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Introdução

A aproximação de uma função f (x) por polinÔrnio Ünico, de grau elevado, can
pontos de colocação igualmente espaçados no intervalo de interpolação,
apresenta freqüentemente oscilações acentuadas, indesejãveis, entre os
pontos de colocação.

Para a função f (x) = 11(1 + x2) , no intervalo ( - 5, 5 ) , por exemplo, a
interpolação por polinãnios de grau n, em pontos igualmente espaçados, não
converge para f (x) , junto às extranidades do intervalo, quando n + e
Quando houver liberdade na escolha dos pontos de colocação, a utilização
das absclssas de Chebyshev conduz geralmente a polinãnio ünico, de aprox 1-
mação precisa e estãve1. A aproximação pelos polinômios de Chebyshev, de
obtenção rãpida, substitui usualmente a aproximação pelo polinõmio de
melhor aproximação, onde se procura tornar mInImo o erro máximo
11 e(x) !1 = IIP(x) + f (x) Il = mãx IP(x) - f (x) | em todo o intervalo,
impondo-se igualdade de oscilações ou de alternãncias de erros num nUmero
mInimo de pontos dentro do intervalo.

b

Quando a função que se deseja aproximar for fornecida sob a forma de valo-
res tabelados ou de resultados anplricos , é recanendãve1 a aproximação por
pol{nõmios por partes ou por trechos . Neste caso, adotam-se, em
sublntervalos, polinõm ios de grau não-elevado que se interligam por contI-
nuidade de valores da função e de suas derivadas até certa ordem, nos pon-
tos nodais .

Para efeito de confronto, citam-se três aproxImações em polinãn los cübicos,
por trechos .

Na interpolação cüblca , por trechos, de Hermite, para a determinação do
polinômio cübico Hi(x) , referente ao trecho ( xi-1, xi ) , impõem-se
Hi C xi-1 ) = f ( xi-1 ) > Hi ( xi ) = f (xi ) 9 Hi (xi-1 ) = f 1 (xi_1 ) e H 1 (xi ) = f 1 (xi ) .
Em cada Intervalo obtém-se o erro de aproximação

máx :f(x) - H; (x) | < hi máx ! f (4)(€)
' – 384

com E em ( xi_1, xi ) e hi xi-1

No segundo membro da expressão acima, reconhece-se o deslocamento nQ pelo da
viga biengastada , de vão igual a hj , sujeita ã carga uniforme p = f (') (€) .+L

Pela interpolação cübica, por trechos, de Hennite, tem-se, para o intervalo
( a, b ) , com h = mix hi, o erro de aproximação

mãx if(x) - H(x) | É à máx tf(')(E)1

com Ean ( a, b )

Na interpolação cübica, por trechos, de Besse1, para a determinação do
pollnãnio cübico Bi (x) , referente ag intervalo ( xi_1, xi ) , além de impor

eà { :k! )da=s :á:\;àà;s:iá:! ) p:n lá;i ZtE:mSm: E ’ ão:a::1 %E:1+ 81 ) âBáeá;ààooãrau
com pontos de colocação em xi_2, xi_1, xi e xi_1, xi , xi+1, respectivamente.

+ Admitindo-se doravante EI com valor unitário quando se estabelecer a
analogia com viga,
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:g':aIS i'r'posições de B:(x') = f '(x') e B;(x,) = f '(x,)9 c'nsegue-se' em

mãx ! f(x) - B(x) | = 0(hs)

e, para o caso de espaçamento uniforme

mix | f(x) - B(x) | = 0(h'' )

Na interpolação, por trechos, pelo spline cübico, para a determinação do
spline cÜbico Si(x), referente ao intervalo ( xi_1, xi ) , can

:É{:à 81) ;,iáiããà2s: :àá;+À,id:á:i3; :ÊrY31:=Ê,ãiáãã-!à(;)SÍá iii,:i:,agQFa
internos do intervalo ( a, b ) .

Para o spline cÜbico, sob condIções de extremidades adequadas, em xo e xD,
posteriormente examinadas , obtêm-se o erro de aproximação abaixo:

máx ! f (x) - scx) | < a h" mãx | f (+) (E) 1
– 384

com Ean ( a, b ) .

No segundo membro da expressão acima, reconhece-se o deslocamento no meio
da viga simplesmente apoIada, de vão igua1 a h, sujeita à carga unIforme
P =_Réx jf(')(€) | .

Observar que pelo sp1 ine cúbico SCx) consegue-se

mix if(x) - SCx) | = 0(hl')

mesma ordem de aproximação obtida pela interpolacão cübica, por trechos ,
de Hennite, exigindo''se, contudo, sanente a metade do nümero de informações,
isto é, somente f (xi) ao invés de f (xi) e f ' (xi) .
No caso de espaçamento uniforme, hi = h = (xi - xi_1) , obtém-se, pelo
spll ne cübico, para os pontos nodais xi, o erro de aproximação na derivada
prImeIra+

mãx | f '(xi) - S'(xi) | SE mãx | f(;)(E) 1

com € @1 ( a, b )

A aproximação acima , da ordem 0(h'') , torna o spline cübico Ot 11 para a
diferenciação nÜmerica de f (x) .

Pode-se obter o sp1 ine cÜbico SCx) pelo cãlculo variaciona1 quando se
procura o mInImo do funciona1

b

I{y) = J (y"(xD_=-ii
a

sob as condições y(x{ ) = f (x{ ) (1 = 0, 1, 2,
Encontra-se, para o funcional acIma, a equação de Euler

+ Veja-se (6, 13) , nó-itén 6, nig, lã-,
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d' y{x) , o ,
dx ''

para x + x{ .

Isto é, o spline cübico SCx), solução da equação acima, coincide can a linha
elãstica de viga sujeita a cargas concentradas nos pontos nodais xi . Tal
linha elástica é função contInua, com derivadas primeira e segunda'também
contInuas, composta por polinãnios cübicos an cada trecho (xi_1, xi ) .
0 fato de SCx) tornar mInimo o funciona1 mencionado, confere-Thé a êaracte-
rTstica de interpolação suave, por partes, can curvatura global mInima para
o intervalo (a, b ) . Evitam-se, desta fonna, as oscilações acentuadas
oriundas de interpolação por polinõmio único de grau elevado.

6

Para o spline cãbico coínpleto, definido posteriormente, o diagrama S"(x) ,
linha poligonal coincidente com o diagrama de munentos fletores para a viga
sujeIta a cargas concentradas nos pontos xi, representa a melhor aproximação+
11near, pelo método dos mTnimos quadrados , da função f "(x) , derlvada
segunda da função f (x) que se interpola pelo sp1 ine cübico SCx) .

F{nalizando, uti lizam-se os spllnes cabícos em problemas de interpolação,
de construção de grãficos, de ajustamento de dados3 de dIferenciação e
Integração numéricas, nas soluções de equações diferenciais e equações
Integrais .

1. DefInIção e Obtenção do SpI ine Cübico

ConsIdere-se uma partição qualquer do intervalo ( a , b ) pelos pontos
a = xo < x1 < x2 . . . < Xn = b onde se conhecem os valores da função f (x) ,
denomIna-se sp1 ine cabicQ scx) , sobre a partIção realizada , a função SCx)
com as segulntes propriedades :

a ) SCx) é contInua assim cano as suas derivadas primeira e segunda
no lntervalo ( a , b ) .

b) S(xk) = f (xk) , (k = O, 1, 2, n)

c) SCx) é um po]{nõmio de terceiro grau em cada subintervalo
C xk-1’ xk )

No ponto xk, colocar-se-ã:

Mk = s;(xk-) =sI+1(xk+) (1.1)

Sendo Sk (x) um po]inômio do terceiro grau no intervalo ( xk_1, xk ) , tem-se:

SL(x)
M,-, #'M* =

(1 .2)

Integrando-se :

si(x)
M,-, T*MkU + Cl (1.3)

can hk = xk - xk_1

+ Aproximação linear por trechos •
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Integrando-se . novamente :
( xk X) 3 (x

6h, n 6h,_

f (xk) e Impondo-se Sk(xk_1) = yk_l, Sk(xk) = yk, resultam:

Sk(x> = Mk-1 + Mk. + Crx + C2 (1.4)

com yk

(Yk - :rk-1) - (Mk - Mk-1) hk/6
Cl (1.5)

hk

(xkYk-1 - xk-IYk) - (xk Mk-1 - xk-1 Mk) hi/6
h

k

C2 (1.6)

Levando (l.5) e (1.6) em ( 1.4) , obtém-se, para o lntervalo ( xk_1, xk ) :

(Xk - x) ( (Xk - X)2 - hi ) .+
6hk

Sk(x)

+ M (x - xk_1) ((x
k 6hk

hi )
y1,_1(xk - x) +

+h1 yk(x - xk_1)
(1.7)

Por derivação decorre:

S 1 ( x ) = M k 1 + M k
k

3(x

6hk
(yk - yk_l)

( 118)

Mantendo-se a continuidade das derivadas sobre o apoio x, , isto é,
SI(xk_) = SI+1 (xk+) resu1 ta : "

) % 1 + e M k + e M k + 1 = e ( y k + 1 = y k ) = r ( y k
yI,_1 )

(1.9)
(k = 1, 2, 3, . . . n - 1 ) .

