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Regionalized classification of multivariate geochemical data from 
Jacupiranga Alkaline Complex (Ribeira de Iguape Valley/São Paulo, Brazil)
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Abstract  This paper describes the use of discriminant analysis to obtain regionalized classification of some 
carbonatite units. The carbonatites are part of the Jacupiranga Ultramafic-Carbonatite Complex, hosted by Pre-
Cambrian rocks of the Açungui Group, and are located in the southwest part of the State of São Paulo, Brazil. 
Twelve carbonatite units have been identified but the present study focuses on three of them: the Foliated Car-
bonatite (CBF), White Carbonatite (CBR), and North Carbonatite (CBN) units. The data available for the three 
units included geological and mineralogical observations, as well as concentrations of CaO, MgO, SiO2, Fe2O3t, 
P2O5, MnO, NaO, K2O, TiO2, SrO, and loss in ignition. The results clearly distinguish the CBN unit from the 
CBF unit and the CBN unit from the CBR unit. Therefore, CBN and CBF units cannot be grouped together for 
mining operations; rather, they should be mined as separate bodies because they represent different populations 
with respect to their rheological characteristics and chemical compositions. In contrast, the results show no 
significant distinction between the CBR and CBF units. Since the CBR and CBF units are closely related, they 
may probably be assembled in the same mining block and do not require a differentiated quarry. 

Keywords: Regionalized classification, discriminant analysis, carbonatite quarry. 

Resumo  Classificação regionalizada de dados geoquímicos multivariados provenientes do Com-
plexo Alcalino de Jacupiranga (Vale do Ribeira de Iguape/São Paulo - Brasil).  Foi aplicada a análise 
discriminante para a classificação regional de algumas unidades geológicas existentes no Complexo Ultramá-
fico-Carbonatítico de Jacupiranga, de idade cretácea, localizado no Sudoeste do Estado de São Paulo/Brasil, e 
alojado em rochas pré-cambrianas do Grupo Açungui. Já haviam sido identificadas 12 unidades, classificadas 
segundo o objetivo de beneficiamento do minério, mas neste estudo apenas os carbonatitos foliado (CBF), 
branco (CBR) e norte (CBN) foram enfocados. Nessas rochas foram obtidos teores dos óxidos SiO2, Fe2O3t, 
CaO, MgO, P2O5, MnO, SrO, BaO e perda ao fogo em 95 amostras analisadas. Os resultados da análise dis-
criminante, tanto quando mostrados em gráficos a dois fatores, usuais nesse tipo de análise, como em mapas 
de probabilidade de ocorrência, mostram uma nítida distinção entre os teores expressos pelas unidades CBN e 
CBF, sendo consideradas distintas. Com respeito à unidade CBR, não está significativamente discriminada de 
CBF, mas sim de CBN. Tais resultados indicam, com referência aos aspectos mineiros, que CBF e CBN, por 
constituírem unidades distintas, não podem ser  estimadas concomitantemente, pois representam populações 
diferentes com relação às concentrações de elementos. A unidade CBR tem intima ligação com CBF, verificada 
tanto em campo como pela análise discriminante, não exigindo, portanto, uma  lavra diferenciada.
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probabilistic assignment of multivariate and georefer-
enced samples to groups by using discriminant anal-
ysis. According to Olea (1999) and his predecessors 
Harff and Davis (1990), there is nothing conceptually 
new in regionalized classification, but some novelty is 
introduced by jointly applying a number of well-known 
mathematical, statistical, and geostatistical techniques. 
Bohling (1997) presents software for regionalized clas-
sification and includes several options for the method 
of implementation. According to Pacheco and Landim 
(2005) the main problems associated with this method-
ology are the geological interpretation of the groups, 
whether they are spatially separated, and sample attri-

INTRODUCTION  Analysis of geochemical data re-
quires measurement of regional attributes because the 
results are used to form working hypotheses that will 
try to explain those spatial processes that controlled the 
formation of the phenomenon under study. As geochem-
ical processes are very complex and sampling is usually 
insufficient, a simplification of reality is imposed by 
modeling. Regionalized classification of samples into 
groups is one such model that can transfer the results of 
a statistical multivariate analysis from theoretical mul-
tidimensional space to a two-dimensional map or even 
to a three-dimensional diagram.

