; 47,8) (73,5; 48) (78,5; 47,5)

(83,5; 47,3) (88,5; 46,2) (93,5; 45) (98,5; 43) (103,5; 40,6)

(108,5; 37) (113,5;'33) (118,5; 27) (123,5; 17)
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