Em (l.9) reconhece..se a equação dos três momentos em viga contInua cujos
apoios sofreram os deslocamentos verticais yk. 0 sp1 ine cúbico SCx)
coIncIde, portanto, com a linha elãstica de giga contInua , can apoios
sItuados nos pontos de partição x, , sujeita a deslocamentos de apoios
iguaIs aos valores yk. * "

Em (1.9) hã (n-1 ) equações para as (n+1 ) incõgnitas Mo , Ml, M2 , . . . , Mn.
Hã necessidade de duas condições adicionais; estas condições auxiliares
caracter{zarão dlferentes splines para interpolação e formarão, junto com
(1.9) , um sIstema tridiagona1, de equações 1{neares , pera as incõgnitas Mk.

k Cm a ressalva de que (1.9) vale para quaisquer deslocamentos yb ,
mantendo-se hk = xk - xk_1,
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2. Diferentes Tipos de Splines Cúbicos

Nas aplicações, de acordo can as condições auxll{ares impostas, distinguir-
se-ão os seguintes splines :

- a) Spline natura1 generalizado
Neste caso, conhecem-se Mo e Mn, resolve-se o sistema tridiagona1
(1.9), desde M1 até M„-1, coloõando-se Mo e Mn nos segundos
mmbros da prImeira e ültima equações, respectivamente.

1

Reserva-se a denaninação spline natura1 para o caso particular
an que são impostos Mo = Mn = 0.

r

b) Spline sem discontinuidade para S"' (x) nos pontos xl e x_ , .
No modelo da viga contInua, equivale impor reações nulas nos
apoIos xl e Xn_l. As expressões anallticas das diversas
condIções auxillares serão fornecidas posteriormente .

c) Spline canpleto ou can tangentes extremas fornecidas
Conhecan-se os valores de yi e y 1 diretamente ou através de
poli nani os de interpolação adequãdos .

d) Spline com tangentes internas

Fornecem-se y: e y:_1 através de polinômios de interpolação.
e) Spline can derivadas terceiras extremas

Conhecem-se yb" e y::'

f ) SpI ine periõdico
São condições auxi1 lares Mo = Mn e y: = y:, além de yo yn

g) Sp IIne com igualdade de reações

No andelo da viga contInua, igualam-se RI = R2 e Rn_1 = Rn_2 .

h) Sp1 ine paramêtri co

Para curva plana, por exemplo, y(x) , representam-se xd) e
y(t) através de sp1 ines cúbicos onde a variãve1 independente
é o parâmetro t, sendo t igua1 aos canprimentos de arcos
acunulados ou, para fac11itar, igua1 aos comprimentos de cordas
acumulados .

3. Solução do Sistema Tridia9ona1 de Equações Lineares

De (1.9) obtêm-se o sistana de equações lineares:

b Mo + U M1 + b M2
6 3 6 1 (y2

h2
Y1 ) ( 1111 l

hI
yo ) (3.1)

h2 M1 + h2 + h3 M2 + b M3
6 3 6

1 (y 3 - y2)
h3

1 (y 2
h2

y1 ) (3.2)
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hs M2 + h3 + h+ M3 + h+ Mb6 3 6 1 (y . - y3)
hI.

y2) (3.3)

9 Hn = 3 + Mn » 2 + f M n w 1 h 11 (y,_1 - y,_2)

h 1 _2(y,_2 - y,_3)
(3.4)

b M n » 2 + + M n = 1 + : Mn 1 (y,n
y„_1 )

J (y,_1 - y„_2) (3.5)
111

Completado com as condiçÕes auxiliares , o sistema (1.9) serã escrito com a
notação abaixo :

boHo + coMI
alHo + blMl + cl M2

a2Ml + b2 M2 + c2 M3

a3 M2 + b3 M3 + c3 M,,

10

11

12

23

(3.6)
(3.7)
(3.8)
(3.9)

+ bn-IMn-l + Cn-IMn = In-1
aM , + b M = 1n"n-l - -n “n -n

(3.10)
(3.11)

E sistana tridiagona1, que se resolve can o algoritmo abaixo.
Definem-se :

wo = J 9
bo

1c a

1 ( 1

bi - ai wi-1

ti - ai gi-1 ( 1
bi " ai wi-1

w.
1

gi

1, 2, 3, . n-1 )

n)

(3.12)

(3.13)gO = 10 9
bo

1, 2, 3, ..

vindo a solução:
Mn = gn (3.14)

(3.15)
e

Mi = gi - wi Mi+1 ( 1 n-1, n-2, 0)

4. Condições Aux11 lares para os Diferentes Splines Cúbicos

a) Para o spline natura1 generalizado
EIn (3.1 ) e (3.5), deslocam-se os valores conhecidos Mo = y:
MD = y: para os seguódos membros e resolve-se o sistema

e
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tridiagonal! para incõgnitas desde Ml até Mn_1, can adaptações
das expressões de (3.12) a (3.15) . “ ‘

b) Spline sem discontinuidade para S"' (x) nos pontos x1 e Xn_l.
Impondo-se S"' (xt) ' S"' ( x-) = 0 ou (M2 - Ml)/h2 = (Ml - Mo)/hI e

F4 e n 1l1
n-1 ' 'n-2

também

S-' (x:_1) -S"' (x;_1) = -0 ou

v i rio 'n hn_1

Mo = Ml + [ (Ml - M2)2

h

(4.1)

– (Mn-1M +=
'n-l 'n-2tI

h n- 1
(4.2)

SubstituIndo-se o valor acima de Mo em (3 .1 ) , após simplif{cações
encontra-se :

Hl (hl + 2h2) + M2 (h2 - hl) = X [ (y2 - yI) - F (yI - yO) 1hl + h2 t h J
(4.3)

Da mesma forma, levando-se o valor de Mn em (3.5) , encontra-se:

Mn-2 (hn-1 - hn) + Mn-1 (hn + 2hn-l > =

6

hn-1 + hn
(y, - y,_1) - (y,_1 - y,_2) 1 (4.4)

Resolve-se novamente o sistema tridlagona1, desde Ml até Mn_1,
obtendo-se em seguida Mo e Mn com (4.1 ) e (4.2) , respectivimênte.

c) Spl Ine canpleto, can tangentes extranas fornecIdas
Conhecem-se f ' (xD ) e f ' (x ) , diretamente ou através de polinÕmlos
de interpolação . "

De

S;(xo) = f' (xo) = - b Mo - b Ml + J (yI - yO)' 3 6 hlL (4.5)

obtãn-se a primeira condição aux11iar:

Mo h’ + Ml h1 = 1 (y1 - y.) - f ' (x,)
3 6 hl -

(4.6)

De maneira, anãloga, com
h h l

S:(x,) = f ' (x,) = { M,_1 + f M, + f (y, - y,_1)
11

(4.7)

acrescenta-se ao sistema de equações a expressão:
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h h
JM . + JM
6 ' h-1 ' 3 "n f ' (x,) Yu-1 > (4.8)

Resolve'-se o sistema tridlagona1 completo, can incõgn{tas desde

11âr Seo 11{d:sPB:}j;J?nãrl?:!iPJoiiie:S:T;E:goáe iSa 7{o Er{é ,
can pontos de colocação em xo, xl, x2, xg , x,, e Xn_4, h_3,
xD_2, xD_1 e xD, espaçados de h, adotam-se as ex$rêss6ês-abaixo:

+ t y: = f ' (xo) = 1 (- 25yo + 48y1 - 36y2 + 16y3 - 3y,)
]2hl

(4.9)

y: = f'(x,) i ( 2 5 y nn
+ 36yn_2 - 16yn_3 + 3yn_4) (4.10)

Havendo pontos adicionais A, B, C e D, junto às extremidades ,
de modo que:

x A = T ; x B = V ; x C = ;

x D = V
podem-se adotar :

yi = f '.(xo) 25yo + 48yA - 36yl + 16yB 3y2 ) -(4.11)

y; = f ' (x„) 1 (3y,_2
11

16yC + 36yn_l 48yD + 25yn) (4.12)

Observar que a exigência de pontos igualmente espaçados pode
ficar restrita aos extremos, onde se adotaram polinãnios de
interpolação de quarto grau .

d) Spline can tangentes internas y: e y :_,
As duas novas condições que se incorporam formando o sistema
tridiagona1 são obtidas do seguinte modo:

L

0 valor da tan99nte Si (xl ) = f ' (xl ) coincide can Pl(xl ) Qnde
P,,(x) é o polinõmio de quarto grau com pontos de cÕ1ocação em

}:;n:êiãà ’ p:rep: fin_?):a::;ed;g::;gÊn::1?iá> 81 Ze=q:: 1:8-&:aS
utiliza os pontos de–colocação xD_2, C, Xa_1, D e xD