Regionalized classification is defined as the 
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butions that do not present well-defined probabilities 
for belonging to one predetermined group or another. 

In this work the methodology was applied to 
a number of carbonatite bodies that occurs in Cajati 
Mine. These rocks are associated with Jacupiranga’s 
Alkaline Complex, located in the Ribeira de Iguape 
region of the southern part of the State of São Paulo, 
Brazil. There Bunge Fertilizers S.A. exploits apatite as 
an industrial mineral. The targets of this study are the 
faciological units North Carbonatite (CBN), Foliated 
Carbonatite (CBF), and White Carbonatite (CBR). The 
research goal was to perform a comparative evaluation 
of geochemical attributes with the purpose of improv-
ing mining models and planning optimization.

GEOLOGY OF THE AREA  The Cretaceous Ultra-
mafic-Carbonatite Complex of Jacupiranga, located in 
the State of São Paulo Southwest, is a NNW oval struc-
ture of about 70 km2 (Ruberti et al., 1992), lodged in Pre-
cambrian rocks of the Açungui Group (Melcher, 1962). 
The carbonatite body is elliptical (1000 x 400 m) and 
is hosted in clinopyroxenite, which is known in Brazil 
as jacupiranguito. Since the 1940s the apatite present in 
carbonatite has been exploited by Bunge Fertilizers S.A. 
to produce products for animal nutrition, fertilizers, and 

alimentary industries. Until the end of the 1990s there 
were five well-known carbonatite facies (Gaspar, 1989) 
whose limits and three-dimensional distribution were 
imprecise for mine planning. As the mining advanced 
it became necessary to obtain a more precisely detailed 
description of ore distributions. From recent geological 
surveys (Saito et al., 2004) twelve geological units have 
been identified; these are illustrated in figure 1.

By associating the results of Gaspar (1989) with 
the mappings of Saito et al. (2004), it was possible to dif-
ferentiate from among the twelve units those that are ex-
clusively carbonatitic (1, 2, 3, 6, 7, 8 and 9): they exhibit 
distinct petrological characteristics, including mapable 
contacts deeping up to 70-90º with xenoliths in the con-
tact region (jacupiranguito - XELeste and XESul or older 
carbonatite). Each unit presents a distinct internal orga-
nization with concentric flow foliation. The north and 
south phosphoric zones occur as isolated lens, meters in 
size. The Dolomitic Carbonatite (DOL) presents coarse 
to pegmatite texture, transitional contact, and includes 
relicts of foliated rock, which apparently originate from 
late carbonatic alteration (dolomitization). The xenolithic 
north zone (XENorte) is an oval body that isolates the 
south carbonatites from the north 9, 10, and 11 carbon-
atites. These xenoliths are composed of decimeter- to me-

Figure 1 - Geological map and block diagram showing the different lithological 
units present in the Jacupiranga Complex: 1)  Peripheral South Carbonatite (PSC), 
2) Limestone South  Carbonatite (CCS), 3) Oxide Carbonatite (COX), 4) Areas with 
Foscorite South (FCS), 5) Fault Zone (ZFA), 6) Intermediary Carbonatite (CBI), 7) 
Foliated Carbonatite (CBF), 8) White Carbonatite (CBR), 9) North Carbonatite 
(CBN), 10) Areas with Foscorite North (FCN), 11) Dolomitic Carbonatite (DOL), 
12) Xenolithic Areas (XENorte, XELeste, XESul), 0) Jacupiranguito Bodies (JAC). 
The units studied in this work are labeled here in bold. (Modified from Saito et al. 
2004).



