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Abstract This paper describes the use of discriminant analysis to obtain regionalized classification of some
carbonatite units. The carbonatites are part of the Jacupiranga Ultramafic-Carbonatite Complex, hosted by Pre-
Cambrian rocks of the Agungui Group, and are located in the southwest part of the State of Sdo Paulo, Brazil.
Twelve carbonatite units have been identified but the present study focuses on three of them: the Foliated Car-
bonatite (CBF), White Carbonatite (CBR), and North Carbonatite (CBN) units. The data available for the three
units included geological and mineralogical observations, as well as concentrations of CaO, MgO, SiO,, Fe,O,,
P,O,, MnO, NaO, K,0O, TiO,, SrO, and loss in ignition. The results clearly distinguish the CBN unit from the
CBF unit and the CBN unit from the CBR unit. Therefore, CBN and CBF units cannot be grouped together for
mining operations; rather, they should be mined as separate bodies because they represent different populations
with respect to their rheological characteristics and chemical compositions. In contrast, the results show no
significant distinction between the CBR and CBF units. Since the CBR and CBF units are closely related, they
may probably be assembled in the same mining block and do not require a differentiated quarry.

Keywords: Regionalized classification, discriminant analysis, carbonatite quarry._

Resumo Classificacdo regionalizada de dados geoquimicos multivariados provenientes do Com-
plexo Alcalino de Jacupiranga (Vale do Ribeira de Iguape/Sao Paulo - Brasil).  Foi aplicada a anélise
discriminante para a classificagdo regional de algumas unidades geologicas existentes no Complexo Ultrama-
fico-Carbonatitico de Jacupiranga, de idade cretacea, localizado no Sudoeste do Estado de Sao Paulo/Brasil, e
alojado em rochas pré-cambrianas do Grupo Agungui. Ja haviam sido identificadas 12 unidades, classificadas
segundo o objetivo de beneficiamento do minério, mas neste estudo apenas os carbonatitos foliado (CBF),
branco (CBR) e norte (CBN) foram enfocados. Nessas rochas foram obtidos teores dos 6xidos SiO,, Fe,O,,
Ca0, MgO, P,O,, MnO, SrO, BaO e perda ao fogo em 95 amostras analisadas. Os resultados da analise dis-
criminante, tanto quando mostrados em graficos a dois fatores, usuais nesse tipo de analise, como em mapas
de probabilidade de ocorréncia, mostram uma nitida disting@o entre os teores expressos pelas unidades CBN e
CBEF, sendo consideradas distintas. Com respeito a unidade CBR, ndo esta significativamente discriminada de
CBF, mas sim de CBN. Tais resultados indicam, com referéncia aos aspectos mineiros, que CBF e CBN, por
constituirem unidades distintas, ndo podem ser estimadas concomitantemente, pois representam populagdes
diferentes com relag@o as concentragdes de elementos. A unidade CBR tem intima ligagdo com CBF, verificada
tanto em campo como pela andlise discriminante, ndo exigindo, portanto, uma lavra diferenciada.

Palavras-chave: Classificagdo regionalizada, analise discriminante, lavra de carbonatito.
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INTRODUCTION Analysis of geochemical data re-
quires measurement of regional attributes because the
results are used to form working hypotheses that will
try to explain those spatial processes that controlled the
formation of the phenomenon under study. As geochem-
ical processes are very complex and sampling is usually
insufficient, a simplification of reality is imposed by
modeling. Regionalized classification of samples into
groups is one such model that can transfer the results of
a statistical multivariate analysis from theoretical mul-
tidimensional space to a two-dimensional map or even
to a three-dimensional diagram.

Regionalized classification is defined as the

probabilistic assignment of multivariate and georefer-
enced samples to groups by using discriminant anal-
ysis. According to Olea (1999) and his predecessors
Harff and Davis (1990), there is nothing conceptually
new in regionalized classification, but some novelty is
introduced by jointly applying a number of well-known
mathematical, statistical, and geostatistical techniques.
Bohling (1997) presents software for regionalized clas-
sification and includes several options for the method
of implementation. According to Pacheco and Landim
(2005) the main problems associated with this method-
ology are the geological interpretation of the groups,
whether they are spatially separated, and sample attri-
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butions that do not present well-defined probabilities
for belonging to one predetermined group or another.