Cam x = Xo + x1 . x = x 1 + X2 . x = XD-2 + Xn-l e
A 2 ’ ''B 2 ’ -'C 2

x D = V 9 s e n d o



e?
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hI = (xl '' xo) = (xz - xl ) e hn = (Xn_l - Xn_2) = (Xn

a derivada f ' (xl ) que se fixarã vale:

[ f (xo) - 8f(xA) + 8f (xB) - f(x2') ) (4.13)

De maneira anãloga, o valor da tangente S:(Xn_l) será feito {gua1a:

)e S : ( X n + 1 ) = f 1 ( X n » 1 ) = 6 | [ 8 f ( X D ) M 8 f ( X C ) = f ( X n ) + f ( X nM 2 )
11

Pelo spline Sl (x) , no primeiro subintervalo, tem-se:

s : ( x 1 ) = 111r 1 w y o + 1 F4 o + h 1 F4 1
- hI 6 3

que, substitulda em (4.13) , fornece:

h: M, + h' M, = 1 Í7f(,,) - 8f(,A) - 6f(,,) + 8f(,B)6 3

Pelo spline S_(x) , no ültimo subintervalo, tem-se:n

S:(x,_1) = P - { M,_1n

que, juntamente com (4.14) , fornece:

h h , r

f M n 1 + 1 1 ( n = i [ 7 f ( X n ) = 6 f ( X n n 1 ) n 8 f ( X D ) + 8 f ( xC )
1)

f ( x,._2 )

e) Spline com derivadas terceIras y:' e y:’ conhecidas

De S„, = Mk - Mk-1
K h.k

vIrão :
y 1 1 1 = U e y 1 1 1

'o h, n

Mo = Ml - hl y:1

Mn = Mn-1 + hn Y;1

Eliminando-se Mo em (3.1 ) , virá:

S;(x1) = f'(x1) = 611

(4.14)

+

t

r

(4.15)

6h 1
- f(x2)

(4(16)

(4.17)

(4.18)

L

donde :
(4.19)

e:
(4.20 )
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M , + b m= = J ( yz - y 1) - J ( yI
6 6 h2 hl (4.21 )

Eliminando-se também Mn, can (4.20) em (3.5), obtêm+se:

T M,_2 + M„_1 = i ( y, - y ,_1) -
11

t

» e ( yn n 1 w y n » 2 ) = V (4.22)

(4.21 ) e (4.22) serão a primeira e a últIma equações, respectIva-

X :: ! e ; : : t E À : ! :nr1 : e t i : d : a g : : : : : i : 1 1 ; : m!!Eo7;:}B;:l?4T;Õ)• Ó;;aMn» IBM„ e M . “ ‘
n

f ) Spline periódico
Neste caso, alêm da condição obrigatória yo = y , util{zam-se as
condições auxiliares Sã = - SI e S:-= S= . - ' n

A rotação anti-horãria no ponto xo vale:

SI (XD ) =V\ - vs _ L Mo _ b Ml
hl 3 6

(4.23)

A rotação anti-horária no ponto Xn escreve-se:

S'(x„) = yn - yn-l + \ M + b M
h 6 - n-l - 3 "nn

(4.ã4 )

A «;uação (3.1 ) , com Mo = Mn, passa a ser :

2(hI + h2) MI + h2 M2 + hI M_ =& (y2 - yI) - & (yI - y,)
h2 hl (4.25)

Da igualdade de (4.23) e (4.24) , com MD = Mn, decorre:

hl Ml + hD Mn_1 + 2(hn + hI) Mn = A (yI - yo)b

6
(y )

y 111 in
h

118

As equações (4.25) e (4.26) , juntamente can (3.2) a (3.4) ,
formarão um sistema tridiagona1 cIclico, pois na primeIra
equação aparecem Ml, M2 e Mn, enquanto que na ültima equação

:=3:ETs:'êo l-;+,E:Th. !E:::+ if:: 7 t;:e'27271.SE!'F?) . („) .

hl

(4.26)

g) Spline can igualdade de reações , RI = R2 e Rn_2 = Rn_1
As duas condições auxiliares deduzem-se conforme abaIxo.

Para hI = h2 = h, a reação no apoio x 1 , Rl valerã:
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h Rr = Mo - aMI + M2

Para o apoio x2, com h2 = hs = h,

h R2 = Ml - 2M2 + M3

Da igualdade Rl R2, obtém-se:

Mo - 3M 1 + 3M2 - M3 = 0 (4.27)

Ck maneira equivalente, a igualdade Rn_2 R , fornece:n-1

MD_3 3M . - M = On-1 - 'n (4.28)

Eliminando-se Ml e M3, em (4.27) , can a utilização de (3.1 ) e
(3.2) , obtêm-se:

Mo + 5Ml (7yo '- 15yl + 9y 2 - y3) (4.29)

Can a elimlnação
consegue-se :

e Mn_3, em (4.28) através de (3.4) e (3.5) ,

5Mn_l (7yn 15Yn-l + 9Yn-2 - Yn-3) (4.30)

(4.29) e (4.30) são as duas condições auxiliares que perm ltan
canpletar o sistema tridiagona1 para as incõgnitas Mo , Ml, Mz,
Mn. Observar que nas condições acima exigiu-se espaçamento
uniforme entre os nós .

h) Spline paramétrico
Para a representação de curva plana ou a três dimensões , desenvol-
vem-se em sp1 ines cúbicos as coordenadas xd), y(t) e zd) ,
adotando-se como variãve1 independente o parâmetro t igua1 aos
canprimentos de arcos acumulados ao longo da curva que se representa .
Ao invés de canprimentos de arcos, acumulam-se cunprimentos de
cordas . Para curva plana , por exemplo, de coordenadas (x, y) ,
defi nem-se :

ti+1 = ti + J (xi+1 - xi)2 + (yi+1 - yi)2
0, 1, 2, . . . , n-1 ) can to = 0.

A partir dos valores xD, xl , x2, . . . , xD, determina-se o spline
cübico xd) , para os subintervalos hi =–(ti - ti_1) , 1 = 1, 2, . . . , n .
De maneIra anãloga, a partir dos valores correspondentes yo, )'1, y2,
. . . , yn determina-se o spline cúbico para a ordenada y(t) .

5. Çoeficientes para o Sp1 ine Cüblco e sua Avaliação em Cada Subintervalo

Para o intêrvalo ( xb_l, xk ) , o spline cúbico escrever-se-ã:

Sk (x)
onde :

)3+ ck(x - Xk_1)2= ak + bk(x Xk-1xk-1 ) + dk (x (5.1)
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ak = f (xk-1) = yk-l (5.2)

(5.3)

(5.4)

(5.5)

bk = si(xk_1)

ck = 0,SSI::(xk_1) = 0,SM11._1

dk = 1 si'
6

ou ainda em função da solução obtida para os Mk:
+

ak = yk-l

bk = s;(xk_1) = V -k

(5.6)

(5.7)

ck = 0,5Mk_1 (5.8)

(5.9)

can hk = (xk - xk_1) .

No nã xl, a discontinuidade da derivada terceIra valerã :

q11(xt) - SI' (xi) = 6(dk+1 - dk) (5.10)

sendo equivalente ã reação de apoio no ponto xk, no modelo de vIga contTnua .

Para o cãlculo do valor numêrico do sp1 ine cabico no ponto 1, com
x,_, < x < xb, convém utilizar a expressão abaIxo :

sk(;) = ak + (; - xk_1) [ bk + ( 1 - xk_1) (ck + dk(; - xk_1) 1(5.11)
Havendo grande nÚmero de pontos xi e devendo-se calcular SCx) para dIversos
x, é recunendãve1 desenvolver-se Õroqrama que localize de marIe}ra efIcIente
o intervalo onde se encontra _determInado x para , em seguIda, adotar-se o
polinõmio cúbico SCx) correspondente .

6. Estimativas de erros, na interpolação pelo sp1 Ine cüb Ico, para a função
f (x) e suas derivadas

Nas estImativas de erros , abaixo discriminadas, serão utIIIzadas normas
uniformes para funções e vetores, com as designações :

Para a função f (x)

11 f 11 = „.ãx | f (x) 1 (6.1)

Para o vetor Â de componentes A 1

1 All (6.2)
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Usar-se-ão também as seguintes notações:-

h.
1

h

h

8

xi " xi-1 (i 1, 2, 3, . . . , n) (6.3)

mil hi
1

mIn h.
e 1
1

6/h

(6.4)

(6.5)

(6.6)

y(“) 11 = Mb ; II y(;) II Ms (6.7)

De acordo com Ha11 e Meyer, 1976, para os splines canp]eto e natura1
generalizado que interpolam a função f (x) valem as aproximações:

II f- Sll : 5 É" M.384 4 (6.8)

f' s' <lh3 M

– 24 ‘
(6.9)

f " s " < 2 h= M,
-8 (6.10)

11 f"' - S"' ll :- T h M+ (6.11)

No segundo membro da primeira estimativa de erro, recónhece-se, conforme
comentãrio anterIor, o deslocamento no meIo da viga isostãt lca , b lapoIada,
?elyão R_s 9b a cargacyp{forms E = 11f (42(x 211:mM,à não consIderada pelb
sp IIne cübico, poiÉ Stb j (x) = 0 em cada tramo hi .