Regionalized classification of multivariate geochemical data from Jacupiranga Alkaline Complex 
(Ribeira de Iguape Valley/São Paulo, Brazil)

214 Revista Brasileira de Geociências, volume 40 (2), 2010

ter-sized blocks of jacupiranguito, and their contact with 
the carbonatite matrix shows metassomatized edges. The 
last important geological episode is represented by a ruptil 
shearing regime that produced a system of main and sub-
sidiary faults; most prominent is the main fault which is 
N75W/subvertical and has a sinistral shearing component 
(ZFA). Faulting originated breccia, cataclasite, and fault 
floor, besides allowing alteration/oxidation of carbonatite 
in different directions and intensities. The results from the 
detailed geological mapping allowed better understanding 
of the internal organization of the carbonatite body and, as 
a consequence, improved models for the deposit explora-
tion and for mine development.  

MATERIALS AND METHODS
Geochemical Analysis  Whole-rock samples of CBR, 
CBF, and CNB facies were collected on the surface 
during a 1:500 geological survey; subsurface samples 
were obtained by drilling holes on a regular grid of 25 
x 25 meters. Their depths did not exceed 35 m and the 
inclination angles with the surface varied from 45° to 
60º. A total of 95 samples were obtained for this study 
by subdividing the intervals on each unit within 5 ± 
2.5m for each interval. The samples were afterwards 
prepared and sent to the Technological Characterization 
Laboratory in the Mines Department of the Polytechnic 
Engineering School of the University of São Paulo for 
analyses by X-ray fluorescence. 

The analyzed oxides were CaO, MgO, SiO2, 
Fe2O3t, P2O5, MnO, Na2O, K2O, TiO2, SrO and loss on 
ignition (LOI). The chemical analyses were compared 
with results from the CBN unit by Thomaz (unpub-
lished) and Lee (unpublished) and with results from the 
CBF and CBR units by Ferreira (unpublished). 

The CBN units were divided into three correlated 
facies: Cacfm (fine to medium bedded carbonatite), Carm 
(bedded carbonatite rich in magnetite), and Cbmg (medi-
um to coarse white carbonatite). The CBF units were also 
divided into three correlated facies: Cfmc (fine to medi-
um foliated gray carbonatite), Cfox (medium foliated oxi-
dized carbonatite), and Cfba (white foliated carbonatite 
rich in accessory minerals). The CBR unit was divided 
into four facies: Cbgm (white coarse massive carbon-
atite), Cbox (white dolomitic oxidizes carbonatite), Cbma 
(medium white carbonatite rich in accessory minerals), 
and Cblm (medium white lamellar carbonatite). 

Principal Component Analysis  Principal component 
analysis (PCA) is a mathematical procedure that trans-
forms a number of correlated variables into a number of 
uncorrelated variables called principal components. The 
objective of principal component analysis is to reduce the 
dimensionality of the dataset while retaining the original 
variability in the data. By an orthogonal linear transforma-
tion, PCA transforms the data to a new coordinate system 
such that the greatest variance falls on the first coordinate 
(called the first principal component), the second greatest 
variance on the second coordinate, and so on.

Graphically the procedure can be described as 
a vector-space transformation that reduces multidimen-

sional data to visible 2-dimensional (2D) or 3D space. The 
analysis starts with eigenvalues (also called latent roots) 
and the corresponding eigenvector calculation of a corre-
lation matrix or variance-covariance matrix among vari-
ables. The initial matrix of similarities based on the Pear-
son correlation coefficient is the most widely used because 
this measure removes the scale effect in the data.  

The first eigenvalue indicates the highest per-
centage of the total variability; the second gives the 
percentage of remaining variability and so forth. The 
eigenvectors correspond to the principal component 
and are the result of loading the original variables in 
each of them. Such loading can be considered as a rela-
tive importance measure of each variable regarding the 
principal component. When multiplied by the original 
data matrix, the loading matrix of each variable in the 
principal component provides a score matrix. 

After carrying out a PCA, it is possible to si-
multaneously represent both observations and variables 
in the same 2D space. The first work on this subject 
dates from Gabriel (1971). The term biplot is reserved 
for simultaneous representations in which the projec-
tion of observations on variable vectors must be rep-
resentative of the input data for the same variables. In 
other words, the projected points on the variable vec-
tors must respect the order and the relative distances 
of the observations for that same variable in the input 
data. The simultaneous representation of observations 
and variables cannot be produced directly by taking 
the coordinates of the variables and observations in the 
factor space. A transformation is required to make the 
interpretation precise. 

