

Instituto de Ciências Matemáticas de São Carlos

ISSN - 0103-2577

On the aleatory variable $Y_n = 10^n X - [10^n X]$
for large n

CARLOS BIASI
SANDRA M.S. GODOY

Nº 30

NOTAS DO ICMSC
Série Matemática

São Carlos
Maio/1995

SYSNO	893953
DATA	/ /
ICMC - SBAB	

On the Aleatory Variable $Y_n = 10^n X - [10^n X]$ for Large n

Biasi, C. and Godoy, S.M.S.

ICMSC-USP

Caixa Postal, 668

13560-970 - São Carlos - S.P., Brasil

Abstract: In this paper, we consider the aleatory variable $Y_n = 10^n X - [10^n X]$ where X is an aleatory variable. Our goal, under nice conditions on X , is to prove that Y_n tends to an aleatory variable with uniform distribution on $[0, 1]$.

1 Introduction

Let X be an aleatory variable and F the distribution function of variable X defined for all real numbers x by $F(x) = P\{X \leq x\}$. By the Probability Theory, [R₁], we know that F has the following properties: i) F is a nondecreasing function; ii) $\lim_{x \rightarrow \infty} F(x) = 1$; iii) $\lim_{x \rightarrow -\infty} F(x) = 0$; iv) F is right continuous, that is, for any x and any decreasing sequence x_n , $n \geq 1$, that converges to x , $\lim_{n \rightarrow \infty} F(x_n) = F(x)$.

For each natural n , consider the aleatory variable $Y_n = 10^n X - [10^n X]$, where $[\cdot]$ denotes the integer part.

Our goal is to show by putting nice conditions on F , that Y_n tends to an aleatory variable with uniform distribution on $[0,1]$.

We denote by A^c the complement of the set A .

We will prove the following result:

Theorem 1 Suppose that function F satisfies:

a) F is absolutely continuous

b) There exists a closed set A of measure zero so that F is a C^1 function on A^c .

Then $\lim_{n \rightarrow \infty} G_n(y) \equiv y$, where G_n is the distribution function of Y_n for each n .

2 Some Initial Remarks

Remark 1 We note that if $0 \leq y \leq 1$ and $Y_n = 10^n X - [10^n X]$, then $X \in \bigcup_{i \in \mathbb{Z}} \left[\frac{i}{10^n}, \frac{i+y}{10^n} \right]$ if and only if $0 \leq Y_n \leq y$ for each n .

In fact, we have that if $\frac{i}{10^n} \leq X \leq \frac{i+y}{10^n}$ then $0 \leq X 10^n - 1 \leq y \leq 1$ and then $0 \leq Y_n \leq y$.

Remark 2 Theorem 1 is easily proved if F is a C^1 function.

In fact, let f be a primitive of F . We have that $G_n(y) = \sum_{i \in \mathbb{Z}} \left[F\left(\frac{i+y}{10^n}\right) - F\left(\frac{i}{10^n}\right) \right]$ and by the Mean Value Theorem it follows that $G_n(y) = \sum_{i \in \mathbb{Z}} f(c_i) \frac{y}{10^n}$ where $\frac{i}{10^n} < c_i < \frac{i+y}{10^n} < \frac{i+1}{10^n}$.

Then, $\lim_{n \rightarrow \infty} G_n(y) = \lim_{n \rightarrow \infty} y \sum_{i \in \mathbb{Z}} f(c_i) \frac{1}{10^n} = y \int_{-\infty}^{\infty} f(x) dx = y \lim_{b \rightarrow \infty} \left[\lim_{a \rightarrow -\infty} F(b) - F(a) \right] = y$ by properties ii) and iii) of F .

Remark 3 We believe that Theorem 1 can be proved under weaker hypothesis.

3 Proof of Theorem 1

Take f so that $F' = f$ and take $\varepsilon > 0$. There exist numbers a and b , $a < b$ so that $F(a) < \varepsilon$ and $F(b) > 1 - \varepsilon$ by the properties of F .

Let ℓ_n and L_n be chosen in such a way that

$$\tilde{a} = \frac{\ell_n}{10^n} = \frac{\ell_m}{10^m} < a \quad \text{and}$$

$$\tilde{b} = \frac{L_n}{10^n} = \frac{L_m}{10^m} > b \quad \text{for all } n, m \in \mathbb{N}.$$

Since F is absolutely continuous, there exists $\delta > 0$ so that if $\tilde{a} = x_0 < x_1 < \dots < x_n = \tilde{b}$ and $\sum_{i=1}^n |x_i - x_{i-1}| < \delta$ then $\sum_{i=1}^n |F(x_i) - F(x_{i-1})| < \varepsilon$.

Let V be an open set of $[\tilde{a}, \tilde{b}]$ such that $A \subset V$, $mV < \frac{\delta}{2}$. Let $N'_n \subset \mathbb{N}$ be the set of index i such that $\left[\frac{i}{10^n}, \frac{i+1}{10^n} \right] \cap V \neq \emptyset$.

We can find n_0 so that if $n \geq n_0$ then $\sum_{i \in N'_n} \left| \frac{i+1}{10^n} - \frac{i}{10^n} \right| < \delta$ by the choice of V .