No segundo membro da estimativa de erro para f ' (x) , identifica-se a rotação
nos apoios para a mesma vIga isostãtica, de vão h, sob a carga uniforme
mencionada .

+ +

Para o vetor (f ' - S' ) , erro na derivada primeira nos pontos nodais , com
canponentes (f { - Si) , de acordo com Kershaw, 1972, para os splines cübicos
completo e períõdico vale:

+

II f ' í' ll mãx | f ; s; | < 1 h2 mix
1 ' – 24

hi-1 h. Mb +
i

(6.12)

Para o caso de espaçamento uniforme hj h, obtém-se:
+ + 1

II f' - S' ll s à h' Ms (6.13)

+ De prefer;ncia conservam-se, em cada item, na medida do possÍvel, as
notaçoes dos trabalhos citados e
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isto é, a ordem de aproximação é Ojhk) para a derivada primeIra nos pontos
nodais . Ta1 fato torna o spline cübico recomendãve1 para a diferencIação
numérica de f (x) .

Ainda de acordo corn Kershaw, os erros | fÍ - S: | para o spline natura1
generalizado são superiores ao valor acima, e Êara recuperar-se a ordem de
aproximação serã necessário tornar o primeiro e o ültimo intervalos hl e
hn suficientemente pequenos . Para o spline cübico completo, valem ainda
as seguintes estimativas:

11 f - s II 1 2,56 11 f ' H (6.14)

Ii s" IJ s 3 11 f" ll (6.15)

A melhor ordem de aproximação que se pode conseguir pelo spllne cübico ê:

11 f - S 11 = O(6'') (6.16)

Ta1 ordem é obtida, por exemplo, nos splines canpleto ou natura1 generali.-
zado e sob condIções que se examinarão nos itens 7, 8 e 9. Para o sp1 ine
natura1, com Sb' = S= = 0 não correspondendo ã realidade, não se consegue
convergência unifor#te, da ordem de o(h" ) em ( a, b ) .

7. CondIções de Extranídades para o Spline Cúbico can Nós Igualmente
!spaçados , sp1 ines ECa)

Em 1979, G. H. Behforooz e N. Papamichae1 apresentam condições de extremida-
des, para nós igualmente espaçados , condiçõe$ que só dependem dos valores
f (x{ ) = y(xj ) e que dão orIgem a sp1 ines cüblcos com ordem de aproximação
0(h 1) . -Inicialmente, para y(x) em C4 ( a , b )# com x em ( xi_1, xi ) ,
1 = 1, 2, . . . , n, apresentam, para nós igualmente espaçadog, ai seguintes
estImativas :

1 y(x) - SCx) S E mix { | S; - y; 1, | S;_1 - y;_1 1}+

+ 1 h+ M,,
384

com Mb = II y(')1 (7.1)

jy'(x) - S'(x)is 'nãx { ! s; - y; | ,Is;_1 - y;_1 1} + gh; Mb216
(7.2)

(7.3)jy"(x) - S"(x)11 {- rnãx { | S; - y; 19 IS;_1 - y;_1 1} + 1 h= Mbn iz

!,"' (x) - S"'( x) 15: “'ãx { | S; - y; 1,1 S;_, - y;_,l} ' } h ". (7.4)

As expressões acIma são üteis para estimativas de erros na interpolação
cüblca de Henn lte H(x) , no lugar de SCx), bastando colocar

s; = y; e si-1 = yi-1

+ CoIoca-se y(x) em Cm (a, b) significando y(X) ( CaI (ap b), em todo o texto'
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Em seguida, para os denan{nados sp1 Ines ECa) , procuram condições de
extremidades sob a forma :

S : + 1c1Er S ; = ( 1E1111l o y o + 1c11 1 y 1 1E 1:112 y 2 + a 3 y 3 ) (7.5)

a S:_1 + Sá = - { (ao y, + a1 y,_1 + a2 y,_2 + a3 y,_3) (7.6)
de modo que se obtenha a ordem de convergência IÊ y - S II = 0(h'') , sendo
incõgnitas a, aí (i = 0, 1, 2, 3) .+

Finalmente, concluem :

Seja S(4) um spline cübico de interpolação que coIncIde can
y(x)anC5 ( a, b ) an pontos ígualmente espaçados e que satisfaça
as condições acima, onde a < 11/3 ou a > 19/5, com n > 5, então:

11 y(;) S (r)11 = O(h
4-r

(r = 0, 1, 2, 3) (7.7)
somente se

ao 1 (- 2a - 11), ai 1 (- 3a + 18)
6

(7.8)

a2 = 1 (6a - 9)
6

9 a3 ! (- a + 2)
6

(7.9)

Para qualquer valor de a no domInIo indicado existe e é único o spline ECa) ,
com as ordens de convergência indicadas .

Hã , portanto, uma infinIdade de condições que permitem a obtenção de
llf - s II = 0(h“).

As condições de extremidades para os spllnes ECa) podem ser colocadas sob
diversas formas equlva1 entes .

Numa primeira forma :

Sb + . S; = pi(xo)+- pi(x1) (7.10)

a S:-1 + S: = a p:-3(xII-1 ) + p:-3(xu) (7.11)

onde ,po (x) é o polinõmio cÜ9ico can yalore! yo , y 1 , y2 e y3 nos pontos
xo, xl ; x2 e x3 , e Pn_3(x) é o polinõmi o cúbico com valores yn_3, yn_2,
yn_l e yn nos pontos Xn_3, Xn_2, XD_1

Para a + m, o sp1 ine ECa) corresponde a :

S: = Pi(x1) (7.12)

S:-1 = P:-3 (Xa-1 ) (7.13)

isto é, fixam-se valores das derivadas primeiras no segundo e no penültlmo
nos

Numa segunda forma, as condições de extremidades podem ser escritas :
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(2 - a) 69 Mo + (9 - 3a) 62 Mo 0 (7.14)

(2 - a) V3 M, (9 - 3a) V2 Mn (7.15)

onde aparecem diferenças de segunda e terceira ordens , ascendentes e
descendentes .

Em particular, para a = 2, obtêm-se:

Â2 Mo

V2 M
11

(7.16)
(7.17)

Numa terceira forma, as condições de extremidades podem ser escritas

(7 - 2a) dl = (a - 2) d2

(7 - 2a) dn_1 = (a '' 2) dn_2

(7.18)
(7.19)

onde di = S"' (xi+) - S''' (xi=) , islo é, discontinuidade da derivada terceira
no ponto xj o qüé equivale-ã reação de apolo Ri , no modelo da viga contInua .

Com a = 2, para o spline ECa) equivale a exIgir:
dl = 0 (7.20)

dn_1 = 0 (7.21 )

Isto é, eliminam-se as discontinuidades de S"' ( x) nos pontos x1 e x„_1 ou,
de maneira equivalente, são impostos RI = Rn_1 = 0, no modelo da vIda-
contInua , dando interpretações a (7.16 ) e (7.17 ) .

Para a = 3,0, obtém-se o melhor dos ECa)f can o significado:

d, = d2 ou

dn_1 = dn_2 OU

R2 (7122)

(7.23)Rn-1 = Rn-2

no modelo da viga contInua , igualam-se os valores das reações de apoio em
xl, x2 e também em x__1, x__9 .

Finalmente, sob uma quarta forma , Dti 1 para estabelecer a primeira e a
ültima equações do sIstema trldiagona1, as condições de extremidades podem
ser colocadas :

(a - 2) Mo + (2a - 1 ) Ml = (a - 2) Pl(xo) +(2a - 1 ) pl(xl ) ( 7.24)

(2a - 1) M„_1 + (a - 2) M. = (2' - 1) p=_3<x,_1) + (a - 2) p=_3(x,)
(7.25)

pelas expressões acima, para a 0,5, por exemplo, obtêm-se:

Mo = P: (xo )

Mn = P;;-3(Xn)

( 7.26 )

(7.27)

+ Veja-se referincia 2, pág . 362,
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sendo condIções plra o spline natura1 generalizado, com derivadas segundas
obtidas por polinõmios cúbicos de interpolação.

8. Condições de Extremidades para o Spline Cúbico can Nós can Espaçamentos

Quaisquer, Splines E(ao, an)

Num segundo trabalho, G. H. Behforooz e N. Papamichae1, através dos
chamados spllnes cübicos E(ao , %) , procuram generalizar os resultados
conseguidos pelos splines ECa) rêferentes a nós igualmente espaçados.