We used a distance biplot to interpret distances 
between observations, as these approximate their Eu-
clidean distances in the p-dimensional variable space. 
The position of two observations projected onto a vari-
able vector can be used to determine their relative level 
for this variable. Lastly, the length of a variable vector 
in the representation space is representative of the vari-
able’s level of contribution to building this space. The 
length of the vector is the square root of the sum of the 
contributions; see the Manual of XLStat (2008).

Discriminant Analysis  Discriminant analysis (DA) 
is a method used to model the extent to which an obser-
vation belongs to a group based on the values of several 
variables. The variables that describe the observations 
must be quantitative and the groups are distinguished 
from one another by a categorical variable. Then a giv-
en observation is assigned to its most probable group 
based on the values measured for the variables of that 
observation. DA may be considered to be an extension 
of multiple regression in cases where the variable to 
be explained is a categorical variable that describes the 
groups; see the Manual of XLStat (2008).  This tech-
nique constructs a set of linear functions, known as dis-
criminant functions DFi, such that (eq. 1)

DFi = a1x1 + a2x2 + … + anxn + c       (eq. 1)
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where the a’s are discriminant coefficients, the x’s 
are the input variables or predictors, and c is a constant. 

These discriminant functions are used to predict 
the class of a new observation (Di). For a k-class prob-
lem k discriminant functions are constructed. Given a 
new observation, all the k discriminant functions are 
evaluated and the observation is assigned to class i if 
the ith discriminant function has the highest value. 

The relation between prior and post assign-
ments is frequently reported in a confusion matrix. In 
this matrix, the number of correctly classified cases lies 
on the main diagonal while the number of misclassified 
cases lies on off-diagonals. 

The observations used in the discriminant func-
tion calculation, as well as the respective centroids 
from each group, can be plotted in the space defined 
by the more important discriminant axis. Generally we 
chose the two discriminant functions of largest weight.  

To test the significance of the computed func-
tions, which means to verify whether there are distinct 
populations, we calculate distances between multivari-
ate averages of two groups. This is known as “the gen-
eralized distance of Mahalanobis”, or D2, which is used 
to measure the distance between classes taking into ac-
count the covariance structure.

If the covariance matrices are assumed to be 
equal, the Fisher distances between the classes are dis-
played. They are calculated from the Mahalanobis dis-
tance and are used for a significance test. A matrix of 
p-values is displayed so as to identify which distances 
are significant. More details about both methods can be 
found, among others, in Davis (1986) and Krzanowski 
(2000). For the application of these methods we used 
the software XLStat (2008). 

RESULTS  The sampling locations for the three 
analyzed groups are shown in figure 2. At each loca-
tion we calculated mean grade values for each group 
and for the chosen coordinates of the vertical drilling 
holes. For subvertical drilling holes the coordinates 
correspond to the projection to the surface of the con-
tact between units. 

The results from the Principal Component 
Analysis, using Pearson correlation coefficients ma-
trix, is shown in figure 3. This diagram shows that the 
variables are correlated in two clusters: one formed 
by MgO, MnO, Al2 O3, SiO2, P2O5, and Fe2O3t and the 
other by LOI, SrO, CaO, and S. The first cluster has 
more affinity with the CBN samples while the second 
has more with the CBR samples. The correlation be-
tween variables and CBF is not very clear. In any case, 
this diagram should be interpreted with caution be-
cause the explanation sum supplied for the two princi-
pal components is just 61.12%. 

The factorial loads of the variables indicate 
the importance of each variable in the constitution of 
the two more important principal components. The 
loading matrix of each variable in the principal, when 
multiplied by the original data matrix, supplies a score 
matrix of each observation with respect to the princi-

pal component. Using the geographical coordinates of 
each observation and, therefore, of the scores, we can 
construct a distribution map of the first Principal Main 
Component, as in figure 4.

In this figure samples located in regions of 
bright colors indicate positive correlations with LOI, 
SrO, CaO, and S and negative correlations with MgO,  
MnO,Al2O3, SiO2, P2O5, and Fe2O3. The samples lo-
cated in regions of dark colors indicate opposite situ-
ations.