In this work the methodology was applied to
a number of carbonatite bodies that occurs in Cajati
Mine. These rocks are associated with Jacupiranga’s
Alkaline Complex, located in the Ribeira de Iguape
region of the southern part of the State of Sdo Paulo,
Brazil. There Bunge Fertilizers S.A. exploits apatite as
an industrial mineral. The targets of this study are the
faciological units North Carbonatite (CBN), Foliated
Carbonatite (CBF), and White Carbonatite (CBR). The
research goal was to perform a comparative evaluation
of geochemical attributes with the purpose of improv-
ing mining models and planning optimization.

GEOLOGY OF THE AREA The Cretaceous Ultra-
mafic-Carbonatite Complex of Jacupiranga, located in
the State of Sdo Paulo Southwest, is a NNW oval struc-
ture of about 70 km? (Ruberti et al., 1992), lodged in Pre-
cambrian rocks of the Acungui Group (Melcher, 1962).
The carbonatite body is elliptical (1000 x 400 m) and
is hosted in clinopyroxenite, which is known in Brazil
as jacupiranguito. Since the 1940s the apatite present in
carbonatite has been exploited by Bunge Fertilizers S.A.
to produce products for animal nutrition, fertilizers, and
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alimentary industries. Until the end of the 1990s there
were five well-known carbonatite facies (Gaspar, 1989)
whose limits and three-dimensional distribution were
imprecise for mine planning. As the mining advanced
it became necessary to obtain a more precisely detailed
description of ore distributions. From recent geological
surveys (Saito et al., 2004) twelve geological units have
been identified; these are illustrated in figure 1.

By associating the results of Gaspar (1989) with
the mappings of Saito et al. (2004), it was possible to dif-
ferentiate from among the twelve units those that are ex-
clusively carbonatitic (1, 2, 3, 6, 7, 8 and 9): they exhibit
distinct petrological characteristics, including mapable
contacts deeping up to 70-90° with xenoliths in the con-
tact region (jacupiranguito - XELeste and XESul or older
carbonatite). Each unit presents a distinct internal orga-
nization with concentric flow foliation. The north and
south phosphoric zones occur as isolated lens, meters in
size. The Dolomitic Carbonatite (DOL) presents coarse
to pegmatite texture, transitional contact, and includes
relicts of foliated rock, which apparently originate from
late carbonatic alteration (dolomitization). The xenolithic
north zone (XENorte) is an oval body that isolates the
south carbonatites from the north 9, 10, and 11 carbon-
atites. These xenoliths are composed of decimeter- to me-

Figure 1 - Geological map and block diagram showing the different lithological
units present in the Jacupiranga Complex: 1) Peripheral South Carbonatite (PSC),
2) Limestone South Carbonatite (CCS), 3) Oxide Carbonatite (COX), 4) Areas with
Foscorite South (FCS), 5) Fault Zone (ZFA), 6) Intermediary Carbonatite (CBI), 7)
Foliated Carbonatite (CBF), 8) White Carbonatite (CBR), 9) North Carbonatite
(CBN), 10) Areas with Foscorite North (FCN), 11) Dolomitic Carbonatite (DOL),
12) Xenolithic Areas (XENorte, XELeste, XESul), 0) Jacupiranguito Bodies (JAC).
The units studied in this work are labeled here in bold. (Modified from Saito et al.

2004).
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ter-sized blocks of jacupiranguito, and their contact with
the carbonatite matrix shows metassomatized edges. The
last important geological episode is represented by a ruptil
shearing regime that produced a system of main and sub-
sidiary faults; most prominent is the main fault which is
N75W/subvertical and has a sinistral shearing component
(ZFA). Faulting originated breccia, cataclasite, and fault
floor, besides allowing alteration/oxidation of carbonatite
in different directions and intensities. The results from the
detailed geological mapping allowed better understanding
of the internal organization of the carbonatite body and, as
a consequence, improved models for the deposit explora-
tion and for mine development.