Para os splines E(ao, an) , procuram-se condições de extremidades sob a
forma :

S: + a, S.: = 1 (aoo yo + a,o yl + a2, y, + a„ y,) (8.1)
2

an s:_1 + s: = - f (ao, y, + a,, y,_1 + a,, y,_2 + a,n y,_3?"n (8.2)

de modo que, para nós desigualmnte espaçados, ainda se consiga :

11 y(r) - S (T) 11 = 0(É4--'r) (r = 0, 1, 2, 3) (8.3)
São Impostas as seguintes restrições:

y(x) em C5 ( a, b ) , n > 5

h2/hI , h3/hl e hn_2/hn? bn_1/hn, pennaneçam constantes quando h + 0.
Adotam-se a seguir as notações adicionais :

qQ = _h_A
hl

1f9 o = 1 ][ h 2 1E h ?
hI

9 (8.4)

q n = V
11

r = hn-2 + hn-1 + hn
D h

11

(8.5)

Para que haja solução Única, exigem-se agora domInios para ao e a conforme
abal xo : "

a. < C .
J J 9 a. > D .J J (j = 0, r*) (8.6)

isto é: _ ,
4qo ro- 2qã - qQ - ro 4qt,ro + 2q; - 5qo - ro

a' « C' = q QU " » ' = Í
(8.7)

an < C n = O u a n > D n = ( 8 • 8 )

Sendo SCx) o spllne cãbico que coincide com y(x) em Cs ( a, b ) nos nÓs x, ,
i = 0, i , . . . , n, satisfazendo as condições réferentes aos splines 1
E(ao, a ) , can ao e a_ nos domInios jã definidos, com restrIções jã impostas
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para ha/hl, hs/hl, hn_1/hn e hn_2/hD, haverã solução anIca somente se:

agj = qj + (1 - qj)aj.
' rj(rj - 1)(rj - qj)

(8.9)

a 2 p = rj + ( 1 » r j 1c1Ep j
J qj(qj - 1)(qj - rj)

(8.10)

al j = aj + l rj a3j (8.1 1- )

aoj = M (alj + a2j + a3j ) com j = 0, n. (8.12)

Para nós lgualmeBte espaçado? , qj = 2,0, rj = 3,0 (j = 0, 9) , e se também
ao = an = a, então os coeflcientés acima coIncidem com os jã deduz Idos para
o spliHe ECa) , isto é:

1:( a + 2) (6a 9)a2a3 Jj 6 6

3a + 18) 2a + 11 )aoai =9j j6

9 (8.13)

(8.14)

com j = O, n, e as exigências a < 11/3 ou a > 19/5.

Os sp1 ines E (a) são, portanto, casos particulares dos splines E(ao, a- ) onde
ao = a = a e hã espaçamento unIforme entre os nós . "

As condições de extremIdades para os aplines E(ao, an) podem ser escritas :
Sb + a„ S: = P: (x,) + a, p:(x.,) (8.15)

an Sn-1 + Sn = an Pn-3(xII-1) + Pn-3(Xu) (8.16)

onde p o(x) é o polinÔmio cÜblco can valores yo, yI, y2 e y3 nos pontos
xD, x 1, x2 e x 3 e, da mesma forma, Pn_3(x) é o polinõmlo cúbico can yalores
yn_3, yu_2, yn_l 9 yn pos pontos_xD-1, ’xD_2, Xn_l e Xn, sendo conveniente
rgsgaltar que--aÔui ai interpolações ge fãzém pãrã pontos sem espaçamento
uni fOInte .

Com ac = an = 0, obtém-se o sp1 ine E(0, 0) para o qua1

S:, = P:,(x.) (8.17)

S: = P:-3(Xa) (8.18)

é spline do tipo completo mas aproximando-se as derivadas extremas através de
derivadas de polinõmlos de interpolação.

Para ao = a + m, ao spline E(A, m) correspondem:



+



. 19.

S; = P;(x1 ) (8.19>

Sn-1 = Pn-3(Xn-l ) (8•20)

agora fixam-se, através de interpolações, derivadas nos segundo e penaltilDO
pontos .

E € a : : :: ; : r : : : 1 E n : à o : a E : T 1 E ( : ? 1 ) : : : E 9 ! : mc : : ! a : t : EU 21 r 3 Tui tr o sp 11 nes

Para o sp1 Ine E(aÍ 1) ,a 11)), colocam-se:

q 0 14 \a(i)n
qD - 1

vlndo as condições de extremIdades :

S" ( xo , xl , x2 ) = 0 (8.22)

S'' ( Xn_2, Xn_l, Xn ) = 0 (8.23)
onde f ( xo , xl, . . . , Xn ) denota a diferença dividida de ordem n com base
nos pontos x, , 1 = 0, 1, 2, . . . , n .

: : : : n 9 : i : e ; 9 a E 1 m : o 3 : 1 2 v 3 : e : 1 8 a d : : : : lg : : : = lu{;à» ge CS gt 12 : : õ : : sR 70 : tg : : : e

Para nós igualmente espaçados, aS1) = <1 ) = 2, e recai-se no spline E(2) .

Para o spll ne E(aá2) , aá2) ) , definem-se :
qQ

+
qQ - 1 ro

9

q
11

qn - l
(8.21 )

1

ro

1 + (ro qQ)=
(8.24 )

q r'n . n
q - 1 r_ - 1 + (r'n n ' n

resultando como condições de extranidades :

SI' C XO , X 1, XZ, X 3 ) = 0 (8.26 )

S" ( XU_3, XD_2, XD_1, XD ) = O (8.27)

Quando os nÕs forem igualmente espaçados, aÍ2) = aj2) = 3, e volta-se ao
spline E(3) . - u
Des ignando por d. a discontinuidade da derivada terceira no ponto x, , isto+ -’ ' 1 ' 1
es

a(2)
n

q,) ’
(8.25)

di = S"' (xi+) S"' (xi_)
pode-se demonstrar que:

d.
1 {hi + hi+1) S 1 C xi-1’ xi’ xi+1 )
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com i = 1, 2, 3, . . . , n-1, o que significa que as reações de apoio, no mode-
10 de viga contTnua, para os apoios internos, são proporcionaii às diferen.,
ças divididas com bases an xi_1, xi e xi,1.

As condições de extremidades para os splines E(ao , a_) podem ser colocadas
sob a forma :

Fo dl = Go d2 (8.28)

Fn dn-1 = Gn dn-2 (8.29)

onde

F.J ( rj 1) rj (l qj) + (1 - rj) C qj - 'j (qj 1) ) ) (8.30)

G.J qj(rj - qj)= { qj 1) ) j = 0, n (8.31 )

Isto é, correspondem a relações entre as reações de apoio RI, R2 e Rn_1,
211

Para o sp1 Ine E(aÍ3),a13)) defInem-se:
qD ro

+

qQ - 1 ro - 1
(8.32)

a(3)n
(B1| 1r1 + 1r1

gn - 1 rn - l
(8.33)

e as condições de extremIdades expressam que S''' (x) é contInua nos pontos
x2 _e xD_2, isto ê, anulam-se d2 = R2 e dn_2 = Rn_2 .

Finalmente, para o spI ine E(aÍ') ,a:') ) , colocam-se:

a(4) = q:(ro- qD)’ + qQ(-o - lj= + ro(r' - 1)(qQ - 1) (8.34)
' (qQ - 1) C (ro - 1>'; + qD(ro - qo);: ) -

aJb) = qn(rn - qn) + qn(rn - 1) + rn(rn - 1)(qn - 1) (8.35)
- (q, - 1) C (r, - 1)= + q,(r„ - q„)= ) ' ‘

Para o sp1 Ine E(aÉk) ,44) ) a: condições dê:-extremjdadés él©ihéãú--que

::: :=,:_::x,=„Saifã 3::l8; :gHi4:=;;:ai;t;;ig:'ãegÇ, 3:?:? " = '’ '
! : 1 ; : : E ? 3 : 1 5 9 f : : : m o : { ! : 1 T : : : : : : e 9 ç : d 8 i ) a 1 3 : 9 ; 94 : SUit : Ã 3 ; : 1 ! $ 1 : e
E(3 0)9

Os quatro splines acima abordados ex{stern de maneira ünlca para quaisquer
dIstribuições dos nós .
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As condições de extremidade para o spline E(ao, a_) podem ser expressas
sob a forma abaixo (bastante üti1 quande se vai rêsolver o sistema
tridiagonal pra as incõgnl tas Mi) .

(ao + 2)Mo + (2ao - 1)Ml = (ao - 2) p: Cxo) + (2ao - 1) p:(x1) (8.36 )

(2', " 1)M,_1 + (', - 2)M„ = (2', - 1) p:_3(x,_1) + (a„ - 2) p:_3(x,)
(8.37)

onde os polinõmios po(x) e Pn_3(x) jã foram anterionnente definidos .

Para ao = a„ = 0,5, obtêm-se o spline E(0,5, 0,5) com as condições de
extremidadeg :

Mo = p:(x„) (8.38)

Mn = P:-3 (XII) (8.39)

que correspondem a condições para o sp1 ine natura1 generalizado, mas com
derivadas segundas obtidas através de polinõmios cübicos de interpolação.

Para nós igualmente espaçados, com a = 3,0, obteve-se o aElhor dos ECa) ;
para nós can espaçamentos quaisquer, não se pode determinar prontanente o
melhor dos E(ao, an); contudo concluem H. G. Behforooz e N. Papamichae1 que
entre todas_ as condicões de_ extremidades analisadas destacam-se
E(aá2) , 42) ) e E(aSt> , 4+) ) por conduzirem a resultados can melhores
aproximações, bastando leíãbrar-se que ambas recaem no E(3) quando o espaça-
mento ê unIforme .