A multigroup discriminant analysis search for 
centroids of the analyzed groups in the multidimen-
sional space verifies whether the distances among 
them are statistically significant. By the F test, using 
the Mahalanobis distances, it was verified that signifi-
cant discrimination occurs among the three analyzed 
groups, but the distance is larger between CBN and 
CBF and between CBN and CBR than between CBF 
and CBR. The graphical results in figure 5 show that 
overlap zones occur among the three groups; this sug-
gests that some samples were erroneously classified.

As the three groups are discriminated, the 
samples belonging to each of them can be distributed 
so as to indicate to what distances they are from the 
respective centroid. Each observation is classified into 
the group for the which the probability of belonging 

Figure 2 - Location  of sampling points.
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is the greatest. The probabilities are posterior prob-
abilities that take into account the prior probabilities 
through the Bayes formula. The results are presented 
in probabilistic terms; examples appear in table 1 with 
misclassified samples shown in bold. Using the geo-
graphical coordinates of each sample, we built three 
probability occurrence maps (Fig. 6 to 8).

DISCUSSION AND CONCLUSIONS  The Prin-
cipal Component Analysis applied to the data allows 
us to infer that, from a geochemical point of view, 
there are some differences among the three carbon-
atites. Foliated Carbonatite contains Fe2O3t, MgO, 
SiO2, Al2O3, and TiO2 in higher amounts than the two 
other units, probably because of the constant presence 
of silicates such as phlogopite and olivine. The White 
Carbonatite contains CaO and LOI in amounts greater 
than the other units, suggesting high concentrations of 
volatiles associated with the initial carbonatite mag-
ma, as well as with later hydrothermal fluids. 

The modal mineralogical composition is sim-
ilar for typical facies of CBN and CBF, Cacfm and 
Cfmc, respectively, with low-significance increases 
of apatite and magnetite in Cacfm. The principal 
component analysis shows, see figure 3, that there 
is clearly a geochemical affinity among P2O5, Fe2O3t, 
SiO2, and MnO; among CaO, SrO, and S; and among 
MgO, Al2O3, and SiO2. However, LOI shows a low 
correlation with SrO. 

These relationships among oxides reflect, 
most of the time, the modal mineralogical composi-
tions of the different faciological units. For apatite 

and magnetite (P2O5, Fe2O3t, and MnO) during the 
field survey and borehole core descriptions, it was 

Figure 3 - Biplot Principal Component Analysis, computed from a correlation coefficients 
matrix, among CBF (F points), CBN (N points), and CBR (R points) lithological units. 

Figure 4 - Spatial distribution of the first Principal 
Component.
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noted that these minerals exhibit a positive corre-
lation. In other words, for an increase in magnetite 
there is a proportional increase in apatite. 

The results obtained by discriminant analysis 
show a clear distinction between grade values ex-
pressed by the units CBN and CBF, these being con-
sidered distinct units, as well as the relation between 
the units CBR and CBN. Regarding the units CBF and 
CBR, there were no striking differences regarding the 
sample distributions, and both faciological units pres-

ent the same behavior for the analyzed oxides. 
The 120R, 121R, 27R, 08F, 05F, 134F, 147F, 

160F, 282F, 140R, and 141R samples showed dis-
cordant chemical compositions relative to that ex-
pected for the corresponding faciological units. 
But these are just eleven dissonant samples from 
the total of 95 samples. This disagreement is dem-
onstrated through the discriminant analysis, which 
verifies the analyzed variables and clusters among 
the samples into distinct populations. When a sample 

Figure 5 - Multigroup discriminant analysis among CBF (F points), CBN (N points), and 
CBR (R points) lithological units. (●): group centroids. 

Table 1 - Identification of the samples, XY coordinates of the samples, prior-classification, post-classifi-
cation, membership probability, and squared distances to the group centroids.