MATERIALS AND METHODS

Geochemical Analysis Whole-rock samples of CBR,
CBF, and CNB facies were collected on the surface
during a 1:500 geological survey; subsurface samples
were obtained by drilling holes on a regular grid of 25
x 25 meters. Their depths did not exceed 35 m and the
inclination angles with the surface varied from 45° to
60°. A total of 95 samples were obtained for this study
by subdividing the intervals on each unit within 5 +
2.5m for each interval. The samples were afterwards
prepared and sent to the Technological Characterization
Laboratory in the Mines Department of the Polytechnic
Engineering School of the University of Sdo Paulo for
analyses by X-ray fluorescence.

The analyzed oxides were CaO, MgO, SiO,,
Fe,0,, P,O,, MnO, Na,0, K,0, TiO,, SrO and loss on
ignition (LOI). The chemical analyses were compared
with results from the CBN unit by Thomaz (unpub-
lished) and Lee (unpublished) and with results from the
CBF and CBR units by Ferreira (unpublished).

The CBN units were divided into three correlated
facies: Cacfm (fine to medium bedded carbonatite), Carm
(bedded carbonatite rich in magnetite), and Cbmg (medi-
um to coarse white carbonatite). The CBF units were also
divided into three correlated facies: Cfmc (fine to medi-
um foliated gray carbonatite), Cfox (medium foliated oxi-
dized carbonatite), and Cfba (white foliated carbonatite
rich in accessory minerals). The CBR unit was divided
into four facies: Cbgm (white coarse massive carbon-
atite), Cbox (white dolomitic oxidizes carbonatite), Cbma
(medium white carbonatite rich in accessory minerals),
and Cblm (medium white lamellar carbonatite).

Principal Component Analysis Principal component
analysis (PCA) is a mathematical procedure that trans-
forms a number of correlated variables into a number of
uncorrelated variables called principal components. The
objective of principal component analysis is to reduce the
dimensionality of the dataset while retaining the original
variability in the data. By an orthogonal linear transforma-
tion, PCA transforms the data to a new coordinate system
such that the greatest variance falls on the first coordinate
(called the first principal component), the second greatest
variance on the second coordinate, and so on.
Graphically the procedure can be described as
a vector-space transformation that reduces multidimen-
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sional data to visible 2-dimensional (2D) or 3D space. The
analysis starts with eigenvalues (also called latent roots)
and the corresponding eigenvector calculation of a corre-
lation matrix or variance-covariance matrix among vari-
ables. The initial matrix of similarities based on the Pear-
son correlation coefficient is the most widely used because
this measure removes the scale effect in the data.

The first eigenvalue indicates the highest per-
centage of the total variability; the second gives the
percentage of remaining variability and so forth. The
eigenvectors correspond to the principal component
and are the result of loading the original variables in
each of them. Such loading can be considered as a rela-
tive importance measure of each variable regarding the
principal component. When multiplied by the original
data matrix, the loading matrix of each variable in the
principal component provides a score matrix.

After carrying out a PCA, it is possible to si-
multaneously represent both observations and variables
in the same 2D space. The first work on this subject
dates from Gabriel (1971). The term biplot is reserved
for simultaneous representations in which the projec-
tion of observations on variable vectors must be rep-
resentative of the input data for the same variables. In
other words, the projected points on the variable vec-
tors must respect the order and the relative distances
of the observations for that same variable in the input
data. The simultaneous representation of observations
and variables cannot be produced directly by taking
the coordinates of the variables and observations in the
factor space. A transformation is required to make the
interpretation precise.