9 . SpI ine CDbico com Nós lgualmente Espaçados, Condições de Extremidades
que PermItem Obter Melhores AproximaçÕes para as Derivadas de f (x)

N . Paparnichae1 e A. J. Worsey, em 1981, estabelecem condições de extremi-
dades e expressões em Mi = S"(xi) que conduzem ã melhor ordem de aproximação
para as derivadas de f (i) . AdmItem-se funçÕes f (x) de classe CB ( a, b ) -e
nõs igualmente espaçados , na interpolação pelo spline cúbico.

Inicialmente examinam-se condições de extremidades que só contenham valores
da função f (x 1 ) = yi sob a forma :

a Mo + 8 Ml = + (ao yo + a1 y1 + a2 y2 + a3 y3 + a4 y+) (9.1)
h

6 Mn_1 + a M, = J (ao y, + a1 y,_1 + a2 y,_2 + a3 y,_3 *

+ a+ y„-4 ) (9.2)
Para a forma acima, conseguem-se condições de extremidades mais precisas
quando a = 1 e 6 = 4, sendo, neste caso, equivalentes a:

Â- M, = O

V“ M = O
D

(9.3)
(9.4)
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que se podem transformar em:

No + 4Ml (37yO - 82yl + 9y2 - IOy3 + yi.) (9.5)

4Mn_l + Mn = Ü(37yn - 82yn_1 + %_2 - ]Oyn_3 + ya_4)
(9.6)

Splines cãbicos sob as condiçÕes de extranidades (9.5) e (9.6) oferecem as
seguIntes ordens de aproximação:

Para a derivada primeira

mãx l S; - y1 | = 0(hq)
O < i < n A ‘

(9.7)

mix | S ' (x: + 0,5h) - y' (x, + 0,5h)1 = 0(h-)
O < i < n-1 ' ‘

(9.8)

Para a derivada segunda

y: - 1 (14Mo - 5Ml + 4M2 - M3) l = 0(hk) (9.9)

max 1
1 < i < n-1 (Mi_1 + IOMi + Mi+1) o(h") (9.10)

( 1 4Mn 5Mn_l + 4Mh_2 - Mn_3) o(h'') (9.11)

Para a derlvada terceIra

max
2 < i < à (Mi_2 - 14Mi_l +

)

M14M =

i+1 1+ O(h=)
(9.12)

Para a derivada quarta

max

1 < i < n-1 F ( M i » 1 » 2 M i
l = 0(h=) (9.13)

Em resumo, sob as condições de extremidades (9.5) e (9.6) , conseguem-se
ordens de aprox{rnção 0(h") para y, y' e y", can as derivadas calculadas nos
pontos nodais xi indicados .

Para condIções de extranidades que sô contenham valores das derivadas
primeiras, sob a forma:

a s: + É s: + ? s; bo y: + bly; + b 2 q1r ; (9.14)

Y S:-2 + + a s'
D b2 y:_2 + 81 y:_1 (9.IS)



+
4

•

+

+

8

=+
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as mais precisas correspondem a ã = 1, B = - 2 et = 1, tornando-se
então equivalentes a:

62 S: = Â2 yi (9.16)

(9.17)V2 S: B V2 y:

que podem ainda ser escritas :

- y;)
M o + 2 M 1 = É t 3y o » 6y 1 + 3y 2 + h ( M y : + 2y :

(9.18)

2 M n » 1 + M n = J t 3y n n 6 y n w 1 + 3y n » 2 + h ( y : = 2y : » 1 + y [ 2 ) Ir 9619 )

Na dedução de (9.18) e (9.19) utilizaram-se as relações entre a, 8, y can
a, B, V, conforme referência cltada, e eliminaram-se M2 e M , nas expressões
obtidas . "–‘

Sob as condições de extremidades (9.18) e (9.19), consegue-se ordem de
aproximação Õ(h-) até (9.12) inclusive e 0(h3) em (9.13) .

Para obter as mesmas ordens de aproximação, citam os autores do trabalho as
seguIntes alternativas para as condições de extremidades:

Ml = 1 (185yo - 316yl + 180y2 - 32y3 + 3yq + 60h yi)
72h 2 "

(9.20)

Mn_1 = É (185yn - 336yn_l + 180yn_2 - 32yn_3 + 3yn_4 - 60h yi) (9.21)

observando que em (9.20) e (9.21 ) exigem-se somente y: e y: além dos valores
jã disponTveis de y{ . "

Como segunda a1 ternativa :

144Mo + 876M1 = 4 (1313yo - 2888yl + 1866y2 - 320y3 + 29y + - 60h2 y:)
(9.22)

876Mn_l + 144 MD = 2 (1313yn - 2888yn_l + 1866yn_2 - 320yn_3 +

+ 29yn_4 - 60h2 y:) (9.23 )

onde, em (9.22) e (9.23), são exigências adIcionais somente y: e y:
Para condições de extremidades que só contenham derivadas segundas, sob a
forvna :

a MD + B Ml + y M2 = co y= + Cr y: + c2 y; ( 9.24 )

Y Mn-2 + 6 Mn-1 + a Mn = C2 Ya-2 + Cl Yn-l + Co Y: (9.25 )
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são mais precisas as obtidas com a = 1 = 7 e B = 46, vindo:

7Mo + 46Ml + 7M2 = 2y: + 56y; + 2y! ( 9.26 )

7Mn_2 +46Mn_l + 7Mn = 2yl';_2 + 56y:_1 + 2y: (9.27)

Eliminado-se M2 e Mn_2 de (9.26) e (9.27), resultam:

9M1 = y: + 28y; + y; - é (7yo - 14yl + 7y2)hz
(9.28)

gM,_1 = y:_2 + 28y;_1 + y= - É (7y,_2 - 14y,_1 + 7y,) (9.29)

Sob as condições de extremidades acima, consegue-se ordem de aproximação
0(h' ) desde (9.7) até(9.13) inclusive, isto é, 0(h“) para a expressão que
défine ySq) .

Não se conhecendo as derIvadas segundas nos seis pontos , três em cada extre-
midade, propõem Papami'chael e Worsey, para obter a mesma ordem de aproxima-
ção 0(h''), àté para yÍ'), as condições:

Mo + all = 1 (- 1187yo - 864yl + 2376y2 - 352y3 + 27yq - 2940h yi -
864h 2 -

- 360h2 y: ) (9.30)

2 M n 1 + M n = = ( » 1 1 8 7 ) n n 8 6 4 y n 1 + 2 3 7 6 y n n 2 = 352 y n 3 + 27 y nn 4 +

+ 2940h yi - 360h2y:) (9.31 )

(9.30) e (9.31 ) serão a primeira e a Ü1tima equações na formação do sistema
trid{agona1 de equações lineares contendo desde Mo até M„.
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RÊPRESENTAÇÃO DAS RELAÇÕES uo>aNTo-cuRVÂTURA-FORÇA NORMAL, rARA SEÇÃO TRANSVERSAL
DE CONCRETO ARMADO, ?OR rnro DE SPLrNES cOBrcos *

Na referência bibliográfica (9) , pág . 100, tabela A3-1, fornecem-se valores de
momento-curvatura-força normal para seçao transversal retangular, de concreto
armado, submetida a flexão composta normal.

Designando por x 8 curvatura relativa, x ' 103 h/r e por y o momento fletor relativo,
y ' 103 M/Nn h, para

$ ' o, e, = 0,2%, d' /b ' 0,1,
retit8ram-se da tabela os seguintes pares de valores

v = 0,30 e a) ' 0.3w – v 9 a 9

(x ; y) :

(1; 106) (2 ; 174 ) (3; 236) (4; 294) (5; 334) (6; 340) (7; 343) (8; 343)

Na Fig . 1, representa•-se o diagrama obtido com a utilizaçao do spline cãbico
completo, com tangentes extremas obtidas por polin8mios de interpolaçao sen
pontos adicionais .

+Neste trabalho, as aplicaçÕes linitaran-se a problemas de interpolação .