By using the definition of $G_n(y)$ and the properties of F we have that

$$\begin{aligned} G_n(y) &= \sum_{i \in \mathbb{Z}} \left[F\left(\frac{i}{10^n} + \frac{y}{10^n}\right) - F\left(\frac{i}{10^n}\right) \right] \leq \sum_{i \leq \ell_n} \left[F\left(\frac{i}{10^n} + \frac{y}{10^n}\right) - F\left(\frac{i}{10^n}\right) \right] \\ &+ \sum_{i=\ell_n}^{L_{n-1}} \left[F\left(\frac{i}{10^n} + \frac{y}{10^n}\right) - F\left(\frac{i}{10^n}\right) \right] + \sum_{i \geq L_n} \left[F\left(\frac{i}{10^n} + \frac{y}{10^n}\right) - F\left(\frac{i}{10^n}\right) \right] \\ &= F\left(\frac{\ell_n}{10^n}\right) + \sum_{i=\ell_n}^{L_{n-1}} \left[F\left(\frac{i}{10^n} + \frac{y}{10^n}\right) - F\left(\frac{i}{10^n}\right) \right] \\ &+ 1 - F\left(\frac{L_n}{10^n}\right) < F(a) + \sum_{i=\ell_n}^{L_{n-1}} \left[F\left(\frac{i}{10^n} + \frac{y}{10^n}\right) - F\left(\frac{i}{10^n}\right) \right] \\ &+ 1 - 1 + \varepsilon < 2\varepsilon + \sum_{i=\ell_n}^{L_{n-1}} \left[F\left(\frac{i}{10^n} + \frac{y}{10^n}\right) - F\left(\frac{i}{10^n}\right) \right]. \end{aligned}$$

Then, $0 \leq \left| G_n(y) - \sum_{i=\ell_n}^{L_n-1} \left[F\left(\frac{i}{10^n} + \frac{y}{10^n}\right) - F\left(\frac{i}{10^n}\right) \right] \right| < 2\varepsilon$.

But $\sum_{i=\ell_n}^{L_n-1} \left[F\left(\frac{i}{10^n} + \frac{y}{10^n}\right) - F\left(\frac{i}{10^n}\right) \right] = \sum_{i \in N'_n} \left[F\left(\frac{i}{10^n} + \frac{y}{10^n}\right) - F\left(\frac{i}{10^n}\right) \right] + \sum_{i \in (N'_n)^c} \left[F\left(\frac{i}{10^n} + \frac{y}{10^n}\right) - F\left(\frac{i}{10^n}\right) \right]$ and $\sum_{i \in N'_n} \left[F\left(\frac{i}{10^n} + \frac{y}{10^n}\right) - F\left(\frac{i}{10^n}\right) \right] < \varepsilon$ because F is absolutely continuous on N'_n .

Because F is C^1 on A^c and $\left[\frac{i}{10^n}, \frac{i+1}{10^n}\right] \subset [\tilde{a}, \tilde{b}] - V = \tilde{V}$ if $i \notin N'_n$, we can use the Mean Value Theorem on A^c , that is, there exists $\frac{i}{10^n} < c_i < \frac{i+1}{10^n}$ such that $F\left(\frac{i}{10^n} + \frac{y}{10^n}\right) - F\left(\frac{i}{10^n}\right) = f(c_i) \cdot \frac{y}{10^n}$ if $i \notin N'_n$.

Let us show that $\sum_{i=\ell_n}^{L_n-1} \left[F\left(\frac{i}{10^n} + \frac{y}{10^n}\right) - F\left(\frac{i}{10^n}\right) \right]$ converges to $\left(\int_{\tilde{a}}^{\tilde{b}} f(x)dx\right) \cdot y$ when n goes to infinity.

We have that

$$\begin{aligned} & \left| \sum_{i \in N'_n} \left[F\left(\frac{i}{10^n} + \frac{y}{10^n}\right) - F\left(\frac{i}{10^n}\right) \right] + \sum_{i \in (N'_n)^c} \frac{f(c_i)}{10^n} \cdot y \right. \\ & \quad \left. - \left(\sum_{i \in N'_n} \int_{\frac{i}{10^n}}^{\frac{i+1}{10^n}} f(x)dx + \sum_{i \in (N'_n)^c} \int_{\frac{i}{10^n}}^{\frac{i+1}{10^n}} f(x)dx \right) \cdot y \right| \\ & < 2\varepsilon + \left| \sum_{i \in (N'_n)^c} \frac{f(c_i) - f(d_i)}{10^n} \cdot y \right| < 2\varepsilon + \frac{\varepsilon}{\tilde{b} - \tilde{a}} \cdot y \cdot (\tilde{b} - \tilde{a}) \end{aligned}$$

and this last inequality holds because if $i \notin N'_n$, the set $\left[\frac{i}{10^n}, \frac{i+1}{10^n}\right] \subset [\tilde{a}, \tilde{b}] = V = \tilde{V}$ and \tilde{V} is a closed set in $[\tilde{a}, \tilde{b}]$. Then \tilde{V} is a compact set and f is a uniformly continuous function on \tilde{V} . So, given $\varepsilon > 0$, there is a $\delta_* > 0$ such that if $|x - y| < \delta_*$ then $|f(x) - f(y)| < \frac{\varepsilon}{\tilde{b} - \tilde{a}}$. Thus, we can take n so large that $\frac{1}{10^n} < \delta_*$.

By observing that $y = \left(\int_{-\infty}^{\infty} f(x) dx \right) \cdot y = \left(\int_{-\infty}^{\tilde{a}} f(x) dx + \int_{\tilde{a}}^{\tilde{b}} f(x) dx + \int_{\tilde{b}}^{\infty} f(x) dx \right) \cdot y < \left(\varepsilon + \int_{\tilde{a}}^{\tilde{b}} f(x) dx + \varepsilon \right) \cdot y$, we have for n sufficiently large that $|G_n(y) - y| < 7\varepsilon$ and the theorem is proved.

References

- [R₁] S. Ross, "A First Course in Probability". *The Macmillan Publishing Company*, New York, 1988.
- [R₂] H.L. Royden, "Real Analysis", *The Macmillan Company*, London.
- [F] G.B. Folland, "Real Analysis. Modern Techniques and Their Applications", *A Wiley-Interscience Publication*.