We used a distance biplot to interpret distances
between observations, as these approximate their Eu-
clidean distances in the p-dimensional variable space.
The position of two observations projected onto a vari-
able vector can be used to determine their relative level
for this variable. Lastly, the length of a variable vector
in the representation space is representative of the vari-
able’s level of contribution to building this space. The
length of the vector is the square root of the sum of the
contributions; see the Manual of XLStat (2008).

Discriminant Analysis Discriminant analysis (DA)
is a method used to model the extent to which an obser-
vation belongs to a group based on the values of several
variables. The variables that describe the observations
must be quantitative and the groups are distinguished
from one another by a categorical variable. Then a giv-
en observation is assigned to its most probable group
based on the values measured for the variables of that
observation. DA may be considered to be an extension
of multiple regression in cases where the variable to
be explained is a categorical variable that describes the
groups; see the Manual of XLStat (2008). This tech-
nique constructs a set of linear functions, known as dis-
criminant functions DF,, such that (eq. 1)

DF =ax +tax,+..+ax +c¢ (eq. 1)
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where the a’s are discriminant coefficients, the x’s
are the input variables or predictors, and ¢ is a constant.

These discriminant functions are used to predict
the class of a new observation (D,). For a k-class prob-
lem k discriminant functions are constructed. Given a
new observation, all the k discriminant functions are
evaluated and the observation is assigned to class i if
the i discriminant function has the highest value.

The relation between prior and post assign-
ments is frequently reported in a confusion matrix. In
this matrix, the number of correctly classified cases lies
on the main diagonal while the number of misclassified
cases lies on off-diagonals.

The observations used in the discriminant func-
tion calculation, as well as the respective centroids
from each group, can be plotted in the space defined
by the more important discriminant axis. Generally we
chose the two discriminant functions of largest weight.

To test the significance of the computed func-
tions, which means to verify whether there are distinct
populations, we calculate distances between multivari-
ate averages of two groups. This is known as “the gen-
eralized distance of Mahalanobis”, or D?, which is used
to measure the distance between classes taking into ac-
count the covariance structure.

If the covariance matrices are assumed to be
equal, the Fisher distances between the classes are dis-
played. They are calculated from the Mahalanobis dis-
tance and are used for a significance test. A matrix of
p-values is displayed so as to identify which distances
are significant. More details about both methods can be
found, among others, in Davis (1986) and Krzanowski
(2000). For the application of these methods we used
the software XLStat (2008).

RESULTS The sampling locations for the three
analyzed groups are shown in figure 2. At each loca-
tion we calculated mean grade values for each group
and for the chosen coordinates of the vertical drilling
holes. For subvertical drilling holes the coordinates
correspond to the projection to the surface of the con-
tact between units.

The results from the Principal Component
Analysis, using Pearson correlation coefficients ma-
trix, is shown in figure 3. This diagram shows that the
variables are correlated in two clusters: one formed
by MgO, MnO, Al, O,, SiO,, P,0O, and Fe O, and the
other by LOI, SrO, CaO, and S. The first cluster has
more affinity with the CBN samples while the second
has more with the CBR samples. The correlation be-
tween variables and CBF is not very clear. In any case,
this diagram should be interpreted with caution be-
cause the explanation sum supplied for the two princi-
pal components is just 61.12%.

The factorial loads of the variables indicate
the importance of each variable in the constitution of
the two more important principal components. The
loading matrix of each variable in the principal, when
multiplied by the original data matrix, supplies a score
matrix of each observation with respect to the princi-
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Figure 2 - Location of sampling points.

pal component. Using the geographical coordinates of
each observation and, therefore, of the scores, we can
construct a distribution map of the first Principal Main
Component, as in figure 4.

In this figure samples located in regions of
bright colors indicate positive correlations with LOI,
SrO, CaO, and S and negative correlations with MgO,
MnO,Al0,, SiO,, P,0O,, and FeO,. The samples lo-
cated in regions of dark colors indicate opposite situ-
ations.