350 + + + + + + + + + '•
++

+
+

(tabela A3-1)
CtB-FII\

VB 0,30 $ B 0

300 d’/h = O,1
+

+

+

+

250

+

+

+

•

200

1

1

150

+

•

+

+

+

+

e

, pontos fornecidos

© +noDtOS calculados pelo 6pline completo
(iatenol3ção sbn ponLos adicionais)

1l;3

50

103

1.0 2,0 3,0 4,0 7.0

1 - \tu=nto4urvatuta - Força ,':orRta1

41
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Variando somente o coeficiente de flu;ncia para + ' 2,0, extraíran-se da
ne8ma referincia citada os novos pares de valores (x; y) :

(1 ; 74 ) (2; 137) (3; 195) (4; 251) (5; 285) (6; 313) (7; 328) (8; 331)

Na Fig , 2, representou- se o diagrama obtido pelo spline cÚbico completo,
com tangentes extremas fornecidas por polinõni06 de interpolação sem pontos
adicionais ,

J ' Cj, 3
+ + •

+ + + + '
300 v = 0,30 + = 2,0

+

+
+a(tal.ela .43-1)

CEB-riP d’/h = O,1
•

+

+

+

+

250
+

@

+

+

+

2a3

+

•

+

+

+

153
,• pontos fornecidos

+

+

+

• • + pontos calculados
(inteppolação su pontos adicionaIs

pelo 5?line cm:

100
+

IP

50

1 2 3 4 _5 6 8

Fig. 2 - UCXDeatoqurvatur8 Força Norua1
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Para 8 obtenção do diagrama momento-curvatura-força norunl da Fig.
utilizaram-se os seguintes pares de valores (x; y) :

3,

(1; 100) (2; 174) (3; 243) (4; 309) (5 ; 353) (6 ; 372) (7; 384 ) (8 ; 389)

Para 8 interpolação, adotou-se o 8pline ciibico completo, com tangentes
extremas fornecidas por polinômios de interpolação sem pontos adicionais ,

1 03 A

400 Hcl 0 , 5

e++++.•
{tabela A3-2)

3 50 C]EB-F IP

v ' 0,20 Q nO
+ + + 4 e

+'d'/h ' o,1

4
+

300 +

•

+

250

200

150

+

•

+

+

. pontos fornecidos

+

+

+

+

•

+

, + lx)atos calculados pelo spline compl
(interpolação se3 pontos adicionais

100 e

50

1 5 6 1

Fig+3 - Dkneato-Curvatura - Forç• Bernal





. 28 .

Novos valores de momento-curvatura-força normal foram retirados da refer;ncia
(7) , tabela 8d, aço CA-saB, com 10z ni ' 10 e u+ - 0,35, fornecendo os pares
(x; y) abaixo:

(O,5; 40) (190 ; 64 ) (115 ; 86 ) (2,0; 108) (2,5; 129) (3,0; 144)

(3,5; 152) (490 ; 159) í(4» 5 : 164 ) (5,0; 169) (5,5; 174) (6,0; 178) (6,5: 179)

(7,0; 179) (7,5; 180) (8,0; 180) (8,5; 180) (9,0; 181) (9,5; 181)

(10,0; 181)

Na Fig , 4, representa-se o diagrama obtido com utilização do spline cÍbico
completo, com tangentes extremas fornecidas por polin8mios de interpolação,
sem pontos adicionais +

200

103 11}

bh 2 E cd

(tabela 8d)
Buchain

1 o 2 4N: ut ' 0,35

F+ .+++ ' '

= 10 g n O,90

150

+

+

+

lb

+

+100
• pontos fornecidos

+

•

+

+

+

•

, + pontos aalculados pelo spline cample:o
(iaterpol8ç ão seu pontos adicionais>

so +
+

•

0 6.0 10

103
Fig . 4 - }knentoq»rvatur8-Força Horna1
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RE?RESENTAÇÃO DO DrACRAMA DE iNTERAÇÃO M-N, PARA À rLExÃO cor@osTA NORMAL
EM SEÇÃO RETANGULAR DE CONCRETO ARMADO (referincia (26) )

Do Íbaco 3.4, pág. 50, da referinci8, leram-se as coordenadas x n v e y = v(e/h) ,
formando os pares (x; y) conforme abaixo :
para co ' 1,0:
(- 1 ; 0 ) (n 0 # 8 ; 09090)

(0; 0,463) (0,2; 0,541)
(1; 0,398) (1,2; 0,335)

(- 0,6; Op186)

(0,4; 0, 570)
(1,4; 0,255)

(- 0,4; 0,278) (- 0,2; 0,370)
(0,6; 0,531) (0,8; 0,472)
(1,6; O,157) (1,8; O,OOQ)b

Para a) = O, 5 :

(- 0,5; 0) (- 0,3;' 0,093) (- 0,1; 0,187) (0,1; 0,274) (0,3; 0,336)
(0,5; 0,337) (0,7; 0,295) (0,9; 0,248) (1,1; 0,168) (1,3; 0,074)

para co = 0
(0; 0) (0,2; 0,080) (0,4; 0,120) (0,6; 0,120) (0,8; 0,080)
(190 ; 090)

ig . 5, encontra-se o diagrama obtido com interpolaçao pelo spline cíibico
com igualdade de reaçoes ,

+

+

+

•

+

+

+

•

+

+

+

+

+

,+++,
++ + ++

+ •

+

+ u ' 1,3+
+

+

• 8

+

+

+

+ ,.u ' 0,5
+

+
+

+
+

+

IP

+

+ + e pontos fornecidos
+ , + pontos obtidos pelo spI
+ con igualdade de reaçoe+

+

+

+

+

+

•

+

+

+

e ++ + • lbF • +++ u B 0
e e

+ +

+

+

•

+

+

+

+

+

+

+

+

+

+

+

+

185 180 ; o,5 1,n 1,) 2,3 v

Fig+ 5 .. Diagrama de lntet8çio U-11, flexão cobpost8 Renal efeil9 pn' 50>
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REPRESENTÂÇÃO DO EIXO D= UM CABO DE PROTENSÃO ?ELO S?LINE cOBrco

Para o eixo de um cabo de protensão, forneceram-se as coordenadas (x; y) com
os seguintes valores :

(0; 20) (6; 23,8) (12; 25,5) (18; 24,5) (24; 22,5) (30; 21)

(36; 19,5) (42; 18,5) (48; 18,2) (54; 18,5) (60; 19,5) (66; 21)
(72; 22,5) (78; 24,5) (84; 25,5) (90; 23,8) (96; 20)

Na Fig. 6, desenha-se o eixo do cabo de protensão com os pontos obtidos por
interpolação pelo spline cÜbico can iwald8de de reaçÕes .

• pontos fornecidos

+ + pontos calculados pelo 8pliae
(8pliae can igualdade de reaç6e8)

Fi8e 6 Eixo de ln&8bo de proten•io
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REPRESENTAÇÃO DE DESLOCA)aNTas, LiNEÂR E ANGULAR, EM ESTACAS ENTERRADAS

Na referineta (32) , c8lcularar6e estacas enterrad8s, com extremidades livres,
sob esforços de extremidades , em solo can reação lateral com distribuição
triangular ,

Resolveu-se 8 equação diferencial de quarta ordem

b gb + E xy + E y = o
dxb 32 32

para diversos valores do parâmetro de rigidez À B a L, com

a = e/l
El

sendo L o comprimento da estaca.

Para a estaca com extremidade inferior livre, sob força horizontal H
aplicada na extremidade superior, a linha elástica escreve-se :

y (;) A H
Y a3 El

Para a mesma estaca, sob momento M aplicado na extremidade superior, obtém-se
a linha elástica :

y (z) B M
Y a2 EI

Ainda sob momento aplicado na extremidade superior , a rotaçao da seção
transversal da estaca escreve-se :

$(z) B M
s a El

Nas rigs , 7, 8 e 9, respresentarse, através de splines cÕbicos , os coeficentes
A , Bv e B. , em funçao de À, para seçao transversal do topo da estaca .
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REPRESENTÂÇÃO DO DESLOCAbENTO DO TOPO DA ESTACA SOB FORÇA HORIZONTAL NA
EXTRWiDADE SUPERiOR, POR rnro DE SPLrNr cüBrco

Para 8 construção da Fig. 7, abaixo, con x ' À e y ' À_ , forneceran-se os
seguintes pares (x, y) : Y

(1,0; - 18,0301) (1,2; - 12,5520) (1,4; - 9,2662) (1,6; - 7,1541)
(1,8; - 5,7298) (2,0; - 4,7374) (2,2; - 4,0319) (2,4; - 3,5257)
(2,6; - 3,1628) (2,8; - 2,9054) (3,0; - 2,7266)

151

20 , 0

•

+
y (o)

J!L 9 b y ( a 3 E l )

15,0 +

+
+

•

+
+

+
+10,0

• pouR>É fornecidos

++
++ e

e + pontos calculados pelo spline completo
(interpolação sm pontos adicionais)

++•++++•++++•+

. 5,0

190 1l92 1/4' 1 1,6 1 1,8 82,0 12,2 1 2,4 12,6 1 2,8 13'0 Ii

Fig , 7 - Coeficiente A.y para deslocmento horizontal do topo dá estaca
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REPRESENTAÇÃO DOS DESLOCAMENTOS DO TOPO DA ESTACA, SOB NO IENTO APLICADO NA
EXTR=MrDADE surERroR, POR raIO DE SPLINE cOBrco

Das tabelas 15 8 25, da refer;nci8 (32) , com x ' } e y ' B_., conseguiram-se
os pares de valores (x; y) abaixo : 7

(1,0; - 24,1059) (1,2; - 14,0413) (1,4; - 8,9536) (1,6; - 6,1294)

(1,8; - 4,4558) (2,O; - 3,4182) (2,2; - 2,7559) (2,4; - 2,3268)

(2,6; - 2,0483) (2;8; - 1,8695) (3,0; - 1,7575)

+

r

Da utilização dos pares de valores acima resultou o gráfico da Fig. 8.