ID X Y Prior Post Prob. CBF Prob. CBN Prob. CBR d²(i,CBF) d²(i,CBN) d²(i,CBR)
05F 790336.77 265354.57 CBF CBF 0.479 0.409 0.112 11.121 11.491 13.038
06F 790355.05 265242.68 CBF CBF 0.890 0.007 0.103 8.572 18.291 11.897
07F 790365.83 265220.6 CBF CBF 0.966 0.014 0.020 4.315 12.883 11.038
08F 790377.1 265198.33 CBF CBN 0.200 0.790 0.009 7.579 4.891 12.742
111F 790410.57 265273.55 CBF CBF 0.928 0.004 0.068 2.995 13.993 7.238
115F 790295.58 265237.04 CBF CBF 0.963 0.005 0.032 5.039 15.573 10.877
116F 790282.81 265221.91 CBF CBF 0.901 0.039 0.060 4.896 11.229 9.342
117F 790258.51 265227.7 CBF CBF 0.926 0.017 0.057 4.333 12.439 8.911
118F 790303.04 265205.53 CBF CBF 0.716 0.000 0.284 27.940 43.753 28.805
120F 790288.47 265238.73 CBF CBF 0.946 0.015 0.039 2.347 10.676 7.718
121F 790404.35 265304.28 CBF CBF 0.970 0.014 0.016 4.081 12.677 11.281
126F 790400.46 265323.9 CBF CBF 0.909 0.007 0.083 6.219 15.949 10.012
129F 790237.55 265242.33 CBF CBF 0.939 0.050 0.011 6.308 12.219 14.246
130F 790215.93 265269.38 CBF CBF 0.735 0.001 0.264 19.667 32.843 20.733
134F 790386.87 265344.53 CBF CBN 0.170 0.820 0.010 8.787 5.700 13.478
135F 790403.18 265356.4 CBF CBN 0.034 0.962 0.005 41.789 35.142 44.733

... ... ... ... ... ... ... ... ... ... ...
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presents a divergent position in relation to that of 
the unit to which belongs, we can infer either a sam-
pling mistake, or contamination, or the presence of 
another rock with similar composition. The discor-
dant eleven samples might be explained by different 
rock interbedding that was distinct from the typical 
facies to which they belong. Such interbedding can 
be dolomitic zones, apatite-rich zones, zones rich in 
magnetite and apatite, or reaction zones with a pre-
ponderance of silicatic minerals. In the CBN sample 
distribution map (Fig. 7), it is possible to distinguish 
small areas having geochemical behavior similar to 
that of the CBF zone. One of the more probable fac-
tors for such occurrences would be caused by strong 
fluid-rock interactions in the contact between CBR 
and CBF zones, rich in CO2 and MgO. Similar pro-
cesses in the contact between the CBN unit and the 
CDOL (Dolomitic Carbonatite) intrusive body were 
originated mostly from fluid-rock interactions of dis-
tinct magmas. 

Thus from the mining point of view it is clear 
that the two faciologic units CBF and CBN constitute 
distinct units that cannot be evaluated  concomitantly 
because they represent different populations with re-
spect to the oxide contents.  However, the CBR unit, 
which has intimate connection with CBF, which was 
verified as much in the field as by discriminant anal-
ysis, does not require a differentiated quarry.

The work developed by Ferreira (unpub-
lished) supplied an overview of the textural and com-

Figure 6 - Occurrence probability distribution for lith-
ological unit CBF.

Figure 7 - Occurrence probability distribution for lith-
ological unit CBN.

Figure 8 - Occurrence probability distribution for lith-
ological unit CBR.
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positional mineralogical characteristics of the main 
faciologic units studied here. From the facies spatial 
arrangement and from geological surveying, it was 
inferred that in the contact between Foliated Carbon-
atite and White Carbonatite, and also between North 
Carbonatite and Dolomitic Carbonatite, transition 
zones occur. The interbedding of lithotypes and the 
occurrence of dolomitic bodies are quite common 
and make delimitation difficult. This complicates 
lithotype separation during sampling. Sometimes the 
presence of various lithotypes can be verified in the 
same sample. This complicated sampling situation 
can be modeled, as seen in this work, by applying 
regionalized classification that supplies occurrence 

maps on a probabilistic basis. In this way the meth-
od becomes a predictive modeling of lithotypes and 
lithofacies. 
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