A multigroup discriminant analysis search for
centroids of the analyzed groups in the multidimen-
sional space verifies whether the distances among
them are statistically significant. By the F test, using
the Mahalanobis distances, it was verified that signifi-
cant discrimination occurs among the three analyzed
groups, but the distance is larger between CBN and
CBF and between CBN and CBR than between CBF
and CBR. The graphical results in figure 5 show that
overlap zones occur among the three groups; this sug-
gests that some samples were erroneously classified.

As the three groups are discriminated, the
samples belonging to each of them can be distributed
so as to indicate to what distances they are from the
respective centroid. Each observation is classified into
the group for the which the probability of belonging
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Figure 3 - Biplot Principal Component Analysis, computed from a correlation coefficients
matrix, among CBF (F points), CBN (N points), and CBR (R points) lithological units.

is the greatest. The probabilities are posterior prob-
abilities that take into account the prior probabilities
through the Bayes formula. The results are presented
in probabilistic terms; examples appear in table 1 with
misclassified samples shown in bold. Using the geo-
graphical coordinates of each sample, we built three
probability occurrence maps (Fig. 6 to 8).

DISCUSSION AND CONCLUSIONS The Prin-
cipal Component Analysis applied to the data allows
us to infer that, from a geochemical point of view,
there are some differences among the three carbon-
atites. Foliated Carbonatite contains Fe,O,, MgO,
Si0,, Al,O,, and TiO, in higher amounts than the two
other units, probably because of the constant presence
of silicates such as phlogopite and olivine. The White
Carbonatite contains CaO and LOI in amounts greater
than the other units, suggesting high concentrations of
volatiles associated with the initial carbonatite mag-
ma, as well as with later hydrothermal fluids.

The modal mineralogical composition is sim-
ilar for typical facies of CBN and CBF, Cacfm and
Cfmmc, respectively, with low-significance increases
of apatite and magnetite in Cacfm. The principal
component analysis shows, see figure 3, that there
is clearly a geochemical affinity among P,O, Fe O,
Si0O,, and MnO; among CaO, SrO, and S; and among
MgO, ALO,, and SiO,. However, LOI shows a low
correlation with SrO.

These relationships among oxides reflect,
most of the time, the modal mineralogical composi-
tions of the different faciological units. For apatite
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Figure 4 - Spatial distribution of the first Principal
Component.

and magnetite (P,O,, Fe,0,, and MnO) during the
field survey and borehole core descriptions, it was
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Axis IT (26.20 %%)
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Figure 5 - Multigroup discriminant analysis among CBF (F points), CBN (N points), and
CBR (R points) lithological units. (®).: group centroids.

Table 1 - Identification of the samples, XY coordinates of the samples, prior-classification, post-classifi-
cation, membership probability, and squared distances to the group centroids.

D X Y Prior | Post | Prob.CBF | Prob.CBN | Prob.CBR | d(i,CBF) | &?G,CBN) | d°(i,CBR)
05F | 790336.77 | 265354.57 | CBF | CBF 0.479 0.409 0.112 11.121 11.491 13.038
06F | 790355.05 | 265242.68 | CBF | CBF 0.890 0.007 0.103 8.572 18.291 11.897
07F | 790365.83 | 265220.6 | CBF | CBF 0.966 0.014 0.020 4315 12.883 11.038
08F | 790377.1 | 265198.33 | CBF | CBN 0.200 0.790 0.009 7.579 4.891 12.742
111F | 790410.57 | 265273.55 | CBF | CBF 0.928 0.004 0.068 2.995 13.993 7.238
115F | 790295.58 | 265237.04 | CBF | CBF 0.963 0.005 0.032 5.039 15.573 10.877
116F | 790282.81 | 26522191 | CBF | CBF 0.901 0.039 0.060 4.896 11.229 9.342
117F | 790258.51 | 265227.7 | CBF | CBF 0.926 0.017 0.057 4333 12.439 8.911
118F | 790303.04 | 265205.53 | CBF | CBF 0.716 0.000 0.284 27.940 43.753 28.805
120F | 790288.47 | 265238.73 | CBF | CBF 0.946 0.015 0.039 2347 10.676 7718
121F | 79040435 | 265304.28 | CBF | CBF 0.970 0.014 0.016 4.081 12,677 11.281
126F | 790400.46 | 265323.9 | CBF | CBF 0.909 0.007 0.083 6.219 15.949 10.012
129F | 790237.55 | 265242.33 | CBF | CBF 0.939 0.050 0.011 6.308 12.219 14.246
130F | 790215.93 | 265269.38 | CBF | CBF 0.735 0.001 0.264 19.667 32.843 20.733
134F | 790386.87 | 265344.53 | CBF | CBN 0.170 0.820 0.010 8.787 5.700 13.478
135F | 790403.18 | 265356.4 | CBF | CBN 0.034 0.962 0.005 41.789 35.142 44733