1 By 1

25

+

20
+

+

+

y(O) = By

15
19

+

+
+

+' 10

5

• pontos fornecidos

e + pontos calculados pelo spline completl
(interpolação sw pontos adicionais)

e

+
+

+

• 1b + + +

+ + + • + + + + • + 1F + + e + + + + e ]F + + ]F e

1 290 1 292 12,4 1 2,6 12l8
1,0 1,21 1

1,4 1,6+-t

Fig, 8 - Coeficiente Bv para deslocmento horizontal do topo da estaca
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REPRESENTAÇÃO DA ROTAÇÃO DA SEÇÃO DO TOPO DA ESTACA, SOB uoraNTO APLicADO
NA EXTREMrnÂDE SUPERiOR, poR raio DE SPLrNE CÜBiCO

Par8 8 construçio do gráfico da Fig. 9, com x ' À e y
8 25 da referincia 32, retiraram-se os pares (x; y) :

(1,0; 36,4856) (1,2; 17,9436) (1,4; 10,0501) (1,6; 6,2681)

(1,8; 4,2992) (2,0; 3,2132) (2,2; 2,5910) (2,4; 2,2269)

(2,6; 2,0129) (2,8; 1,8886) (3,0; 1,8185)

tabelas 15

+

r

+ 4 ()

B
6

35

+

30

25

20

15

+

+(0) = Bs (à)
+

•

+

+

+

e pontos forneci«k)s
10

5

+

+

8 + pontos calculados pelo spline completo
-(interpolação sw pontos adicionais)

++

]F + + 1E

+ 1b + + e + + l
++++'++++e++++•+++ +

' 2,2 2,4 2,6 2,8 3,01,0 1,2 1,4 1,6 1,8 . 2,0

Fige 9 _ Cbeficiente Bs Wta rouçio do topo da estaca
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REPRESENrAÇÃO DO MoraNTO FLETOR UÃxnio NA rSTACA, SOB AÇÃO DE rORÇA HORiZONTAL
A?LrcADA XA EXTREMiDADE SUPÊRIOR, POR >aro DE SPLrNE cüBrco

Datas tabelas 1 8 11 da referimeia (32) , retiraram-se para cada valor de À
os valores nãximos de AM. Colocant?o-se x = À e y ' valor máximo de h,
conseguiram-se os pares''(x; y) abaixo :

(1,0; 0,2591) (1,2; 0,3116) (1,4; 0,3629)

(2,O;'O,5111) (2,2; 0,5581) (2,4; 0,6012)

(3,0; 0, 7032)

(1,6; 0,4131)

(2,6; 0,6393)

(1,8; 0,4618)

(2,8; 0,6745)
t

r

Os pares acima deram origem ao gráfico da Fig, 10,

AM

c ,e

0 ,1

0,6

0,5

+ ++e+
++11 +1=

++ 'a
e++++e

+++e
++++8

++++'+++19

+++•

e

0,4

3,3

0,2

0,1

e pontos fornecidos

, +pontos calculados pelo spline completo
(iaterpolação 8em pontos adicionais)

1,9 1,2 1,4 196 198 2pn 292 n A
•+ 9 r n ! ) r!

10 - Coeficiente A,, para momento fletor máximo na estâc3
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REPRESENTAçÃo DE CURVAS DE NIVEL PELO SPLrNE ?ARAmÉTRrco NATURAL

Para a superficie de inf luincia de M_, numa placa retangular, de acordo com
8 referiacta (28) , diagrama 62, 7leram-se as seguintes coordenadas (x; y) : +

Para a curva de nÍvel - 2 :

(80 ; 0 ) (60 ; n 32 ) (40 ; = 49 ) (20 ; = 55 ) (O ; = 5195 ) (- 20 ; - 42 )

(- 20; 42) (0; - 51,5) (20; 55) (40; 49) (60; 32)(» 40; 0)

(80; 0)

Para a curva de nÍvel - 3 :

(80; 0) (60; - 24) (40; - 38,5)
(- 20; 15) (0; 37)

(20 ; - 4238 ) (0 ; - 37 ) (- 20 ; - 15 )

(20; 42,8) (40; 38,5) (60; 24)(= 23 ; 0 )

(80 ; 0 )

Para a curva de nÍvel - 4 :

(80; 0) (60; - 18,5) (40; - 29)

(0; 16,5) (20; 30) (40; 29)

(20; - 30) (0; - 16,5) (- 5; 0)
(60; 18,5) (80; 0)

Para a curva de nÍvel - 5 :

(80; 0) (60; - 13,5) (40; - 19,5)
(40; 19,5) (60; 13,5) (80; 0)

(20; - 15,5) (10,5; 0) (20; 15,5)

Para a curva de nivel - 6 :

(80; 0) (60; - 8,5) (60; -- 10,5) ( 2895 ; 0 ) (40; 10,5) (60; 8,5)

(80 ; 0 )

Na Fig . 11, encontrarse desenhadas as curvas de nível acima , com pontos de
interpolaçao obtidos pelo spline paranétrico natural. Ressalta-se o fato de
que os pontos dos desenhos , obtidos por um passo uniforme da variável t,
nao coincidem aqui com os pontos lidos nas variáveis (x; y) .

+Na leitura dos pontos (x ; y) considerou-se o eixo x horizontal, designado
por y na Fig . 11.
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REPRESENTAçÃO DE CURVAS DE NIVEL PELO S?LiNE ?ARAMÉTRrCO NATURAL
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REPRESENTAÇÃO DE cuRVAS DE NIVEL ?ELO SPLrNE cÜBrco PARAMÉTRICO PERIÓDICO

Para 8 superfÍcie de inf lu;nci8 de my, placa circular, de acordo com 8
referência ( 28) , diagrama 89, lerarêe 88 seguintes coordenadas (x; 7) :

Para 8 curva de nÍvel 2 :

(41; 0) (40; 8) (30; 29) (20; 37,5) (10; 42) (0; 44)

(- 50; 26) (- 60; 23,5)(- 10; 43) (- 20; 40,5) (- 30; 37) (- 40; 31,5)

(- 70; 20,5) (- 80; 11) (- 8295 ; 0) (- 80; -11) (- 70; -20,5) (- 60; - 23,5)

(- 50; - 26) (- 40; -31,5)(- 30; -37) (- 20; - 40,5) (- 10; - 43) (0; -44)

(10; -42) (20; -37,5) (30; - 29) (40 ; - 8) (41; 0)

Para a curva de nÍvel 3 :

(11; O) (IO; 6) (O; 20) (- 10; 24, 0) (- 20; 24,5) (- 30; 22,5)

(- 40; 19) (- 50; 15,5) (- 60; 14,5) (- 70; 10) (- 74,5; 0) (- 70; - 10)

(- 60; -14,5) (- 50; -15,5) (- 40; - 19) (- 30; - 22,5) (- 20; - 24,5) (- 10; - 24)

(0; - 20) (10; -6) (11; 0)

tara a curva de nÍvel 4 :

(- 14,5; 0) (- 20 ; 995) (- 30; 13)

(- 50 ; - 9 )

(- 40; 12) (- 50; 9) (- 60; 8,5)

(- 40; -12) (- 30; -13) (- 20; -9,5)(- 67,5; 0) (- 60; -8,5)

(- 14,5; 0)

Na Fig . 12, representarse as curvas de nÍvel acima com pontos obtidos pelo
spline cÚbico paranêtrico periÓdico. Aqui as curvas fechadas sao contÍnuas ,
com derivadas primeira e segunda tarnbêm contÍnuas , dif erindo das curvas
fechadas da Fig . 11.

Ressalta-se novamente o fato de que os pontos assinalados na Fig, 12 foram
obtidos ccm passo uniform na variável t, nao coincidindo com os pontos da
leitura inicial, que deram origem ao spline .
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REPRESrNTAÇÃO DE cuRVAS DE NIVEL PELO SPLINE ?ARAMETRICO PERrODICO
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RE?RESENTAçÃO DO PERFil DE uu VEICULO PELO SPLrNE cüBrco

As rigs . 13 e 14 foram obtidas com o fornecimento das seguintes coordenadas
y)(x ;

Para o trecho inicial do perfil do veÍculo:
(10; 12) (15; 24,8) (20; 29) (25; 31,6)
(47,5; 35,5)

(30; 33,5) (35; 34,5) (40; 35)

Para o trecho final do perfil do veÍculo
(53,5; 44,5) (58,5; 46,7) (63,5; 47,5)
(83,5; 47,3) (88,5; 46,2) (93,5; 45)
(108,5; 37) (113,5; 33) (118,5; 27)

(apõ8 o pára-brisa) :

(68,5; 47,8) (73,5; 48) (78,5;
(98,5; 43) (103,5; 40,6)
(123,5; 17)

b

47,5)

++e

•

+

+

+

++-
+

+

+

+

+

+

e pontos fornecidos

e + pontos calculados pelo spliae ciibico
(spliae cw igualdade de reaçÕes)

Pig. 13 - Perfil de \n veÍculo
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(tarBente6 por intetpolaçio sn pontos adicionais)

PIB. 14 - Per{il de un veTculo
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