noted that these minerals exhibit a positive corre-
lation. In other words, for an increase in magnetite
there is a proportional increase in apatite.

The results obtained by discriminant analysis
show a clear distinction between grade values ex-
pressed by the units CBN and CBF, these being con-
sidered distinct units, as well as the relation between
the units CBR and CBN. Regarding the units CBF and
CBR, there were no striking differences regarding the
sample distributions, and both faciological units pres-
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ent the same behavior for the analyzed oxides.

The 120R, 121R, 27R, 08F, 05F, 134F, 147F,
160F, 282F, 140R, and 141R samples showed dis-
cordant chemical compositions relative to that ex-
pected for the corresponding faciological units.
But these are just eleven dissonant samples from
the total of 95 samples. This disagreement is dem-
onstrated through the discriminant analysis, which
verifies the analyzed variables and clusters among
the samples into distinct populations. When a sample
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Figure 6 - Occurrence probability distribution for lith-  Figure 8 - Occurrence probability distribution for lith-
ological unit CBF. ological unit CBR.

presents a divergent position in relation to that of
the unit to which belongs, we can infer either a sam-
pling mistake, or contamination, or the presence of
another rock with similar composition. The discor-
dant eleven samples might be explained by different
rock interbedding that was distinct from the typical
facies to which they belong. Such interbedding can
—uoa be dolomitic zones, apatite-rich zones, zones rich in
magnetite and apatite, or reaction zones with a pre-
ponderance of silicatic minerals. In the CBN sample
distribution map (Fig. 7), it is possible to distinguish
small areas having geochemical behavior similar to
that of the CBF zone. One of the more probable fac-
tors for such occurrences would be caused by strong
fluid-rock interactions in the contact between CBR
and CBF zones, rich in CO, and MgO. Similar pro-
cesses in the contact between the CBN unit and the
CDOL (Dolomitic Carbonatite) intrusive body were
originated mostly from fluid-rock interactions of dis-
tinct magmas.

Thus from the mining point of view it is clear
that the two faciologic units CBF and CBN constitute
distinct units that cannot be evaluated concomitantly
265200 because they represent different populations with re-

FRASGES FRISN0 RSO FRIS0 S FR0a=0 spect to the oxide contents. However, the CBR unit,

which has intimate connection with CBF, which was

Figure 7 - Occurrence probability distribution for lith- verified as much in the field as by discriminant anal-
ological unit CBN. ysis, does not require a differentiated quarry.

The work developed by Ferreira (unpub-

lished) supplied an overview of the textural and com-
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positional mineralogical characteristics of the main
faciologic units studied here. From the facies spatial
arrangement and from geological surveying, it was
inferred that in the contact between Foliated Carbon-
atite and White Carbonatite, and also between North
Carbonatite and Dolomitic Carbonatite, transition
zones occur. The interbedding of lithotypes and the
occurrence of dolomitic bodies are quite common
and make delimitation difficult. This complicates
lithotype separation during sampling. Sometimes the
presence of various lithotypes can be verified in the
same sample. This complicated sampling situation
can be modeled, as seen in this work, by applying
regionalized classification that supplies occurrence

maps on a probabilistic basis. In this way the meth-
od becomes a predictive modeling of lithotypes and
lithofacies.
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